1
|
Tizaoui K, Chikhaoui A, Yacoub-Youssef H. Role of VDR gene polymorphisms and environmental factors in the development of skin cancers: evidence by updated meta-analysis. Arch Dermatol Res 2025; 317:437. [PMID: 39969663 DOI: 10.1007/s00403-025-03975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 12/28/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
The vitamin D and its receptor the VDR have pleiotropic effects on different biological mechanisms, including skin cancers. The sun UV radiation has confirmed effects on both skin cancers and on VD/VDR pathways. We aim to investigate the role of the VDR and its interaction with specific environmental factors to develop skin cancers. We conducted meta-analyses of published association studies on the VDR gene polymorphisms FokI, BsmI, TaqI and AapI and skin cancers. Subgroup analyses were performed to investigate the impact of environmental factors on skin cancers. Meta-analysis showed that the VDR Fok I polymorphism was associated with melanoma risk (CT vs. CC + TT, P = 0.020), with CT genotype as a significant risk factor. We found also significant association for the VDR BsmI polymorphism (AG vs. GG model, P = 0.020), as AG genotype having a protective effect against melanoma. However the VDR TaqI and ApaI polymorphisms were not associated with melanoma in the overall analysis. Met-analysis of studies on non-melanoma cancers (NMSC) showed significant effects of FokI (TT vs. CT + TT, P = 0.002, CC vs. CT, P = 0.017 and CC vs. TT, P = 0.001), with TT genotype as a risk factor, whereas the CC genotype was protective against NMSC. The TaqI showed also significant association with NMSK (T vs. C contrast allele: P = 0.006 and TT vs. CT + CC, P = 0.011), with T allele and TT genotype as having protective roles. Stratification according to geographic localisation showed that the FokI CC genotype had protective effect in both North America (CC vs. CT + TT, P = 0.003) and North Europe (CC vs. CT + TT, P = 0.010). Stratification according to the study period revealed that the FokI CT genotype had a highly significant risk (CT vs. TT, P < 0.001) in the last decade 2011-2020. VDR FokI and BsmI polymorphisms showed significant associations with melanoma, whereas FokI and TaqI were significantly associated with NMSC. Subgroup analysis revealed that factors such as the geographic localisation and study period influenced the association between the VDR gene and the risk of skin cancers.
Collapse
Affiliation(s)
- Kalthoum Tizaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, 1002, Tunis, Tunisia.
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, 1002, Tunis, Tunisia
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, 1002, Tunis, Tunisia
| |
Collapse
|
2
|
Zhang J, Lou Y, Chen H, Huang X. Causal effects of retinol and vitamin D on tongue cancer risk: a mendelian randomization study. BMC Oral Health 2025; 25:52. [PMID: 39799281 PMCID: PMC11725209 DOI: 10.1186/s12903-024-05407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Previous studies have indicated that retinol and vitamin D may be associated with the oncogenesis of tongue cancer. Therefore, we aimed to assess the causal relationships of retinol and vitamin D with the risk of tongue cancer using the two-sample Mendelian randomization (MR) method. METHODS Single nucleotide polymorphisms (SNPs) related to retinol, vitamin D and tongue cancer were obtained from the up-to-date genome-wide association study (GWAS) catalogue, which was screened for instrumental variables (IVs). We performed two-sample MR analyses and used inverse-variance weighted (IVW) as the primary method. Additionally, we used the MR-pleiotropy residual sum and outlier (MR-PRESSO) method, MR-Egger intercept analysis, Cochran's Q test and leave-one-out analysis to evaluate the sensitivity of MR. RESULTS The IVW method revealed that retinol was not significantly correlated with the risk of tongue cancer (OR = 0.8602; 95% CI = 0.4453-1.6617; P = 0.654). However, the causal relationship between vitamin D and the risk of tongue cancer was significant according to IVW (OR = 0.4003; 95% CI = 0.1868-0.8577; P = 0.019). The sensitivity analysis did not detect any significant horizontal pleiotropy or heterogeneity. CONCLUSIONS Given the limitations of this study, our MR study suggests that retinol is unlikely to influence the risk of tongue cancer, but vitamin D may decrease the risk of tongue cancer.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yake Lou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hong Chen
- Department of Orthodontics School & Hospital of Stomatology Tongji University Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200071, China.
| | - Xiaofeng Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
3
|
Paliu IA, Olinca MV, Ianosi SL, Georgescu CV, Turcu-Stiolica A, Diaconu M, Dumitrescu CI, Tica AA. CYP27B1 Enzyme in Psoriasis: A Preliminary Study of Immunohistochemical Observations. Life (Basel) 2023; 14:15. [PMID: 38276264 PMCID: PMC10817706 DOI: 10.3390/life14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Connections between vitamin D and psoriasis have been a matter of interest for the past decades, with its active metabolite, 1,25(OH)2 vitamin D, being valued for antiproliferative and immunomodulatory effects. However, none of vitamin D's actions could be possible without the CYP27B1 enzyme that bio-activates this metabolite of interest. In order to see if there is any link between the enzyme expression and the disease's particularities, we conducted a preliminary study that involved 11 skin biopsies of patients with mild (n = 4) or moderate to severe psoriasis (n = 7). The cell proliferation antigen Ki67 and the CD45RO+ marker were also assessed. Compared with healthy skin, in psoriasis, it is reported that the enzyme's expression seems to be more ubiquitous, but a clear correlation between the disease's severity and the CYP27B1 expression was, to our knowledge, lacking. We found that, in patients with very mild psoriasis, the enzyme expression was observed in the epidermal stratum basale in a similar manner as in healthy skin specimens. Contrary, for higher severity scores, a divergent result was observed, with the enzyme being either variably spread in the epidermal stratum spinosum or completely absent. Unlike malignant diseases, a significant connection between CYP27B1 and Ki67 (p = 0.313) or CYP27B1 and CD45RO+ (p = 0.657) does not seem to be relevant in psoriasis.
Collapse
Affiliation(s)
- Iulia-Alexandra Paliu
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.-A.P.); (M.D.); (C.-I.D.); (A.-A.T.)
| | - Maria-Victoria Olinca
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Simona-Laura Ianosi
- Department of Dermatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - Adina Turcu-Stiolica
- Department of Pharmacoeconomics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Magdalena Diaconu
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.-A.P.); (M.D.); (C.-I.D.); (A.-A.T.)
| | - Cristiana-Iulia Dumitrescu
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.-A.P.); (M.D.); (C.-I.D.); (A.-A.T.)
| | - Andrei-Adrian Tica
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.-A.P.); (M.D.); (C.-I.D.); (A.-A.T.)
| |
Collapse
|
4
|
Schmidt AD, Miciano C, Zheng Q, Mathyer ME, Grice EA, de Guzman Strong C. Involucrin Modulates Vitamin D Receptor Activity in the Epidermis. J Invest Dermatol 2023; 143:1052-1061.e3. [PMID: 36642403 PMCID: PMC10240284 DOI: 10.1016/j.jid.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 01/14/2023]
Abstract
Terminally differentiated keratinocytes are critical for epidermal function and are surrounded by involucrin (IVL). Increased IVL expression is associated with a near-selective sweep in European populations compared with those in Africa. This positive selection for increased IVL in the epidermis identifies human adaptation outside of Africa. The functional significance is unclear. We hypothesize that IVL modulates the environmentally sensitive vitamin D receptor (VDR) in the epidermis. We investigated VDR activity in Ivl‒/‒ and wild-type mice using vitamin D agonist (MC903) treatment and comprehensively determined the inflammatory response using single-cell RNA sequencing and associated skin microbiome changes using 16S bacterial phylotyping. VDR activity and target gene expression were reduced in Ivl‒/‒ mouse skin, with decreased MC903-mediated skin inflammation and significant reductions in CD4+ T cells, basophils, macrophages, monocytes, and type II basal keratinocytes and an increase in suprabasal keratinocytes. Coinciding with the dampened MC903-mediated inflammation, the skin microbiota of Ivl‒/‒ mice was more stable than that of the wild-type mice, which exhibited an MC903-responsive increase in Bacteroidetes and a decrease in Firmicutes. Together, our studies in Ivl‒/‒ mice identify a functional role for IVL to positively impact VDR activity and suggest an emerging IVL/VDR paradigm for adaptation in the human epidermis.
Collapse
Affiliation(s)
- Alina D Schmidt
- Division of Dermatology, John T. Milliken Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA; Center for Pharmacogenomics, John T. Milliken Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA; Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Charlene Miciano
- Division of Dermatology, John T. Milliken Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA; Center for Pharmacogenomics, John T. Milliken Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA; Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Qi Zheng
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mary Elizabeth Mathyer
- Division of Dermatology, John T. Milliken Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA; Center for Pharmacogenomics, John T. Milliken Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA; Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Elizabeth A Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cristina de Guzman Strong
- Division of Dermatology, John T. Milliken Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA; Center for Pharmacogenomics, John T. Milliken Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA; Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA; Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA; Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, USA; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
5
|
Mohamed AA, Elhussain E, Fawzy N, Sakr Y, Salah El-Dien M, Abbas AM, Hussein MS, Nassar N, Ezzat O, El-Amir RY, Ibrahim S, Bedair NI. Association of rs1544410 and rs7975232 Polymorphisms and Serum Vitamin D Levels with Psoriasis Susceptibility and Severity: A Case-Control Study in Egyptian Patients. Clin Cosmet Investig Dermatol 2022; 15:1271-1281. [PMID: 35832487 PMCID: PMC9272842 DOI: 10.2147/ccid.s364267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022]
Abstract
Background Vitamin D is a regulatory factor for skin immune functions through vitamin D receptor, which is expressed on many immune cells. Vitamin D receptor is located on chromosome 12q 13.11 and has many single nucleotide polymorphisms. Some of them were hypothesized to be associated with psoriasis. Psoriasis is a genetic disease that is greatly affected by environmental factors. Methods A total of 135 psoriasis patients and 114 healthy controls were recruited. Both had a measurement of serum vitamin D and two vitamin D receptor variants:, rs1544410: G > A (HGVS:NC_000012.12:g.47846052) and rs7975232: C > A (HGVS: NC_000012.12:g.47845054). We assessed the relationship between vitamin deficiency as well as the two gene polymorphisms with psoriasis susceptibility and severity. Results Serum vitamin D levels were not significantly different between cases and controls. However, a significant association between vitamin D levels and severity was observed. We attributed this to our finding that rs7975232 was more significantly polymorphic among cases than controls, while rs1544410 polymorphism did not show a significant difference among the 2 groups. Conclusion We did not find a significant difference in serum vitamin D levels between cases and controls. Yet, psoriasis severity was significantly associated with serum vitamin D levels. We attributed this to other findings that the vitamin D receptor rs7975232 gene is polymorphic in psoriasis patients. At the same time, rs1544410 was not significantly more polymorphic in psoriasis patients. Both genes’ polymorphisms were associated with severe psoriasis.
