1
|
Tiwari V, Shukla S. Lipidomics and proteomics: An integrative approach for early diagnosis of dementia and Alzheimer's disease. Front Genet 2023; 14:1057068. [PMID: 36845373 PMCID: PMC9946989 DOI: 10.3389/fgene.2023.1057068] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and considered to be responsible for majority of worldwide prevalent dementia cases. The number of patients suffering from dementia are estimated to increase up to 115.4 million cases worldwide in 2050. Hence, AD is contemplated to be one of the major healthcare challenge in current era. This disorder is characterized by impairment in various signaling molecules at cellular and nuclear level including aggregation of Aβ protein, tau hyper phosphorylation altered lipid metabolism, metabolites dysregulation, protein intensity alteration etc. Being heterogeneous and multifactorial in nature, the disease do not has any cure or any confirmed diagnosis before the onset of clinical manifestations. Hence, there is a requisite for early diagnosis of AD in order to downturn the progression/risk of the disorder and utilization of newer technologies developed in this field are aimed to provide an extraordinary assistance towards the same. The lipidomics and proteomics constitute large scale study of cellular lipids and proteomes in biological matrices at normal stage or any stage of a disease. The study involves high throughput quantification and detection techniques such as mass spectrometry, liquid chromatography, nuclear mass resonance spectroscopy, fluorescence spectroscopy etc. The early detection of altered levels of lipids and proteins in blood or any other biological matrices could aid in preventing the progression of AD and dementia. Therefore, the present review is designed to focus on the recent techniques and early diagnostic criteria for AD, revealing the role of lipids and proteins in this disease and their assessment through different techniques.
Collapse
Affiliation(s)
- Virendra Tiwari
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shubha Shukla
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,*Correspondence: Shubha Shukla,
| |
Collapse
|
2
|
The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol 2020; 21:307-326. [PMID: 32107477 DOI: 10.1038/s41580-020-0214-3] [Citation(s) in RCA: 421] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Microtubules are core components of the eukaryotic cytoskeleton with essential roles in cell division, shaping, motility and intracellular transport. Despite their functional heterogeneity, microtubules have a highly conserved structure made from almost identical molecular building blocks: the tubulin proteins. Alternative tubulin isotypes and a variety of post-translational modifications control the properties and functions of the microtubule cytoskeleton, a concept known as the 'tubulin code'. Here we review the current understanding of the molecular components of the tubulin code and how they impact microtubule properties and functions. We discuss how tubulin isotypes and post-translational modifications control microtubule behaviour at the molecular level and how this translates into physiological functions at the cellular and organism levels. We then go on to show how fine-tuning of microtubule function by some tubulin modifications can affect homeostasis and how perturbation of this fine-tuning can lead to a range of dysfunctions, many of which are linked to human disease.
Collapse
|
3
|
Tuszynski JA, Friesen D, Freedman H, Sbitnev VI, Kim H, Santelices I, Kalra AP, Patel SD, Shankar K, Chua LO. Microtubules as Sub-Cellular Memristors. Sci Rep 2020; 10:2108. [PMID: 32034179 PMCID: PMC7005844 DOI: 10.1038/s41598-020-58820-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 01/13/2020] [Indexed: 12/26/2022] Open
Abstract
Memristors represent the fourth electrical circuit element complementing resistors, capacitors and inductors. Hallmarks of memristive behavior include pinched and frequency-dependent I–V hysteresis loops and most importantly a functional dependence of the magnetic flux passing through an ideal memristor on its electrical charge. Microtubules (MTs), cylindrical protein polymers composed of tubulin dimers are key components of the cytoskeleton. They have been shown to increase solution’s ionic conductance and re-orient in the presence of electric fields. It has been hypothesized that MTs also possess intrinsic capacitive and inductive properties, leading to transistor-like behavior. Here, we show a theoretical basis and experimental support for the assertion that MTs under specific circumstances behave consistently with the definition of a memristor. Their biophysical properties lead to pinched hysteretic current–voltage dependence as well a classic dependence of magnetic flux on electric charge. Based on the information about the structure of MTs we provide an estimate of their memristance. We discuss its significance for biology, especially neuroscience, and potential for nanotechnology applications.
Collapse
Affiliation(s)
- Jack A Tuszynski
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada, T6G 1Z2. .,Department of Physics, University of Alberta, Edmonton, AB, Canada, T6G 2E1. .,DIMEAS, Politecnico di Torino, 10129, Turin, Italy.
| | - Douglas Friesen
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB, Canada, T6G 1Z2
| | - Holly Freedman
- Li Ka Shing Institute of Applied Virology, University of Alberta, Edmonton, AB, Canada, T6G 2E1
| | - Valery I Sbitnev
- St. Petersburg B. P. Konstantinov Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Leningrad district, 188350, Russian Federation.,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
| | - Hyongsuk Kim
- Division of Electronics Engineering, Chonbuk National University, Jeonju, Jeonbuk, 561-756, South Korea
| | - Iara Santelices
- Department of Electrical & Computer Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9
| | - Aarat P Kalra
- Department of Physics, University of Alberta, Edmonton, AB, Canada, T6G 2E1
| | - Sahil D Patel
- Department of Electrical & Computer Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9
| | - Karthik Shankar
- Department of Electrical & Computer Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9
| | - Leon O Chua
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
4
|
Liu CH, Chang HM, Yang YS, Lin YT, Ho YJ, Tseng TJ, Lan CT, Li ST, Liao WC. Melatonin Promotes Nerve Regeneration Following End-to-Side Neurorrhaphy by Accelerating Cytoskeletal Remodeling via the Melatonin Receptor-dependent Pathway. Neuroscience 2019; 429:282-292. [PMID: 31689489 DOI: 10.1016/j.neuroscience.2019.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/20/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022]
Abstract
Acceleration of cytoskeletal remodeling in regenerated axons is crucial for a fully functional recovery following peripheral nerve injury (PNI). Melatonin plays important roles in cell differentiation and protection of cytoskeleton stability, thus, the present study aimed to investigate whether melatonin can enhance neurite outgrowth and promote cytoskeletal remodeling in a PNI animal model and in differentiated neurons. End-to-side neurorrhaphy (ESN) rat model was used for assessing cytoskeletal rearrangement in regenerated axon. Subject rats received 1 mg/kg/day melatonin injection for one month. The amplitude of compound muscle action potentials and the number of re-innervated motor end plates on target muscles were assessed to represent the functional recovery after ESN. Melatonin treatment enhanced functional recovery after ESN, compared to the saline treated group. Additionally, in spinal cord and peripheral nerve tissue, animals receiving melatonin displayed enhanced expression of GAP43 and β3-tubulin one month after ESN, and an increased number of re-innervated motor end plates on their target muscle. In vitro analysis revealed that melatonin treatment significantly promoted neurite outgrowth, and increased expression of melatonin receptors as well as β3-tubulin in mouse neuroblastoma Neuro-2a (N2a) cells. Treatment with a melatonin receptor antagonist, luzindole, significantly suppressed melatonin receptors and β3-tubulin expression. Importantly, we found that melatonin treatment suppressed activation of calmodulin-dependent protein kinase II (CaMKII) in vitro and in vivo, suggesting that the β3-tubulin remodeling may occur via CaMKII-mediated Ca2+ signaling. These results suggested that melatonin may promote functional recovery after PNI by accelerating cytoskeletal remodeling through the melatonin receptor-dependent pathway.
Collapse
Affiliation(s)
- Chiung-Hui Liu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yin-Shuo Yang
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ta Lin
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University, Taichung, Taiwan
| | - To-Jung Tseng
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chyn-Tair Lan
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shao-Ti Li
- Division of Radiation Oncology, Chung Shan University Hospital, Taichung, Taiwan
| | - Wen-Chieh Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
5
|
Karpov PA, Novozhylov DO, Isayenkov SV, Blume YB. Motif-Based Prediction of Plant Tubulin Phosphorylation Sites Associated with Calcium-Dependent Protein Kinases in Arabidopsis thaliana. CYTOL GENET+ 2018. [DOI: 10.3103/s0095452718060038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Amyloid-β with isomerized Asp7 cytotoxicity is coupled to protein phosphorylation. Sci Rep 2018; 8:3518. [PMID: 29476081 PMCID: PMC5824883 DOI: 10.1038/s41598-018-21815-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023] Open
Abstract
Neuronal dysfunction and loss associated with the accumulation of amyloid-β (Aβ) in the form of extracellular amyloid plaques and hyperphosphorylated tau in the form of intraneuronal neurofibrillary tangles represent key features of Alzheimer's disease (AD). Amyloid plaques found in the brains of AD patients are predominantly composed of Aβ42 and its multiple chemically or structurally modified isoforms. Recently, we demonstrated that Aβ42 with isomerised Asp7 (isoAβ42) which is one of the most abundant Aβ isoform in plaques, exhibited high neurotoxicity in human neuronal cells. Here, we show that, in SH-SY5Y neuroblastoma cells, the administration of synthetic isoAβ42 rather than intact Aβ42 resulted in a significantly higher level of protein phosphorylation, especially the phosphorylation of tau, tubulins, and matrin 3. IsoAβ42 induced a drastic reduction of tau protein levels. Our data demonstrate, for the first time, that isoAβ42, being to date the only known synthetic Aβ species to cause AD-like amyloidogenesis in an animal AD model, induced cell death by disabling structural proteins in a manner characteristic of that observed in the neurons of AD patients. The data emphasize an important role of isoAβ42 in AD progression and provide possible neurotoxicity paths for this particular isoform.
