1
|
Binding pattern of intermediate UDP-4-keto-xylose to human UDP-xylose synthase: Synthesis and STD NMR of model keto-saccharides. Carbohydr Res 2017; 437:50-58. [DOI: 10.1016/j.carres.2016.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 11/30/2022]
|
2
|
Eixelsberger T, Weber H, Nidetzky B. Probing of the reaction pathway of human UDP-xylose synthase with site-directed mutagenesis. Carbohydr Res 2015; 416:1-6. [PMID: 26342152 DOI: 10.1016/j.carres.2015.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/28/2022]
Abstract
Uridine 5'-diphosphate (UDP)-xylose (UDP-Xyl) synthase (UXS) catalyzes the oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcUA) to UDP-Xyl. The closely related UDP-glucuronic acid 4-epimerase (UGAE) interconverts UDP-GlcUA and UDP-galacturonic acid (UDP-GalUA) in a highly similar manner via the intermediate UDP-xylo-hexopyranos-4-uluronic acid (UDP-4-keto-GlcUA). Unlike UXS, however, UGAE prevents the decarboxylation. Human UXS (hUXS) and UGAE from Arabidopsis thaliana exhibit high structural similarity in the active site, but two catalytically important residues in hUXS (Glu(120) and Arg(277)) are replaced by Ser and Thr in the UGAE group. Additionally, Asn(176), which participates in substrate binding, is changed to Thr. We therefore analyzed single, double and triple mutants of hUXS carrying these substitutions to evaluate their significance for product specificity. All mutants showed considerably lower activities than wild-type hUXS (>1000-fold reduction). NMR spectroscopic analysis of the reaction products showed that UDP-β-L-threo-pentopyranos-4-ulose (UDP-4-keto-Xyl), UDP-Xyl or both, but no UDP-GalUA or UDP-4-keto-GlcUA were formed. Correlation of product characteristics, such as deuterium incorporation, with the amino acid replacements gave insights into structure-function relationships in UXS, suggesting that interaction between active site and overall enzyme structure rather than distinct conserved residues are decisive for product formation.
Collapse
Affiliation(s)
- Thomas Eixelsberger
- Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Graz University of Technology, Petersgasse 12/I, A-8010 Graz, Austria
| | - Hansjörg Weber
- Institute of Organic Chemistry, NAWI Graz, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Graz University of Technology, Petersgasse 12/I, A-8010 Graz, Austria; Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria.
| |
Collapse
|
3
|
Puchner C, Eixelsberger T, Nidetzky B, Brecker L. Saturation transfer difference NMR to study substrate and product binding to human UDP-xylose synthase (hUXS1A) during catalytic event. RSC Adv 2015. [DOI: 10.1039/c5ra18284k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The human form of UDP-xylose synthase (hUXS1A) is studied with respect to its substrate and co-enzyme binding in binary and ternary complexes using saturation transfer difference (STD) NMR and in situ NMR.