Collapse
Affiliation(s)
- Amal Ahmed Mohamed
- Department of Biochemistry and Molecular Biology, National Hepatology and Tropical Medicine Research institute, Cairo, Egypt
| | - Eman Elhussain
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Naglaa Fawzy
- Department of Clinical Pathology, National Institute of Diabetics and Endocrinology, Cairo, Egypt
| | - Yasser Sakr
- Department of Clinical Pathology, National Institute of Diabetics and Endocrinology, Cairo, Egypt
| | - Marwa Salah El-Dien
- Department of Community, Environmental and Occupational Medicine, Faculty of Medicine, Benha university, Banha, Egypt
| | | | - Maha S Hussein
- Department of Dermatology and Andrology, Medical Research and Clinical Studies Institute, National Research Center, Cairo, Egypt
| | - Nourelhuda Nassar
- Department of Clinical Pathology, Elsahel Teaching Hospital, Cairo, Egypt
| | - Omnia Ezzat
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | | | - Sarah Ibrahim
- Department of Dermatology, Faculty of Medicine, Cairo university, Cairo, Egypt
| | - Nermeen Ibrahim Bedair
- Department of Dermatology, Andrology, Sexual Medicine and STDs, Faculty of Medicine, Helwan University, Cairo, Egypt.,Department of Dermatology and Andrology, Armed Forces College of medicine, Cairo, Egypt
| |
Collapse
|
6
|
Schrumpf JA, van der Does AM, Hiemstra PS. Impact of the Local Inflammatory Environment on Mucosal Vitamin D Metabolism and Signaling in Chronic Inflammatory Lung Diseases. Front Immunol 2020; 11:1433. [PMID: 32754156 PMCID: PMC7366846 DOI: 10.3389/fimmu.2020.01433] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D plays an active role in the modulation of innate and adaptive immune responses as well as in the protection against respiratory pathogens. Evidence for this immunomodulatory and protective role is derived from observational studies showing an association between vitamin D deficiency, chronic airway diseases and respiratory infections, and is supported by a range of experimental studies using cell culture and animal models. Furthermore, recent intervention studies have now shown that vitamin D supplementation reduces exacerbation rates in vitamin D-deficient patients with chronic obstructive pulmonary disease (COPD) or asthma and decreases the incidence of acute respiratory tract infections. The active vitamin D metabolite, 1,25-dihydroxy-vitamin D (1,25(OH)2D), is known to contribute to the integrity of the mucosal barrier, promote killing of pathogens (via the induction of antimicrobial peptides), and to modulate inflammation and immune responses. These mechanisms may partly explain its protective role against infections and exacerbations in COPD and asthma patients. The respiratory mucosa is an important site of local 1,25(OH)2D synthesis, degradation and signaling, a process that can be affected by exposure to inflammatory mediators. As a consequence, mucosal inflammation and other disease-associated factors, as observed in e.g., COPD and asthma, may modulate the protective actions of 1,25(OH)2D. Here, we discuss the potential consequences of various disease-associated processes such as inflammation and exposure to pathogens and inhaled toxicants on vitamin D metabolism and local responses to 1,25(OH)2D in both immune- and epithelial cells. We furthermore discuss potential consequences of disturbed local levels of 25(OH)D and 1,25(OH)2D for chronic lung diseases. Additional insight into the relationship between disease-associated mechanisms and local effects of 1,25(OH)2D is expected to contribute to the design of future strategies aimed at improving local levels of 1,25(OH)2D and signaling in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Jasmijn A Schrumpf
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
7
|
Bikle D, Christakos S. New aspects of vitamin D metabolism and action - addressing the skin as source and target. Nat Rev Endocrinol 2020; 16:234-252. [PMID: 32029884 DOI: 10.1038/s41574-019-0312-5] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2019] [Indexed: 12/19/2022]
Abstract
Vitamin D has a key role in stimulating calcium absorption from the gut and promoting skeletal health, as well as many other important physiological functions. Vitamin D is produced in the skin. It is subsequently metabolized to its hormonally active form, 1,25-dihydroxyvitamin D (1,25(OH)2D), by the 1-hydroxylase and catabolized by the 24-hydroxylase. In this Review, we pay special attention to the effect of mutations in these enzymes and their clinical manifestations. We then discuss the role of vitamin D binding protein in transporting vitamin D and its metabolites from their source to their targets, the free hormone hypothesis for cell entry and HSP70 for intracellular transport. This is followed by discussion of the vitamin D receptor (VDR) that mediates the cellular actions of 1,25(OH)2D. Cell-specific recruitment of co-regulatory complexes by liganded VDR leads to changes in gene expression that result in distinct physiological actions by 1,25(OH)2D, which are disrupted by mutations in the VDR. We then discuss the epidermis and hair follicle, to provide a non-skeletal example of a tissue that expresses VDR that not only makes vitamin D but also can metabolize it to its hormonally active form. This enables vitamin D to regulate epidermal differentiation and hair follicle cycling and, in so doing, to promote barrier function, wound healing and hair growth, while limiting cancer development.
Collapse
Affiliation(s)
- Daniel Bikle
- Departments of Medicine and Dermatology, University of California San Francisco, San Francisco, CA, USA.
- VA Medical Center, San Francisco, CA, USA.
| | - Sylvia Christakos
- Departments of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
8
|
Bikle DD. The Vitamin D Receptor as Tumor Suppressor in Skin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:285-306. [PMID: 32918224 DOI: 10.1007/978-3-030-46227-7_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cutaneous malignancies including melanomas and keratinocyte carcinomas (KC) are the most common types of cancer, occurring at a rate of over one million per year in the United States. KC, which include both basal cell carcinomas and squamous cell carcinomas, are substantially more common than melanomas and form the subject of this chapter. Ultraviolet radiation (UVR), both UVB and UVA, as occurs with sunlight exposure is generally regarded as causal for these malignancies, but UVB is also required for vitamin D synthesis in the skin. Keratinocytes are the major cell in the epidermis. These cells not only produce vitamin D but contain the enzymatic machinery to metabolize vitamin D to its active metabolite, 1,25(OH)2D, and express the receptor for this metabolite, the vitamin D receptor (VDR). This allows the cell to respond to the 1,25(OH)2D that it produces. Based on our own data and that reported in the literature, we conclude that vitamin D signaling in the skin suppresses UVR-induced epidermal tumor formation. In this chapter we focus on four mechanisms by which vitamin D signaling suppresses tumor formation. They are inhibition of proliferation/stimulation of differentiation with discussion of the roles of hedgehog, Wnt/β-catenin, and hyaluronan/CD44 pathways in mediating vitamin D regulation of proliferation/differentiation, regulation of the balance between oncogenic and tumor suppressor long noncoding RNAs, immune regulation, and promotion of DNA damage repair (DDR).
Collapse
Affiliation(s)
- Daniel D Bikle
- Medicine and Dermatology, VA Medical Center and University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Bikle DD, Patzek S, Wang Y. Physiologic and pathophysiologic roles of extra renal CYP27b1: Case report and review. Bone Rep 2018; 8:255-267. [PMID: 29963603 PMCID: PMC6021194 DOI: 10.1016/j.bonr.2018.02.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/06/2018] [Accepted: 02/23/2018] [Indexed: 01/13/2023] Open
Abstract
Although the kidney was initially thought to be the sole organ responsible for the production of 1,25(OH)2D via the enzyme CYP27b1, it is now appreciated that the expression of CYP27b1 in tissues other than the kidney is wide spread. However, the kidney is the major source for circulating 1,25(OH)2D. Only in certain granulomatous diseases such as sarcoidosis does the extra renal tissue produce sufficient 1,25(OH)2D to contribute to the circulating levels, generally associated with hypercalcemia, as illustrated by the case report preceding the review. Therefore the expression of CYP27b1 outside the kidney under normal circumstances begs the question why, and in particular whether the extra renal production of 1,25(OH)2D has physiologic importance. In this chapter this question will be discussed. First we discuss the sites for extra renal 1,25(OH)2D production. This is followed by a discussion of the regulation of CYP27b1 expression and activity in extra renal tissues, pointing out that such regulation is tissue specific and different from that of CYP27b1 in the kidney. Finally the physiologic significance of extra renal 1,25(OH)2D3 production is examined, with special focus on the role of CYP27b1 in regulation of cellular proliferation and differentiation, hormone secretion, and immune function. At this point the data do not clearly demonstrate an essential role for CYP27b1 expression in any tissue outside the kidney, but several examples pointing in this direction are provided. With the availability of the mouse enabling tissue specific deletion of CYP27b1, the role of extra renal CYP27b1 expression in normal and pathologic states can now be addressed definitively.
Collapse
Affiliation(s)
- Daniel D Bikle
- Department of Medicine, Endocrine Research Unit, Veterans Affairs Medical Center, University of California San Francisco, United States
| | - Sophie Patzek
- Department of Medicine, Endocrine Research Unit, Veterans Affairs Medical Center, University of California San Francisco, United States
| | - Yongmei Wang
- Department of Medicine, Endocrine Research Unit, Veterans Affairs Medical Center, University of California San Francisco, United States
| |
Collapse
|
10
|
Pludowski P, Holick MF, Grant WB, Konstantynowicz J, Mascarenhas MR, Haq A, Povoroznyuk V, Balatska N, Barbosa AP, Karonova T, Rudenka E, Misiorowski W, Zakharova I, Rudenka A, Łukaszkiewicz J, Marcinowska-Suchowierska E, Łaszcz N, Abramowicz P, Bhattoa HP, Wimalawansa SJ. Vitamin D supplementation guidelines. J Steroid Biochem Mol Biol 2018; 175:125-135. [PMID: 28216084 DOI: 10.1016/j.jsbmb.2017.01.021] [Citation(s) in RCA: 420] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 01/08/2023]
Abstract
Research carried out during the past two-decades extended the understanding of actions of vitamin D, from regulating calcium and phosphate absorption and bone metabolism to many pleiotropic actions in organs and tissues in the body. Most observational and ecological studies report association of higher serum 25-hydroxyvitamin D [25(OH)D] concentrations with improved outcomes for several chronic, communicable and non-communicable diseases. Consequently, numerous agencies and scientific organizations have developed recommendations for vitamin D supplementation and guidance on optimal serum 25(OH)D concentrations. The bone-centric guidelines recommend a target 25(OH)D concentration of 20ng/mL (50nmol/L), and age-dependent daily vitamin D doses of 400-800IU. The guidelines focused on pleiotropic effects of vitamin D recommend a target 25(OH)D concentration of 30ng/mL (75nmol/L), and age-, body weight-, disease-status, and ethnicity dependent vitamin D doses ranging between 400 and 2000IU/day. The wise and balanced choice of the recommendations to follow depends on one's individual health outcome concerns, age, body weight, latitude of residence, dietary and cultural habits, making the regional or nationwide guidelines more applicable in clinical practice. While natural sources of vitamin D can raise 25(OH)D concentrations, relative to dietary preferences and latitude of residence, in the context of general population, these sources are regarded ineffective to maintain the year-round 25(OH)D concentrations in the range of 30-50ng/mL (75-125nmol/L). Vitamin D self-administration related adverse effects, such as hypercalcemia and hypercalciuria are rare, and usually result from taking extremely high doses of vitamin D for a prolonged time.
Collapse
Affiliation(s)
- Pawel Pludowski
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland.
| | - Michael F Holick
- Boston University Medical Center, 85 East Newton Street M-1033, Boston, MA 02118, USA
| | - William B Grant
- Sunlight, Nutrition, and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA
| | - Jerzy Konstantynowicz
- Department of Pediatric Rheumatology, Immunology, and Metabolic Bone Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Mario R Mascarenhas
- Department of Endocrinology, Diabetes and Metabolism, Hospital de Santa Maria, EHLN and Faculty of Medicine, Lisbon, Portugal
| | - Afrozul Haq
- Research and Development, Gulf Diagnostic Center Hospital, Abu Dhabi, United Arab Emirates
| | - Vladyslav Povoroznyuk
- D.F. Chebotarev Institute of Gerontology of National Academy of Medical Sciences of Ukraine, Kiev 04114, Ukraine
| | - Nataliya Balatska
- D.F. Chebotarev Institute of Gerontology of National Academy of Medical Sciences of Ukraine, Kiev 04114, Ukraine
| | - Ana Paula Barbosa
- Department of Endocrinology, Diabetes and Metabolism, Hospital de Santa Maria, EHLN and Faculty of Medicine, Lisbon, Portugal
| | - Tatiana Karonova
- Institute of Endocrinology, Federal North-West Medical Research Centre, St. Petersburg 197341, Russian Federation
| | - Ema Rudenka
- Belarusian Medical Academy of Postgraduate Education, 220013 Minsk, Belarus
| | - Waldemar Misiorowski
- Department of Endocrinology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Irina Zakharova
- Department of Pediatrics, Russian Medical Academy of Postgraduate Education, Moscow, Russian Federation
| | - Alena Rudenka
- Department of Cardiology and Rheumatology of Belarusian Medical Academy of Postgraduate Education, 220013 Minsk, Belarus
| | - Jacek Łukaszkiewicz
- Department of Biochemistry and Clinical Chemistry, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Marcinowska-Suchowierska
- Department of Geriatric, Internal Medicine and Metabolic Bone Disease, Medical Centre for Postgraduate Education, Warsaw, Poland
| | - Natalia Łaszcz
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | - Pawel Abramowicz
- Department of Pediatric Rheumatology, Immunology, and Metabolic Bone Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Harjit P Bhattoa
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|
11
|
Bikle DD. Extraskeletal actions of vitamin D. Ann N Y Acad Sci 2017; 1376:29-52. [PMID: 27649525 DOI: 10.1111/nyas.13219] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/26/2016] [Accepted: 08/03/2016] [Indexed: 12/16/2022]
Abstract
The vitamin D receptor (VDR) is found in nearly all, if not all, cells in the body. The enzyme that produces the active metabolite of vitamin D and ligand for VDR, namely CYP27B1, likewise is widely expressed in many cells of the body. These observations indicate that the role of vitamin D is not limited to regulation of bone and mineral homeostasis, as important as that is. Rather, the study of its extraskeletal actions has become the major driving force behind the significant increase in research articles on vitamin D published over the past several decades. A great deal of information has accumulated from cell culture studies, in vivo animal studies, and clinical association studies that confirms that extraskeletal effects of vitamin D are truly widespread and substantial. However, randomized, placebo-controlled clinical trials, when done, have by and large not produced the benefits anticipated by the in vitro cell culture and in vivo animal studies. In this review, I will examine the role of vitamin D signaling in a number of extraskeletal tissues and assess the success of translating these findings into treatments of human diseases affecting those extracellular tissues.