Collapse
|
7
|
Screening for novel central nervous system biomarkers in veterans with Gulf War Illness. Neurotoxicol Teratol 2017; 61:36-46. [DOI: 10.1016/j.ntt.2017.03.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/19/2022]
|
8
|
Abou-Donia MB, Siracuse B, Gupta N, Sobel Sokol A. Sarin (GB, O-isopropyl methylphosphonofluoridate) neurotoxicity: critical review. Crit Rev Toxicol 2016; 46:845-875. [PMID: 27705071 PMCID: PMC5764759 DOI: 10.1080/10408444.2016.1220916] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sarin (GB, O-isopropyl methylphosphonofluoridate) is a potent organophosphorus (OP) nerve agent that inhibits acetylcholinesterase (AChE) irreversibly. The subsequent build-up of acetylcholine (ACh) in the central nervous system (CNS) provokes seizures and, at sufficient doses, centrally-mediated respiratory arrest. Accumulation of ACh at peripheral autonomic synapses leads to peripheral signs of intoxication and overstimulation of the muscarinic and nicotinic receptors, which is described as "cholinergic crisis" (i.e. diarrhea, sweating, salivation, miosis, bronchoconstriction). Exposure to high doses of sarin can result in tremors, seizures, and hypothermia. More seriously, build-up of ACh at neuromuscular junctions also can cause paralysis and ultimately peripherally-mediated respiratory arrest which can lead to death via respiratory failure. In addition to its primary action on the cholinergic system, sarin possesses other indirect effects. These involve the activation of several neurotransmitters including gamma-amino-butyric acid (GABA) and the alteration of other signaling systems such as ion channels, cell adhesion molecules, and inflammatory regulators. Sarin exposure is associated with symptoms of organophosphate-induced delayed neurotoxicity (OPIDN) and organophosphate-induced chronic neurotoxicity (OPICN). Moreover, sarin has been involved in toxic and immunotoxic effects as well as organophosphate-induced endocrine disruption (OPIED). The standard treatment for sarin-like nerve agent exposure is post-exposure injection of atropine, a muscarinic receptor antagonist, accompanied by an oxime, an AChE reactivator, and diazepam.
Collapse
Affiliation(s)
- Mohamed B Abou-Donia
- a Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA
| | - Briana Siracuse
- a Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA
| | - Natasha Gupta
- a Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA
| | - Ashly Sobel Sokol
- a Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA
| |
Collapse
|
9
|
McVicker DP, Millette MM, Dent EW. Signaling to the microtubule cytoskeleton: an unconventional role for CaMKII. Dev Neurobiol 2014; 75:423-34. [PMID: 25156276 DOI: 10.1002/dneu.22227] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/20/2014] [Indexed: 12/29/2022]
Abstract
Synaptic plasticity is a hallmark of the nervous system and is thought to be integral to higher brain functions such as learning and memory. Calcium, acting as a second messenger, and the calcium/calmodulin dependent kinase CaMKII are key regulators of neuronal plasticity. Given the importance of the actin and microtubule (MT) cytoskeleton in dendritic spine morphology, composition and plasticity, it is not surprising that many regulators of these cytoskeletal elements are downstream of the CaMKII pathway. In this review, we discuss the emerging role of calcium and CaMKII in the regulation of MTs and cargo unloading during synaptic plasticity.
Collapse
Affiliation(s)
- Derrick P McVicker
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, 53705
| | | | | |
Collapse
|
10
|
Ito JI, Lu R, Nagayasu Y, Yokoyama S. Apolipoprotein A-I induces tubulin phosphorylation in association with cholesterol release in fetal rat astrocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1234-40. [DOI: 10.1016/j.bbalip.2014.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/20/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
|
11
|
Abou-Donia MB, Abou-Donia MM, ElMasry EM, Monro JA, Mulder MFA. Autoantibodies to nervous system-specific proteins are elevated in sera of flight crew members: biomarkers for nervous system injury. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:363-380. [PMID: 23557235 DOI: 10.1080/15287394.2013.765369] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This descriptive study reports the results of assays performed to detect circulating autoantibodies in a panel of 7 proteins associated with the nervous system (NS) in sera of 12 healthy controls and a group of 34 flight crew members including both pilots and attendants who experienced adverse effects after exposure to air emissions sourced to the ventilation system in their aircrafts and subsequently sought medical attention. The proteins selected represent various types of proteins present in nerve cells that are affected by neuronal degeneration. In the sera samples from flight crew members and healthy controls, immunoglobin (IgG) was measured using Western blotting against neurofilament triplet proteins (NFP), tubulin, microtubule-associated tau proteins (tau), microtubule-associated protein-2 (MAP-2), myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and glial S100B protein. Significant elevation in levels of circulating IgG-class autoantibodies in flight crew members was found. A symptom-free pilot was sampled before symptoms and then again afterward. This pilot developed clinical problems after flying for 45 h in 10 d. Significant increases in autoantibodies were noted to most of the tested proteins in the serum of this pilot after exposure to air emissions. The levels of autoantibodies rose with worsening of his condition compared to the serum sample collected prior to exposure. After cessation of flying for a year, this pilot's clinical condition improved, and eventually he recovered and his serum autoantibodies against nervous system proteins decreased. The case study with this pilot demonstrates a temporal relationship between exposure to air emissions, clinical condition, and level of serum autoantibodies to nervous system-specific proteins. Overall, these results suggest the possible development of neuronal injury and gliosis in flight crew members anecdotally exposed to cabin air emissions containing organophosphates. Thus, increased circulating serum autoantibodies resulting from neuronal damage may be used as biomarkers for chemical-induced CNS injury.
Collapse
Affiliation(s)
- Mohamed B Abou-Donia
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
12
|
Cederquist GY, Luchniak A, Tischfield MA, Peeva M, Song Y, Menezes MP, Chan WM, Andrews C, Chew S, Jamieson RV, Gomes L, Flaherty M, Grant PE, Gupta ML, Engle EC. An inherited TUBB2B mutation alters a kinesin-binding site and causes polymicrogyria, CFEOM and axon dysinnervation. Hum Mol Genet 2012; 21:5484-99. [PMID: 23001566 DOI: 10.1093/hmg/dds393] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microtubules are essential components of axon guidance machinery. Among β-tubulin mutations, only those in TUBB3 have been shown to cause primary errors in axon guidance. All identified mutations in TUBB2B result in polymicrogyria, but it remains unclear whether TUBB2B mutations can cause axon dysinnervation as a primary phenotype. We have identified a novel inherited heterozygous missense mutation in TUBB2B that results in an E421K amino acid substitution in a family who segregates congenital fibrosis of the extraocular muscles (CFEOM) with polymicrogyria. Diffusion tensor imaging of brains of affected family members reveals aberrations in the trajectories of commissural projection neurons, implying a paucity of homotopic connections. These observations led us to ask whether axon dysinnervation is a primary phenotype, and why the E421K, but not other, TUBB2B substitutions cause CFEOM. Expression of exogenous Tubb2b-E421K in developing callosal projection neurons is sufficient to perturb homotopic connectivity, without affecting neuronal production or migration. Using in vitro biochemical assays and yeast genetics, we find that TUBB2B-E421K αβ-heterodimers are incorporated into the microtubule network where they alter microtubule dynamics and can reduce kinesin localization. These data provide evidence that TUBB2B mutations can cause primary axon dysinnervation. Interestingly, by incorporating into microtubules and altering their dynamic properties, the E421K substitution behaves differently than previously identified TUBB2B substitutions, providing mechanistic insight into the divergence between resulting phenotypes. Together with previous studies, these findings highlight that β-tubulin isotypes function in both conserved and divergent ways to support proper human nervous system development.
