1
|
Hille R. Xanthine Oxidase-A Personal History. Molecules 2023; 28:1921. [PMID: 36838909 PMCID: PMC9966888 DOI: 10.3390/molecules28041921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
A personal perspective is provided regarding the work in several laboratories, including the author's, that has established the reaction mechanism of xanthine oxidase and related enzymes.
Collapse
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
2
|
Kirk ML, Hille R. Spectroscopic Studies of Mononuclear Molybdenum Enzyme Centers. Molecules 2022; 27:4802. [PMID: 35956757 PMCID: PMC9370002 DOI: 10.3390/molecules27154802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
A concise review is provided of the contributions that various spectroscopic methods have made to our understanding of the physical and electronic structures of mononuclear molybdenum enzymes. Contributions to our understanding of the structure and function of each of the major families of these enzymes is considered, providing a perspective on how spectroscopy has impacted the field.
Collapse
Affiliation(s)
- Martin L. Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Russ Hille
- Department of Biochemistry, Boyce Hall 1463, University of California, Riverside, CA 82521, USA
| |
Collapse
|
3
|
Hille R, Niks D. Application of EPR and related methods to molybdenum-containing enzymes. Methods Enzymol 2022; 666:373-412. [PMID: 35465925 DOI: 10.1016/bs.mie.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A description is provided of the contributions made to our understanding of molybdenum-containing enzymes through the application of electron paramagnetic resonance spectroscopy and related methods, by way of illustrating how these can be applied to better understand enzyme structure and function. An emphasis is placed on the use of EPR to identify both the coordination environment of the molybdenum coordination sphere as well as the structures of paramagnetic intermediates observed transiently in the course of reaction that have led to the elucidation of reaction mechanism.
Collapse
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, CA, United States.
| | - Dimitri Niks
- Department of Biochemistry, University of California, Riverside, CA, United States
| |
Collapse
|
4
|
Kinetic and spectroscopic characterization of tungsten-substituted DMSO reductase from Rhodobacter sphaeroides. J Biol Inorg Chem 2018; 23:295-301. [PMID: 29299674 DOI: 10.1007/s00775-017-1531-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
We have examined the kinetic and spectroscopic properties of a tungsten-substituted form of DMSO reductase from Rhodobacter sphaeroides, an enzyme that normally possesses molybdenum. Partial reduction with sodium dithionite yields a well-resolved W(V) EPR signal of the so-called "high-g split" type that exhibits markedly greater g-anisotropy than the corresponding Mo(V) signal of the native form of the enzyme, with the g values shifted to higher magnetic field by as much as Δgave = 0.056. Deuteration of the enzyme confirms that the coupled proton is solvent-exchangeable, allowing us to accurately simulate the tungsten hyperfine coupling. Global curve-fitting analysis of UV/vis absorption spectra observed in the course of the reaction of the tungsten-substituted enzyme with sodium dithionite affords a well-defined absorption spectrum for the W(V) species. Surprisingly, the absorption spectrum for this species exhibits significantly larger molar extinction coefficients than either the reduced or the oxidized spectrum. This spectrum, in conjunction with those for fully oxidized W(VI) and fully reduced W(IV) enzyme, has been used to deconvolute the absorption spectra seen in the course of turnover, in the which enzyme is reacted with sodium dithionite and DMSO, demonstrating that the W(V) is an authentic catalytic intermediate that accumulates to approximately 50% of the total enzyme in the steady state.
Collapse
|
5
|
Maia LB, Moura I, Moura JJ. EPR Spectroscopy on Mononuclear Molybdenum-Containing Enzymes. FUTURE DIRECTIONS IN METALLOPROTEIN AND METALLOENZYME RESEARCH 2017. [DOI: 10.1007/978-3-319-59100-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Wang J, Keceli G, Cao R, Su J, Mi Z. Molybdenum-containing nitrite reductases: Spectroscopic characterization and redox mechanism. Redox Rep 2016; 22:17-25. [PMID: 27686142 DOI: 10.1080/13510002.2016.1206175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES This review summarizes the spectroscopic results, which will provide useful suggestions for future research. In addition, the fields that urgently need more information are also advised. BACKGROUND Nitrite-NO-cGMP has been considered as an important signaling pathway of NO in human cells. To date, all the four known human molybdenum-containing enzymes, xanthine oxidase, aldehyde oxidase, sulfite oxidase, and mitochondrial amidoxime-reducing component, have been shown to function as nitrite reductases under hypoxia by biochemical, cellular, or animal studies. Various spectroscopic techniques have been applied to investigate the structure and catalytic mechanism of these enzymes for more than 20 years. METHODS We summarize the published data on the applications of UV-vis and EPR spectroscopies, and X-ray crystallography in studying nitrite reductase activity of the four human molybdenum-containing enzymes. RESULTS UV-vis has provided useful information on the redox active centers of these enzymes. The utilization of EPR spectroscopy has been critical in determining the coordination and redox status of the Mo center during catalysis. Despite the lack of substrate-bound crystal structures of these nitrite reductases, valuable structural information has been obtained by X-ray crystallography. CONCLUSIONS To fully understand the catalytic mechanisms of these physiologically/pathologically important nitrite reductases, structural studies on substrate-redox center interaction are needed.
Collapse
Affiliation(s)
- Jun Wang
- a Department of Pharmacy, Food and Pharmaceutical Engineering College , Hubei University of Technology , Wuhan , Hubei 430068 , China
| | - Gizem Keceli
- b Department of Chemistry , Johns Hopkins University , Baltimore , MD 21218 , USA
| | - Rui Cao
- b Department of Chemistry , Johns Hopkins University , Baltimore , MD 21218 , USA
| | - Jiangtao Su
- a Department of Pharmacy, Food and Pharmaceutical Engineering College , Hubei University of Technology , Wuhan , Hubei 430068 , China
| | - Zhiyuan Mi
- a Department of Pharmacy, Food and Pharmaceutical Engineering College , Hubei University of Technology , Wuhan , Hubei 430068 , China
| |
Collapse
|
7
|
Mirzaei S, Taherpour AA, Mohamadi S. Mechanistic study of allopurinol oxidation using aldehyde oxidase, xanthine oxidase and cytochrome P450 enzymes. RSC Adv 2016. [DOI: 10.1039/c6ra19197e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The oxidation reaction of allopurinol to its active metabolite (oxypurinol) is investigated using the AO and P450 enzymes. To the contrary of AO (and XO), the P450 enzyme can metabolize the allopurinol with a not self-inhibitory mechanism.
Collapse
Affiliation(s)
- Saber Mirzaei
- Department of Organic Chemistry
- Faculty of Chemistry
- Razi University
- Kermanshah
- Iran
| | - Avat Arman Taherpour
- Department of Organic Chemistry
- Faculty of Chemistry
- Razi University
- Kermanshah
- Iran
| | - Shahryar Mohamadi
- Department of Organic Chemistry
- Faculty of Chemistry
- Razi University
- Kermanshah
- Iran
| |
Collapse
|
8
|
Niks D, Duvvuru J, Escalona M, Hille R. Spectroscopic and Kinetic Properties of the Molybdenum-containing, NAD+-dependent Formate Dehydrogenase from Ralstonia eutropha. J Biol Chem 2015; 291:1162-74. [PMID: 26553877 DOI: 10.1074/jbc.m115.688457] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Indexed: 11/06/2022] Open
Abstract
We have examined the rapid reaction kinetics and spectroscopic properties of the molybdenum-containing, NAD(+)-dependent FdsABG formate dehydrogenase from Ralstonia eutropha. We confirm previous steady-state studies of the enzyme and extend its characterization to a rapid kinetic study of the reductive half-reaction (the reaction of formate with oxidized enzyme). We have also characterized the electron paramagnetic resonance signal of the molybdenum center in its Mo(V) state and demonstrated the direct transfer of the substrate Cα hydrogen to the molybdenum center in the course of the reaction. Varying temperature, microwave power, and level of enzyme reduction, we are able to clearly identify the electron paramagnetic resonance signals for four of the iron/sulfur clusters of the enzyme and find suggestive evidence for two others; we observe a magnetic interaction between the molybdenum center and one of the iron/sulfur centers, permitting assignment of this signal to a specific iron/sulfur cluster in the enzyme. In light of recent advances in our understanding of the structure of the molybdenum center, we propose a reaction mechanism involving direct hydride transfer from formate to a molybdenum-sulfur group of the molybdenum center.