Collapse
Affiliation(s)
- Daniel D Bikle
- Departments of Medicine and Dermatology, Veterans Affairs Medical Center and University of California, San Francisco, San Francisco, California.
| |
Collapse
|
12
|
Herrmann M, Farrell CJL, Pusceddu I, Fabregat-Cabello N, Cavalier E. Assessment of vitamin D status – a changing landscape. ACTA ACUST UNITED AC 2017; 55:3-26. [DOI: 10.1515/cclm-2016-0264] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/30/2016] [Indexed: 01/14/2023]
Abstract
Abstract
In recent years it has been shown that vitamin D deficiency is associated with an increased incidence as well as the progression of a broad range of diseases including osteoporosis, rickets, cardiovascular disease, autoimmune disease, multiple sclerosis and cancer. Consequently, requests for the assessment of vitamin D status have increased dramatically. Despite significant progress in the analysis of vitamin D metabolites and an expansion of our pathophysiological knowledge of vitamin D, the assessment of vitamin D status remains a challenging and partially unresolved issue. Current guidelines from scientific bodies recommend the measurement of 25-hydroxy vitamin D (25-OHD) in blood as the preferred test. However, growing evidence indicates significant limitations of this test, including analytical aspects and interpretation of results. In addition, the relationships between 25-OHD and various clinical indices, such as bone mineral density and fracture risk, are rather weak and not consistent across races. Recent studies have systematically investigated new markers of vitamin D status including the vitamin D metabolite ratio (VMR) (ratio between 25-OHD and 24,25-dihydroxy vitamin D), bioavailable 25-OHD [25-OHD not bound to vitamin D binding protein (DBP)], and free 25-OHD [circulating 25-OHD bound to neither DBP nor albumin (ALB)]. These parameters may potentially change how we will assess vitamin D status in the future. Although these new biomarkers have expanded our knowledge about vitamin D metabolism, a range of unresolved issues regarding their measurement and the interpretation of results prevent their use in daily practice. It can be expected that some of these issues will be overcome in the near future so that they may be considered for routine use (at least in specialized centers). In addition, genetic studies have revealed several polymorphisms in key proteins of vitamin D metabolism that affect the circulating concentrations of vitamin D metabolites. The affected proteins include DBP, 7-dehydrocholesterol synthase and the vitamin D receptor (VDR). Here we aim to review existing knowledge regarding the biochemistry, physiology and measurement of vitamin D. We will also provide an overview of current and emerging biomarkers for the assessment of vitamin D status, with particular attention methodological aspects and their usefulness in clinical practice.
Collapse
|
13
|
Bikle DD, Jiang Y, Nguyen T, Oda Y, Tu CL. Disruption of Vitamin D and Calcium Signaling in Keratinocytes Predisposes to Skin Cancer. Front Physiol 2016; 7:296. [PMID: 27462278 PMCID: PMC4940389 DOI: 10.3389/fphys.2016.00296] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/27/2016] [Indexed: 12/13/2022] Open
Abstract
1,25 dihydroxyvitamin D (1,25(OH)2D), the active metabolite of vitamin D, and calcium regulate epidermal differentiation. 1,25(OH)2D exerts its effects through the vitamin D receptor (VDR), a transcription factor in the nuclear hormone receptor family, whereas calcium acts through the calcium sensing receptor (Casr), a membrane bound member of the G protein coupled receptor family. We have developed mouse models in which the Vdr and Casr have been deleted in the epidermis (epidVdr−∕− and epidCasr−∕−). Both genotypes show abnormalities in calcium induced epidermal differentiation in vivo and in vitro, associated with altered hedgehog (HH) and β–catenin signaling that when abnormally expressed lead to basal cell carcinomas (BCC) and trichofolliculomas, respectively. The Vdr−∕− mice are susceptible to tumor formation following UVB or chemical carcinogen exposure. More recently we found that the keratinocytes from these mice over express long non-coding RNA (lncRNA) oncogenes such as H19 and under express lncRNA tumor suppressors such as lincRNA-21. Spontaneous tumors have not been observed in either the epidVdr−∕− or epidCasr−∕−. But in mice with epidermal specific deletion of both Vdr and Casr (epidVdr−∕−/epidCasr−∕− [DKO]) tumor formation occurs spontaneously when the DKO mice are placed on a low calcium diet. These results demonstrate important interactions between vitamin D and calcium signaling through their respective receptors that lead to cancer when these signals are disrupted. The roles of the β–catenin, hedgehog, and lncRNA pathways in predisposing the epidermis to tumor formation when vitamin D and calcium signaling are disrupted will be discussed.
Collapse
Affiliation(s)
- Daniel D Bikle
- Departments of Medicine and Dermatology, VA Medical Center and University of California, San Francisco San Francisco, CA, USA
| | - Yan Jiang
- Departments of Medicine and Dermatology, VA Medical Center and University of California, San Francisco San Francisco, CA, USA
| | - Thai Nguyen
- Departments of Medicine and Dermatology, VA Medical Center and University of California, San Francisco San Francisco, CA, USA
| | - Yuko Oda
- Departments of Medicine and Dermatology, VA Medical Center and University of California, San Francisco San Francisco, CA, USA
| | - Chia-Ling Tu
- Departments of Medicine and Dermatology, VA Medical Center and University of California, San Francisco San Francisco, CA, USA
| |
Collapse
|
14
|
Dyring-Andersen B, Bonefeld CM, Bzorek M, Løvendorf MB, Lauritsen JPH, Skov L, Geisler C. The Vitamin D Analogue Calcipotriol Reduces the Frequency of CD8+ IL-17+ T Cells in Psoriasis Lesions. Scand J Immunol 2015; 82:84-91. [PMID: 25904071 DOI: 10.1111/sji.12304] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/12/2015] [Indexed: 01/15/2023]
Abstract
The vitamin D analogue calcipotriol is an immunomodulatory drug widely used to treat psoriasis; however, how calcipotriol affects the immune cells in psoriasis lesions is not fully understood. The aim of this study was to investigate the effect of calcipotriol on the frequency of CD4(+) and CD8(+) T cells and innate lymphoid cells (ILC) and their production of IL-17A, IFN-γ and IL-22 in psoriasis lesions in patients with chronic plaque psoriasis. Eighteen patients with psoriasis were included, and two similar psoriasis lesions were chosen for each patient. One lesion was treated with calcipotriol (50 μg/g) and the other with vehicle twice a day for 14 days. The clinical effect was measured by degree of erythema, scaling and induration in each lesion (SUM score). Skin biopsies were collected for histological and immunohistochemical analyses. Skin-derived cells were isolated and analysed by flow cytometry. After 14 days of treatment with calcipotriol, a significant clinical and histological effect was seen; however, we found no differences in the frequency of CD4(+) and CD8(+) T cells or ILC between calcipotriol- and vehicle-treated skin. The main finding was a significant decrease in CD8(+) IL-17(+) T cells in skin-derived cells from calcipotriol-treated skin, which was further supported by the absence of CD8(+) IL-17(+) T cells in immunohistochemical staining of calcipotriol-treated skin. No changes in the frequency of IL-22(+) or IFN-γ(+) cells were observed. Our findings show that the vitamin D analogue calcipotriol reduces the frequency of CD8(+) IL-17(+) T cells in psoriasis lesions concomitant with clinical improvement.
Collapse
Affiliation(s)
- B Dyring-Andersen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Dermato-Allergology, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - C M Bonefeld
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Bzorek
- Department of Clinical Pathology, Naestved Hospital, Naestved, Denmark
| | - M B Løvendorf
- Department of Dermato-Allergology, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - J P H Lauritsen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - L Skov
- Department of Dermato-Allergology, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - C Geisler
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Sommer A, Fabri M. Vitamin D regulates cytokine patterns secreted by dendritic cells to promote differentiation of IL-22-producing T cells. PLoS One 2015; 10:e0130395. [PMID: 26107738 PMCID: PMC4480856 DOI: 10.1371/journal.pone.0130395] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/20/2015] [Indexed: 12/17/2022] Open
Abstract
One central mechanism, by which vitamin D regulates human immune responses, is the direct modulation of dendritic cells (DCs). However, the effect of vitamin D on several key DC functions, such as the secretion of central inflammatory cytokines, remains controversial. Moreover, whether vitamin D treatment of DCs regulates their ability to promote differentiation of IL-17-/IL-22-producing T cell subsets, such as Th17 and Th22 cell, is not known. Here, we report that vitamin D treatment during differentiation of monocytes into DCs markedly enhanced their ability to secrete TNF-α, IL-6, IL-1β and IL-23. Cytokines secreted by vitamin D-treated DC were significantly more potent in driving differentiation of IL-22-producing T cells, but not IL-17-producing T cells, as compared to secreted cytokines of not-vitamin D-treated DCs. Finally, we found that the differentiation of IL-22-producing T cells mediated by supernatants of vitamin D-treated DCs was dependent on TNF-α IL-6 and IL-23. In summary, our study suggests a novel role of vitamin D in regulating DC-mediated immune responses in humans.
Collapse
Affiliation(s)
- Andrea Sommer
- Department of Dermatology, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Mario Fabri
- Department of Dermatology, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
The pleiotropic effects of vitamin D in gynaecological and obstetric diseases: an overview on a hot topic. BIOMED RESEARCH INTERNATIONAL 2015; 2015:986281. [PMID: 26000308 PMCID: PMC4426767 DOI: 10.1155/2015/986281] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/17/2015] [Accepted: 01/20/2015] [Indexed: 12/31/2022]
Abstract
The traditionally recognized role of vitamin D consists in the regulation of bone metabolism and calcium-phosphorus homeostasis but recently a lot of in vitro and in vivo studies recognized several “noncalcemic” effects of vitamin D metabolites. Accumulating evidence suggests that the metabolic pathways of this vitamin may play a key role in the developing of gynaecological/obstetric diseases. VDR-mediated signalling pathways and vitamin D levels seem to (deeply) affect the risk of several gynaecological diseases, such as polycystic ovary syndrome (PCOS), endometriosis, and ovarian and even breast cancer. On the other hand, since also the maternal-fetal unit is under the influence of vitamin D, a breakdown in its homeostasis may underlie infertility, preeclampsia, and gestational diabetes mellitus (GDM). According to our literature review, the relationship between vitamin D and gynaecological/obstetric diseases must be replicated in future studies which could clarify the molecular machineries behind their development. We suggest that further investigation should take into account the different serum levels of this vitamin, the several actions which arise from the binding between it and its receptor (taking into account its possible polymorphism), and finally the interplay between vitamin D metabolism and other hormonal and metabolic pathways.