Collapse
Affiliation(s)
- Claudia Puchner
- University of Vienna
- Institute of Organic Chemistry
- A-1090 Vienna
- Austria
| | - Thomas Eixelsberger
- Graz University of Technology
- Institute of Biotechnology and Biochemical Engineering
- A-8010 Graz
- Austria
| | - Bernd Nidetzky
- Graz University of Technology
- Institute of Biotechnology and Biochemical Engineering
- A-8010 Graz
- Austria
| | - Lothar Brecker
- University of Vienna
- Institute of Organic Chemistry
- A-1090 Vienna
- Austria
| |
Collapse
|
4
|
Eixelsberger T, Sykora S, Egger S, Brunsteiner M, Kavanagh KL, Oppermann U, Brecker L, Nidetzky B. Structure and mechanism of human UDP-xylose synthase: evidence for a promoting role of sugar ring distortion in a three-step catalytic conversion of UDP-glucuronic acid. J Biol Chem 2012; 287:31349-58. [PMID: 22810237 PMCID: PMC3438964 DOI: 10.1074/jbc.m112.386706] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
UDP-xylose synthase (UXS) catalyzes decarboxylation of UDP-d-glucuronic acid to UDP-xylose. In mammals, UDP-xylose serves to initiate glycosaminoglycan synthesis on the protein core of extracellular matrix proteoglycans. Lack of UXS activity leads to a defective extracellular matrix, resulting in strong interference with cell signaling pathways. We present comprehensive structural and mechanistic characterization of the human form of UXS. The 1.26-Å crystal structure of the enzyme bound with NAD+ and UDP reveals a homodimeric short-chain dehydrogenase/reductase (SDR), belonging to the NDP-sugar epimerases/dehydratases subclass. We show that enzymatic reaction proceeds in three chemical steps via UDP-4-keto-d-glucuronic acid and UDP-4-keto-pentose intermediates. Molecular dynamics simulations reveal that the d-glucuronyl ring accommodated by UXS features a marked 4C1chair to BO,3boat distortion that facilitates catalysis in two different ways. It promotes oxidation at C4 (step 1) by aligning the enzymatic base Tyr147 with the reactive substrate hydroxyl and it brings the carboxylate group at C5 into an almost fully axial position, ideal for decarboxylation of UDP-4-keto-d-glucuronic acid in the second chemical step. The protonated side chain of Tyr147 stabilizes the enolate of decarboxylated C4 keto species (2H1half-chair) that is then protonated from the Si face at C5, involving water coordinated by Glu120. Arg277, which is positioned by a salt-link interaction with Glu120, closes up the catalytic site and prevents release of the UDP-4-keto-pentose and NADH intermediates. Hydrogenation of the C4 keto group by NADH, assisted by Tyr147 as catalytic proton donor, yields UDP-xylose adopting the relaxed 4C1chair conformation (step 3).
Collapse
Affiliation(s)
- Thomas Eixelsberger
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, A-8010 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhang Q, Shirley NJ, Burton RA, Lahnstein J, Hrmova M, Fincher GB. The genetics, transcriptional profiles, and catalytic properties of UDP-alpha-D-xylose 4-epimerases from barley. PLANT PHYSIOLOGY 2010; 153:555-68. [PMID: 20435741 PMCID: PMC2879773 DOI: 10.1104/pp.110.157644] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell walls in the grasses contain relatively high levels of heteroxylans and, in particular, arabinoxylans. Enzymes and corresponding genes that are involved in the provision of sugar nucleotide substrates represent potential control points for arabinoxylan biosynthesis. Following expressed sequence tag database analyses, three genes encoding barley (Hordeum vulgare) UDP-d-xylose 4-epimerases (UXE; EC 5.1.3.5), designated HvUXE1, HvUXE2, and HvUXE3, were cloned and their positions on genetic maps defined. To confirm the identity of the genes, a cDNA construct encoding HvUXE1 was expressed in Pichia pastoris. The purified, recombinant HvUXE1 catalyzed the freely reversible interconversion of UDP-alpha-d-xylopyranose and UDP-beta-l-arabinopyranose, with K(m) values of 1.8 and 1.4 mm, respectively. At equilibrium, the ratio of substrate to product was approximately 1:1. Each molecule of heterologously expressed HvUXE1 enzyme contained about one molecule of noncovalently bound NAD(+). Molecular modeling provided a structural rationale for the substrate specificity of the UDP-d-xylose 4-epimerase and, in particular, explained its tight specificity for UDP-xylose compared with other sugar nucleotide epimerases. Quantitative transcript analyses performed for each of the three genes in a range of organs showed, inter alia, that in developing barley endosperm HvUXE1 and HvUXE3 mRNA levels peaked at a time when UDP-alpha-d-xylopyranose synthase (UXS) transcripts also reached a maximum and when arabinoxylan biosynthesis was initiated. Furthermore, the data revealed that the transcription of HvUXE and HvUXS gene family members is coordinated with the incorporation of pentose sugars onto cell walls in barley leaves, roots, and developing endosperm.
