1
|
Billing D, Sfeir A. The Role of Microhomology-Mediated End Joining (MMEJ) at Dysfunctional Telomeres. Cold Spring Harb Perspect Biol 2025; 17:a041687. [PMID: 39500624 PMCID: PMC11864110 DOI: 10.1101/cshperspect.a041687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
DNA double-strand break (DSB) repair pathways are crucial for maintaining genome stability and cell viability. However, these pathways can mistakenly recognize chromosome ends as DNA breaks, leading to adverse outcomes such as telomere fusions and malignant transformation. The shelterin complex protects telomeres from activation of DNA repair pathways by inhibiting nonhomologous end joining (NHEJ), homologous recombination (HR), and microhomology-mediated end joining (MMEJ). The focus of this paper is on MMEJ, an error-prone DSB repair pathway characterized by short insertions and deletions flanked by sequence homology. MMEJ is critical in mediating telomere fusions in cells lacking the shelterin complex and at critically short telomeres. Furthermore, studies suggest that MMEJ is the preferred pathway for repairing intratelomeric DSBs and facilitates escape from telomere crisis. Targeting MMEJ to prevent telomere fusions in hematologic malignancies is of potential therapeutic value.
Collapse
Affiliation(s)
- David Billing
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
2
|
Scully R, Walter JC, Nussenzweig A. One-ended and two-ended breaks at nickase-broken replication forks. DNA Repair (Amst) 2024; 144:103783. [PMID: 39504607 DOI: 10.1016/j.dnarep.2024.103783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/30/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Replisome collision with a nicked parental DNA template can lead to the formation of a replication-associated double strand break (DSB). How this break is repaired has implications for cancer initiation, cancer therapy and therapeutic gene editing. Recent work shows that collision of a replisome with a nicked DNA template can give rise to either a single-ended (se) or a double-ended (de)DSB, with potentially divergent effects on repair pathway choice and genomic instability. Emerging evidence suggests that the biochemical environment of the broken mammalian replication fork may be specialized in such a way as to skew repair in favor of homologous recombination at the expense of non-homologous end joining.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | - Johannes C Walter
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
3
|
Baral J, Bhattacharje G, Dash S, Samanta D, Hinde E, Rouiller I, Das AK. In silico and in vitro characterization of the mycobacterial protein Ku to unravel its role in non-homologous end-joining DNA repair. Int J Biol Macromol 2024; 278:134584. [PMID: 39122073 DOI: 10.1016/j.ijbiomac.2024.134584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Non-homologous end-joining (NHEJ) stands as a pivotal DNA repair pathway crucial for the survival and persistence of Mycobacterium tuberculosis (Mtb) during its dormant, non-replicating phase, a key aspect of its long-term resilience. Mycobacterial NHEJ is a remarkably simple two-component system comprising the rate-limiting DNA binding protein Ku (mKu) and Ligase D. To elucidate mKu's role in NHEJ, we conducted a series of in silico and in vitro experiments. Molecular dynamics simulations and in vitro assays revealed that mKu's DNA binding stabilizes both the protein and DNA, while also shielding DNA ends from exonuclease degradation. Surface plasmon resonance (SPR) and electrophoretic mobility shift assays (EMSA) demonstrated mKu's robust affinity for linear double-stranded DNA (dsDNA), showing positive cooperativity for DNA substrates of 40 base pairs or longer, and its ability to slide along DNA strands. Moreover, analytical ultracentrifugation, size exclusion chromatography, and negative stain electron microscopy (EM) unveiled mKu's unique propensity to form higher-order oligomers exclusively with DNA, suggesting a potential role in mycobacterial NHEJ synapsis. This comprehensive characterization sheds new light on mKu's function within the Mtb NHEJ repair pathway. Targeting this pathway may thus impede the pathogen's ability to persist in its latent state within the host for prolonged periods.