Collapse
|
17
|
Tongkao-On W, Carter S, Reeve VE, Dixon KM, Gordon-Thomson C, Halliday GM, Tuckey RC, Mason RS. CYP11A1 in skin: an alternative route to photoprotection by vitamin D compounds. J Steroid Biochem Mol Biol 2015; 148:72-8. [PMID: 25448743 DOI: 10.1016/j.jsbmb.2014.11.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 12/18/2022]
Abstract
Topical 1,25-dihydroxyvitamin D (1,25D) and other vitamin D compounds have been shown to protect skin from damage by ultraviolet radiation (UVR) in a process that requires the vitamin D receptor. Yet, while mice which do not express the vitamin D receptor are more susceptible to photocarcinogenesis, mice unable to 1α-hydroxylate 25-hydroxyvitamin D to form 1,25D do not show increased susceptibility to UVR-induced skin tumors. A possible explanation is that an alternative pathway, which does not involve 1α-hydroxylation, may produce photoprotective compounds from vitamin D. The cholesterol side chain cleavage enzyme CYP11A1 is expressed in skin and produces 20-hydroxyvitamin D3 (20OHD) as a major product of vitamin D3. We examined whether topical 20OHD would affect UVR-induced DNA damage, inflammatory edema or immune suppression produced in Skh:hr1 mice. Photoprotection by 20OHD at 23 or 46pmol/cm(2) against cyclobutane pyrimidine dimers (DNA lesions) after UVR in mice was highly effective, up to 98±0.8%, (p<0.001) and comparable to that of 1,25D. Sunburn edema measured as skinfold thickness 24h after UVR was also significantly reduced by 20OHD (p<0.001). In studies of contact hypersensitivity (CHS), which is suppressed by UVR, topical application of 20OHD to mice protected against UVR-induced immunosuppression (p<0.05), similar to the effect of 1,25D at similar doses (46±0.6% protection with 20OHD, 44±0.5% with 1,25D). Both UVR-induced DNA damage and immunosuppression contribute to increased susceptibility to UVR-induced skin tumors. This study indicates a potentially anti-photocarcinogenic role of the naturally occurring vitamin D metabolite, 20OHD, which does not depend on 1α-hydroxylation for generation. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.
Collapse
Affiliation(s)
- Wannit Tongkao-On
- School of Medical Sciences and the Bosch Institute, University of Sydney, NSW, Australia
| | - Sally Carter
- School of Medical Sciences and the Bosch Institute, University of Sydney, NSW, Australia
| | - Vivienne E Reeve
- Faculty of Veterinary Science, University of Sydney, NSW, Australia
| | - Katie M Dixon
- School of Medical Sciences and the Bosch Institute, University of Sydney, NSW, Australia
| | - Clare Gordon-Thomson
- School of Medical Sciences and the Bosch Institute, University of Sydney, NSW, Australia
| | - Gary M Halliday
- Dermatology and Bosch Institute, University of Sydney, NSW, Australia
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA, Australia
| | - Rebecca S Mason
- School of Medical Sciences and the Bosch Institute, University of Sydney, NSW, Australia.
| |
Collapse
|
18
|
Abstract
Exposure of the skin to solar ultraviolet (UV) radiation has both risks and benefits for human health. Absorption of UV-B radiation by DNA results in mutations that underlie the development of skin cancers, as is apparent from genetic studies showing high occurrence of UV signature mutations within these tumors. UV-B radiation is also absorbed by 7-dehydrocholesterol to initiate vitamin D synthesis. In experimental studies vitamin D metabolites enhance apoptosis of malignant cells, inhibit angiogenesis and proliferation and increase differentiation, potentially reducing skin cancer development and improving prognosis after diagnosis. There are some supporting human data. We review the links between sun exposure, vitamin D and skin cancers.
Collapse
Affiliation(s)
- Candy Wyatt
- National Centre for Epidemiology & Population Health, Australian National University, Canberra, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia.,National Centre for Epidemiology & Population Health, Australian National University, Canberra, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Rachel E Neale
- QIMR Berghofer Institute of Medical Research, Brisbane, Australia.,QIMR Berghofer Institute of Medical Research, Brisbane, Australia
| | - Robyn M Lucas
- National Centre for Epidemiology & Population Health, Australian National University, Canberra, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia.,National Centre for Epidemiology & Population Health, Australian National University, Canberra, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| |
Collapse
|
19
|
Abstract
Vitamin D and calcium are well-established regulators of keratinocyte proliferation and differentiation. Therefore, it was not a great surprise that deletion of the vitamin D receptor (VDR) should predispose the skin to tumor formation, and that the combination of deleting both the VDR and calcium sensing receptor (CaSR) should be especially pro-oncogenic. In this review I have examined 4 mechanisms that appear to underlie the means by which VDR acts as a tumor suppressor in skin. First, DNA damage repair is curtailed in the absence of the VDR, allowing mutations in DNA to accumulate. Second and third involve the increased activation of the hedgehog and β-catenin pathways in the epidermis in the absence of the VDR, leading to poorly regulated proliferation with reduced differentiation. Finally, VDR deletion leads to a shift in the expression of long noncoding RNAs toward a more oncogenic profile. How these different mechanisms interact and their relative importance in the predisposition of the VDR null epidermis to tumor formation remain under active investigation.
Collapse
Affiliation(s)
- Daniel D Bikle
- VA Medical Center and University of California San Francisco, 1700 Owens Street, Room 373, San Francisco, CA 94158, USA
| |
Collapse
|
20
|
Wolden-Kirk H, Overbergh L, Gysemans C, Brusgaard K, Naamane N, Van Lommel L, Schuit F, Eizirik DL, Christesen H, Mathieu C. Unraveling the effects of 1,25OH2D3 on global gene expression in pancreatic islets. J Steroid Biochem Mol Biol 2013; 136:68-79. [PMID: 23137852 DOI: 10.1016/j.jsbmb.2012.10.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/19/2012] [Accepted: 10/20/2012] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Vitamin D deficiency has been linked to type 1 and 2 diabetes, whereas supplementation may prevent both diseases. However, the extent of the effects of vitamin D or its metabolites directly on pancreatic islets is still largely unknown. The aim of the present study was to investigate how active vitamin D, 1,25(OH)2D3, affects beta cells directly by establishing its effects on global gene expression in healthy murine islets. MATERIALS AND METHODS Pancreatic islets were isolated from 2 to 3 week old C57BL/6 mice and cultured in vitro with 1,25(OH)2D3 or vehicle for 6 and 24h. Total RNA was extracted from the islets and the effects on global gene expression were analyzed using Affymetrix microarrays. RESULTS AND DISCUSSION Exposure to 1,25(OH)2D3 compared to vehicle resulted in 306 and 151 differentially expressed genes after 6 and 24h, respectively (n=4, >1.3-fold, p<0.02). Of these 220 were up-regulated, whereas 86 displayed a decreased expression after 6h. Furthermore, expression levels were increased for 124 and decreased for 27 genes following 24h of exposure. Formation of intercellular junctions, cytoskeletal organization, and intracellular trafficking as well as lipid metabolism and ion transport were among the most affected gene classes. Effects on several genes already identified as being part of vitamin D signaling in other cell types were observed along with genes known to affect insulin release, although with our assay we were not able to detect any effects of 1,25(OH)2D3 on glucose-stimulated insulin release from healthy pancreatic islets. CONCLUSION The effects of 1,25(OH)2D3 on the expression of cytoskeletal and intracellular trafficking genes along with genes involved in ion transport may influence insulin exocytosis. However, an effect of 1,25(OH)2D3 on insulin release could not be detected for healthy islets in contrast to islets subjected to pathological conditions such as cytokine exposure and vitamin D deficiency as suggested by other studies. Thus, in addition to previously identified tolerogenic effects on the immune system, 1,25(OH)2D3 may affect basic functions of pancreatic beta cells, with the potential to render them more resistant to the detrimental conditions encountered during type 1 and 2 diabetes. This article is part of a Special Issue entitled 'Vitamin D Workshop'.
Collapse
Affiliation(s)
- H Wolden-Kirk
- Clinical and Experimental Endocrinology, University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, Box 902, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Geng S, Zhou S, Bi Z, Glowacki J. Vitamin D metabolism in human bone marrow stromal (mesenchymal stem) cells. Metabolism 2013; 62:768-77. [PMID: 23375059 PMCID: PMC3644521 DOI: 10.1016/j.metabol.2013.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 01/10/2023]
Abstract
There are many human extra-renal tissues and cells that biosynthesize 1α,25-dihydroxyvitamin D (1α,25(OH)(2)D) by the action of CYP27B1/1α-hydroxylase. Human marrow stromal cells (hMSCs), also known as mesenchymal stem cells, were isolated from marrow discarded from well-characterized, consented subjects during common orthopedic procedures. Human MSCs can give rise to osteoblasts, chondrocytes, adipocytes, and other lineages. Their in vitro differentiation to osteoblasts is stimulated by 1α,25(OH)(2)D, and recent evidence indicates that they have the capacity to metabolize vitamin D in a regulated manner. Human MSCs express the vitamin D receptor, 25-hydroxylases, 1α-hydroxylase, and 24-hydroxylase; stimulation of in vitro osteoblastogenesis by 25(OH)D depends on the activity of CYP27B1/1α-hydroxylase. The finding that hMSCs are a both a producer and target of 1α,25(OH)(2)D suggests a potential autocrine/paracrine role of vitamin D metabolism in osteoblast differentiation. Expression and enzyme activity of CYP27B1/1α-hydroxylase are upregulated by substrate 25(OH)D and Parathyroid Hormone (PTH) and are downregulated by 1α,25(OH)(2)D. With subject age, there are decreases in basal osteoblast potential and in stimulation of osteoblastogenesis by 1α,25(OH)(2)D, 25(OH)D, and PTH. In vitro treatment with a combination of 25(OH)D and PTH rejuvenated osteoblastogenesis with hMSCs from elders; this was attributable to increases in CYP27B1/1α-hydroxylase and in receptor for each hormone by the reciprocal factor. Other clinical variables beside age, i.e. low serum 25(OH)D or low estimated glomerular filtration rate, are correlated with reduced osteoblastogenesis. These studies suggest that osteoblastogenesis may not be optimal unless there is sufficient serum 25(OH)D substrate for hMSCs to synthesize and respond to local 1α,25(OH)(2)D.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhenggang Bi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Julie Glowacki
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Corresponding author: Tel: 617-732-5397; Fax: 617-732-6937;
| |
Collapse
|
22
|
Is 1,25-dihydroxyvitamin D3 receptor expression a potential Achilles’ heel of CD44+ oral squamous cell carcinoma cells? Target Oncol 2013; 8:189-201. [DOI: 10.1007/s11523-013-0255-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 01/04/2013] [Indexed: 12/20/2022]
|
23
|
Abstract
The keratinocytes of the skin are unique in being not only the primary source of vitamin D for the body, but in possessing the enzymatic machinery to metabolize vitamin D to its active metabolite 1,25(OH)(2)D. Furthermore, these cells also express the vitamin D receptor (VDR) that enables them to respond to the 1,25(OH)(2)D they produce. Numerous functions of the skin are regulated by 1,25(OH)(2)D and/or its receptor. These include inhibition of proliferation, stimulation of differentiation including formation of the permeability barrier, promotion of innate immunity, and promotion of the hair follicle cycle. Regulation of these actions is exerted by a number of different coregulators including the coactivators DRIP and SRC, the cosuppressor hairless (Hr), and β-catenin. This review will examine the regulation of vitamin D production and metabolism in the skin, and explore the various functions regulated by 1,25(OH)(2)D and its receptor.