Collapse
Affiliation(s)
- Dimitri Niks
- From the Department of Biochemistry, University of California, Riverside, Riverside, California 92521
| | - Jayant Duvvuru
- From the Department of Biochemistry, University of California, Riverside, Riverside, California 92521
| | - Miguel Escalona
- From the Department of Biochemistry, University of California, Riverside, Riverside, California 92521
| | - Russ Hille
- From the Department of Biochemistry, University of California, Riverside, Riverside, California 92521
| |
Collapse
|
9
|
Wang J, Krizowski S, Fischer-Schrader K, Niks D, Tejero J, Sparacino-Watkins C, Wang L, Ragireddy V, Frizzell S, Kelley EE, Zhang Y, Basu P, Hille R, Schwarz G, Gladwin MT. Sulfite Oxidase Catalyzes Single-Electron Transfer at Molybdenum Domain to Reduce Nitrite to Nitric Oxide. Antioxid Redox Signal 2015; 23:283-94. [PMID: 25314640 PMCID: PMC4523048 DOI: 10.1089/ars.2013.5397] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AIMS Recent studies suggest that the molybdenum enzymes xanthine oxidase, aldehyde oxidase, and mARC exhibit nitrite reductase activity at low oxygen pressures. However, inhibition studies of xanthine oxidase in humans have failed to block nitrite-dependent changes in blood flow, leading to continued exploration for other candidate nitrite reductases. Another physiologically important molybdenum enzyme—sulfite oxidase (SO)—has not been extensively studied. RESULTS Using gas-phase nitric oxide (NO) detection and physiological concentrations of nitrite, SO functions as nitrite reductase in the presence of a one-electron donor, exhibiting redox coupling of substrate oxidation and nitrite reduction to form NO. With sulfite, the physiological substrate, SO only facilitates one turnover of nitrite reduction. Studies with recombinant heme and molybdenum domains of SO indicate that nitrite reduction occurs at the molybdenum center via coupled oxidation of Mo(IV) to Mo(V). Reaction rates of nitrite to NO decreased in the presence of a functional heme domain, mediated by steric and redox effects of this domain. Using knockdown of all molybdopterin enzymes and SO in fibroblasts isolated from patients with genetic deficiencies of molybdenum cofactor and SO, respectively, SO was found to significantly contribute to hypoxic nitrite signaling as demonstrated by activation of the canonical NO-sGC-cGMP pathway. INNOVATION Nitrite binds to and is reduced at the molybdenum site of mammalian SO, which may be allosterically regulated by heme and molybdenum domain interactions, and contributes to the mammalian nitrate-nitrite-NO signaling pathway in human fibroblasts. CONCLUSION SO is a putative mammalian nitrite reductase, catalyzing nitrite reduction at the Mo(IV) center.
Collapse
Affiliation(s)
- Jun Wang
- 1 Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sabina Krizowski
- 3 Department of Biochemistry, Center for Molecular Medicine, Institute of Biochemistry, Cologne University , Cologne, Germany
| | - Katrin Fischer-Schrader
- 3 Department of Biochemistry, Center for Molecular Medicine, Institute of Biochemistry, Cologne University , Cologne, Germany
| | - Dimitri Niks
- 4 Department of Biochemistry, University of California at Riverside , Riverside, California
| | - Jesús Tejero
- 1 Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Courtney Sparacino-Watkins
- 1 Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Ling Wang
- 1 Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Venkata Ragireddy
- 1 Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sheila Frizzell
- 1 Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Eric E Kelley
- 1 Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Department of Anesthesiology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Yingze Zhang
- 2 Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Partha Basu
- 6 Department of Chemistry and Biochemistry, Duquesne University , Pittsburgh, Pennsylvania
| | - Russ Hille
- 4 Department of Biochemistry, University of California at Riverside , Riverside, California
| | - Guenter Schwarz
- 3 Department of Biochemistry, Center for Molecular Medicine, Institute of Biochemistry, Cologne University , Cologne, Germany
| | - Mark T Gladwin
- 1 Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Nishino T, Okamoto K. Mechanistic insights into xanthine oxidoreductase from development studies of candidate drugs to treat hyperuricemia and gout. J Biol Inorg Chem 2015; 20:195-207. [PMID: 25501928 PMCID: PMC4334109 DOI: 10.1007/s00775-014-1210-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/21/2014] [Indexed: 12/17/2022]
Abstract
Xanthine oxidoreductase (XOR), which is widely distributed from humans to bacteria, has a key role in purine catabolism, catalyzing two steps of sequential hydroxylation from hypoxanthine to xanthine and from xanthine to urate at its molybdenum cofactor (Moco). Human XOR is considered to be a target of drugs not only for therapy of hyperuricemia and gout, but also potentially for a wide variety of other diseases. In this review, we focus on studies of XOR inhibitors and their implications for understanding the chemical nature and reaction mechanism of the Moco active site of XOR. We also discuss further experimental or clinical studies that would be helpful to clarify remaining issues.
Collapse
Affiliation(s)
- Takeshi Nishino
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyou-ku, Tokyo, 113-8602, Japan,
| | | |
Collapse
|
11
|
Stein BW, Kirk ML. Electronic structure contributions to reactivity in xanthine oxidase family enzymes. J Biol Inorg Chem 2015; 20:183-94. [PMID: 25425163 PMCID: PMC4867223 DOI: 10.1007/s00775-014-1212-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/30/2014] [Indexed: 11/25/2022]
Abstract
We review the xanthine oxidase (XO) family of pyranopterin molybdenum enzymes with a specific emphasis on electronic structure contributions to reactivity. In addition to xanthine and aldehyde oxidoreductases, which catalyze the two-electron oxidation of aromatic heterocycles and aldehyde substrates, this mini-review highlights recent work on the closely related carbon monoxide dehydrogenase (CODH) that catalyzes the oxidation of CO using a unique Mo-Cu heterobimetallic active site. A primary focus of this mini-review relates to how spectroscopy and computational methods have been used to develop an understanding of critical relationships between geometric structure, electronic structure, and catalytic function.
Collapse
Affiliation(s)
- Benjamin W. Stein
- Department of Chemistry and Chemical Biology, University of New Mexico, MSC03 2060, 300 Terrace St. NE, Albuquerque, NM 87131
| | - Martin L. Kirk
- Department of Chemistry and Chemical Biology, University of New Mexico, MSC03 2060, 300 Terrace St. NE, Albuquerque, NM 87131
| |
Collapse
|
12
|
Hall J, Reschke S, Cao H, Leimkühler S, Hille R. The reductive half-reaction of xanthine dehydrogenase from Rhodobacter capsulatus: the role of Glu232 in catalysis. J Biol Chem 2014; 289:32121-32130. [PMID: 25258317 DOI: 10.1074/jbc.m114.603456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kinetic properties of an E232Q variant of the xanthine dehydrogenase from Rhodobacter capsulatus have been examined to ascertain whether Glu(232) in wild-type enzyme is protonated or unprotonated in the course of catalysis at neutral pH. We find that kred, the limiting rate constant for reduction at high [xanthine], is significantly compromised in the variant, a result that is inconsistent with Glu(232) being neutral in the active site of the wild-type enzyme. A comparison of the pH dependence of both kred and kred/Kd from reductive half-reaction experiments between wild-type and enzyme and the E232Q variant suggests that the ionized Glu(232) of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of substrate, effectively increasing the pKa of substrate by two pH units and ensuring that at physiological pH the neutral form of substrate predominates in the Michaelis complex. A kinetic isotope study of the wild-type R. capsulatus enzyme indicates that, as previously determined for the bovine and chicken enzymes, product release is principally rate-limiting in catalysis. The disparity in rate constants for the chemical step of the reaction and product release, however, is not as great in the bacterial enzyme as compared with the vertebrate forms. The results indicate that the bacterial and bovine enzymes catalyze the chemical step of the reaction to the same degree and that the faster turnover observed with the bacterial enzyme is due to a faster rate constant for product release than is seen with the vertebrate enzyme.