Collapse
Affiliation(s)
- Joydeep Baral
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India; School of Physics, University of Melbourne, Victoria, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gourab Bhattacharje
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Sagarika Dash
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Dibyendu Samanta
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Elizabeth Hinde
- School of Physics, University of Melbourne, Victoria, Australia.
| | - Isabelle Rouiller
- Department of Biochemistry and Pharmacology, University of Melbourne, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Amit Kumar Das
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India.
| |
Collapse
|
4
|
Otarbayev D, Myung K. Exploring factors influencing choice of DNA double-strand break repair pathways. DNA Repair (Amst) 2024; 140:103696. [PMID: 38820807 DOI: 10.1016/j.dnarep.2024.103696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
DNA double-strand breaks (DSBs) represent one of the most severe threats to genomic integrity, demanding intricate repair mechanisms within eukaryotic cells. A diverse array of factors orchestrates the complex choreography of DSB signaling and repair, encompassing repair pathways, such as non-homologous end-joining, homologous recombination, and polymerase-θ-mediated end-joining. This review looks into the intricate decision-making processes guiding eukaryotic cells towards a particular repair pathway, particularly emphasizing the processing of two-ended DSBs. Furthermore, we elucidate the transformative role of Cas9, a site-specific endonuclease, in revolutionizing our comprehension of DNA DSB repair dynamics. Additionally, we explore the burgeoning potential of Cas9's remarkable ability to induce sequence-specific DSBs, offering a promising avenue for precise targeting of tumor cells. Through this comprehensive exploration, we unravel the intricate molecular mechanisms of cellular responses to DSBs, shedding light on both fundamental repair processes and cutting-edge therapeutic strategies.
Collapse
Affiliation(s)
- Daniyar Otarbayev
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, South Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, South Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea.
| |
Collapse
|
5
|
Merker L, Feller L, Dorn A, Puchta H. Deficiency of both classical and alternative end-joining pathways leads to a synergistic defect in double-strand break repair but not to an increase in homology-dependent gene targeting in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:242-254. [PMID: 38179887 DOI: 10.1111/tpj.16604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/13/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
In eukaryotes, double-strand breaks (DSBs) are either repaired by homologous recombination (HR) or non-homologous end-joining (NHEJ). In somatic plant cells, HR is very inefficient. Therefore, the vast majority of DSBs are repaired by two different pathways of NHEJ. The classical (cNHEJ) pathway depends on the heterodimer KU70/KU80, while polymerase theta (POLQ) is central to the alternative (aNHEJ) pathway. Surprisingly, Arabidopsis plants are viable, even when both pathways are impaired. However, they exhibit severe growth retardation and reduced fertility. Analysis of mitotic anaphases indicates that the double mutant is characterized by a dramatic increase in chromosome fragmentation due to defective DSB repair. In contrast to the single mutants, the double mutant was found to be highly sensitive to the DSB-inducing genotoxin bleomycin. Thus, both pathways can complement for each other efficiently in DSB repair. We speculated that in the absence of both NHEJ pathways, HR might be enhanced. This would be especially attractive for gene targeting (GT) in which predefined changes are introduced using a homologous template. Unexpectedly, the polq single mutant as well as the double mutant showed significantly lower GT frequencies in comparison to wildtype plants. Accordingly, we were able to show that elimination of both NHEJ pathways does not pose an attractive approach for Agrobacterium-mediated GT. However, our results clearly indicate that a loss of cNHEJ leads to an increase in GT frequency, which is especially drastic and attractive for practical applications, in which the in planta GT strategy is used.