Collapse
Affiliation(s)
- Daniel D Bikle
- Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA.
| |
Collapse
|
24
|
Trémezaygues L, Seifert M, Vogt T, Tilgen W, Reichrath J. 1,25-dihydroxyvitamin D3 modulates effects of ionizing radiation (IR) on human keratinocytes: in vitro analysis of cell viability/proliferation, DNA-damage and -repair. J Steroid Biochem Mol Biol 2010; 121:324-7. [PMID: 20214987 DOI: 10.1016/j.jsbmb.2010.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 02/24/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
We investigated the capacity of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to protect spontaneously immortalized human keratinocytes (HaCaT) and cutaneous squamous cell carcinoma cells (SCL-1) against the hazardous effects of ionizing radiation (IR). We pretreated HaCaT and SCL-1 cells in vitro with 1,25(OH)2D3 (10(-7) M) over 48 h and then irradiated them once with IR (1 Gy, 2 Gy, and 5 Gy). Using WST-1-assay and crystal violet (CV) assay, we compared viability/proliferation in 1,25(OH)2D3-pretreated cells with controls that were pretreated with the carrier substance ethanol alone. Additionally, we analyzed the effects of 1,25(OH)2D3 on the presence of IR-induced DNA-damage by immunocytochemical detection of gamma-H2AX-foci in HaCaT-keratinocytes. We demonstrate that 1,25(OH)2D3 (10(-7) M) inhibits proliferation of human keratinocytes and that IR (1-5 Gy) has no significant effect on proliferation and viability of HaCaT-keratinocytes and SCL-1 cells. Moreover, we show that IR modulates dose-dependently the number of gammaH2AX-foci in HaCaT-keratinocytes. Pretreatment of the cells with 1,25(OH)2D3 reduces the number of IR-induced gammaH2AX-foci after irradiation with 1 Gy and 2 Gy and increases it after irradiation with 5 Gy. To put it in a nutshell, our data support the hypothesis that 1,25(OH)2D3 modulates the effects of low-dose IR (1-5 Gy) on cultured human keratinocytes.
Collapse
Affiliation(s)
- Lea Trémezaygues
- Department of Dermatology, The Saarland University Hospital, Kirrberger Str., 66421 Homburg/Saar, Germany.
| | | | | | | | | |
Collapse
|
25
|
Nieves NJ, Ahrens JM, Plum LA, DeLuca HF, Clagett-Dame M. Identification of a unique subset of 2-methylene-19-nor analogs of vitamin D with comedolytic activity in the rhino mouse. J Invest Dermatol 2010; 130:2359-67. [PMID: 20535127 DOI: 10.1038/jid.2010.142] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The active metabolite of vitamin D, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), and a series of 2-methylene-19-nor analogs of 1,25(OH)(2)D(3) were evaluated for their ability to reduce the size of utricles (comedolytic activity) in a rhino mouse model of acne. All analogs tested, as well as the native hormone, increased the skin epidermal thickness. In contrast, only a subset of analogs that lacked a full side chain and 25-hydroxyl group were found to possess comedolytic activity. A reduction in comedone area could be achieved without adversely affecting serum calcium levels. Although all compounds that contained a side chain ranging from 2 to 5 carbons in length had similar potency as comedolytic agents, increasing the length of the side chain resulted in a progressive increase in calcemic liability. Dose-response studies of the comedolytic analogs showed that an increase in epidermal thickness was achieved at a lower dose than that needed to induce comedolysis. Thus, we have identified a unique subset of vitamin D analogs that produce comedolysis in the absence of hypercalcemia. Further, the activity of vitamin D analogs in causing epidermal hyperproliferation has been distinguished from that resulting in a reduction in utricle size.
Collapse
Affiliation(s)
- Nirca J Nieves
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
26
|
Oh JE, Jang DH, Kim H, Kang HK, Chung CP, Park WH, Min BM. alpha3beta1 integrin promotes cell survival via multiple interactions between 14-3-3 isoforms and proapoptotic proteins. Exp Cell Res 2009; 315:3187-200. [PMID: 19683525 DOI: 10.1016/j.yexcr.2009.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/11/2009] [Accepted: 08/03/2009] [Indexed: 12/30/2022]
Abstract
Laminin-5 and alpha3beta1 integrin promote keratinocyte survival; however, the downstream signaling pathways for laminin-5/alpha3beta1 integrin-mediated cell survival had not been fully established. We report the unexpected finding of multiple interactions between 14-3-3 isoforms and proapoptotic proteins in the survival signaling pathway. Ln5-P4 motif within human laminin-5 alpha3 chain promotes cell survival and anti-apoptosis by inactivating Bad and YAP. This effect is achieved through the formation of 14-3-3zeta/p-Bad and 14-3-3sigma/p-YAP complexes, which is initiated by alpha3beta1 integrin and FAK/PI3K/Akt signaling. These complexes result in cytoplasmic sequestration of Bad and YAP and their subsequent inactivation. An increase in Akt1 activity in cells induces 14-3-3zeta and sigma, p-Bad, and p-YAP, promoting cell survival, whereas decreasing Akt activity suppresses the same proteins and inhibits cell survival. Suppression of 14-3-3zeta with RNA-interference inhibits cell viability and promotes apoptosis. These results reveal a new mechanism of cell survival whereby the formation of 14-3-3zeta/p-Bad and 14-3-3sigma/p-YAP complexes is initiated by laminin-5 stimulation via the alpha3beta1 integrin and FAK/PI3K/Akt signaling pathways, thereby resulting in cell survival and anti-apoptosis.
Collapse
Affiliation(s)
- Ju-Eun Oh
- Department of Oral Biochemistry and Program of Craniomaxillofacial Reconstruction Science, Dental Research Institute, BK21 CLS, and IBEC, Seoul National University School of Dentistry, Seoul 110-749, Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Vitamin D and calcium insufficiency-related chronic diseases: an emerging world-wide public health problem. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2009; 6:2585-607. [PMID: 20054456 PMCID: PMC2790094 DOI: 10.3390/ijerph6102585] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 09/28/2009] [Indexed: 12/19/2022]
Abstract
Vitamin D and calcium insufficiencies are risk factors for multiple chronic diseases. Data from 46 recent studies from Europe, North America, South-East Asia and the South Pacific area clearly indicate that a low vitamin D status and inadequate calcium nutrition are highly prevalent in the general population (30–80%), affecting both genders. The extent of insufficiencies is particularly high in older populations, and in some geographical areas, also in children and in young women of child-bearing age, in ethnic minorities and immigrants, as well as in people of low socio-economic status. Enrichment of cereal grain products with vitamin D and calcium would be a viable approach to increase consumption and improve health outcomes in the general population worldwide.
Collapse
|
28
|
van de Kerkhof P, Wittenhorst M, Gerritsen M, Jong ED, Lucker G, Steylen P. Possible indications for vitamin D3analogues in conditions other than psoriasis vulgaris. J DERMATOL TREAT 2009. [DOI: 10.3109/09546639609086888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
|
30
|
Inoue K, Aoi N, Yamauchi Y, Sato T, Suga H, Eto H, Kato H, Tabata Y, Yoshimura K. TGF-beta is specifically expressed in human dermal papilla cells and modulates hair folliculogenesis. J Cell Mol Med 2009; 13:4643-56. [PMID: 19438810 PMCID: PMC4515078 DOI: 10.1111/j.1582-4934.2009.00739.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dermal papilla cells (DPCs) in the mammalian hair follicle have been shown to develop hair follicles through epithelial-mesenchymal interactions. A cell therapy to regenerate human hair is theoretically possible by expanding autologous human DPCs (hDPCs) and transplanting them into bald skin, though much remains to be overcome before clinical success. In this study, we compared gene signatures of hDPCs at different passages and human dermal fibroblasts, and found transforming growth factor (TGF)-beta(2) to be highly expressed in cultured hDPCs. Keratinocyte conditioned medium, which is known to help preserve the hair-inducing capacity of hDPCs, up-regulated TGF-beta(2) expression of hDPCs and also enhanced their alkaline phosphatase (ALP) activity, a known index for hair-inductive capacity. Through screening of components secreted from keratinocytes, the vitamin D(3) analogue was found to promote TGF-beta(2) expression and ALP activity of hDPCs. In animal hair folliculogenesis models using rat epidermis and expanded hDPCs, inhibition of TGF-beta(2) signalling at the ligand or receptor level significantly impaired hair folliculogenesis and maturation. These results suggest an important role for TGF-beta(2) in hair follicle morphogenesis and provide insights into the establishment of future cell therapies for hair regrowth by transplanting expanded DPCs.
Collapse
Affiliation(s)
- Keita Inoue
- Department of Plastic Surgery, University of Tokyo School of Medicine, Hongo, Bunkyo-Ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hösl M, Berneburg M. [Vitamin D and the skin]. Hautarzt 2008; 59:737-42; quiz 743. [PMID: 18688585 DOI: 10.1007/s00105-008-1499-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Along with other organs like prostate, bones and kidney, skin is capable of vitamin D synthesis. Primarily keratinocytes but also macrophages and fibroblasts synthesize active vitamin D from cholesterol precursors by photochemical activation. The synthesized vitamin D functions by binding to nuclear vitamin D receptors. Vitamin D deficiency usually manifests as rickets in childhood although it is today only relevant in diseases characterized by malabsorption due to today's recommended vitamin D prophylaxis. Excessive doses of vitamin D are the usual cause of increased levels. The most common therapeutic target of Vitamin D is psoriasis. Here, topical preparations are usually employed; their anti-proliferative and cell differentiation-promoting action is mediated via binding to cutaneous vitamin D receptors.
Collapse
Affiliation(s)
- M Hösl
- Universitäts-Hautklinik, Eberhard Karls Universität, Liebermeisterstrasse 25, 72076, Tübingen, Deutschland
| | | |
Collapse
|
32
|
Somjen D, Katzburg S, Stern N, Kohen F, Sharon O, Limor R, Jaccard N, Hendel D, Weisman Y. 25 hydroxy-vitamin D(3)-1alpha hydroxylase expression and activity in cultured human osteoblasts and their modulation by parathyroid hormone, estrogenic compounds and dihydrotestosterone. J Steroid Biochem Mol Biol 2007; 107:238-44. [PMID: 17659868 DOI: 10.1016/j.jsbmb.2007.03.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 03/14/2007] [Indexed: 11/29/2022]
Abstract
Human osteoblasts (hOB) produce and respond to 1,25(OH)(2)D(3) (1,25D), suggesting an autocrine/paracrine system. We therefore examined hormonal modulation of the expression and activity of 25 hydroxy-vitamin D(3)-1alpha hydroxylase (1-Ohase) in hOB. Cells from pre- and post-menopausal women or men, were treated with estrogenic compounds and 1-OHase expression and activity were measured. 1-OHase mRNA expression was highest in pre-menopausal women hOB and was increased by all hormones tested. In post-menopausal hOB all hormones except biochainin A (BA) and genistein (G) increased 1-OHase mRNA expressions to less extent. In male-derived hOB only dihydrotestosterone (DHT) and carboxy BA (cBA) increased 1-OHase mRNA expression. 1,25D production from 25(OH)D(3) had a K(m) of approximately 769-400 ng/ml (1.92-1.07 microM) and V(max) of 31.3-17.4 ng/ml (0.078-0.044 microM/60 min/5 x 10(6)cells) respectively, and was increased by all hormones except raloxifene (Ral) with higher stimulation in pre- than in post-menopausal cells. Only BA was almost five times more potent in pre- rather than post-menopausal hOBs. In male hOB only DHT and cBA increased 1,25D production whereas estradiol-17beta (E(2)) had no effect and BA decreased it. These results provide evidence for the expression of 1-OHase mRNA and production of 1,25D in hOBs, which are age and sex dependent and are hormonally modulated. The role of this local autocrine/paracrine 1,25D system in bone physiology deserves further investigation.