Collapse
Affiliation(s)
- James Hall
- Department of Biochemistry, University of California, Riverside, California 92521 and
| | - Stefan Reschke
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University Potsdam, 14476 Potsdam, Germany
| | - Hongnan Cao
- Department of Biochemistry, University of California, Riverside, California 92521 and
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University Potsdam, 14476 Potsdam, Germany
| | - Russ Hille
- Department of Biochemistry, University of California, Riverside, California 92521 and.
| |
Collapse
|
13
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
14
|
Cao H, Hall J, Hille R. Substrate orientation and specificity in xanthine oxidase: crystal structures of the enzyme in complex with indole-3-acetaldehyde and guanine. Biochemistry 2014; 53:533-41. [PMID: 24397336 DOI: 10.1021/bi401465u] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xanthine oxidase is a molybdenum-containing hydroxylase that catalyzes the hydroxylation of sp(2)-hybridized carbon centers in a variety of aromatic heterocycles as well as aldehydes. Crystal structures of the oxidase form of the bovine enzyme in complex with a poor substrate indole-3-acetaldehyde and the nonsubstrate guanine have been determined, both at a resolution of 1.6 Å. In each structure, a specific and unambiguous orientation of the substrate in the active site is observed in which the hydroxylatable site is oriented away from the active site molybdenum center. The orientation seen with indole-3-acetaldehyde has the substrate positioned with the indole ring rather than the exocyclic aldehyde nearest the molybdenum center, indicating that the substrate must rotate some 30° in the enzyme active site to permit hydroxylation of the aldehyde group (as observed experimentally), accounting for the reduced reactivity of the enzyme toward this substrate. The principal product of hydroxylation of indole-3-acetaldehyde by the bovine enzyme is confirmed to be indole-3-carboxylic acid based on its characteristic UV-vis spectrum, and the kinetics of enzyme reduction are reported. With guanine, the dominant orientation seen crystallographically has the C-8 position that might be hydroxylated pointed away from the active site molybdenum center, in a configuration resembling that seen previously with hypoxanthine (a substrate that is effectively hydroxylated at position 2). The ∼180° reorientation required to permit reaction is sterically prohibited, indicating that substrate (mis)orientation in the active site is a major factor precluding formation of the highly mutagenic 8-hydroxyguanine.
Collapse
Affiliation(s)
- Hongnan Cao
- Department of Biochemistry, University of California , Riverside, California 92521, United States
| | | | | |
Collapse
|
15
|
Shanmugam M, Wilcoxen J, Habel-Rodriguez D, Cutsail GE, Kirk ML, Hoffman BM, Hille R. (13)C and (63,65)Cu ENDOR studies of CO dehydrogenase from Oligotropha carboxidovorans. Experimental evidence in support of a copper-carbonyl intermediate. J Am Chem Soc 2013; 135:17775-82. [PMID: 24147852 DOI: 10.1021/ja406136f] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report here an ENDOR study of an S = 1/2 intermediate state trapped during reduction of the binuclear Mo/Cu enzyme CO dehydrogenase by CO. ENDOR spectra of this state confirm that the (63,65)Cu nuclei exhibits strong and almost entirely isotropic coupling to the unpaired electron, show that this coupling atypically has a positive sign, aiso = +148 MHz, and indicate an apparently undetectably small quadrupolar coupling. When the intermediate is generated using (13)CO, coupling to the (13)C is observed, with aiso = +17.3 MHz. A comparison with the couplings seen in related, structurally assigned Mo(V) species from xanthine oxidase, in conjunction with complementary computational studies, leads us to conclude that the intermediate contains a partially reduced Mo(V)/Cu(I) center with CO bound at the copper. Our results provide strong experimental support for a reaction mechanism that proceeds from a comparable complex of CO with fully oxidized Mo(VI)/Cu(I) enzyme.
Collapse
Affiliation(s)
- Muralidharan Shanmugam
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208-3113, United States
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
A perspective is provided of recent advances in our understanding of molybdenum-containing enzymes other than nitrogenase, a large and diverse group of enzymes that usually (but not always) catalyze oxygen atom transfer to or from a substrate, utilizing a Mo=O group as donor or acceptor. An emphasis is placed on the diversity of protein structure and reaction catalyzed by each of the three major families of these enzymes.
Collapse
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, 1643 Boyce Hall, Riverside, CA 92521, USA.
| |
Collapse
|
17
|
Abstract
Recent progress in our understanding of the structural and catalytic properties of molybdenum-containing enzymes in eukaryotes is reviewed, along with aspects of the biosynthesis of the cofactor and its insertion into apoprotein.
Collapse
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Takeshi Nishino
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, Japan and Department of Biochemistry, University of California, Riverside, CA 92521
| | - Florian Bittner
- Department of Plant Biology, Technical University of Braunschweig, 38023 Braunschweig, Germany
| |
Collapse
|
18
|
|
19
|
Okamoto K, Kawaguchi Y, Eger BT, Pai EF, Nishino T. Crystal Structures of Urate Bound Form of Xanthine Oxidoreductase: Substrate Orientation and Structure of the Key Reaction Intermediate. J Am Chem Soc 2010; 132:17080-3. [DOI: 10.1021/ja1077574] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ken Okamoto
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyou-ku, Tokyo 113-8602, Japan, Departments of Biochemistry, Medical Biophysics, and Molecular Genetics, University of Toronto and The Campbell Family Cancer Research Institute, University Health Network, Toronto, Ontario M5S1A8, Canada, and Department of Biochemistry, 1463 Boyce Hall, University of California, Riverside, 92521-0122, United States
| | - Yuko Kawaguchi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyou-ku, Tokyo 113-8602, Japan, Departments of Biochemistry, Medical Biophysics, and Molecular Genetics, University of Toronto and The Campbell Family Cancer Research Institute, University Health Network, Toronto, Ontario M5S1A8, Canada, and Department of Biochemistry, 1463 Boyce Hall, University of California, Riverside, 92521-0122, United States
| | - Bryan T. Eger
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyou-ku, Tokyo 113-8602, Japan, Departments of Biochemistry, Medical Biophysics, and Molecular Genetics, University of Toronto and The Campbell Family Cancer Research Institute, University Health Network, Toronto, Ontario M5S1A8, Canada, and Department of Biochemistry, 1463 Boyce Hall, University of California, Riverside, 92521-0122, United States
| | - Emil F. Pai
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyou-ku, Tokyo 113-8602, Japan, Departments of Biochemistry, Medical Biophysics, and Molecular Genetics, University of Toronto and The Campbell Family Cancer Research Institute, University Health Network, Toronto, Ontario M5S1A8, Canada, and Department of Biochemistry, 1463 Boyce Hall, University of California, Riverside, 92521-0122, United States
| | - Takeshi Nishino
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyou-ku, Tokyo 113-8602, Japan, Departments of Biochemistry, Medical Biophysics, and Molecular Genetics, University of Toronto and The Campbell Family Cancer Research Institute, University Health Network, Toronto, Ontario M5S1A8, Canada, and Department of Biochemistry, 1463 Boyce Hall, University of California, Riverside, 92521-0122, United States
| |
Collapse
|
20
|
Alfaro JF, Jones JP. Studies on the mechanism of aldehyde oxidase and xanthine oxidase. J Org Chem 2010; 73:9469-72. [PMID: 18998731 DOI: 10.1021/jo801053u] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DFT calculations support a concerted mechanism for xanthine oxidase and aldehyde oxidase hydride displacement from the sp(2) carbon of 6-substituted 4-quinazolinones. The variations in transition state structure show that C-O bond formation is nearly complete in the transition state and the transition state changes are anti-Hammond with the C-H and C-O bond lengths being more product-like for the faster reactions. The C-O bond length in the transition state is around 90% formed. However, the C-H bond is only about 80% broken. This leads to a very tetrahedral transition state with an O-C-N angle of 109 degrees. Thus, while the mechanism is concerted, the antibonding orbital of the C-H bond that is broken is not directly attacked by the nucleophile and instead hydride displacement occurs after almost complete tetrahedral transition state formation. In support of this the C=N bond is lengthened in the transition state indicating that attack on the electrophilic carbon occurs by addition to the C=N bond with negative charge increasing on the nitrogen. Differences in experimental reaction rates are accurately reproduced by these calculations and tend to support this mechanism.