Collapse
|
13
|
Craddock TJA, St. George M, Freedman H, Barakat KH, Damaraju S, Hameroff S, Tuszynski JA. Computational predictions of volatile anesthetic interactions with the microtubule cytoskeleton: implications for side effects of general anesthesia. PLoS One 2012; 7:e37251. [PMID: 22761654 PMCID: PMC3382613 DOI: 10.1371/journal.pone.0037251] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 04/19/2012] [Indexed: 11/19/2022] Open
Abstract
The cytoskeleton is essential to cell morphology, cargo trafficking, and cell division. As the neuronal cytoskeleton is extremely complex, it is no wonder that a startling number of neurodegenerative disorders (including but not limited to Alzheimer's disease, Parkinson's disease and Huntington's disease) share the common feature of a dysfunctional neuronal cytoskeleton. Recently, concern has been raised about a possible link between anesthesia, post-operative cognitive dysfunction, and the exacerbation of neurodegenerative disorders. Experimental investigations suggest that anesthetics bind to and affect cytoskeletal microtubules, and that anesthesia-related cognitive dysfunction involves microtubule instability, hyper-phosphorylation of the microtubule-associated protein tau, and tau separation from microtubules. However, exact mechanisms are yet to be identified. In this paper the interaction of anesthetics with the microtubule subunit protein tubulin is investigated using computer-modeling methods. Homology modeling, molecular dynamics simulations and surface geometry techniques were used to determine putative binding sites for volatile anesthetics on tubulin. This was followed by free energy based docking calculations for halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on the tubulin body, and C-terminal regions for specific tubulin isotypes. Locations of the putative binding sites, halothane binding energies and the relation to cytoskeleton function are reported in this paper.
Collapse
Affiliation(s)
| | - Marc St. George
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Holly Freedman
- Center of Marine Sciences, Foundation for Science and Technology, University of Algarve, Campus Gambelas, Faro, Portugal
| | - Khaled H. Barakat
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Sambasivarao Damaraju
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Stuart Hameroff
- Departments of Anesthesiology and Psychology, Center for Consciousness Studies, The University of Arizona Health Sciences Center, Tucson, Arizona, United States of America
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Craddock TJA, Tuszynski JA, Chopra D, Casey N, Goldstein LE, Hameroff SR, Tanzi RE. The zinc dyshomeostasis hypothesis of Alzheimer's disease. PLoS One 2012; 7:e33552. [PMID: 22457776 PMCID: PMC3311647 DOI: 10.1371/journal.pone.0033552] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/13/2012] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ), intracellular neurofibrillary tangles (NFTs) composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau), and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques) not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1) used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2) performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3) used metallomic imaging mass spectrometry (MIMS) to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of polymerized microtubules, their binding to MAP-tau, and molecular dynamics involved in cognition. Further, our theory supports novel AD therapeutic strategies targeting intra-neuronal zinc homeostasis and microtubule dynamics to prevent neurodegeneration and cognitive decline.
Collapse
|
15
|
Craddock TJA, Tuszynski JA, Hameroff S. Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation? PLoS Comput Biol 2012; 8:e1002421. [PMID: 22412364 PMCID: PMC3297561 DOI: 10.1371/journal.pcbi.1002421] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 01/24/2012] [Indexed: 11/18/2022] Open
Abstract
Memory is attributed to strengthened synaptic connections among particular brain neurons, yet synaptic membrane components are transient, whereas memories can endure. This suggests synaptic information is encoded and 'hard-wired' elsewhere, e.g. at molecular levels within the post-synaptic neuron. In long-term potentiation (LTP), a cellular and molecular model for memory, post-synaptic calcium ion (Ca²⁺) flux activates the hexagonal Ca²⁺-calmodulin dependent kinase II (CaMKII), a dodacameric holoenzyme containing 2 hexagonal sets of 6 kinase domains. Each kinase domain can either phosphorylate substrate proteins, or not (i.e. encoding one bit). Thus each set of extended CaMKII kinases can potentially encode synaptic Ca²⁺ information via phosphorylation as ordered arrays of binary 'bits'. Candidate sites for CaMKII phosphorylation-encoded molecular memory include microtubules (MTs), cylindrical organelles whose surfaces represent a regular lattice with a pattern of hexagonal polymers of the protein tubulin. Using molecular mechanics modeling and electrostatic profiling, we find that spatial dimensions and geometry of the extended CaMKII kinase domains precisely match those of MT hexagonal lattices. This suggests sets of six CaMKII kinase domains phosphorylate hexagonal MT lattice neighborhoods collectively, e.g. conveying synaptic information as ordered arrays of six "bits", and thus "bytes", with 64 to 5,281 possible bit states per CaMKII-MT byte. Signaling and encoding in MTs and other cytoskeletal structures offer rapid, robust solid-state information processing which may reflect a general code for MT-based memory and information processing within neurons and other eukaryotic cells.
Collapse
|
16
|
Alvarez-Castelao B, Castaño JG. Synphilin-1 inhibits alpha-synuclein degradation by the proteasome. Cell Mol Life Sci 2011; 68:2643-54. [PMID: 21103907 PMCID: PMC11114841 DOI: 10.1007/s00018-010-0592-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/13/2010] [Accepted: 11/04/2010] [Indexed: 01/01/2023]
Abstract
Intracellular deposits of aggregated alpha-synuclein are a hallmark of Parkinson's disease. Protein-protein interactions are critical in the regulation of cell proteostasis. Synphilin-1 interacts both in vitro and in vivo with alpha-synuclein promoting its aggregation. We report here that synphilin-1 specifically inhibits the degradation of alpha-synuclein wild-type and its missense mutants by the 20S proteasome due at least in part by the interaction of the ankyrin and coiled-coil domains of synphilin-1 (amino acids 331-555) with the N-terminal region (amino acids 1-60) of alpha-synuclein. Co-expression of synphilin-1 and alpha-synuclein wild-type in HeLa and N2A cells produces a specific increase in the half-life of alpha-synuclein, as degradation of unstable fluorescent reporters is not affected. Synphilin-1 inhibition can be relieved by co-expression of Siah-1 that targets synphilin-1 to degradation. Synphilin-1 inhibition of the proteasomal pathway of degradation of alpha-synuclein may help to understand the pathophysiological changes occurring in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Beatriz Alvarez-Castelao
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols”, Universidad Autónoma de Madrid y Consejo Superior de Investigaciones Científicas (UAM-CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Idipaz, Facultad de Medicina UAM, 28029 Madrid, Spain
| | - José G. Castaño
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols”, Universidad Autónoma de Madrid y Consejo Superior de Investigaciones Científicas (UAM-CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Idipaz, Facultad de Medicina UAM, 28029 Madrid, Spain
| |
Collapse
|
17
|
Hameroff SR, Craddock TJA, Tuszynski JA. "Memory bytes" - molecular match for CaMKII phosphorylation encoding of microtubule lattices. J Integr Neurosci 2011; 9:253-67. [PMID: 21064217 DOI: 10.1142/s0219635210002482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 09/02/2010] [Indexed: 11/18/2022] Open
Abstract
Learning, memory and long-term potentiation (LTP) are supported by factors including post-synaptic calcium ion flux activating and transforming the hexagonal calcium-calmodulin kinase II (CaMKII) holoenzyme. Upon calcium-induced activation, up to six kinase domains extend upward, and up to six kinase domains extend downward from the CaMKII association domain, the fully activated holoenzyme resembling a robotic insect 20 nanometers in length. Each extended kinase domain can be phosphorylated, and able to phosphorylate other proteins, thus potentially further encoding synaptic information at intraneuronal molecular sites for memory storage, processing and distribution. Candidate sites for phosphorylation-encoded molecular memory include microtubules, cylindrical lattice polymers of the protein tubulin. Using molecular modeling, we find spatial dimensions and geometry of the six extended CaMKII kinase domains can precisely match those of microtubule hexagonal lattice neighborhoods (both A- and B-lattices), and show two feasible phosphorylation mechanisms. In one, phosphorylation sites (e.g., valine 208) on a CaMKII extended kinase domain interact with serine 444 on a C-terminal "tail" of tubulin. In the second, the CaMKII kinase domain unfurls, enabling phosphorylation sites to contact threonine and serine sites on the tubulin surface. We suggest sets of six CaMKII kinase domains phosphorylate hexagonal microtubule lattice neighborhoods collectively, e.g., conveying synaptic information as ordered arrays of six "bits", and thus a "byte", with (minimally) 2⁶ (64) possible bit states per CaMKII-microtubule interaction. We model two levels of interaction between CaMKII and microtubules, suggesting a testable framework for molecular memory encoding.