Collapse
Affiliation(s)
- Dalia Somjen
- Institute of Endocrinology, Metabolism and Hypertension, Tel-Aviv University, Tel-Aviv, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Most vertebrates need vitamin D to develop and maintain a healthy mineralized skeleton. However, 1,25-dihydroxyvitamin D3 [1,25(OH)(2)D(3)], the biologically active vitamin D metabolite, exerts a multitude of important physiological effects independent from the regulation of calcium and bone metabolism. We know today that the skin has a unique role in the human body's vitamin D endocrine system. It is the only site of vitamin D photosynthesis, and has therefore a central role in obtaining a sufficient vitamin D status. Additionally, the skin has the capacity to synthesize the biologically active vitamin D metabolite 1,25(OH)(2)D(3), and represents an important target tissue for 1,25(OH)(2)D(3). In keratinocytes and other cell types, 1,25(OH)(2)D(3) regulates growth and differentiation. Consequently, vitamin D analogues have been introduced for the treatment of the hyperproliferative skin disease psoriasis. Recently, sebocytes were identified as 1,25(OH)(2)D(3)-responsive target cells, indicating that vitamin D analogues may be effective in the treatment of acne. Other new functions of vitamin D analogues include profound effects on the immune system as well as in various tissues protection against cancer and other diseases, including autoimmune and infectious diseases. It can be speculated that the investigation of biological effects of vitamin D analogues will lead to new therapeutic applications that, besides cancer prevention, may include the prevention and treatment of infectious as well as of inflammatory skin diseases. Additionally, it can be assumed that dermatological recommendations on sun protection and health campaigns for skin cancer prevention will have to be re-evaluated to guarantee a sufficient vitamin D status.
Collapse
Affiliation(s)
- Jörg Reichrath
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany.
| |
Collapse
|
34
|
Lehen'kyi V, Beck B, Polakowska R, Charveron M, Bordat P, Skryma R, Prevarskaya N. TRPV6 is a Ca2+ entry channel essential for Ca2+-induced differentiation of human keratinocytes. J Biol Chem 2007; 282:22582-91. [PMID: 17550901 DOI: 10.1074/jbc.m611398200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ca(2+) is an essential factor inducing keratinocyte differentiation due to the natural Ca(2+) gradient in the skin. However, the membrane mechanisms that mediate calcium entry and trigger keratinocyte differentiation had not previously been elucidated. In this study we demonstrate that Ca(2+)-induced differentiation up-regulates both mRNA and protein expression of a transient receptor potential highly Ca(2+)-selective channel, TRPV6. The latter mediates Ca(2+) uptake and accounts for the basal [Ca(2+)](i) in human keratinocytes. Our results show that TRPV6 is a prerequisite for keratinocyte entry into differentiation, because the silencing of TRPV6 in human primary keratinocytes led to the development of impaired differentiated phenotype triggered by Ca(2+). The expression of such differentiation markers as involucrin, transglutaminase-1, and cytokeratin-10 was significantly inhibited by small interfering RNA-TRPV6 as compared with differentiated control cells. TRPV6 silencing affected cell morphology and the development of intercellular contacts, as well as the ability of cells to stratify. 1,25-Dihydroxyvitamin D3, a cofactor of differentiation, dose-dependently increased TRPV6 mRNA and protein expression in human keratinocytes. This TRPV6 up-regulation led to a significant increase in Ca(2+) uptake in both undifferentiated and differentiated keratinocytes. We conclude that TRPV6 mediates, at least in part, the pro-differentiating effects of 1,25-dihydroxyvitamin D3 by increasing Ca(2+) entry, thereby promoting differentiation. Taken together, these data suggest that the TRPV6 channel is a key element in Ca(2+)/1,25-dihydroxyvitamin D3-induced differentiation of human keratinocytes.
Collapse
Affiliation(s)
- V'yacheslav Lehen'kyi
- Inserm, U-800, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Gupta R, Dixon KM, Deo SS, Holliday CJ, Slater M, Halliday GM, Reeve VE, Mason RS. Photoprotection by 1,25 Dihydroxyvitamin D3 Is Associated with an Increase in p53 and a Decrease in Nitric Oxide Products. J Invest Dermatol 2007; 127:707-15. [PMID: 17170736 DOI: 10.1038/sj.jid.5700597] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vitamin D is produced in skin by UVB radiation (290-320 nm) acting on 7-dehydrocholesterol. The hypotheses that the active vitamin D hormone, 1,25 dihydroxyvitamin D3 (1,25(OH)2D3), would increase the survival of skin cells after UV irradiation and that surviving cells after 1,25(OH)2D3 treatment would have no increase in DNA damage were tested. The survival of keratinocytes post-UVR was significantly greater after treatment with 1,25(OH)2D3 compared to vehicle (P<0.01). Significant reductions in thymine dimers (TDs) in surviving keratinocytes after UVR were noted in the presence of 1,25(OH)2D3 (P<0.001). Nuclear p53 protein expression increased after UVR and was significantly higher in keratinocytes treated with 1,25(OH)2D3 (P<0.01), whereas NO products were significantly reduced (P<0.05). Both the increase in nuclear accumulation of p53 protein and reduced formation of nitric oxide products may contribute to the reduction in TDs seen with 1,25(OH)2D3 after UVR. Reductions in numbers of sunburn cells (P<0.01) and in TDs (P<0.05) were observed 24 hours after UVR in skin sections from Skh:hr1 mice treated with 1,25(OH)2D3. These results are consistent with the proposal that the vitamin D system in skin may be part of an intrinsic protective mechanism against UV damage.
Collapse
Affiliation(s)
- Ritu Gupta
- Department of Physiology and The Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bikle D, Teichert A, Hawker N, Xie Z, Oda Y. Sequential regulation of keratinocyte differentiation by 1,25(OH)2D3, VDR, and its coregulators. J Steroid Biochem Mol Biol 2007; 103:396-404. [PMID: 17229570 DOI: 10.1016/j.jsbmb.2006.12.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Indexed: 10/23/2022]
Abstract
Keratinocyte differentiation requires the sequential regulation of gene expression. We have explored the role of 1,25(OH)(2)D(3) and its receptor (VDR) in this process. VDR sequentially binds to coactivator complexes such as Vitamin D receptor interacting protein (DRIP) and steroid receptor coactivator (SRC) during differentiation. Different genes respond differently to the VDR/coactivator complexes as determined by knockdown studies. The binding of DRIP205 and SRC to VDR is ligand (i.e. 1,25(OH)(2)D(3)) dependent. LXXLL motifs in these coactivators are critical for this binding; however, the affinity for VDR of the different LXXLL motifs in these coactivators varies. Hairless is an inhibitor of 1,25(OH)(2)D(3) dependent gene transcription. A phiXXphiphi motif in hairless is crucial for hairless binding to VDR, and its binding is ligand independent. 1,25(OH)(2)D(3) displaces hairless and recruits the coactivators to VDREs. Hsp90 and p23 are chaperone proteins recruited to the DRIP/VDR complex, where they block the binding of the complex to VDREs and block 1,25(OH)(2)D(3) stimulated transcription. Thus four mechanisms explain the ability of 1,25(OH)(2)D(3) to sequentially regulate gene transcription during differentiation: changes in coregulator levels, their differential binding to VDR, differential gene responsiveness to the VDR/coregulator complexes, and chaperone proteins facilitating the cycling of VDR/coregulator complexes on and off the VDREs.
Collapse
Affiliation(s)
- D Bikle
- Endocrine Research Unit, University of California, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.
| | | | | | | | | |
Collapse
|
37
|
Xie Z, Chang S, Oda Y, Bikle DD. Hairless suppresses vitamin D receptor transactivation in human keratinocytes. Endocrinology 2006; 147:314-23. [PMID: 16269453 DOI: 10.1210/en.2005-1111] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The vitamin D receptor (VDR) and its ligand 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] are required for normal keratinocyte differentiation. Both the epidermis and the hair follicle are disrupted in VDR-null mice. Hairless (Hr), a presumptive transcription factor with no known ligand, when mutated, disrupts hair follicle cycling similar to the effects of VDR mutations. Hr, like VDR, is found in the nuclei of keratinocytes in both epidermis and hair follicle. To investigate the potential interaction between Hr and VDR on keratinocyte differentiation, we examined the effect of Hr expression on vitamin D-responsive genes in normal human keratinocytes. Inhibition of Hr expression in keratinocytes potentiated the induction of vitamin D-responsive genes, including involucrin, transglutaminase, phospholipase C-gamma1, and 25-hydroxyvitamin D-24-hydroxylase (24-hydroxylase) by 1,25(OH)2D3. Overexpression of Hr in human keratinocytes suppressed the induction of these vitamin D-responsive genes by 1,25(OH)2D3. Coimmunoprecipitation, DNA mobility shift assays, and chromatin immunoprecipitation revealed that Hr binds to VDR in human keratinocytes. Hr binding to the VDR was eliminated by 1,25(OH)2D3, which recruited the coactivator vitamin D receptor-interacting protein 205 (DRIP205) to the VDR/vitamin D response element complex. These data indicate that Hr functions as a corepressor of VDR to block 1,25(OH)2D3 action on keratinocytes.
Collapse
Affiliation(s)
- Zhongjian Xie
- Endocrine Unit, Veterans Affairs Medical Center, San Francisco, California 94121, USA.
| | | | | | | |
Collapse
|
38
|
Townsend K, Evans KN, Campbell MJ, Colston KW, Adams JS, Hewison M. Biological actions of extra-renal 25-hydroxyvitamin D-1alpha-hydroxylase and implications for chemoprevention and treatment. J Steroid Biochem Mol Biol 2005; 97:103-9. [PMID: 16081283 DOI: 10.1016/j.jsbmb.2005.06.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Vitamin D-activating enzyme 25-hydroxyvitamin D-1alpha-hydroxylase (1alpha-hydroxylase) is now known to be expressed in a much wider range of tissues that previously thought, suggesting a role for 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), which is more in keeping with a cytokine than a hormone. In this capacity, the function of 1alpha-hydroxylase in tumors is far from clear. Studies from several groups including ours have shown altered expression of 1alpha-hydroxylase in different types of neoplasm including breast, prostate and colon cancers. However, functional analysis of Vitamin D metabolism in cancer is complicated by the heterogenous composition of tumors. Immunohistochemical analysis of breast tumors has shown that 1alpha-hydroxylase is expressed by both epithelial cells and by tumor-infiltrating macrophages, suggesting an immunomodulatory component to 1,25(OH)(2)D(3) production in some types of cancer. The demonstration of 1alpha-hydroxylase activity in tumors and their equivalent normal tissues has implications for both the treatment and prevention of cancers. For example, in tumors chemotherapy options may include the use of non-1alpha-hydroxylated Vitamin D analogs to increase local concentrations of active metabolites without systemic side-effects. The role of 1alpha-hydroxylase in protection against cancer is likely to be more complicated and may involve anti-tumor immune responses.
Collapse
Affiliation(s)
- Kelly Townsend
- Division of Medical Sciences, Institute of Biomedical Research, The University of Birmingham, Birmingham B15 2TH, UK
| | | | | | | | | | | |
Collapse
|
39
|
Meindl S, Rot A, Hoetzenecker W, Kato S, Cross HS, Elbe-Bürger A. Vitamin D receptor ablation alters skin architecture and homeostasis of dendritic epidermal T cells. Br J Dermatol 2005; 152:231-41. [PMID: 15727633 DOI: 10.1111/j.1365-2133.2005.06392.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND 1alpha,25-dihydroxyvitamin D(3)[1,25(OH)(2)D(3)], the active metabolite of vitamin D, exerts its activities by binding to the vitamin D receptor (VDR) with subsequent function as a transcription factor. Targeted ablation of the VDR in mice results in rickets and alopecia. OBJECTIVES To study the consequences of VDR deficiency for skin physiology, and to investigate the mechanisms of the immunosuppressive effect of 1,25(OH)(2)D(3) on LC. METHODS We studied the structural, phenotypic and functional properties of skin and individual skin leucocyte populations in VDR(-/-) mice. RESULTS The lack of VDR induced a wide spectrum of pathologies including dermal deposition of collagen, enlargement of sebaceous glands, dilation of the hair follicles, development of epidermal cysts, increased numbers of dendritic epidermal T cells (DETC) and hyperkeratosis. Ageing aggravated these changes. Intriguingly, Langerhans cells (LC) were indistinguishable in distribution, morphology and number compared with controls. In vitro, LC underwent a maturation/migration process similar to LC from control mice. Pretreatment of epidermal cells or LC-enriched epidermal cell suspensions with 1,25(OH)(2)D(3) impaired LC maturation and T-cell stimulatory capacity from VDR(+/+) but not VDR(-/-) mice, demonstrating that LC are targets of vitamin D(3) and that interaction between vitamin D(3) and LC results in a suppression of LC activity. CONCLUSIONS Our data imply that VDR expression controls dermal collagen production, hair development and growth, proliferation of sebaceous glands and the homeostasis of DETC. Surprisingly, VDR deficiency does not influence LC phenotype and function.