Collapse
Affiliation(s)
- Joshua F Alfaro
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| | | |
Collapse
|
21
|
Zhang B, Hemann CF, Hille R. Kinetic and spectroscopic studies of the molybdenum-copper CO dehydrogenase from Oligotropha carboxidovorans. J Biol Chem 2010; 285:12571-8. [PMID: 20178978 DOI: 10.1074/jbc.m109.076851] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbon monoxide dehydrogenase from the aerobic bacterium Oligotropha carboxidovorans catalyzes the oxidation of CO to CO(2), yielding two electrons and two H(+). The steady-state kinetics of the enzyme exhibit a pH optimum of 7.2 with a k(cat) of 93.3 s(-1) and K(m) of 10.7 microM at 25 degrees C. k(red) for the reductive half-reaction agrees well with k(cat) and exhibits a similar pH optimum, indicating that the rate-limiting step of overall turnover is likely in the reductive half-reaction. No dependence on CO concentration was observed in the rapid reaction kinetics, however, suggesting that CO initially binds rapidly to the enzyme, possibly at the Cu(I) of the active site, prior to undergoing oxidation. A Mo(V) species that exhibits strong coupling to the copper of the active center (I = 3/2) has been characterized by EPR. The signal is further split when [(13)C]CO is used to generate it, demonstrating that substrate (or product) is a component of the signal-giving species. Finally, resonance Raman spectra of CODH reveal the presence of FAD, Fe/S clusters, and a [CuSMoO(2)] coordination in the active site, consistent with earlier x-ray absorption and crystallographic results.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Biochemistry, University of California, Riverside, California 92521, USA
| | | | | |
Collapse
|
22
|
Metz S, Thiel W. QM/MM Studies of Xanthine Oxidase: Variations of Cofactor, Substrate, and Active-Site Glu802. J Phys Chem B 2010; 114:1506-17. [DOI: 10.1021/jp909999s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sebastian Metz
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
23
|
Hille R. EPR Studies of Xanthine Oxidoreductase and Other Molybdenum-Containing Hydroxylases. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4419-1139-1_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
24
|
Metz S, Thiel W. A Combined QM/MM Study on the Reductive Half-Reaction of Xanthine Oxidase: Substrate Orientation and Mechanism. J Am Chem Soc 2009; 131:14885-902. [DOI: 10.1021/ja9045394] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sebastian Metz
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
25
|
Hille R. The Reaction Mechanism of the Molybdenum Hydroxylase Xanthine Oxidoreductase: Evidence Against the Formation of Intermediates Having Metal-Carbon Bonds. METAL-CARBON BONDS IN ENZYMES AND COFACTORS 2009. [DOI: 10.1039/9781847559333-00395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
ENDOR spectra of the catalytically relevant “very rapid” Mo(V) species generated in the course of the reaction of xanthine oxidoreductase with substrate have been examined by two different groups. While the data themselves are virtually identical, the analysis has been variously interpreted as supporting or refuting the existence of a molybdenum-carbon bond in the signal-giving species. While the basis for this difference in interpretation has now been generally agreed upon – the Mo-C distance in the signal-giving species is now understood to be too long to represent a direct Mo-C bond – independent information concerning the structure of the signal-giving species is highly desirable. Recently, several X-ray crystal structures of catalytically relevant complexes of the enzyme with several substrates and inhibitors have been reported. Taken together, these structures strongly and unambiguously support the interpretation that the intermediate giving rise to the “very rapid” EPR signal, as well as the Mo(IV) intermediate that precedes it in the reaction mechanism, has product coordinated to the active site molybdenum via the catalytically introduced hydroxyl group in a simple “end-on” fashion, with no metal-carbon bond character to the complex. The manner in which product is bound and its orientation within the active site provide important clues as to the specific catalytic roles of active sites in accelerating the reaction rate.
Collapse
Affiliation(s)
- Russ Hille
- Department of Biochemistry, The University of California Riverside CA 92521 USA
| |
Collapse
|
26
|
Tamta H, Thilagavathi R, Chakraborti AK, Mukhopadhyay AK. 6-(N-benzoylamino)purine as a novel and potent inhibitor of xanthine oxidase: Inhibition mechanism and molecular modeling studies. J Enzyme Inhib Med Chem 2008; 20:317-24. [PMID: 16206825 DOI: 10.1080/14756360500112326] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The inhibition of xanthine oxidase (XO) activity by the purine analogue 6-(N-benzoylamino)purine was evaluated and compared with the standard inhibitor, allopurinol and the parent compound adenine. 6-(N-benzoylamino)purine is a highly potent inhibitor of XO (IC50 = 0.45 microM) and comparable to allopurinol (IC50 = 0.80 microM). Furthermore, 6-(N-benzoylamino)purine neither produced any enzymatic superoxide nor reduced XO by an electron transfer reaction unlike allopurinol. 6-(N-benzoylamino)purine (Ki = 0.0475 microM) is about 10000-fold more potent as a XO inhibitor compared to the only known purine analogue 8-bromoxanthine (Ki = 400 microM). 6-(N-Benzoylamino)purine is a competitive inhibitor of XO and the inhibition was not completely reversed even at 100 microM xanthine concentration. The calculated interaction energy [Ecomplex - (Eligand + Eprotein)] of -30.5, -22.6, and -17.2 kcal/mol, respectively, of 6-(N-benzoylamino)purine, 8-bromoxanthine and the parent compound adenine provided the rationale for the better enzyme inhibitory activity of 6-(N-benzoylamino)purine. To understand the role of the benzamido group in the inhibition process, molecular docking studies were carried out and it was revealed that the hydrogen bonding interactions involving N-7 of the purine ring and the N-H of Arg880, N-H of the purine ring and OH of Thr1010, as well as non-bonded interactions of the benzamido group of 6-(N-benzoylamino)purine with amino acid residues Gly799, Glu802, Phe914, Ala1078, Ala1079 and Glu1261 in the active site of XO play an important role in the stabilization of the E-I complex.
Collapse
Affiliation(s)
- Hemlata Tamta
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Punjab, India
| | | | | | | |
Collapse
|
27
|
Nishino T, Okamoto K, Eger BT, Pai EF, Nishino T. Mammalian xanthine oxidoreductase - mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J 2008; 275:3278-89. [PMID: 18513323 DOI: 10.1111/j.1742-4658.2008.06489.x] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Reactive oxygen species are generated by various biological systems, including NADPH oxidases, xanthine oxidoreductase, and mitochondrial respiratory enzymes, and contribute to many physiological and pathological phenomena. Mammalian xanthine dehydrogenase (XDH) can be converted to xanthine oxidase (XO), which produces both superoxide anion and hydrogen peroxide. Recent X-ray crystallographic and site-directed mutagenesis studies have revealed a highly sophisticated mechanism of conversion from XDH to XO, suggesting that the conversion is not a simple artefact, but rather has a function in mammalian organisms. Furthermore, this transition seems to involve a thermodynamic equilibrium between XDH and XO; disulfide bond formation or proteolysis can then lock the enzyme in the XO form. In this review, we focus on recent advances in our understanding of the mechanism of conversion from XDH to XO.