Collapse
Affiliation(s)
- Stuart R Hameroff
- Department of Anesthesiology, Center for Consciousness Studies, The University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | | | |
Collapse
|
18
|
Craddock TJA, Tuszynski JA, Priel A, Freedman H. Microtubule ionic conduction and its implications for higher cognitive functions. J Integr Neurosci 2011; 9:103-22. [PMID: 20589950 DOI: 10.1142/s0219635210002421] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 05/21/2010] [Indexed: 11/18/2022] Open
Abstract
The neuronal cytoskeleton has been hypothesized to play a role in higher cognitive functions including learning, memory and consciousness. Experimental evidence suggests that both microtubules and actin filaments act as biological electrical wires that can transmit and amplify electric signals via the flow of condensed ion clouds. The potential transmission of electrical signals via the cytoskeleton is of extreme importance to the electrical activity of neurons in general. In this regard, the unique structure, geometry and electrostatics of microtubules are discussed with the expected impact on their specific functions within the neuron. Electric circuit models of ionic flow along microtubules are discussed in the context of experimental data, and the specific importance of both the tubulin C-terminal tail regions, and the nano-pore openings lining the microtubule wall is elucidated. Overall, these recent results suggest that ions, condensed around the surface of the major filaments of the cytoskeleton, flow along and through microtubules in the presence of potential differences, thus acting as transmission lines propagating intracellular signals in a given cell. The significance of this conductance to the functioning of the electrically active neuron, and to higher cognitive function is also discussed.
Collapse
|
19
|
Nakagawa H, Miyazaki S, Abe T, Umadome H, Tanaka K, Nishimura K, Komori M, Matsuo S. H89 sensitive kinase regulates the translocation of Sar1 onto the ER membrane through phosphorylation of ER-coupled β-tubulin. Int J Biochem Cell Biol 2010; 43:423-30. [PMID: 21111843 DOI: 10.1016/j.biocel.2010.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 11/15/2010] [Accepted: 11/18/2010] [Indexed: 11/16/2022]
Abstract
ER-to-Golgi protein transport is carried out by transport vesicles which are formed at the ER-exit sites with recruitment of cytoplasmic coat proteins. Vesicle formation is initiated by assembly of the small G protein (Sar1) onto the ER membrane. Sar1 assembly onto the ER membrane is suppressed by protein kinase inhibitor H89, suggesting participation of H89-sensitive kinase in this process. The present study identified an effector of H89-sensitive kinase by LC-MS PMF analysis combined with 1D- and 2D-PAGE autoradiography, and examined the changes on the effector and Sar1 translocation induced by H89. H89 significantly suppressed the phosphorylation of 55 kDa protein with dosage dependency, and phosphorylation of 55 kDa, pI 5.5 protein spot in 2-D-autoradiography was drastically diminished by H89. LC-MS PMF analysis showed that the protein spot was β-tubulin. H89 significantly suppressed Sar1 translocation onto the ER. These findings indicate that β-tubulin is one of downstream effectors of H89-sensitive kinase, and that suppression of ER-coupled β-tubulin phosphorylation decreases Sar1 translocation onto the ER, suggesting that phosphorylation of β-tubulin regulates Sar1 translocation.
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Laboratory of Toxicology, Course of Veterinary Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumisano, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Huynh QK, Pagratis N. Kinetic mechanisms of Ca++/calmodulin dependent protein kinases. Arch Biochem Biophys 2010; 506:130-6. [PMID: 21081101 DOI: 10.1016/j.abb.2010.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 11/30/2022]
Abstract
Many of the cellular responses to Ca++ signaling are modulated by a family of multifunctional Ca++/calmodulin dependent protein kinases (CaMKs): CaMK I, CaMK II and CaMK IV. In order to further understand the role of CaMKs, we investigated the kinetic mechanism of CaMK II isozymes in comparison with those of CaMK I and CaMK IV by analyzing their steady state kinetics using phospholamban as a phosphoacceptor. The results indicated that (a) the CaMK family's reaction mechanisms were of the sequential type in which all substrates must bind to enzyme before any product is released; (b) CaMK I and CaMK IV exhibited random sequential mechanism where either phospholamban or ATP can bind to the free enzyme; (c) the data of product inhibition for CaMK IIs best fit with an Ordered Bi Bi mechanism in which phospholamban is the first substrate to bind and ADP is the last product to be released; and (d) the constant α (ratio of apparent dissociation constants for binding peptide in the presence and absence of the second ligand) of all isozymes for ATP and peptide was higher than 1 indicating that the binding of phospholamban to CaMK decreased the enzyme's affinity toward ATP.
Collapse
Affiliation(s)
- Q Khai Huynh
- Research and Development, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA.
| | | |
Collapse
|
21
|
Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells. Exp Cell Res 2010; 316:2969-81. [DOI: 10.1016/j.yexcr.2010.07.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/22/2010] [Accepted: 07/29/2010] [Indexed: 11/24/2022]
|
22
|
Jiang W, Duysen EG, Hansen H, Shlyakhtenko L, Schopfer LM, Lockridge O. Mice treated with chlorpyrifos or chlorpyrifos oxon have organophosphorylated tubulin in the brain and disrupted microtubule structures, suggesting a role for tubulin in neurotoxicity associated with exposure to organophosphorus agents. Toxicol Sci 2010; 115:183-93. [PMID: 20142434 DOI: 10.1093/toxsci/kfq032] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Exposure to organophosphorus (OP) agents can lead to learning and memory deficits. Disruption of axonal transport has been proposed as a possible explanation. Microtubules are an essential component of axonal transport. In vitro studies have demonstrated that OP agents react with tubulin and disrupt the structure of microtubules. Our goal was to determine whether in vivo exposure affects microtubule structure. One group of mice was treated daily for 14 days with a dose of chlorpyrifos that did not significantly inhibit acetylcholinesterase. Beta-tubulin from the brains of these mice was diethoxyphosphorylated on tyrosine 281 in peptide GSQQY(281)RALTVPELTQQMFDSK. A second group of mice was treated with a single sublethal dose of chlorpyrifos oxon (CPO). Microtubules and cosedimenting proteins from the brains of these mice were visualized by atomic force microscopy nanoimaging and by Coomassie blue staining of polyacrylamide gel electrophoresis bands. Proteins in gel slices were identified by mass spectrometry. Nanoimaging showed that microtubules from control mice were decorated with many proteins, whereas microtubules from CPO-treated mice had fewer associated proteins, a result confirmed by mass spectrometry of proteins extracted from gel slices. The dimensions of microtubules from CPO-treated mice (height 8.7 +/- 3.1 nm and width 36.5 +/- 15.5 nm) were about 60% of those from control mice (height 13.6 +/- 3.6 nm and width 64.8 +/- 15.9 nm). A third group of mice was treated with six sublethal doses of CPO over 50.15 h. Mass spectrometry identified diethoxyphosphorylated serine 338 in peptide NS(338)NFVEWIPNNVK of beta-tubulin. In conclusion, microtubules from mice exposed to chlorpyrifos or to CPO have covalently modified amino acids and abnormal structure, suggesting disruption of microtubule function. Covalent binding of CPO to tubulin and to tubulin-associated proteins is a potential mechanism of neurotoxicity.
Collapse
Affiliation(s)
- Wei Jiang
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Recently, we have generated transgenic mice (designated as SJLB) carrying human N279K mutant tau, one of the tau mutations causing parkinsonism linked to chromosome 17 (FTDP-17). SJLB mice mimic some features of behavioral alterations and neuronal pathology of patients with Alzheimer's disease. To investigate how tau dysfunctions cause these features, we examined the expression and phosphorylation levels in SJLB mouse hippocampal proteins using a phosphosensor dye in two-dimensional poly acrylamide gel electrophoresis analysis and mass spectrometry. Calreticulin and tubulin beta4 are significantly more phosphorylated, and heat shock cognate 71 kDa protein, tubulin beta2, vacuolar ATP synthase catalytic subunit A, alpha-internexin, alpha-enolase, ubiquitin carboxyl-terminal hydrolase isozyme L1, and complexin-2 are significantly less phosphorylated in SJLB mice than control mice. These proteins could be new targets for elucidating underlying mechanisms and therapeutic intervention in neurodegenerative diseases.
Collapse
|
24
|
Abstract
Transmitter release at high probability phasic synapses of crayfish neuromuscular junctions depresses by over 50% in 60 min when stimulated at 0.2 Hz. Inhibition of the protein phosphatase calcineurin by intracellular pre-synaptic injection of autoinhibitory peptide inhibited low-frequency depression (LFD) and resulted in facilitation of transmitter release. Since this inhibitor had no major effects when injected into the post-synaptic cell, only pre-synaptic calcineurin activity is necessary for LFD. To examine changes in phosphoproteins during LFD we performed a phosphoproteomic screen on proteins extracted from motor axons and nerve terminals after LFD induction or treatment with various drugs that affect kinase and phosphatase activity. Proteins separated by PAGE were stained with phospho-specific/total protein ratio stains (Pro-Q Diamond/SYPRO Ruby) to identify protein bands for analysis by mass spectrometry. Phosphorylation of actin and tubulin decreased during LFD, but increased when calcineurin was blocked. Tubulin and phosphoactin immunoreactivity in pre-synaptic terminals were also reduced after LFD. The actin depolymerizing drugs cytochalasin and latrunculin and the microtubule stabilizer taxol inhibited LFD. Therefore, dephosphorylation of pre-synaptic actin and tubulin and consequent changes in the cytoskeleton may regulate LFD. LFD is unlike long-term depression found in mammalian synapses because the latter requires in most instances post-synaptic calcineurin activity.Thus, this simpler invertebrate synapse discloses a novel pre-synaptic depression mechanism.