Collapse
|
6
|
Thibodeaux C, Melançon C, Liu HW. Biosynthese von Naturstoffzuckern und enzymatische Glycodiversifizierung. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801204] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Thibodeaux CJ, Melançon CE, Liu HW. Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew Chem Int Ed Engl 2008; 47:9814-59. [PMID: 19058170 PMCID: PMC2796923 DOI: 10.1002/anie.200801204] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many biologically active small-molecule natural products produced by microorganisms derive their activities from sugar substituents. Changing the structures of these sugars can have a profound impact on the biological properties of the parent compounds. This realization has inspired attempts to derivatize the sugar moieties of these natural products through exploitation of the sugar biosynthetic machinery. This approach requires an understanding of the biosynthetic pathway of each target sugar and detailed mechanistic knowledge of the key enzymes. Scientists have begun to unravel the biosynthetic logic behind the assembly of many glycosylated natural products and have found that a core set of enzyme activities is mixed and matched to synthesize the diverse sugar structures observed in nature. Remarkably, many of these sugar biosynthetic enzymes and glycosyltransferases also exhibit relaxed substrate specificity. The promiscuity of these enzymes has prompted efforts to modify the sugar structures and alter the glycosylation patterns of natural products through metabolic pathway engineering and enzymatic glycodiversification. In applied biomedical research, these studies will enable the development of new glycosylation tools and generate novel glycoforms of secondary metabolites with useful biological activity.
Collapse
Affiliation(s)
- Christopher J. Thibodeaux
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| | - Charles E. Melançon
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| | - Hung-wen Liu
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| |
Collapse
|
8
|
Schutzbach J, Ankel H, Brockhausen I. Synthesis of cell envelope glycoproteins of Cryptococcus laurentii. Carbohydr Res 2007; 342:881-93. [PMID: 17316583 PMCID: PMC2600673 DOI: 10.1016/j.carres.2007.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 01/04/2007] [Accepted: 01/06/2007] [Indexed: 10/23/2022]
Abstract
Fungi of the genus Cryptococcus are encapsulated basidiomycetes that are ubiquitously found in the environment. These organisms infect both lower and higher animals. Human infections that are common in immune-compromised individuals have proven difficult to cure or even control with currently available antimycotics that are quite often toxic to the host. The virulence of Cryptococcus has been linked primarily to its polysaccharide capsule, but also to cell-bound glycoproteins. In this review, we show that Cryptococcus laurentii is an excellent model for studies of polysaccharide and glycoprotein synthesis in the more pathogenic relative C. neoformans. In particular, we will discuss the structure and biosynthesis of O-linked carbohydrates on cell envelope glycoproteins of C. laurentii. These O-linked structures are synthesized by at least four mannosyltransferases, two galactosyltransferases, and at least one xylosyltransferase that have been characterized. These glycosyltransferases have no known homologues in human tissues. Therefore, enzymes involved in the synthesis of cryptococcal glycoproteins, as well as related enzymes involved in capsule synthesis, are potential targets for the development of specific inhibitors for treatment of cryptococcal disease.
Collapse
Affiliation(s)
- John Schutzbach
- Department of Medicine, Queen's University, Etherington Hall, Kingston, Ontario, Canada K7L 3N6.
| | | | | |
Collapse
|
9
|
Thibodeaux CJ, Melançon CE, Liu HW. Unusual sugar biosynthesis and natural product glycodiversification. Nature 2007; 446:1008-16. [PMID: 17460661 DOI: 10.1038/nature05814] [Citation(s) in RCA: 250] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The enzymes involved in the biosynthesis of carbohydrates and the attachment of sugar units to biological acceptor molecules catalyse an array of chemical transformations and coupling reactions. In prokaryotes, both common sugar precursors and their enzymatically modified derivatives often become substituents of biologically active natural products through the action of glycosyltransferases. Recently, researchers have begun to harness the power of these biological catalysts to alter the sugar structures and glycosylation patterns of natural products both in vivo and in vitro. Biochemical and structural studies of sugar biosynthetic enzymes and glycosyltransferases, coupled with advances in bioengineering methodology, have ushered in a new era of drug development.