Collapse
Affiliation(s)
- Tomoko Nishino
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | | | | | | | | |
Collapse
|
28
|
Doonan CJ, Rubie ND, Peariso K, Harris HH, Knottenbelt SZ, George GN, Young CG, Kirk ML. Electronic Structure Description of the cis-MoOS Unit in Models for Molybdenum Hydroxylases. J Am Chem Soc 2007; 130:55-65. [DOI: 10.1021/ja068512m] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christian J. Doonan
- Contribution from The Department of Chemistry and Biological Chemistry, The University of New Mexico, MSC03 20601 University of New Mexico, Albuquerque, New Mexico 87131-0001, School of Chemistry, University of Melbourne, Victoria 3010, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC Stanford University, P.O. Box 4349, MS 69 Stanford, California 94309
| | - Nick D. Rubie
- Contribution from The Department of Chemistry and Biological Chemistry, The University of New Mexico, MSC03 20601 University of New Mexico, Albuquerque, New Mexico 87131-0001, School of Chemistry, University of Melbourne, Victoria 3010, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC Stanford University, P.O. Box 4349, MS 69 Stanford, California 94309
| | - Katrina Peariso
- Contribution from The Department of Chemistry and Biological Chemistry, The University of New Mexico, MSC03 20601 University of New Mexico, Albuquerque, New Mexico 87131-0001, School of Chemistry, University of Melbourne, Victoria 3010, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC Stanford University, P.O. Box 4349, MS 69 Stanford, California 94309
| | - Hugh H. Harris
- Contribution from The Department of Chemistry and Biological Chemistry, The University of New Mexico, MSC03 20601 University of New Mexico, Albuquerque, New Mexico 87131-0001, School of Chemistry, University of Melbourne, Victoria 3010, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC Stanford University, P.O. Box 4349, MS 69 Stanford, California 94309
| | - Sushilla Z. Knottenbelt
- Contribution from The Department of Chemistry and Biological Chemistry, The University of New Mexico, MSC03 20601 University of New Mexico, Albuquerque, New Mexico 87131-0001, School of Chemistry, University of Melbourne, Victoria 3010, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC Stanford University, P.O. Box 4349, MS 69 Stanford, California 94309
| | - Graham N. George
- Contribution from The Department of Chemistry and Biological Chemistry, The University of New Mexico, MSC03 20601 University of New Mexico, Albuquerque, New Mexico 87131-0001, School of Chemistry, University of Melbourne, Victoria 3010, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC Stanford University, P.O. Box 4349, MS 69 Stanford, California 94309
| | - Charles G. Young
- Contribution from The Department of Chemistry and Biological Chemistry, The University of New Mexico, MSC03 20601 University of New Mexico, Albuquerque, New Mexico 87131-0001, School of Chemistry, University of Melbourne, Victoria 3010, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC Stanford University, P.O. Box 4349, MS 69 Stanford, California 94309
| | - Martin L. Kirk
- Contribution from The Department of Chemistry and Biological Chemistry, The University of New Mexico, MSC03 20601 University of New Mexico, Albuquerque, New Mexico 87131-0001, School of Chemistry, University of Melbourne, Victoria 3010, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC Stanford University, P.O. Box 4349, MS 69 Stanford, California 94309
| |
Collapse
|
29
|
Pauff JM, Zhang J, Bell CE, Hille R. Substrate orientation in xanthine oxidase: crystal structure of enzyme in reaction with 2-hydroxy-6-methylpurine. J Biol Chem 2007; 283:4818-24. [PMID: 18063585 DOI: 10.1074/jbc.m707918200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Xanthine oxidoreductase catalyzes the final two steps of purine catabolism and is involved in a variety of pathological states ranging from hyperuricemia to ischemia-reperfusion injury. The human enzyme is expressed primarily in its dehydrogenase form utilizing NAD+ as the final electron acceptor from the enzyme's flavin site but can exist as an oxidase that utilizes O2 for this purpose. Central to an understanding of the enzyme's function is knowledge of purine substrate orientation in the enzyme's molybdenum-containing active site. We report here the crystal structure of xanthine oxidase, trapped at the stage of a critical intermediate in the course of reaction with the slow substrate 2-hydroxy-6-methylpurine at 2.3A. This is the first crystal structure of a reaction intermediate with a purine substrate that is hydroxylated at its C8 position as is xanthine and confirms the structure predicted to occur in the course of the presently favored reaction mechanism. The structure also corroborates recent work suggesting that 2-hydroxy-6-methylpurine orients in the active site with its C2 carbonyl group interacting with Arg-880 and extends our hypothesis that xanthine binds opposite this orientation, with its C6 carbonyl positioned to interact with Arg-880 in stabilizing the MoV transition state.
Collapse
Affiliation(s)
- James M Pauff
- Department of Biochemistry, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
30
|
Hemann C, Ilich P, Stockert AL, Choi EY, Hille R. Resonance Raman studies of xanthine oxidase: The reduced enzyme-product complex with violapterin. J Phys Chem B 2007; 109:3023-31. [PMID: 16851316 DOI: 10.1021/jp046636k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A study of the molecular, electronic, and vibrational characteristics of the molybdenum-containing enzyme complex xanthine oxidase with violapterin has been carried out using density functional theory calculations and resonance Raman spectroscopy. The electronic structure calculations were carried out on a model consisting of the enzyme molybdopterin cofactor [in the four-valent, reduced state; Mo(IV)O(SH)] covalently linked to violapterin (1H,3H,8H-pteridine-2,4,7-trione in the neutral form) via an oxygen bridge, Mo-O-C7. Full geometry optimizations were performed for all models using the SDD basis set and the three-parameter exchange functional of Becke combined with the Lee, Yang, and Parr correlational functional. Harmonic vibrational frequencies were determined for a variety of isotopes in an attempt to correlate experimentally observed shifts upon 18O-labeling of the Mo-OR bridge to bound product as well as shifts seen upon substitution of solvent-exchangeable protons in samples prepared in D2O. The theoretical vibrational frequencies compared favorably with experimentally observed vibrational modes in the resonance Raman spectra of the reduced xanthine oxidase-violapterin complex prepared in H2O and D2O and with 18O-labeled product. Correlating the isotopic shifts from the calculations with those from the resonance Raman experiments resulted in complete normal mode assignments for all modes observed in the 350-1750 cm(-1) range. The present work demonstrates that a model in which the violapterin is coordinated to the molybdenum of the active site in a simple end-on manner via the hydroxyl group introduced by an enzyme accurately predicts the observed resonance Raman spectrum of the complex. Given the numerous modes involving the bridging oxygen, a side-on binding mode can be eliminated.
Collapse
Affiliation(s)
- Craig Hemann
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
31
|
Montero-Morán GM, Li M, Rendòn-Huerta E, Jourdan F, Lowe DJ, Stumpff-Kane AW, Feig M, Scazzocchio C, Hausinger RP. Purification and characterization of the FeII- and alpha-ketoglutarate-dependent xanthine hydroxylase from Aspergillus nidulans. Biochemistry 2007; 46:5293-304. [PMID: 17429948 PMCID: PMC2525507 DOI: 10.1021/bi700065h] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
His6-tagged xanthine/alpha-ketoglutarate (alphaKG) dioxygenase (XanA) of Aspergillus nidulans was purified from both the fungal mycelium and recombinant Escherichia coli cells, and the properties of the two forms of the protein were compared. Evidence was obtained for both N- and O-linked glycosylation on the fungus-derived XanA, which aggregates into an apparent dodecamer, while bacterium-derived XanA is free of glycosylation and behaves as a monomer. Immunological methods identify phosphothreonine in both forms of XanA, with phosphoserine also detected in the bacterium-derived protein. Mass spectrometric analysis confirms glycosylation and phosphorylation of the fungus-derived sample, which also undergoes extensive truncation at its amino terminus. Despite the major differences in the properties of these proteins, their kinetic parameters are similar (kcat = 30-70 s-1, Km of alphaKG = 31-50 muM, Km of xanthine approximately 45 muM, and pH optima at 7.0-7.4). The enzyme exhibits no significant isotope effect when [8-2H]xanthine is used; however, it demonstrates a 2-fold solvent deuterium isotope effect. CuII and ZnII potently inhibit the FeII-specific enzyme, whereas CoII, MnII, and NiII are weaker inhibitors. NaCl decreases the kcat and increases the Km of both alphaKG and xanthine. The alphaKG cosubstrate can be substituted with alpha-ketoadipate (9-fold decrease in kcat and 5-fold increase in the Km compared to those of the normal alpha-keto acid), while the alphaKG analogue N-oxalylglycine is a competitive inhibitor (Ki = 0.12 muM). No alternative purines effectively substitute for xanthine as a substrate, and only one purine analogue (6,8-dihydroxypurine) results in significant inhibition. Quenching of the endogenous fluorescence of the two enzyme forms by xanthine, alphaKG, and DHP was used to characterize their binding properties. A XanA homology model was generated on the basis of the structure of the related enzyme TauD (PDB entry 1OS7) and provided insights into the sites of posttranslational modification and substrate binding. These studies represent the first biochemical characterization of purified xanthine/alphaKG dioxygenase.