Collapse
|
25
|
Butterfield DA, Boyd-Kimball D, Castegna A. Proteomics in Alzheimer's disease: insights into potential mechanisms of neurodegeneration. J Neurochem 2003; 86:1313-27. [PMID: 12950441 DOI: 10.1046/j.1471-4159.2003.01948.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proteomics involves the identification of unknown proteins following their separation, often using two-dimensional electrophoresis, digestion of particular proteins of interest by trypsin, determination of the molecular weight of the resulting peptides, and database searching to make the identification of the proteins. Application of proteomics to Alzheimer's disease (AD), the major dementing disorder of the elderly, has just begun. Differences in protein expression and post-translational modification (mostly oxidative modification) of proteins from AD brain and peripheral tissue, as well as in brain from rodent models of AD, have yielded insights into potential molecular mechanisms of neurodegeneration in this dementing disorder. This review surveys the proteomics studies relevant to AD, from which new understandings of the pathology, biochemistry, and physiology of AD are beginning to emerge.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, Kentucky 40506-0055, USA.
| | | | | |
Collapse
|
26
|
Casas B, Calabokis M, Kurz L, Galán-Caridad JM, Bubis J, Gonzatti MI. Trypanosoma cruzi: in vitro phosphorylation of tubulin by a protein kinase CK2-like enzyme. Exp Parasitol 2002; 101:129-37. [PMID: 12427467 DOI: 10.1016/s0014-4894(02)00110-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
One predominant 55-kDa polypeptide was phosphorylated in vitro in Trypanosoma cruzi homogenates prepared from three differentiation stages: epimastigotes, trypomastigotes, and spheromastigotes. Anti-alpha and anti-beta tubulin monoclonal antibodies immunoprecipitated the phosphorylated 55-kDa polypeptide from epimastigote extracts. Phosphoserine was the only residue phosphorylated in vitro in the 55-kDa polypeptide and in immunoprecipitated alpha tubulin. The phosphorylation of both the 55-kDa polypeptide and exogenously added casein was inhibited with GTP, heparin, and 2,3-bisphosphoglycerate in a dose-dependent manner, indicating the involvement of a CK2-like protein kinase. Moreover, when tubulin was isolated from an epimastigote homogenate by ultracentrifugation, followed by DEAE-Sephacel chromatography, a protein kinase that phosphorylated tubulin and casein co-purified with this cytoskeletal component. This result suggests an association between tubulin and its corresponding protein kinase in T. cruzi.
Collapse
Affiliation(s)
- Beatriz Casas
- Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89.000, Caracas, Venezuela
| | | | | | | | | | | |
Collapse
|
27
|
Vijayan S, El-Akkad E, Grundke-Iqbal I, Iqbal K. A pool of beta-tubulin is hyperphosphorylated at serine residues in Alzheimer disease brain. FEBS Lett 2001; 509:375-81. [PMID: 11749959 DOI: 10.1016/s0014-5793(01)03201-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In Alzheimer disease (AD) brain, activities of protein phosphatase (PP)-2A/PP-1 which are known to be associated with microtubules are compromised and are probably a cause of neurofibrillary degeneration through hyperphosphorylation of microtubule proteins. In the present study, an increase of approximately 11 pmol phosphate/microg protein in 100,000 x g pellet from AD compared with age-matched control brains was found. Tau protein, which is hyperphosphorylated in AD can only account for approximately 4 pmol phosphate/microg protein, suggesting the presence of non-tau hyperphosphorylated proteins in the diseased brain. Western blot analysis with phosphoserine antibodies revealed a approximately 54 kDa non-tau protein to be significantly hyperphosphorylated in AD compared with age-matched control cases in the particulate fraction. The approximately 54 kDa protein was purified by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified as beta-tubulin by immunolabeling with specific antibodies, mass spectrometry analysis and by N-terminal amino acid sequencing. The purified protein was hyperphosphorylated at serine residues in AD.
Collapse
Affiliation(s)
- S Vijayan
- Center for Developmental Neuroscience, The Graduate School and University Center of the City University of New York, NY 10016-4309, USA
| | | | | | | |
Collapse
|
28
|
SILVA ALBACD, LIU SULING, BOUCK GBENJAMIN. A 30-kDa Protein in the Surface Complex and Flagella of Euglena has Protein Kinase Activity. J Eukaryot Microbiol 1999. [DOI: 10.1111/j.1550-7408.1999.tb04591.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
de Mattos-Dutra A, de Freitas MS, Lisboa CS, Pessoa-Pureur R, Wajner M. Effects of acute and chronic administration of methylmalonic and propionic acids on the in vitro incorporation of 32P into cytoskeletal proteins from cerebral cortex of young rats. Neurochem Int 1998; 33:75-82. [PMID: 9694045 DOI: 10.1016/s0197-0186(05)80011-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We studied the effects of acute and chronic administration of methylmalonic (MMA) and propionic (PA) acids on the in vitro incorporation of 32P into neurofilament subunits (NF-M and NF-L), alpha and beta tubulins, from cerebral cortex of rats. In the chronic treatment, drugs were administered subcutaneously from day 6-17 post-partum (MMA 0.76-0.89 micromol/g body weight and PA 0.93 micromol/g body weight). In the acute treatment MMA and PA were injected (MMA 3.78 micromol/g body weight and PA 3.90 micromol/g body weight). Control animals received saline in the same volumes. The Triton-insoluble cytoskeletal fraction of control in treated animals was isolated and incubated with 32P-ATP. Our results demonstrate that both drugs were able to inhibit 32P in vitro incorporation into neurofilaments and tubulins. The acute administration of MMA decreased the in vitro 32P incorporation into NF-L and alpha-tubulin subunit, whereas PA administration decreased the 32P in vitro incorporation into NF-M, NF-L, and tubulins. On the other hand, chronic MMA administration induced a decreased 32P in vitro incorporation into NF-M, while chronic treatment with propionate decreased the in vitro phosphorylation of NF-M and alpha-tubulin. This study provides consistent evidence that a decreased phosphorylation of cytoskeletal proteins is induced by MMA and PA metabolites which accumulate in methylmalonic and propionic acidemias respectively. Therefore, it is possible that an altered brain cytoskeletal metabolism could be related with the structural alterations of CNS observed in these disorders.
Collapse
Affiliation(s)
- A de Mattos-Dutra
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | | | | | | | |
Collapse
|
30
|
Schutkowski M, Bernhardt A, Zhou XZ, Shen M, Reimer U, Rahfeld JU, Lu KP, Fischer G. Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition. Biochemistry 1998; 37:5566-75. [PMID: 9548941 DOI: 10.1021/bi973060z] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proline residues provide a backbone switch in a polypeptide chain, which is controlled by the cis/trans isomerization about the peptidyl-prolyl bond. Phosphorylation of serine- and threonine-proline motifs has been shown to be a critical regulatory event for many proteins. The biological significance of these motifs has been further highlighted by the discovery of a novel and essential peptidyl-prolyl cis/trans isomerase Pin1. Pin1 is required for progression through mitosis via catalyzing the isomerization of phosphorylated Ser/Thr-Pro motifs specifically present in mitosis-specific phosphoproteins. However, little is known whether the phosphorylation regulates the conformational switch of the Ser/Thr-Pro bonds. Here, we report the synthesis and conformational characterization of a series of peptides that contain the phosphorylated or nonphosphorylated Ser/Thr-Pro motifs. Phosphorylation affected the rate of the cis to trans isomerization of the Thr/Ser-Pro bonds. As determined by a protease-coupled assay, the isomerization rate of phosphorylated Thr-Pro bond was found to be 8-fold slower than that of the nonphosphorylated analogue. Furthermore, studies of the pH dependence of the isomerization of the phosphopeptides reveal that both cis content and the rate constant of prolyl cis to trans isomerization are lower for the dianionic state of the phosphothreonine-containing peptides. These effects of phosphorylation are specific for phosphorylated Ser/Thr since neither phosphorylated Tyr nor glutamic acid was able to affect the prolyl isomerization. Finally, our experiments provide evidence that effective catalysis of cis/trans isomerization of phosphorylated Ser/Thr-Pro bonds by Pin1 is specific to the dianionic form of the substrate. Thus, our results demonstrate that protein phosphorylation specifically regulates the backbone dynamics of the Ser/Thr-Pro motifs and that Pin1 specifically isomerizes the certain conformation of the phosphorylated Ser/Thr-Pro motifs.