Collapse
Affiliation(s)
- Christopher J Thibodeaux
- Institute for Cellular and Molecular Biology, 1 University Station A4810, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
10
|
|
11
|
Hofmann C, Boll R, Heitmann B, Hauser G, Dürr C, Frerich A, Weitnauer G, Glaser SJ, Bechthold A. Genes Encoding Enzymes Responsible for Biosynthesis of L-Lyxose and Attachment of Eurekanate during Avilamycin Biosynthesis. ACTA ACUST UNITED AC 2005; 12:1137-43. [PMID: 16242656 DOI: 10.1016/j.chembiol.2005.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 08/01/2005] [Accepted: 08/08/2005] [Indexed: 10/25/2022]
Abstract
The oligosaccharide antibiotic avilamycin A is composed of a polyketide-derived dichloroisoeverninic acid moiety attached to a heptasaccharide chain consisting of six hexoses and one unusual pentose moiety. We describe the generation of mutant strains of the avilamycin producer defective in different sugar biosynthetic genes. Inactivation of two genes (aviD and aviE2) resulted in the breakdown of the avilamycin biosynthesis. In contrast, avilamycin production was not influenced in an aviP mutant. Inactivation of aviGT4 resulted in a mutant that accumulated a novel avilamycin derivative lacking the terminal eurekanate residue. Finally, AviE2 was expressed in Escherichia coli and the gene product was characterized biochemically. AviE2 was shown to convert UDP-D-glucuronic acid to UDP-D-xylose, indicating that the pentose residue of avilamycin A is derived from D-glucose and not from D-ribose. Here we report a UDP-D-glucuronic acid decarboxylase in actinomycetes.
Collapse
Affiliation(s)
- Carsten Hofmann
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie und Biotechnologie, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang Q, Shirley N, Lahnstein J, Fincher GB. Characterization and expression patterns of UDP-D-glucuronate decarboxylase genes in barley. PLANT PHYSIOLOGY 2005; 138:131-41. [PMID: 15849307 PMCID: PMC1104169 DOI: 10.1104/pp.104.057869] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 01/04/2005] [Accepted: 01/04/2005] [Indexed: 05/17/2023]
Abstract
UDP-D-glucuronate decarboxylase (EC 4.1.1.35) catalyzes the synthesis of UDP-D-xylose from UDP-D-glucuronate in an essentially irreversible reaction that is believed to commit glycosyl residues to heteroxylan and xyloglucan biosynthesis. Four members of the barley (Hordeum vulgare) UDP-D-glucuronate decarboxylase gene family, designated HvUXS1 to HvUXS4, have been cloned and characterized. Barley HvUXS1 appears to be a cytosolic enzyme, while the others are predicted to be membrane-bound proteins with single transmembrane helices. Heterologous expression of a barley HvUXS1 cDNA in Escherichia coli yields a soluble enzyme that converts UDP-d-glucuronate to UDP-D-xylose, is associated with a single molecule of bound NAD+, and is subject to feedback inhibition by UDP-D-xylose. Quantitative PCR shows that the HvUXS1 mRNA is most abundant among the 4 HvUXS genes, accounting for more than 80% of total HvUXS transcripts in most of the tissues examined. The abundance of HvUXS1 mRNA is 10-fold higher in mature roots and stems than in leaves, developing grains, or floral tissues. Transcriptional activities of HvUXS2 and HvUXS4 genes are relatively high in mature roots, coleoptiles, and stems compared with root tips, leaves, and floral tissues, while HvUXS3 mRNA is low in all tissues. In barley leaf sections, levels of the most abundant mRNA, encoding HvUXS1, reflect the amount of soluble enzymic protein and activity. In selected tissues where HvUXS1 transcript levels are high, cell walls have higher arabinoxylan contents.