Collapse
Affiliation(s)
- Gabriela M Montero-Morán
- Institut de Génétique et de Microbiologie, Université Paris-Sud, Bâtiment 409, UMR 8621 CNRS, 91405 Orsay Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pauff JM, Hemann CF, Jünemann N, Leimkühler S, Hille R. The Role of Arginine 310 in Catalysis and Substrate Specificity in Xanthine Dehydrogenase from Rhodobacter capsulatus. J Biol Chem 2007; 282:12785-90. [PMID: 17327224 DOI: 10.1074/jbc.m700364200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rapid reaction kinetics of wild-type xanthine dehydrogenase from Rhodobacter capsulatus and variants at Arg-310 in the active site have been characterized for a variety of purine substrates. With xanthine as substrate, k(red) (the limiting rate of enzyme reduction by substrate at high [S]) decreased approximately 20-fold in an R310K variant and 2 x 10(4)-fold in an R310M variant. Although Arg-310 lies on the opposite end of the substrate from the C-8 position that becomes hydroxylated, its interaction with substrate still contributed approximately 4.5 kcal/mol toward transition state stabilization. The other purines examined fell into two distinct groups: members of the first were effectively hydroxylated by the wild-type enzyme but were strongly affected by the exchange of Arg-310 to methionine (with a reduction in k(red) greater than 10(3)), whereas members of the second were much less effectively hydroxylated by wild-type enzyme but also much less significantly affected by the amino acid exchanges (with a reduction in k(red) less than 50-fold). The effect was such that the 4000-fold range in k(red) seen with wild-type enzyme was reduced to a mere 4-fold in the R310M variant. The data are consistent with a model in which "good" substrates are bound "correctly" in the active site in an orientation that allows Arg-310 to stabilize the transition state for the first step of the overall reaction via an electrostatic interaction at the C-6 position, thereby accelerating the reaction rate. On the other hand, "poor" substrates bound upside down relative to this "correct" orientation. In so doing, they are unable to avail themselves of the additional catalytic power provided by Arg-310 in wild-type enzyme but, for this reason, are significantly less affected by mutations at this position. The kinetic data thus provide a picture of the specific manner in which the physiological substrate xanthine is oriented in the active site relative to Arg-310 and how this residue is used catalytically to accelerate the reaction rate (rather than simply bind substrate) despite being remote from the position that is hydroxylated.
Collapse
Affiliation(s)
- James M Pauff
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Russ Hille
- Department of Molecular and Cellular Biochemistry, The Ohio State University, 333 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210‐1218, USA
| |
Collapse
|
34
|
Amigo JM, de Juan A, Coello J, Maspoch S. A mixed hard- and soft-modelling approach to study and monitor enzymatic systems in biological fluids. Anal Chim Acta 2006. [DOI: 10.1016/j.aca.2006.03.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Abstract
Unlike monooxygenases, molybdenum-containing hydroxylases catalyze the hydroxylation of carbon centers using oxygen derived ultimately from water, rather than O(2), as the source of the oxygen atom incorporated into the product, and do not require an external source of reducing equivalents. The mechanism by which this interesting chemistry takes place has been the subject of investigation for some time, and in the last several years the chemical course of the reaction has become increasingly well understood. The present minireview summarizes recent mechanistic and structure/function studies of members of this large and growing family of enzymes.
Collapse
Affiliation(s)
- Russ Hille
- Department of Molecular and Cellular Biochemistry, The Ohio State University, 333 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
36
|
Stockert AL, Shinde SS, Anderson RF, Hille R. The reaction mechanism of xanthine oxidase: evidence for two-electron chemistry rather than sequential one-electron steps. J Am Chem Soc 2002; 124:14554-5. [PMID: 12465963 DOI: 10.1021/ja027388d] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Current research on xanthine oxidase has favored a mechanism involving base-catalyzed proton abstraction from a Mo-OH group, allowing nucleophilic attack on the substrate and hydride transfer from the substrate to Mo=S group in the active site. During the course of this reaction mechanism, the molybdenum redox cycles from MoVI to MoIV, with reoxidation of the MoIV speices to form the EPR active MoV intermediate. However, it has also been suggested that the reaction occurs in two subsequent one-electron steps. We have determined kinetic parameters kred and kred/Kd for a variety of plausible substrates as well as the one-electron reduction potentials for these substrates. Our data indicate no correlation between these kinetic parameters and their one-electron reduction potentials, as would be expected if the enzyme were using two subsequent one-electron reduction steps. Our results provide additional support to current evidence for the favored two-electron reduction mechanism.
Collapse
Affiliation(s)
- Amy L Stockert
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Molybdenum is the only second-row transition metal that is required by most living organisms, and the few species that do not require molybdenum use tungsten, which lies immediately below molybdenum in the periodic table. Because of their unique chemical versatility and unusually high bioavailability these two transition metals have been incorporated into the active sites of enzymes over the course of evolution. Enzymes that contain molybdenum or tungsten continue to be discovered and several crystal structures have become available recently. This new structural information has been complemented by spectroscopic and kinetic methods, as well as computational approaches. Together, these studies provide an increasingly detailed view of the reaction mechanisms and the correlation between the electronic structure of the active site and catalytic function, one of the fundamental goals in metallobiochemistry.
Collapse
Affiliation(s)
- Russ Hille
- Dept of Molecular and Cellular Biochemistry and The Protein Research Group, The Ohio State University, Columbus, OH 43210-1218, USA.
| |
Collapse
|
38
|
Manikandan P, Choi EY, Hille R, Hoffman BM. 35 GHz ENDOR characterization of the "very rapid" signal of xanthine oxidase reacted with 2-hydroxy-6-methylpurine (13C8): evidence against direct Mo-C8 interaction. J Am Chem Soc 2001; 123:2658-63. [PMID: 11456936 DOI: 10.1021/ja003894w] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Xanthine oxidase is a molybdenum-containing enzyme that catalyzes the hydroxylation of xanthine and a wide variety of other aromatic heterocycles. In the course of the reaction with xanthine and substrates such as 2-hydroxy-6-methylpurine (HMP), the enzyme gives rise to a Mo(V) EPR signal, denoted "very rapid", that arises from an authentic catalytic intermediate. The two alternative catalytic mechanisms proposed for this enzyme differ critically in whether the distance between Mo and C8 of the purine nucleus in this intermediate is short enough to admit a direct bonding interaction. To examine this distance, we have performed 13C ENDOR measurements of the "very rapid" EPR signal generated by xanthine oxidase during reaction with 13C8-HMP. The resulting (13)C8 hyperfine tensor, A = [10.2(1), 7.0(1), 6.5(1)] MHz, is discussed in the framework of a detailed consideration of factors involved in extracting metrical parameters from an anisotropic hyperfine interaction composed of contributions from multiple sources, in particular, the effect of the local contributions from spin density on (13)C8. The analysis presented here gives a Mo...C distance whose value is expected to be ca. 2.7-2.9 A in the "very rapid" intermediates formed with both xanthine and HMP, consistent with plausible bond lengths for a Mo-O-C8 fragment where C8 is a trigonal-planar aromatic carbon. The difference from earlier conclusions is explained. The data thus do not support the existence of a direct Mo-C bond in the signal-giving species. This conclusion supports a mechanism that does not involve such an interaction and which begins with base-assisted nucleophilic attack of the Mo(VI)-OH group on the C-8 of substrate, with concomitant hydride transfer to the Mo=S group to give Mo(IV)-SH; the EPR-active "very rapid" species then forms by one-electron oxidation and deprotonation to yield the EPR-detectable Mo(V)OS(OR) species. We further discuss the complexities and limitations of the semiempirical method used to arrive at these conclusions.