Collapse
Affiliation(s)
- S Meindl
- Novartis Institutes for BioMedical Research, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
There is evidence from both observational studies and clinical trials that calcium malnutrition and hypovitaminosis D are predisposing conditions for various common chronic diseases. In addition to skeletal disorders, calcium and vitamin D deficits increase the risk of malignancies, particularly of colon, breast and prostate gland, of chronic inflammatory and autoimmune diseases (e.g. insulin-dependent diabetes mellitus, inflammatory bowel disease, multiple sclerosis), as well as of metabolic disorders (metabolic syndrome, hypertension). The aim of the present review was to provide improved understanding of the molecular and cellular processes by which deficits in calcium and vitamin D cause specific changes in cell and organ functions and thereby increase the risk for chronic diseases of different aetiology. 1,25-Dihydroxyvitamin D(3) and extracellular Ca(++) are both key regulators of proliferation, differentiation and function at the cellular level. However, the efficiency of vitamin D receptor-mediated intracellular signalling is limited by the negative effects of hypovitaminosis D on extrarenal 25-hydroxyvitamin D-1alpha-hydroxylase activity and thus on the production of 1,25-dihydroxyvitamin D(3). Calcium malnutrition eventually causes a decrease in calcium concentration in extracellular fluid compartments, resulting in organ-specific modulation of calcium-sensing receptor activity. Hence, attenuation of signal transduction from the ligand-activated vitamin D receptor and calcium-sensing receptor seems to be the prime mechanism by which calcium and vitamin D insufficiencies cause perturbation of cellular functions in bone, kidney, intestine, mammary and prostate glands, endocrine pancreas, vascular endothelium, and, importantly, in the immune system. The wide range of diseases associated with deficits in calcium and vitamin D in combination with the high prevalence of these conditions represents a special challenge for preventive medicine.
Collapse
Affiliation(s)
- M Peterlik
- Department of Pathophysiology, Center for Physiology and Pathophysiology, University of Medicine Vienna, Vienna, Austria.
| | | |
Collapse
|
41
|
Oh JE, Kook JK, Min BM. Beta ig-h3 induces keratinocyte differentiation via modulation of involucrin and transglutaminase expression through the integrin alpha3beta1 and the phosphatidylinositol 3-kinase/Akt signaling pathway. J Biol Chem 2005; 280:21629-37. [PMID: 15805105 DOI: 10.1074/jbc.m412293200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Beta ig-h3 is an extracellular matrix protein whose expression is highly induced by transforming growth factor (TGF)-beta1. Whereas beta ig-h3 is known to mediate keratinocyte adhesion and migration, its effects on keratinocyte differentiation remain unclear. In the present study, it was demonstrated that expression of both beta ig-h3 and TGF-beta1 was enhanced during keratinocyte differentiation and that expression of the former was strongly induced by that of the latter. This study also asked whether changes in beta-h3 expression would affect keratinocyte differentiation. Indeed, down-regulation of beta ig-h3 by transfection with antisense beta ig-h3 cDNA constructs effectively inhibited keratinocyte differentiation by decreasing the promoter activities and thus expression of involucrin and transglutaminase. The result was an approximately 2-fold increase in mitotic capacity of the cells. Conversely, overexpression of beta ig-h3, either by transfection with beta ig-h3 expression plasmids or by exposure to recombinant beta ig-h3, enhanced keratinocyte differentiation by inhibiting cell proliferation and concomitantly increasing involucrin and transglutaminase expression. Recombinant beta ig-h3 also promoted keratinocyte adhesion through interaction with integrin alpha3beta1. Changes in beta ig-h3 expression did not affect intracellular calcium levels. Subsequent analysis revealed not only induction of Akt phosphorylation by recombinant beta ig-h3 but also blockage of Akt phosphorylation by LY294002, an inhibitor of phosphatidylinositol 3-kinase. Taken together, these findings indicate that enhanced beta ig-h3, induced by enhanced TGF-beta during keratinocyte differentiation, provoked cell differentiation by enhancing involucrin and transglutaminase expression through the integrin alpha3beta1 and phosphatidylinositol 3-kinase/Akt signaling pathway. Lastly, it was observed that beta ig-h3-mediated keratinocyte differentiation was caused by promotion of cell adhesion and not by calcium regulation.
Collapse
Affiliation(s)
- Ju-Eun Oh
- Department of Oral Biochemistry and Craniomaxillofacial Reconstructive Sciences, Dental Research Institute, and BK21 HLS, Seoul National University College of Dentistry, Seoul 110-749, Korea
| | | | | |
Collapse
|
42
|
Abstract
Skin cancer is the most common cancer afflicting humans. These cancers include melanomas and 2 types of malignant keratinocytes: basal-cell carcinomas (BCC) and squamous-cell carcinomas (SCC). UV light exposure is linked to the incidence of these cancers. On the other hand, the skin is the major source of vitamin D-3 (cholecalciferol) and UV light is critical for its formation. Keratinocytes can convert vitamin D-3 to its hormonal form, 1,25 dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] (calcitriol). 1,25(OH)(2)D(3) in turn stimulates the differentiation of keratinocytes, raising the hope that 1,25(OH)(2)D(3) may prevent the development of malignancies in these cells. We identified a number of mechanisms by which 1,25(OH)(2)D(3) regulates the differentiation of keratinocytes and explored where this regulation breaks down in SCCs. 1,25(OH)(2)D(3) regulates gene expression by activating the vitamin D receptor (VDR). When activated, the VDR binds to one of two coactivator complexes: DRIP or p160/SRC. Binding to DRIP occurs in the undifferentiated keratinocyte, but, as the cell differentiates, DRIP(205) levels fall and p160/SRC binding takes over as SRC3 expression increases. SCCs fail to respond to the prodifferentiating actions of 1,25(OH)(2)D(3). These cells have normal levels of VDR and normal binding of VDR to vitamin D response elements. However, they overexpress DRIP(205) such that the p160/SRC complex is blocked from binding to VDR. We hypothesize that failure of 1,25(OH)(2)D(3) to induce differentiation in SCCs lies at least in part with its failure to induce the replacement of the DRIP complex with the SRC complex in the promoters of genes required for differentiation.
Collapse
Affiliation(s)
- Daniel D Bikle
- Endocrine Research Unit, VA Medical Center, University of California, San Francisco, CA 94121, USA.
| |
Collapse
|
43
|
VanAmerongen BM, Dijkstra CD, Lips P, Polman CH. Multiple sclerosis and vitamin D: an update. Eur J Clin Nutr 2004; 58:1095-109. [PMID: 15054436 DOI: 10.1038/sj.ejcn.1601952] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MS is a chronic, immune-mediated inflammatory and neurodegenerative disease of the central nervous system (CNS), with an etiology that is not yet fully understood. The prevalence of MS is highest where environmental supplies of vitamin D are lowest. It is well recognized that the active hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25-(OH)(2)D), is a natural immunoregulator with anti-inflammatory action. The mechanism by which vitamin D nutrition is thought to influence MS involves paracrine or autocrine metabolism of 25OHD by cells expressing the enzyme 1 alpha-OHase in peripheral tissues involved in immune and neural function. Administration of the active metabolite 1,25-(OH)(2)D in mice and rats with experimental allergic encephalomyelitis (EAE, an animal model of MS) not only prevented, but also reduced disease activity. 1,25-(OH)(2)D alters dendritic cell and T-cell function and regulates macrophages in EAE. Interestingly, 1,25-(OH)(2)D is thought to be operating on CNS constituent cells as well. Vitamin D deficiency is caused by insufficient sunlight exposure or low dietary vitamin D(3) intake. Subtle defects in vitamin D metabolism, including genetic polymorphisms related to vitamin D, might possibly be involved as well. Optimal 25OHD serum concentrations, throughout the year, may be beneficial for patients with MS, both to obtain immune-mediated suppression of disease activity, and also to decrease disease-related complications, including increased bone resorption, fractures, and muscle weakness.
Collapse
Affiliation(s)
- B M VanAmerongen
- Department of Molecular Cell Biology and Immunology, VU Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
44
|
Dai X, Yamasaki K, Yang L, Sayama K, Shirakata Y, Tokumara S, Yahata Y, Tohyama M, Hashimoto K. Keratinocyte G2/M growth arrest by 1,25-dihydroxyvitamin D3 is caused by Cdc2 phosphorylation through Wee1 and Myt1 regulation. J Invest Dermatol 2004; 122:1356-64. [PMID: 15175024 DOI: 10.1111/j.0022-202x.2004.22522.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1,25-dihydroxyvitamin D3 (1,25[OH]2VD3) has an antiproliferative effect on keratinocyte growth, and its derivatives are used for the treatment of psoriasis. It was reported previously that 1,25[OH]2VD3 induced cell cycle arrest not only at the G0/G1 phase but also at the G2/M phase. However, the mechanism of 1,25[OH]2VD3-induced G2/M phase arrest in keratinocytes has not been fully understood. The addition of 10(-8) to 10(-6) M 1,25[OH]2VD3 to cultured normal human keratinocytes enhanced the expression of Myt1 mRNA preceding Wee1 mRNA; 10(-6) M 1,25[OH]2VD3 unregulated Myt1 mRNA from 6 h to 24 h and Wee1 mRNA from 12 to 48 h. Interestingly, the levels of phosphorylated Cdc2 were increased between 6 h and 48 h after 1,25[OH]2VD3 treatment, although the expression levels of Cdc2 mRNA and its protein production were reduced. 1,25[OH]2VD3 also decreased the expression of cyclin B1, which forms a complex with Cdc2. These data indicated that the increase of Myt1 and Wee1 induced the phosphorylation of Cdc2 leading to G2/M arrest. In conclusion, the induction of Cdc2 phosphorylation due to the increase of Wee1 and Myt1 as well as the reduction of Cdc2 and cyclin B1 are involved in 1,25[OH]2VD3-induced G2/M arrest of keratinocytes.