Collapse
Affiliation(s)
- Laura Merker
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Laura Feller
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Annika Dorn
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Holger Puchta
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| |
Collapse
|
6
|
Locke AJ, Abou Farraj R, Tran C, Zeinali E, Mashayekhi F, Ali JYH, Glover JNM, Ismail IH. The role of RNF138 in DNA end resection is regulated by ubiquitylation and CDK phosphorylation. J Biol Chem 2024; 300:105709. [PMID: 38309501 PMCID: PMC10910129 DOI: 10.1016/j.jbc.2024.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024] Open
Abstract
Double-strand breaks (DSBs) are DNA lesions that pose a significant threat to genomic stability. The repair of DSBs by the homologous recombination (HR) pathway is preceded by DNA end resection, the 5' to 3' nucleolytic degradation of DNA away from the DSB. We and others previously identified a role for RNF138, a really interesting new gene finger E3 ubiquitin ligase, in stimulating DNA end resection and HR. Yet, little is known about how RNF138's function is regulated in the context of DSB repair. Here, we show that RNF138 is phosphorylated at residue T27 by cyclin-dependent kinase (CDK) activity during the S and G2 phases of the cell cycle. We also observe that RNF138 is ubiquitylated constitutively, with ubiquitylation occurring in part on residue K158 and rising during the S/G2 phases. Interestingly, RNF138 ubiquitylation decreases upon genotoxic stress. By mutating RNF138 at residues T27, K158, and the previously identified S124 ataxia telangiectasia mutated phosphorylation site (Han et al., 2016, ref. 22), we find that post-translational modifications at all three positions mediate DSB repair. Cells expressing the T27A, K158R, and S124A variants of RNF138 are impaired in DNA end resection, HR activity, and are more sensitive to ionizing radiation compared to those expressing wildtype RNF138. Our findings shed more light on how RNF138 activity is controlled by the cell during HR.
Collapse
Affiliation(s)
- Andrew J Locke
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rabih Abou Farraj
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Tran
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Elham Zeinali
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Fatemeh Mashayekhi
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jana Yasser Hafez Ali
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - J N Mark Glover
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ismail Hassan Ismail
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada; Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
7
|
Danovski G, Dyankova-Danovska T, Stamatov R, Aleksandrov R, Kanev PB, Stoynov S. CellTool: An Open-Source Software Combining Bio-Image Analysis and Mathematical Modeling for the Study of DNA Repair Dynamics. Int J Mol Sci 2023; 24:16784. [PMID: 38069107 PMCID: PMC10706408 DOI: 10.3390/ijms242316784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Elucidating the dynamics of DNA repair proteins is essential to understanding the mechanisms that preserve genomic stability and prevent carcinogenesis. However, the measurement and modeling of protein dynamics at DNA lesions via currently available image analysis tools is cumbersome. Therefore, we developed CellTool-a stand-alone open-source software with a graphical user interface for the analysis of time-lapse microscopy images. It combines data management, image processing, mathematical modeling, and graphical presentation of data in a single package. Multiple image filters, segmentation, and particle tracking algorithms, combined with direct visualization of the obtained results, make CellTool an ideal application for the comprehensive analysis of DNA repair protein dynamics. This software enables the fitting of obtained kinetic data to predefined or custom mathematical models. Importantly, CellTool provides a platform for easy implementation of custom image analysis packages written in a variety of programing languages. Using CellTool, we demonstrate that the ALKB homolog 2 (ALKBH2) demethylase is excluded from DNA damage sites despite recruitment of its putative interaction partner proliferating cell nuclear antigen (PCNA). Further, CellTool facilitates the straightforward fluorescence recovery after photobleaching (FRAP) analysis of BRCA1 associated RING domain 1 (BARD1) exchange at complex DNA lesions. In summary, the software presented herein enables the time-efficient analysis of a wide range of time-lapse microscopy experiments through a user-friendly interface.