Collapse
Affiliation(s)
- P Manikandan
- Department of Chemistry, Northwestern University, Evanston, Ilinois 60208, USA
| | | | | | | |
Collapse
|
39
|
Affiliation(s)
- R Hille
- Department of Medical Biochemistry, Ohio State University, 333 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210-1218, USA
| |
Collapse
|
40
|
Kim JH, Odutola JA, Popham J, Jones L, von Laven S. Tautomeric energetics of xanthine oxidase substrates: xanthine, 2-oxo-6-methylpurine, and lumazine. J Inorg Biochem 2001; 84:145-50. [PMID: 11330474 DOI: 10.1016/s0162-0134(00)00209-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The stability of the tautomers of each of the three important substrates of xanthine oxidase, xanthine, 2-oxo-6-methylpurine, and lumazine, was examined by quantum mechanical calculations. The geometries of these tautomers were optimized at the AM1, Hartree-Fock (HF/6-31G), and hybrid Hartree-Fock/density functional theory (B3LYP/6-31G(d)) levels of theory. The single point energies of some of the more stable tautomers for each of the substrates were calculated at the B3LYP/6-311 +G(2d,p) level of theory. The Conductor Polarized Continuum Model (CPCM) was used to evaluate the solvent effects on the relative stabilities of these tautomers. The calculations clearly identify the lowest energy tautomeric form for xanthine and lumazine. On the other hand, there appear to be three tautomers for 2-oxo-6-methylpurine, with only minor energetic differences in vacuo. In water, however, only one of them predominates. The lowest energy tautomers presumably represent the predominant tautomeric forms at the molybdenum center of xanthine oxidase during catalysis. Implications of these computational results are discussed in the context of enzyme catalysis.
Collapse
Affiliation(s)
- J H Kim
- Department of Chemistry, Alabama A&M University, Normal 35762, USA.
| | | | | | | | | |
Collapse
|
41
|
Jones RM, Inscore FE, Hille R, Kirk ML. Freeze-Quench Magnetic Circular Dichroism Spectroscopic Study of the "Very Rapid" Intermediate in Xanthine Oxidase. Inorg Chem 1999; 38:4963-4970. [PMID: 11671238 DOI: 10.1021/ic990154j] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Freeze-quench magnetic circular dichroism spectroscopy (MCD) has been used to trap and study the excited-state electronic structure of the Mo(V) active site in a xanthine oxidase intermediate generated with substoichiometric concentrations of the slow substrate 2-hydroxy-6-methylpurine. EPR spectroscopy has shown that the intermediate observed in the MCD experiment is the "very rapid" intermediate, which lies on the main catalytic pathway. The low-energy (< approximately 30 000 cm(-1)) C-term MCD of this intermediate is remarkably similar to that of the model compound LMoO(bdt) (L = hydrotris(3,5-dimethyl-1-pyrazolyl)borate; bdt = 1,2-benzenedithiolate), and the MCD bands have been assigned as dithiolate S(ip) --> Mo d(xy) and S(op) --> Mo d(xz,yz) LMCT transitions. These transitions result from a coordination geometry of the intermediate where the Mo=O bond is oriented cis to the ene-1,2-dithiolate of the pyranopterin. Since X-ray crystallography has indicated that a terminal sulfido ligand is oriented cis to the ene-1,2-dithiolate in oxidized xanthine oxidase related Desulfovibrio gigas aldehyde oxidoreductase, we have suggested that a conformational change occurs upon substrate binding. The substrate-mediated conformational change is extremely significant with respect to electron-transfer regeneration of the active site, as covalent interactions between the redox-active Mo d(xy) orbital and the S(ip) orbitals of the ene-1,2-dithiolate are maximized when the oxo ligand is oriented cis to the dithiolate plane. This underlies the importance of the ene-1,2-dithiolate portion of the pyranopterin in providing an efficient superexchange pathway for electron transfer. The results of this study indicate that electron-transfer regeneration of the active site may be gated by the orientation of the Mo=O bond relative to the ene-1,2-dithiolate chelate. Poor overlap between the Mo d(xy) orbital and the S(ip) orbitals of the dithiolate in the oxidized enzyme geometry may provide a means of preventing one-electron reduction of the active site, resulting in enzyme inhibition with respect to the two-electron oxidation of native substrates.
Collapse
Affiliation(s)
- Robert M. Jones
- Department of Chemistry, The University of New Mexico, Albuquerque, New Mexico 81731-1096, and Department of Medical Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | | | | | | |
Collapse
|
42
|
Mondal MS, Mitra S. Altered redox affinity of xanthine oxidase active sites by copper(II) ions. J CHEM SCI 1999. [DOI: 10.1007/bf02870847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Xia M, Dempski R, Hille R. The reductive half-reaction of xanthine oxidase. Reaction with aldehyde substrates and identification of the catalytically labile oxygen. J Biol Chem 1999; 274:3323-30. [PMID: 9920873 DOI: 10.1074/jbc.274.6.3323] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kinetics of xanthine oxidase has been investigated with the aim of addressing several outstanding questions concerning the reaction mechanism of the enzyme. Steady-state and rapid kinetic studies with the substrate 2,5-dihydroxybenzaldehyde demonstrated that (kcat/Km)app and kred/Kd exhibit comparable bell-shaped pH dependence with pKa values of 6.4 +/- 0.2 and 8.4 +/- 0.2, with the lower pKa assigned to an active-site residue of xanthine oxidase (possibly Glu-1261, by analogy to Glu-869 in the crystallographically known aldehyde oxidase from Desulfovibrio gigas) and the higher pKa to substrate. Early steps in the catalytic sequence have been investigated by following the reaction of the oxidized enzyme with a second aldehyde substrate, 2-aminopteridine-6-aldehyde. The absence of a well defined acid limb in this pH profile and other data indicate that this complex represents an Eox.S rather than Ered.P complex (i.e. no chemistry requiring the active-site base has taken place in forming the long wavelength-absorbing complex seen with this substrate). It appears that xanthine oxidase (and by inference, the closely related aldehyde oxidases) hydroxylates both aromatic heterocycles and aldehydes by a mechanism involving base-assisted catalysis. Single-turnover experiments following incorporation of 17O into the molybdenum center of the enzyme demonstrated that a single oxygen atom is incorporated at a site that gives rise to strong hyperfine coupling to the unpaired electron spin of the metal in the MoV oxidation state. By analogy to the hyperfine interactions seen in a homologous series of molybdenum model compounds, we conclude that this strongly coupled, catalytically labile site represents a metal-coordinated hydroxide rather than the Mo=O group and that this Mo-OH represents the oxygen that is incorporated into product in the course of catalysis.