Collapse
Affiliation(s)
- Qisen Zhang
- Australian Centre for Plant Functional Genomics, School of Agriculture and Wine, University of Adelaide, South Australia 5064, Australia
| | | | | | | |
Collapse
|
13
|
Wheatley ER, Davies DR, Bolwell GP. Characterisation and immunolocation of an 87 kDa polypeptide associated with UDP-glucuronic acid decarboxylase activity from differentiating tobacco cells (Nicotiana tabacum L.). PHYTOCHEMISTRY 2002; 61:771-80. [PMID: 12453569 DOI: 10.1016/s0031-9422(02)00399-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
UDP-glucuronic acid decarboxylase catalyses the reaction responsible for the formation of UDP-xylose and commits assimilate for the biosynthesis of cell wall polysaccharides and glycosylation of proteins. Xylose-rich polymers such as xylans are a feature of dicot secondary walls. Thus a cell culture system of tobacco transformed with the ipt gene from Agrobacterium tumefaciens for cytokinin production and which when manipulated with auxin and sucrose leads to induction of xylogenesis, has been used as a source for purification of the enzyme. UDP-glucuronic acid decarboxylase was purified by ion-exchange, gel filtration and affinity chromatography on Reactive Brown-Agarose. The native enzyme had an apparent M(r) of 220,000 which yielded a single subunit of 87,000 when analysed on SDS-PAGE using silver staining. This appears to be a novel form of the enzyme since a gene family encoding polypeptides around M(r) 40,000 with homology to the fungal enzyme also exists in plants. Using an antibody raised to the native 87 kDa form of the enzyme, this decarboxylase was localised mainly to to cambium and differentiating vascular tissue in tobacco stem, consistent with a role in the provision of UDP-xylose for the synthesis of secondary wall xylan. Further analysis using immunogold electron microscopy localised the 87 kDa UDP-glucuronic acid decarboxylase to the cytosol of developing vascular tissue.
Collapse
Affiliation(s)
- Edward R Wheatley
- School of Biological Sciences, Royal Holloway and Bedford New College, University of London, Surrey, Egham, UK
| | | | | |
Collapse
|
14
|
Kobayashi M, Nakagawa H, Suda I, Miyagawa I, Matoh T. Purification and cDNA cloning of UDP-D-glucuronate carboxy-lyase (UDP-D-xylose synthase) from pea seedlings. PLANT & CELL PHYSIOLOGY 2002; 43:1259-65. [PMID: 12461125 DOI: 10.1093/pcp/pcf157] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Uridine diphospho-D-glucuronate carboxy-lyase (UDP-D-xylose synthase; EC 4.1.1.35), which catalyzes the conversion of UDP-D-glucuronate to UDP-D-xylose, was purified to apparent homogenity from pea (Pisum sativum L.) seedlings. The pH optimum for enzyme activity was around 5-6, and the activity was not affected by exogeneously supplied NAD+ and NADH. The purified enzyme had a molecular weight of 250 kDa and consisted of 42 kDa polypeptides. Based on the amino acid sequence, a probe (400 bp) was prepared with degenerate primers by a reverse transcriptase-PCR. Using this probe, a clone encoding 346 amino acid residues was screened from a pea cDNA library. The recombinant protein expressed in Escherichia coli catalyzed conversion of UDP-D-glucuronate to UDP-D-xylose, confirming that the isolated clone encoded UDP-D-glucuronate carboxy-lyase.