Collapse
Affiliation(s)
| | | | | | | | | | - Stoyno Stoynov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (T.D.-D.); (R.S.); (R.A.); (P.-B.K.)
| |
Collapse
|
8
|
Vogt A, He Y. Structure and mechanism in non-homologous end joining. DNA Repair (Amst) 2023; 130:103547. [PMID: 37556875 PMCID: PMC10528545 DOI: 10.1016/j.dnarep.2023.103547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
DNA double-stranded breaks (DSBs) are a particularly challenging form of DNA damage to repair because the damaged DNA must not only undergo the chemical reactions responsible for returning it to its original state, but, additionally, the two free ends can become physically separated in the nucleus and must be bridged prior to repair. In nonhomologous end joining (NHEJ), one of the major pathways of DSB repair, repair is carried out by a number of repair factors capable of binding to and directly joining DNA ends. It has been unclear how these processes are carried out at a molecular level, owing in part to the lack of structural evidence describing the coordination of the NHEJ factors with each other and a DNA substrate. Advances in cryo-Electron Microscopy (cryo-EM), allowing for the structural characterization of large protein complexes that would be intractable using other techniques, have led to the visualization several key steps of the NHEJ process, which support a model of sequential assembly of repair factors at the DSB, followed by end-bridging mediated by protein-protein complexes and transition to full synapsis. Here we examine the structural evidence for these models, devoting particular attention to recent work identifying a new NHEJ intermediate state and incorporating new NHEJ factors into the general mechanism. We also discuss the evolving understanding of end-bridging mechanisms in NHEJ and DNA-PKcs's role in mediating DSB repair.
Collapse
Affiliation(s)
- Alex Vogt
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, USA.
| |
Collapse
|
9
|
Rinaldi C, Pizzul P, Casari E, Mangiagalli M, Tisi R, Longhese MP. The Ku complex promotes DNA end-bridging and this function is antagonized by Tel1/ATM kinase. Nucleic Acids Res 2023; 51:1783-1802. [PMID: 36762474 PMCID: PMC9976877 DOI: 10.1093/nar/gkad062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
DNA double-strand breaks (DSBs) can be repaired by either homologous recombination (HR) or non-homologous end-joining (NHEJ). NHEJ is induced by the binding to DSBs of the Ku70-Ku80 heterodimer, which acts as a hub for the recruitment of downstream NHEJ components. An important issue in DSB repair is the maintenance of the DSB ends in close proximity, a function that in yeast involves the MRX complex and Sae2. Here, we provide evidence that Ku contributes to keep the DNA ends tethered to each other. The ku70-C85Y mutation, which increases Ku affinity for DNA and its persistence very close to the DSB ends, enhances DSB end-tethering and suppresses the end-tethering defect of sae2Δ cells. Impairing histone removal around DSBs either by eliminating Tel1 kinase activity or nucleosome remodelers enhances Ku persistence at DSBs and DSB bridging, suggesting that Tel1 antagonizes the Ku function in supporting end-tethering by promoting nucleosome removal and possibly Ku sliding inwards. As Ku provides a block to DSB resection, this Tel1 function can be important to regulate the mode by which DSBs are repaired.
Collapse
Affiliation(s)
- Carlo Rinaldi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Paolo Pizzul
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Erika Casari
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Marco Mangiagalli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Renata Tisi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| |
Collapse
|
10
|
Qin C, Lu YX, Borch T, Yang LL, Li YW, Zhao HM, Hu X, Gao Y, Xiang L, Mo CH, Li QX. Interactions between Extracellular DNA and Perfluoroalkyl Acids (PFAAs) Decrease the Bioavailability of PFAAs in Pakchoi ( Brassica chinensis L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14622-14632. [PMID: 36375011 DOI: 10.1021/acs.jafc.2c04597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are emerging ionic organic pollutants worldwide. Great amounts of extracellular DNA (∼mg/kg) coexist with PFAAs in the environment. However, PFAA-DNA interactions and effects of such interactions have not been well studied. Herein, we used isothermal titration calorimetry (ITC), spectroscopy, and computational simulations to investigate the PFAA-DNA interactions. ITC assays showed that specific binding affinities of PFHxA-DNA, PFOA-DNA, PFNA-DNA, and PFOS-DNA were 5.14 × 105, 3.29 × 105, 1.99 × 105, and 2.18 × 104 L/mol, respectively, which were about 1-2 orders of magnitude stronger than those of PFAAs with human serum albumin. Spectral analysis suggested interactions of PFAAs with adenine (A), cytosine (C), guanine (G), and thymine (T), among which grooves associated with thymine were the major binding sites. Molecular dynamics simulations and quantum chemical calculations suggested that hydrogen bonds and van der Waals forces were the main interaction forces. Such a PFAA-DNA binding decreased the bioavailability of PFAAs in plant seedlings. The findings will help to improve the current understanding of the interaction between PFAAs and biomacromolecules, as well as how such interactions affect the bioavailability of PFAAs.