Collapse
Affiliation(s)
- M Schutkowski
- Max-Planck-Research Unit Enzymology of Protein Folding, Halle, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Miyamoto S, Asakura M, Sasuga Y, Osada K, Bodaiji N, Imafuku J, Aoba A. Effects of long-term treatment with desipramine on microtubule proteins in rat cerebral cortex. Eur J Pharmacol 1997; 333:279-87. [PMID: 9314045 DOI: 10.1016/s0014-2999(97)01140-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The molecular mechanism of the action of antidepressants beyond the receptor level has not yet been elucidated. We have investigated the effects of long-term treatment with desipramine on the phosphorylation state of microtubule-associated protein 2 (MAP2) and microtubule assembly in the rat cerebral cortex. Phosphorylation of MAP2 was detected by immunoblotting after immunoprecipitation of MAP2 in the soluble fraction. The degree of phosphorylation of serine residues of MAP2 was significantly increased after chronic administration of desipramine without changes in the total concentration of MAP2. Microtubule assembly in crude brain extracts was monitored in terms of changes in turbidity measured at 350 nm using a spectrophotometer. Chronic but not acute treatment with desipramine inhibited microtubule assembly, assayed in the presence of a phosphatase inhibitor, calyculin A, whereas the inhibition was completely nullified in the absence of calyculin A. Desipramine had no direct effect on microtubule assembly in vitro. These results raise the possibility that the changes in the degree of phosphorylation of MAP2 and microtubule assembly represent intracellular modifications involved in functional changes elicited by long-term treatment with desipramine.
Collapse
Affiliation(s)
- S Miyamoto
- Department of Neuropsychiatry, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Laferriere NB, MacRae TH, Brown DL. Tubulin synthesis and assembly in differentiating neurons. Biochem Cell Biol 1997. [DOI: 10.1139/o97-032] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
33
|
MacRae TH. Tubulin post-translational modifications--enzymes and their mechanisms of action. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:265-78. [PMID: 9118990 DOI: 10.1111/j.1432-1033.1997.00265.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review describes the enzymes responsible for the post-translational modifications of tubulin, including detyrosination/tyrosination, acetylation/deacetylation, phosphorylation, polyglutamylation, polyglycylation and the generation of non-tyrosinatable alpha-tubulin. Tubulin tyrosine-ligase, which reattaches tyrosine to detyrosinated tubulin, has been extensively characterized and its gene sequenced. Enzymes such as tubulin-specific carboxypeptidase and alpha-tubulin acetyltransferase, required, respectively, for detyrosination and acetylation of tubulin, have yet to be purified to homogeneity and examined in defined systems. This has produced some conflicting results, especially for the carboxypeptidase. The phosphorylation of tubulin by several different types of kinases has been studied in detail but drawing conclusions is difficult because many of these enzymes modify proteins other than their actual substrates, an especially pertinent consideration for in vitro experiments. Tubulin phosphorylation in cultured neuronal cells has proven to be the best model for evaluation of kinase effects on tubulin/microtubule function. There is little information on the enzymes required for polyglutamylation, polyglycylation, and production of non-tyrosinatable tubulin, but the available data permit interesting speculation of a mechanistic nature. Clearly, to achieve a full appreciation of tubulin post-translational changes the responsible enzymes must be characterized. Knowing when the enzymes are active in cells, if soluble or polymerized tubulin is the preferred substrate and the amino acid residues modified by each enzyme are all important. Moreover, acquisition of purified enzymes will lead to cloning and sequencing of their genes. With this information, one can manipulate cell genomes in order to either modify key enzymes or change their relative amounts, and perhaps reveal the physiological significance of tubulin post-translational modifications.
Collapse
Affiliation(s)
- T H MacRae
- Department of Biology, Dalhousie University, Halifax, Canada
| |
Collapse
|
34
|
Vértessy BG, Kovács J, Löw P, Lehotzky A, Molnár A, Orosz F, Ovádi J. Characterization of microtubule-phosphofructokinase complex: specific effects of MgATP and vinblastine. Biochemistry 1997; 36:2051-62. [PMID: 9047303 DOI: 10.1021/bi9623441] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phosphofructokinase interacts with both microtubules and microtubules containing microtubule-associated proteins to produce bundling and periodical cross-bridging of tubules. Immunoelectron microscopy using anti-phosphofructokinase antibodies provided direct evidence that the kinase molecules are responsible for the cross-bridging of microtubules. Limited proteolysis by subtilisin, a procedure that cleaves the N-terminal segment of the free enzyme as well as the C-terminal "tails" of tubulin subunits exposed on microtubules, showed that while phosphofructokinase becomes resistant, tubulin retains sensitivity against proteolysis within the heterologous complex. These data suggest that the N-terminal segment of the enzyme, but not the C-terminal "tail" of tubulin subunits, is involved in the interaction between the microtubule and the kinase. The phosphorylation of phosphofructokinase or microtubules containing microtubule-associated proteins by the cAMP-dependent protein kinase did not interfere with the heterologous complex formation. MgATP prevents phosphofructokinase binding to the microtubules, and it can displace the enzyme from the single microtubules. However, the bundled microtubules are apparently resistant to the MgATP dissociation effect. Modelling of the assembly process suggests that the tubulin-kinase complex is able to polymerize as the free tubulin. Vinblastine, an anti-mitotic agent, inhibits tubulin assembly; however, its inhibitory effect is partially suppressed in the presence of phosphofructokinase. Fluorescence anisotropy measurements indicated that kinase and vinblastine compete for tubulin binding with no evidence for ternary complex formation. This competitive mechanism and the ability of the tubulin-enzyme complex to polymerize into microtubules may result in the resistance of the tubulin-enzyme complex against the inhibition of assembly induced by vinblastine. Microtubules formed in the presence of vinblastine plus phosphofructokinase can be visualized by electron microscopy. A molecular model is suggested that summarizes the effects of MgATP and vinblastine on the multiple equilibria in the tubulin/microtubules/phosphofructokinase system.
Collapse
Affiliation(s)
- B G Vértessy
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest
| | | | | | | | | | | | | |
Collapse
|
35
|
The Cytoskeleton as a Target in Cell Toxicity. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1569-2558(08)60273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
36
|
Davidkova G, Zhang SP, Nichols RA, Weiss B. Reduced level of calmodulin in PC12 cells induced by stable expression of calmodulin antisense RNA inhibits cell proliferation and induces neurite outgrowth. Neuroscience 1996; 75:1003-19. [PMID: 8938737 DOI: 10.1016/0306-4522(96)00230-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The role calmodulin plays in the growth and differentiation of nerve cells was assessed by altering the levels of calmodulin in the PC12 rat pheochromocytoma cell line and determining the effects of altering these levels on cellular proliferation and differentiation. Calmodulin levels in the PC12 cells were increased or decreased by transfecting the cells with a mammalian expression vector into which the rat calmodulin gene I had been cloned in the sense or antisense orientation, respectively. The cells transfected with the calmodulin sense gene showed increased levels of calmodulin immunoreactivity and increased levels of calmodulin messenger RNA as ascertained by immunocytochemistry and slot-blot analysis, respectively. Cells transfected with the calmodulin antisense construct showed reduced levels of calmodulin immunoreactivity. Reducing the levels of calmodulin by expression of antisense calmodulin messenger RNA resulted in a marked inhibition of cell growth, whereas increasing the levels of calmodulin by overexpressing calmodulin messenger RNA resulted in an acceleration of cell growth. Transfected PC12 cells having reduced levels of calmodulin immunoreactivity exhibited spontaneous outgrowth of long, stable and highly branched neuritic processes. PC12 cells in which calmodulin was overexpressed showed no apparent changes in cell morphology, but did show an altered response to the addition of nerve growth factor. While nerve growth factor slowed cellular proliferation and induced extensive neurite outgrowth, in parental PC12 cells nerve growth factor induced little or no neurite outgrowth and little inhibition of cell proliferation in transfected cells overexpressing calmodulin. These results indicate that calmodulin is essential for the proliferation of nerve cells and for the morphological changes that nerve cells undergo during differentiation. The study also suggests the possibility that a calmodulin antisense approach may be used to inhibit the proliferation of neuronal tumors.