Collapse
Affiliation(s)
- Masaru Kobayashi
- Laboratory of Plant Nutrition, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | | | | | | | | |
Collapse
|
15
|
Breazeale SD, Ribeiro AA, Raetz CRH. Oxidative decarboxylation of UDP-glucuronic acid in extracts of polymyxin-resistant Escherichia coli. Origin of lipid a species modified with 4-amino-4-deoxy-L-arabinose. J Biol Chem 2002; 277:2886-96. [PMID: 11706007 DOI: 10.1074/jbc.m109377200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Addition of the 4-amino-4-deoxy-l-arabinose (l-Ara4N) moiety to the phosphate groups of lipid A is implicated in bacterial resistance to polymyxin and cationic antimicrobial peptides of the innate immune system. The sequences of the products of the Salmonella typhimurium pmrE and pmrF loci, both of which are required for polymyxin resistance, recently led us to propose a pathway for l-Ara4N biosynthesis from UDP-glucuronic acid (Zhou, Z., Lin, S., Cotter, R. J., and Raetz, C. R. H. (1999) J. Biol. Chem. 274, 18503-18514). We now report that extracts of a polymyxin-resistant mutant of Escherichia coli catalyze the C-4" oxidation and C-6" decarboxylation of [alpha-(32)P]UDP-glucuronic acid, followed by transamination to generate [alpha-(32)P]UDP-l-Ara4N, when NAD and glutamate are added as co-substrates. In addition, the [alpha-(32)P]UDP-l-Ara4N is formylated when N-10-formyltetrahydrofolate is included. These activities are consistent with the proposed functions of two of the gene products (PmrI and PmrH) of the pmrF operon. PmrI (renamed ArnA) was overexpressed using a T7 construct, and shown by itself to catalyze the unprecedented oxidative decarboxylation of UDP-glucuronic acid to form uridine 5'-(beta-l-threo-pentapyranosyl-4"-ulose diphosphate). A 6-mg sample of the latter was purified, and its structure was validated by NMR studies as the hydrate of the 4" ketone. ArnA resembles UDP-galactose epimerase, dTDP-glucose-4,6-dehydratase, and UDP-xylose synthase in oxidizing the C-4" position of its substrate, but differs in that it releases the NADH product.
Collapse
Affiliation(s)
- Steven D Breazeale
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
16
|
|
17
|
Snetkova EV, Akulov GP, Gordeeva LS, Kaminskii YL. Synthesis of uridine diphosphate [1-3H]glucose and uridine diphosphate [6-3H]glucose. Chem Nat Compd 1987. [DOI: 10.1007/bf00602470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
|
19
|
|
20
|
John K, Schutzbach J, Ankel H. Separation and allosteric properties of two forms of UDP-glucuronate carboxy-lyase. J Biol Chem 1977. [DOI: 10.1016/s0021-9258(17)40927-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
|
22
|
Grazi E, Balboni G, Brand K, Tsolas O. Half-of-the-sites reactivity and all-of-the-sites substrate binding in transaldolase. Arch Biochem Biophys 1977; 179:131-5. [PMID: 557311 DOI: 10.1016/0003-9861(77)90095-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Mechanism for enzymatic thioether formation. Mechanism of action of S-adenosylhomocysteinase. J Biol Chem 1976. [DOI: 10.1016/s0021-9258(17)33129-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Mendicino J, Abou-Issa H. Conversion of UDP-D-glucuronic acid to UDP-D-apiose and UDP-D-xylose by an enzyme isolated from Lemna minor. BIOCHIMICA ET BIOPHYSICA ACTA 1974; 364:159-72. [PMID: 4373069 DOI: 10.1016/0005-2744(74)90143-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Baron D, Grisebach H. Further Studies on the Mechanism of Action of UDP-Apiose/UDP-Xylose Synthase from Cell Cultures of Parsley. ACTA ACUST UNITED AC 1973. [DOI: 10.1111/j.1432-1033.1973.tb03045.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
|
27
|
Rose IA. Enzyme reaction stereospecificity: a critical review. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1972; 1:33-57. [PMID: 4570577 DOI: 10.3109/10409237209102543] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
|
29
|
Kelleher WJ, Grisebach H. Hydride transfer in the biosynthesis of uridine diphospho-apiose from uridine diphospho-D-glucuronic acid with an enzyme preparation of Lemna minor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1971; 23:136-42. [PMID: 5127378 DOI: 10.1111/j.1432-1033.1971.tb01600.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Rose IA. Stereochemistry of Pyruvate Kinase, Pyruvate Carboxylase, and Malate Enzyme Reactions. J Biol Chem 1970. [DOI: 10.1016/s0021-9258(18)62662-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|