Collapse
Affiliation(s)
- M Xia
- Department of Medical Biochemistry, Ohio State University, Columbus, Ohio 43210-1218, USA
| | | | | |
Collapse
|
44
|
Ilich P, Hemann CF, Hille R. Molecular Vibrations of Solvated Uracil. Ab Initio Reaction Field Calculations and Experiment. J Phys Chem B 1997. [DOI: 10.1021/jp9706285] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Predrag Ilich
- Department of Medical Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Craig F. Hemann
- Department of Medical Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Russ Hille
- Department of Medical Biochemistry, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
45
|
Ilich P, Hille R. Tautomerization of the substrate heterocycle in the course of the reaction of xanthine oxidase. Inorganica Chim Acta 1997. [DOI: 10.1016/s0020-1693(97)05654-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Harris CM, Massey V. Kinetic isotope effects and electron transfer in the reduction of xanthine oxidoreductase with 4-hydroxypyrimidine. A comparison between oxidase and dehydrogenase forms. J Biol Chem 1997; 272:22514-25. [PMID: 9278404 DOI: 10.1074/jbc.272.36.22514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Isolated from bovine milk, xanthine oxidase (XO) and xanthine dehydrogenase (XDH) are two interconvertible forms of the same protein, differing in the number of protein cysteines versus cystines. Most differences between XO and XDH are localized to the FAD center, the site at which the oxidizing substrates NAD and molecular oxygen react. A comparative study of the reduction of XO and XDH has been performed to assess differences in reactivity of the molybdopterin site, as well as subsequent electron-transfer events from molybdenum to 2Fe/2S and FAD centers. The compound 4-hydroxypyrimidine (4-OH-P) was chosen as reducing substrate because its higher Km value raised the possibility of binding weak enough to measure kinetically, and its high kcat value could allow detection of intramolecular electron-transfer reactions. As measured by stopped flow spectrophotometry, XO and XDH react with the first equivalent of 4-OH-P via similar mechanisms, differing in the magnitude of rate and dissociation constants. Using [2-2H]4-OH-P as substrate, a D(k/Kd) isotope effect of 1.9 to 2.3 suggests that movement of the hydrogen abstracted from substrate appreciably limits the rate of initial enzyme reduction from Mo(VI) to Mo(IV). Monitoring the visible spectrum of the enzymes, the first observed step is reduction of a single 2Fe/2S center and presumably re-oxidation of Mo(IV) to Mo(V). This suggests a common pathway for electron transfer involving reduction of a 2Fe/2S center prior to reduction of the second 2Fe/2S and FAD centers. Rates of the first electron transfer from molybdenum to the 2Fe/2S center are rapid, 290 s-1 with XO and 180 s-1 with XDH, and are consistent with rates measured by flash photolysis (Walker, M. C., Hazzard, J. T., Tollin, G., and Edmondson, D. E. (1991) Biochemistry 30, 5912-5917) allowing discrete observation of the electron-transfer reactions that occur during turnover. This step also exhibits a modest primary kinetic isotope effect of 1.5 to 1.6 when [2-2H]4-OH-P is used, possibly due to deprotonation of the molybdenum center prior to electron transfer. A second one-electron transfer, presumably oxidizing Mo(V) to Mo(VI), follows in a step coincident with product dissociation, consistent with a role for product release in controlling electron transfer events. The kinetics of this complex system are described and interpreted quantitatively in models that are consistent with all the data.
Collapse
Affiliation(s)
- C M Harris
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | |
Collapse
|
47
|
Dutta SK, McConville DB, Youngs WJ, Chaudhury M. Reactivity of Mo−Ot Terminal Bonds toward Substrates Having Simultaneous Proton- and Electron-Donor Properties: A Rudimentary Functional Model for Oxotransferase Molybdenum Enzymes. Inorg Chem 1997. [DOI: 10.1021/ic960670z] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Subodh Kanti Dutta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Calcutta 700 032, India, and Department of Chemistry, University of Akron, Akron, Ohio 44325-3601
| | - David B. McConville
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Calcutta 700 032, India, and Department of Chemistry, University of Akron, Akron, Ohio 44325-3601
| | - Wiley J. Youngs
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Calcutta 700 032, India, and Department of Chemistry, University of Akron, Akron, Ohio 44325-3601
| | - Muktimoy Chaudhury
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Calcutta 700 032, India, and Department of Chemistry, University of Akron, Akron, Ohio 44325-3601
| |
Collapse
|
48
|
Hernández B, Orozco M, Luque FJ. Tautomerism of xanthine and alloxanthine: a model for substrate recognition by xanthine oxidase. J Comput Aided Mol Des 1996; 10:535-44. [PMID: 9007687 DOI: 10.1007/bf00134177] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tautomerism of neutral xanthine and alloxanthine has been examined both in the gas phase and in aqueous solution. The tautomeric preference in the gas phase has been studied by means of semiempirical and ab initio quantum-mechanical computations with inclusion of correlation effects at the Møller-Plesset level, and from density-functional calculations. The influence of solvent on the relative stability between tautomers has been estimated from self-consistent reaction field calculations performed with different models. The results provide a detailed picture of tautomerism for these biologically relevant purine bases. The functional implications in the recognition by xanthine oxidase are analyzed from inspection of the interaction patterns of the most stable tautomeric forms. A model for the recognition of these purine derivatives in the enzyme binding site is discussed.
Collapse
Affiliation(s)
- B Hernández
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University of Barcelona, Spain
| | | | | |
Collapse
|
49
|
Affiliation(s)
- Russ Hille
- Department of Medical Biochemistry, The Ohio State University, Columbus, Ohio 43210-1218
| |
Collapse
|
50
|
Howes BD, Bray RC, Richards RL, Turner NA, Bennett B, Lowe DJ. Evidence favoring molybdenum-carbon bond formation in xanthine oxidase action: 17Q- and 13C-ENDOR and kinetic studies. Biochemistry 1996; 35:1432-43. [PMID: 8634273 DOI: 10.1021/bi9520500] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The reaction mechanism of the molybdoenzyme xanthine oxidase has been further investigated by 13C and 17O ENDOR of molybdenum(V) species and by kinetic studies of exchange of oxygen isotopes. Three EPR signal-giving species were studied: (i) Very Rapid, a transient intermediate in substrate turnover, (ii) Inhibited, the product of an inhibitory side reaction with aldehyde substrates, and (iii) Alloxanthine, a species formed by reaction of reduced enzyme with the inhibitor, alloxanthine. The Very Rapid signal was developed either with [8-13C]xanthine or with 2-oxo-6-methylpurine using enzyme equilibrated with [17O]H2O. The Inhibited signal was developed with 2H13C2HO and the Alloxanthine signal by using [17O]H2O. Estimates of Mo-C distances were made, from the anisotropic components of the 13C-couplings, by corrected dipolar coupling calculations and by back-calculation from assumed possible structures. Estimated distances in the Inhibited and Very Rapid species were about 1.9 and less than 2.4 A, respectively. A Mo-C bond in the Inhibited species is very strongly suggested, presumably associated with side-on bonding to molybdenum of the carbonyl of the aldehyde substrate. For the Very Rapid species, a Mo-C bond is highly likely. Coupling from a strongly coupled 17O, not in the form of an oxo group, and no coupling from other oxygens was detected in the Very Rapid species. No coupled oxygens were detected in the Alloxanthine species. That the coupled oxygen of the Very Rapid species is the one that appears in the product uric acid molecule was confirmed by new kinetic data. It is concluded that this oxygen of the Very Rapid species does not, as frequently assumed, originate from the oxo group of the oxidized enzyme. A new turnover mechanism is proposed, not involving direct participation of the oxo ligand group, and based on that of Coucouvanis et al. [Coucouvanis, D., Toupadakis, A., Lane, J. D., Koo, S. M., Kim, C. G., Hadjikyriacou, A. (1991) J. Am. Chem. Soc. 113, 5271-5282]. It involves formal addition of the elements of the substrate (e.g., xanthine) across the Mo = S double bond, to give a Mo(VI) species. This is followed by attack of a "buried" water molecule (in the vicinity of molybdenum and perhaps a ligand of it) on the bound substrate carbon, to give an intermediate that on intramolecular one-electron oxidation gives the Very Rapid species. The latter, in keeping with the 13C, 17O, and 33S couplings, is presumed to have the 8-CO group of the uric acid product molecule bonded side-on to molybdenum, with the sulfido molybdenum ligand retained, as in the oxidized enzyme.
Collapse
Affiliation(s)
- B D Howes
- School of Chemistry and Molecular Sciences, University of Sussex, Brighton, U.K
| | | | | | | | | | | |
Collapse
|