Collapse
Affiliation(s)
- G Davidkova
- Department of Pharmacology, Medical College of Pennsylvania, Philadelphia 19129, USA
| | | | | | | |
Collapse
|
37
|
Kirsch-Volders M, Parry EM. Genetic toxicology of mitotic spindle inhibitors used as anticancer drugs. Mutat Res 1996; 355:103-28. [PMID: 8781580 DOI: 10.1016/0027-5107(96)00025-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M Kirsch-Volders
- Laboratorium voor Antropogenetica, Vrije Universiteit Brussel, Belgium
| | | |
Collapse
|
38
|
Abstract
There is considerable evidence that mammalian beta-tubulin is phosphorylated. Specifically, of the seven beta isotypes, the phosphorylated one is beta III, the isotype found almost entirely in neurons. The phosphate is added at a serine and perhaps a tyrosine near the C-terminus. All the evidence to date has been gathered by growth of cells and tissues in the presence of radioactive inorganic phosphate followed by tubulin isolation and determination of the labeled tubulin; thus, the actual extent of phosphorylation of beta III is unknown. Nor is it known if alpha-tubulin and the other beta isotypes are phosphorylated by a mechanism which would not be revealed by previous experiments. In addition, the role of tubulin phosphorylation is unknown. We have purified the alpha beta II-, alpha beta III-, and alpha beta IV-tubulin dimers from bovine brain and have determined their phosphate content chemically. We have found that alpha-tubulin is not phosphorylated and neither are the beta II or beta IV isotypes. However, beta III is phosphorylated with a stoichiometry of about 1.52 mol/mol. We have found that the phosphate on beta III is resistant to a wide variety of phosphatases except for human erythrocyte phosphatase 2A and that removal of the phosphate inhibits microtubule assembly in vitro stimulated by microtubule-associated protein 2 (MAP 2). However such an inhibition was not evident when microtubule assembly was induced in the absence of microtubule-associated proteins. Our results suggest the possibility that beta III phosphorylation may play a role in regulating microtubule assembly in vivo.
Collapse
Affiliation(s)
- I A Khan
- Department of Biochemistry, The University of Texas Health Science Center, San Antoxio, Texas 78284-7760, USA
| | | |
Collapse
|
39
|
Peters JD, Furlong MT, Asai DJ, Harrison ML, Geahlen RL. Syk, activated by cross-linking the B-cell antigen receptor, localizes to the cytosol where it interacts with and phosphorylates alpha-tubulin on tyrosine. J Biol Chem 1996; 271:4755-62. [PMID: 8617742 DOI: 10.1074/jbc.271.9.4755] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Syk (p72syk) is a 72-kDa, nonreceptor, protein-tyrosine kinase that becomes tyrosine-phosphorylated and activated in B lymphocytes following aggregation of the B-cell antigen receptor. To explore the subcellular location of activated Syk, anti-IgM-activated B-cells were fractionated into soluble and particulate fractions by ultracentrifugation. Activated and tyrosine-phosphorylated Syk was found predominantly in the soluble fraction and was not associated with components of the antigen receptor. Similarly, the activated forms of Syk and its homolog, ZAP-70, were found in soluble fractions prepared from pervanadate-treated Jurkat T-cells. A 54-kDa protein that co-immunoprecipitated with Syk from the soluble fraction of activated B-cells was identified by peptide mapping as alpha-tubulin. alpha-Tubulin was an excellent in vitro substrate for Syk and was phosphorylated on a single tyrosine present within an acidic stretch of amino acids located near the carboxyl terminus. alpha-Tubulin was phosphorylated on tyrosine in intact cells following aggregation of the B-cell antigen receptor in a reaction that was inhibited by the Syk-selective inhibitor, piceatannol. Thus, once activated, Syk releases from the aggregated antigen receptor complex and is free to associate with and phosphorylate soluble proteins including alpha-tubulin.
Collapse
Affiliation(s)
- J D Peters
- Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
40
|
Whatley VJ, Harris RA. The cytoskeleton and neurotransmitter receptors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1996; 39:113-43. [PMID: 8894846 DOI: 10.1016/s0074-7742(08)60665-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The neuronal cytoskeleton consists of microtubules and microfilaments that can interact with membrane proteins including neurotransmitter receptors and ion channels. Ligand-gated ion channels, such as nicotinic acetylcholine receptors, glycine receptors, glutamate receptors and gamma-aminobutryic acidA (GABAA) receptors, are known to cluster in plasma membranes. Studies suggest that postsynaptic ligand-gated channels form clusters that are anchored in the plasma membrane by interacting with cytoskeletal components and these clusters may serve to optimize delivery of neurotransmitters to the channels. Other findings indicate that the interaction of clustered ligand-gated ion channels with cytoskeletal components may also play a role in channel function. For example, studies suggest that the interaction of microtubules with GABAA receptors regualtes GABA binding affinity. Regulation of neurotransmitter function may be significant in the study of neuropathological processes, such as Alzheimer's disease, neurotrauma, and experimental epilepsy, in which the cytoskeleton is vulnerable to disruption.
Collapse
Affiliation(s)
- V J Whatley
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, USA
| | | |
Collapse
|
41
|
Kapeller R, Toker A, Cantley LC, Carpenter CL. Phosphoinositide 3-kinase binds constitutively to alpha/beta-tubulin and binds to gamma-tubulin in response to insulin. J Biol Chem 1995; 270:25985-91. [PMID: 7592789 DOI: 10.1074/jbc.270.43.25985] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recently we reported the localization of phosphoinositide 3-kinase (PI 3-kinase) by immunofluorescence to microtubule bundles and the centrosome (Kapeller, R., Chakrabarti, R., Cantley, L., Fay, F., and Corvera, S. (1993) Mol. Cell. Biol. 13, 6052-6063). In complementary experiments we used the recombinant p85 subunit of PI 3-kinase to identify proteins that associate with phosphoinositide 3-kinase and found that phosphoinositide 3-kinase associates with alpha/beta-tubulin. The association occurs in vivo but was not significantly affected by growth factor stimulation. We localized the region of p85 that interacts with alpha/beta-tubulin to the inter-SH2 domain. These results support the immunofluorescence data and show that p85 directly associates with alpha/beta-tubulin. We then determined whether phosphoinositide 3-kinase associates with gamma-tubulin. We found a dramatic growth factor-dependent association of phosphoinositide 3-kinase with gamma-tubulin. Phosphoinositide 3-kinase associates with gamma-tubulin in response to insulin and, to a lesser extent, in response to platelet-derived growth factor. Neither epidermal growth factor nor nerve growth factor treatment of cells results in association of phosphoinositide 3-kinase and gamma-tubulin. Phosphoinositide 3-kinase is also immunoprecipitated with antibodies to pericentrin in response to insulin, indicating that phosphoinositide 3-kinase is recruited to the centrosome. Neither phosphoinositide 3-kinase activity, nor intact microtubules are necessary for the association. Treatment of cells with 0.5 M NaCl dissociates gamma-tubulin from the centrosome and disrupts the association of phosphoinositide 3-kinase with pericentrin, but not gamma-tubulin. Recombinant p85 binds to gamma-tubulin from both insulin stimulated and quiescent cells. These results suggest that the association of phosphoinositide 3-kinase with gamma-tubulin is direct. These data suggest that phosphoinositide 3-kinase may be involved in regulating microtubule responses to insulin and platelet-derived growth factor.
Collapse
Affiliation(s)
- R Kapeller
- Department of Medicine, Beth Israel Hospital, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
42
|
de Freitas MS, de Mattos AG, Camargo MM, Wannmacher C, Pessoa-Pureur R. Cytoskeletal-associated protein kinase and phosphatase activities from cerebral cortex of young rats. Neurochem Res 1995; 20:951-6. [PMID: 8587653 DOI: 10.1007/bf00970741] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We describe the phosphorylation system associated with the Triton-insoluble cytoskeletal fraction that phosphorylates in vitro the 150 kDa neurofilament subunit (NF-M) and alpha and beta tubulin from cerebral cortex of rats. The protein kinase activities were determined in the presence of 20 microM cyclic AMP (cAMP), 1 mM calcium and 1 microM calmodulin (Ca2+/calmodulin) or 1 mM calcium, 0.2 mM phosphatidylserine and 0.5 microM phorbol 12,13-dibutyrate (Ca2+/PS/PDBu). Phosphorylation of these cytoskeletal proteins increased approximately 35% and 65% in the presence of cAMP and Ca2+/calmodulin, respectively, but was unaffected in the presence of Ca2+/PS/PDBu. Basal phosphorylation of these proteins studied increased approximately 35% and 72% in the presence of 0.5 microM okadaic acid and 0.01 microM microcystin-LR, respectively, suggesting the presence of phosphatase type 1. Results suggest that at least two protein kinases and one protein phosphatase are associated with the Triton-insoluble cytoskeletal fraction from cerebral cortex of rats.