Collapse
Affiliation(s)
- Xiuju Dai
- Department of Dermatology, Ehime University School of Medicine, Ehime, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bikle DD, Chang S, Crumrine D, Elalieh H, Man MQ, Choi EH, Dardenne O, Xie Z, Arnaud RS, Feingold K, Elias PM. 25 Hydroxyvitamin D 1 alpha-hydroxylase is required for optimal epidermal differentiation and permeability barrier homeostasis. J Invest Dermatol 2004; 122:984-92. [PMID: 15102089 DOI: 10.1111/j.0022-202x.2004.22424.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Keratinocytes express high levels of 25OHD 1alpha-hydroxylase (1OHase). The product of this enzyme, 1,25-dihydroxyvitamin D (1,25(OH)(2)D), promotes the differentiation of keratinocytes in vitro suggesting an important role for this enzyme in epidermal differentiation. To test whether 1OHase activity is essential for keratinocyte differentiation in vivo we examined the differentiation process in mice null for the expression of the 1alphaOHase gene (1alphaOHase(-/-)). Heterozygotes for the null allele were bred, and the progeny genotyped by PCR. The epidermis of the 1alphaOHase(-/-) animals and their wild-type littermates (1alphaOHase(+/+)) were examined by histology at the light and electron microscopic level, by immunocytochemistry for markers of differentiation, and by function examining the permeability barrier using transepidermal water loss (TEWL). No gross epidermal phenotype was observed; however, immunocytochemical assessment of the epidermis revealed a reduction in involucrin, filaggrin, and loricrin-markers of differentiation in the keratinocyte and critical for the formation of the cornified envelope. These observations were confirmed at the electron microscopic level, which showed a reduction in the F (containing filaggrin) and L (containing loricrin) granules and a reduced calcium gradient. The functional significance of these observations was tested using TEWL to evaluate the permeability barrier function of the epidermis. Although TEWL was normal in the basal state, following disruption of the barrier using tape stripping, the 1alphaOHase(-/-) animals displayed a markedly delayed recovery of normal barrier function. This delay was associated with a reduction in lamellar body secretion and a failure to reform the epidermal calcium gradient. Thus, the 25OHD 1OHase is essential for normal epidermal differentiation, most likely by producing the vitamin D metabolite, 1,25(OH)(2)D, responsible for inducing the proteins regulating calcium levels in the epidermis that are critical for the generation and maintenance of the barrier.
Collapse
Affiliation(s)
- D D Bikle
- Department of Medicine, Veterans Affairs Medical Center and University of California, San Francisco 94121, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bourguignon LYW, Singleton PA, Diedrich F. Hyaluronan-CD44 interaction with Rac1-dependent protein kinase N-gamma promotes phospholipase Cgamma1 activation, Ca(2+) signaling, and cortactin-cytoskeleton function leading to keratinocyte adhesion and differentiation. J Biol Chem 2004; 279:29654-69. [PMID: 15123640 DOI: 10.1074/jbc.m403608200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In this study we have investigated hyaluronan (HA)-CD44 interaction with protein kinase N-gamma (PKNgamma), a small GTPase (Rac1)-activated serine/threonine kinase in human keratinocytes. By using a variety of biochemical and molecular biological techniques, we have determined that CD44 and PKNgamma kinase (molecular mass approximately 120 kDa) are physically linked in vivo. The binding of HA to keratinocytes promotes PKNgamma kinase recruitment into a complex with CD44 and subsequently stimulates Rac1-mediated PKNgamma kinase activity. The Rac1-activated PKNgamma in turn increases threonine (but not serine) phosphorylation of phospholipase C (PLC) gamma1 and up-regulates PLCgamma1 activity leading to the onset of intracellular Ca(2+) mobilization. HA/CD44-activated Rac1-PKNgamma also phosphorylates the cytoskeletal protein, cortactin, at serine/threonine residues. The phosphorylation of cortactin by Rac1-PKNgamma attenuates its ability to cross-link filamentous actin in vitro. Further analyses indicate that the N-terminal antiparallel coiled-coil (ACC) domains of PKNgamma interact directly with Rac1 in a GTP-dependent manner. The binding of HA to CD44 induces PKNgamma association with endogenous Rac1 and its activity in keratinocytes. Transfection of keratinocytes with PKNgamma-ACCcDNA reduces HA-mediated recruitment of endogenous Rac1 to PKNgamma and blocks PKNgamma activity. These findings suggest that the PKNgamma-ACC fragment acts as a potent competitive inhibitor of endogenous Rac1 binding to PKNgamma in vivo. Most important, the PKNgamma-ACC fragment functions as a strong dominant-negative mutant that effectively inhibits HA/CD44-mediated PKNgamma phosphorylation of PLCgamma1 and cortactin as well as keratinocyte signaling (e.g. Ca(2+) mobilization and cortactin-actin binding) and cellular functioning (e.g. cell-cell adhesion and differentiation). Taken together, these findings strongly suggest that hyaluronan-CD44 interaction with Rac1-PKNgamma plays a pivotal role in PLCgamma1-regulated Ca(2+) signaling and cortactin-cytoskeleton function required for keratinocyte cell-cell adhesion and differentiation.
Collapse
Affiliation(s)
- Lilly Y W Bourguignon
- Department of Medicine, University of California, San Francisco, San Francisco Veterans Affairs Medical Center, San Francisco, California 94121, USA.
| | | | | |
Collapse
|
47
|
Abstract
Both calcium and 1,25(OH)(2)D promote the differentiation of keratinocytes in vitro. The autocrine or paracrine production of 1,25(OH)(2)D by keratinocytes combined with the critical role of the epidermal calcium gradient in regulating keratinocyte differentiation in vivo suggest the physiologic importance of this interaction. The interactions occur at a number of levels. Calcium and 1,25(OH)(2)D synergistically induce involucrin, a protein critical for cornified envelope formation. The involucrin promoter contains an AP-1 site essential for calcium and 1,25(OH)(2)D induction and an adjacent VDRE essential for 1,25(OH)(2)D but not calcium induction. Calcium regulates coactivator complexes that bind to the Vitamin D receptor (VDR). Nuclear extracts from cells grown in low calcium contain an abundance of DRIP(205), whereas calcium induced differentiation leads to reduced DRIP(205) and increased SRC 3 which replaces DRIP in its binding to the VDR. In vivo models support the importance of 1,25(OH)(2)D-calcium interactions in epidermal differentiation. The epidermis of 1alphaOHase null mice fails to form a normal calcium gradient, has reduced expression of proteins critical for barrier function, and shows little recovery of the permeability barrier when disrupted. Thus in vivo and in vitro, calcium and 1,25(OH)(2)D interact at multiple levels to regulate epidermal differentiation.
Collapse
Affiliation(s)
- D D Bikle
- Department of Medicine, Veterans Affairs Medical Center, University of California, San Francisco, CA 94121, USA.
| | | | | |
Collapse
|
48
|
Abstract
The epidermis is the largest organ in the body. It is comprised primarily of keratinocytes which are arranged in layers that recapitulates their programmed life cycle. Proliferating keratinocytes are on the bottom-the stratum basale. As keratinocytes leave the stratum basale they begin to differentiate, culminating in the enucleated stratum corneum which has the major role of permeability barrier. Calcium and the active metabolite of vitamin D, 1,25(OH)(2)D(3), play important roles in this differentiation process. The epidermis has a gradient of calcium with lowest concentrations in the stratum basale, and highest concentrations in the stratum granulosum where proteins critical for barrier function are produced. Vitamin D is made in different layers of the epidermis, but 1,25(OH)(2)D(3) is made primarily in the stratum basale. Together calcium and 1,25(OH)(2)D(3) regulate the ordered differentiation process by the sequential turning on and off the genes producing the elements required for differentiation as well as activating those enzymes involved in differentiation. Animal models in which the sensing mechanism for calcium, the receptor for 1,25(OH)(2)D(3), or the enzyme producing 1,25(OH)(2)D(3) have been rendered inoperative demonstrate the importance of these mechanisms for the differentiation process, although each animal model has its own phenotype. This review will examine the mechanisms by which calcium and 1,25(OH)(2)D(3) interact to control epidermal differentiation.
Collapse
Affiliation(s)
- Daniel D Bikle
- Medicine and Dermatology Endocrine Research Unit, VA Medical Center, University of California, San Francisco, California, USA.
| |
Collapse
|
49
|
Lehmann B, Meurer M. Extrarenal sites of calcitriol synthesis: the particular role of the skin. Recent Results Cancer Res 2003; 164:135-45. [PMID: 12899518 DOI: 10.1007/978-3-642-55580-0_9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calcitriol (1alpha,25(OH)2D3), the hormonally active form of vitamin D3 (D3) is produced by a cascade of reactions, including photochemical D3 synthesis in the skin and subsequent hydroxylation at the C-25 atom in the liver and finally at C-1alpha position in the kidney. However, there is substantial evidence for additional extrarenal sites of calcitriol synthesis. In vitro, many nonrenal cells, including bone, placenta, prostata, keratinocytes, macrophages, T-lymphocytes and several cancer cells (e.g., from lung, prostata and skin) can enzymatically convert calcidiol (25OHD3) to 1alpha,25(OH)2D3. We have demonstrated that keratinocytes of the skin have unique properties in the D3 pathway; they are not only capable of producing D3 from 7-dehydrocholesterol (7-DHC), but also generate 1alpha,25(OH)2D3 from the substrates 25OHD3, lalpha-hydroxyvitamin D3 (1alpha-OHD3) and even D3. It is evident that keratinocytes possess at least 1alpha-OH-, 25OH- and 24OHase activity, which is necessary for enzymatic conversion of D3 to 1alpha,25(OH)2D3, and the 24OHase activity for initiation of catabolism of 1alpha,25(OH)2D3 to more polar metabolites. Thus, the skin is apparently the only extrarenal tissue where the complete UVB-induced pathway from 7-DHC to 1alpha,25(OH)2D3 takes place under physiological circumstances.
Collapse
Affiliation(s)
- Bodo Lehmann
- Department of Dermatology, Carl Gustav Carus Medical School, Dresden University of Technology, Fetscherstr. 74, 01307 Dresden, Germany.
| | | |
Collapse
|
50
|
Bikle DD, Xie Z, Ng D, Tu CL, Oda Y. Squamous cell carcinomas fail to respond to the prodifferentiating actions of 1,25(OH)2D: why? Recent Results Cancer Res 2003; 164:111-22. [PMID: 12899516 DOI: 10.1007/978-3-642-55580-0_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
1,25(OH)2D regulates a number of cellular events which contribute to its ability to stimulate differentiation of the keratinocyte. 1,25(OH)2D raises the intracellular calcium (Cai) level in part by increasing the expression of the calcium receptor (CaR). This sensitizes the cell to extracellular calcium, triggering the signaling pathway coupled to the CaR, which results in a rise in Cai. 1,25(OH)2D induces the family of phospholipases C (PLC). These enzymes mediate the hydrolysis of phosphatidyl inositol bisphosphate (PIP2) to form inositol tris phosphate (IP3) and diacylglycerol (DG), which stimulate calcium release from intracellular stores and activate protein kinases C (PKC), respectively. The CaR and other G protein coupled receptors signal through PLC-beta, whereas tyrosine kinase growth factor receptors such as the EGF receptor signal through PLC-gamma. Calcium and PKC regulate the expression of genes in part by controlling the levels and activity of AP-1 transcription factors. 1,25(OH)2D also directly induces structural genes such as involucrin, a substrate for transglutaminase, which crosslinks it to other substrates to form the cornified envelope. 1,25(OH)2D regulates gene expression by activating the vitamin D receptor (VDR), a transcription factor, which, in combination with the retinoid X receptor (RXR) or retinoid A receptor (RAR), binds to its vitamin D response elements (VDRE) in the promoters of genes whose expression it regulates. The VDR also binds to one of two coactivator complexes, Mediator/DRIP (VDR interacting proteins) or p160/SRC (steroid hormone receptor complex), complexes which link the VDR to the RNA polymerase complex. We have recently discovered that the binding of VDR to these complexes is sequential. Binding to Mediator/DRIP occurs in the undifferentiated keratinocyte, but as the cell differentiates, DRIP(205) (the key protein of the DRIP complex binding to the VDR) levels fall, and p160/SRC binding takes over. We hypothesize that this sequential replacement of Mediator/DRIP by p160/SRC is critical for differentiation. Squamous cell carcinomas (SCC) fail to respond to the prodifferentiating actions of 1,25(OH)2D. These cells have normal levels of VDR and normal binding of VDR to VDREs. However, they fail to down-regulate DRIP(205) such that the p160/SRC complex fails to bind to VDR. This lack of sequential binding of these coactivator complexes to the VDR, we believe, maintains the cell in a state of continued proliferation and blocks the ability of 1,25(OH)2D to induce the expression of genes required for the differentiation process.
Collapse
Affiliation(s)
- Daniel D Bikle
- Veterans Affairs Medical Center (111 N), University of California, 4150 Clement Street, San Francisco, CA 94121, USA.
| | | | | | | | | |
Collapse
|