Collapse
Affiliation(s)
- M S de Freitas
- Departamento de Bioquimica, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS-Brasil
| | | | | | | | | |
Collapse
|
43
|
Chen JG, Strawbridge AB, Kempson SA. Microtubule disruption stimulates system A transport in cultured vascular smooth muscle cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 268:C1512-9. [PMID: 7611372 DOI: 10.1152/ajpcell.1995.268.6.c1512] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study has focused on the possible influence of microtubules for the regulation of Na(+)-dependent system A neutral amino acid transport in A10 cells, a cultured cell line derived from rat aortic vascular smooth muscle. When microtubules were disrupted by incubating cells for 5 h in serum-free medium containing colchicine, nocodazole, or vinblastine, there was a twofold increase in system A transport (Vmax change). The dose for the disruption of microtubules by colchicine was similar to the dose required for the stimulation of system A. The time course showed that system A stimulation did not occur until widespread disruption of microtubules was established. The stimulation was specific for system A; there were no changes in glucose transport and Na(+)-dependent transport of phosphate and glutamate. Serum refeeding of quiescent cells from 2 days of serum starvation led to stimulation of system A, glucose, and phosphate transport. However, only system A was activated when colchicine was added to the serum-free medium. Addition of colchicine during serum refeeding had no additive effect for the stimulation of system A. The stimulation by both colchicine and serum was blocked by cycloheximide and actinomycin D. These findings suggest that microtubule disruption may activate system A gene expression.
Collapse
Affiliation(s)
- J G Chen
- Department of Physiology and Biophysics, Indiana University School of Medicine, Indianapolis 46202-5120, USA
| | | | | |
Collapse
|
44
|
Díez-Guerra FJ, Avila J. An increase in phosphorylation of microtubule-associated protein 2 accompanies dendrite extension during the differentiation of cultured hippocampal neurones. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:68-77. [PMID: 7851444 DOI: 10.1111/j.1432-1033.1995.tb20360.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hippocampal neurones, from embryonic rats, were cultured for different times and the extension of dendrite-like processes was analysed morphologically and by immunofluorescence, using microtubule-associated protein 2 (MAP2) as a marker. Simultaneously, the changes in phosphorylation in MAP2 were analyzed and a correlation between dendrite sprouting and an increase in MAP2 phosphorylation was found. Phospho-MAP2 was cleaved by Staphylococcus aureus V8 protease limited proteolysis and its phosphopeptide pattern was compared to that obtained with two protein kinases (calcium/calmodulin-dependent kinase and protein kinase C) in vitro. An involvement of calcium/calmodulin-dependent protein kinase in the phosphorylation of MAP2, occurring simultaneously with dendrite extension during neuronal differentiation in vitro, is suggested.
Collapse
Affiliation(s)
- F J Díez-Guerra
- Centro de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | |
Collapse
|
45
|
Yagame H, Horigome T, Ichimura T, Uchiyama J, Omata S. Differential effects of methylmercury on the phosphorylation of protein species in the brain of acutely intoxicated rats. Toxicology 1994; 92:101-13. [PMID: 7940554 DOI: 10.1016/0300-483x(94)90170-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The in vivo effect of methylmercury (MeHg) on the phosphorylation in vitro of the brain cytosol fraction was examined in acutely poisoned rats (10 mg/kg/day, for 7 days). The total phosphorylation activity, determined in the presence or absence of protein kinase effectors (Ca2+ and cAMP) and substrates (casein, histone and protein kinase C substrate), did not markedly change with the progress of intoxication. Two-dimensional electrophoretic analysis of the phosphorylated cytosol fractions from control and MeHg-treated rats revealed that (1) the extents of phosphorylation of the 24 major protein species in the control rats differed greatly from each other, (2) the effect of MeHg on the phosphorylation was not uniform regarding the individual 24 proteins or the period of intoxication, and (3) in the symptomatic period, many protein species including tubulin subunits showed elevated phosphorylation, while a few protein species showed decreased phosphorylation. These results suggest that the neurotoxic action of MeHg could be mediated through, at least in part, the modification of functional protein species due to excess phosphorylation that leads to impairment of the normal cellular processes.
Collapse
Affiliation(s)
- H Yagame
- Department of Biochemistry, Faculty of Science, Niigata University, Japan
| | | | | | | | | |
Collapse
|
46
|
Wang W, Himes R, Dentler W. The binding of a ciliary microtubule plus-end binding protein complex to microtubules is regulated by ciliary protein kinase and phosphatase activities. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31826-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
47
|
|
48
|
Gupta RP, Abou-Donia MB. In vivo and in vitro effects of diisopropyl phosphorofluoridate (DFP) on the rate of hen brain tubulin polymerization. Neurochem Res 1994; 19:435-44. [PMID: 8065500 DOI: 10.1007/bf00967321] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Diisopropyl phosphorofluoridate (DFP) produces organophosphorus ester-induced delayed neurotoxicity (OPIDN) in sensitive species. We have investigated the in vivo and in vitro effects of DFP on hen brain tubulin polymerization. Hens were treated with a single dose of DFP (1.7 mg/kg, sc.), and were sacrificed after 18-21 days. Tubulin from DFP-treated hen brains showed small but significant decrease (14.42%) in the rate of polymerization and 11.05% decrease in rise in O.D. at 340 nm in 30 min. DFP in vivo treatment also resulted in decreased concentration of tau and an enhanced concentration of two peptides (45 kDa, 35 kDa) in the brain supernatant. These peptides seemed to be the degradation products of MAP-2. The decrease in the rate of brain tubulin polymerization in treated hens is consistent with neurochemical alterations and the focal degeneration and aggregation of these filamentous structures in OPIDN.
Collapse
Affiliation(s)
- R P Gupta
- Duke University Medical Center, Department of Pharmacology, Durham, North Carolina
| | | |
Collapse
|
49
|
Abou-Donia MB. The cytoskeleton as a target for organophosphorus ester-induced delayed neurotoxicity (OPIDN). Chem Biol Interact 1993; 87:383-93. [PMID: 8343995 DOI: 10.1016/0009-2797(93)90066-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Although the immediate action of organophosphorus esters is the inhibition of acetylcholinesterase, some of these compounds also produce a neurodegenerative disorder known as organophosphorus ester-induced delayed neurotoxicity (OPIDN). Tri-o-cresyl phosphate (TOCP) first produced this condition in humans and later in sensitive animal species. OPIDN is characterized by a delay period prior to onset of ataxia and paralysis. The neuropathologic lesions are Wallerian-type degeneration of the axon and myelin in the distal parts of the large tracts in both the central and peripheral nervous systems. In the past decade we have demonstrated that the pathognomonic features of OPIDN are an aberrant increase in autophosphorylation of calcium/calmodulin kinase II (CaM kinase II) and an increase in phosphorylation of cytoskeletal proteins, i.e., MAPs, tubulin, neurofilament triplet proteins, and myelin basic protein. Protein kinase-mediated phosphorylation of cytoskeletal proteins plays a critical role in regulating the growth and maintenance of the axon. We hypothesize that, in OPIDN, hyperphosphorylation of cytoskeletal proteins and axonal swelling are causally linked. Hyperphosphorylation of cytoskeletal proteins decreases their transport rate down the axon relative to their rate of entry into the axon, thus leading to their accumulation. Consistent with this hypothesis is our finding of the anomalous accumulation of phosphorylated neurofilament aggregates in the central and peripheral axons of hens treated with TOCP.
Collapse
Affiliation(s)
- M B Abou-Donia
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
50
|
Abou-Donia MB, Viana ME, Gupta RP, Anderson JK. Enhanced calmodulin binding concurrent with increased kinase-dependent phosphorylation of cytoskeletal proteins following a single subcutaneous injection of diisopropyl phosphorofluoridate in hens. Neurochem Int 1993; 22:165-73. [PMID: 7679940 DOI: 10.1016/0197-0186(93)90009-t] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diisopropyl phosphorofluoridate (DFP) produces Type I organophosphorus compound-induced delayed neurotoxicity (OPIDN) in adult female chickens. We have proposed that calcium/calmodulin protein kinase II (CaM kinase II) plays a role in the development of OPIDN by increasing the phosphorylation of cytoskeletal proteins. We investigated in vivo the effects of treatment of DFP on CaM kinase II-dependent phosphorylation. In isolated brain supernatants from DFP-treated hens, calmodulin binding increased concurrent with increases in CaM kinase II-dependent autophosphorylation and phosphorylation of cytoskeleton proteins. There were no changes in the relative amounts of the enzyme based on immunobinding studies of antibodies to the CaM kinase II. In the absence of any exogenously added substrate. CaM kinase II and microtubule associated protein-2 (MAP-2) exhibited substantially increased phosphorylation, 833 and 275%, respectively, over brain supernatants from untreated hens. Moreover, isolated brain supernatants from treated hens with exogenously added cytoskeletal proteins and myelin basic protein (MBP) exhibited significant increases in phosphorylation over control, 233, 332 and 60%, for MAP-2, tubulin, and MBP, respectively. 125I-Calmodulin binding studies revealed a 136% increase in calmodulin binding to CaM kinase II in treated hens when compared to control groups. The data suggest that in vivo DFP treatment increases the percentage of unphosphorylated, active CaM kinase II resulting in increased calmodulin binding and subsequent enhanced phosphorylation of cytoskeletal proteins that leads to their aggregation and the production of axonal degeneration.
Collapse
Affiliation(s)
- M B Abou-Donia
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27710
| | | | | | | |
Collapse
|