Collapse
Affiliation(s)
- Chao Qin
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Ying-Xin Lu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Thomas Borch
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado80523, United States
- Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, Colorado80523, United States
| | - Ling-Ling Yang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii96822, United States
| |
Collapse
|
11
|
Çerçi B, Uzay IA, Kara MK, Dinçer P. Clinical trials and promising preclinical applications of CRISPR/Cas gene editing. Life Sci 2022; 312:121204. [PMID: 36403643 DOI: 10.1016/j.lfs.2022.121204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Treatment of genetic disorders by genomic manipulation has been the unreachable goal of researchers for many decades. Although our understanding of the genetic basis of genetic diseases has advanced tremendously in the last few decades, the tools developed for genomic editing were not efficient and practical for their use in the clinical setting until now. The recent advancements in the research of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) systems offered an easy and efficient way to edit the genome and accelerated the research on their potential use in the treatment of genetic disorders. In this review, we summarize the clinical trials that evaluate the CRISPR/Cas systems for treating different genetic diseases and highlight promising preclinical research on CRISPR/Cas mediated treatment of a great diversity of genetic disorders. Ultimately, we discuss the future of CRISPR/Cas mediated genome editing in genetic diseases.
Collapse
Affiliation(s)
- Barış Çerçi
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey.
| | - Ihsan Alp Uzay
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | | | - Pervin Dinçer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
12
|
Talibova G, Bilmez Y, Ozturk S. DNA double-strand break repair in male germ cells during spermatogenesis and its association with male infertility development. DNA Repair (Amst) 2022; 118:103386. [DOI: 10.1016/j.dnarep.2022.103386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
|
13
|
Kolobynina KG, Rapp A, Cardoso MC. Chromatin Ubiquitination Guides DNA Double Strand Break Signaling and Repair. Front Cell Dev Biol 2022; 10:928113. [PMID: 35865631 PMCID: PMC9294282 DOI: 10.3389/fcell.2022.928113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin is the context for all DNA-based molecular processes taking place in the cell nucleus. The initial chromatin structure at the site of the DNA damage determines both, lesion generation and subsequent activation of the DNA damage response (DDR) pathway. In turn, proceeding DDR changes the chromatin at the damaged site and across large fractions of the genome. Ubiquitination, besides phosphorylation and methylation, was characterized as an important chromatin post-translational modification (PTM) occurring at the DNA damage site and persisting during the duration of the DDR. Ubiquitination appears to function as a highly versatile “signal-response” network involving several types of players performing various functions. Here we discuss how ubiquitin modifiers fine-tune the DNA damage recognition and response and how the interaction with other chromatin modifications ensures cell survival.
Collapse
|
14
|
Abstract
The rapid development of CRISPR-Cas genome editing tools has greatly changed the way to conduct research and holds tremendous promise for clinical applications. During genome editing, CRISPR-Cas enzymes induce DNA breaks at the target sites and subsequently the DNA repair pathways are recruited to generate diverse editing outcomes. Besides off-target cleavage, unwanted editing outcomes including chromosomal structural variations and exogenous DNA integrations have recently raised concerns for clinical safety. To eliminate these unwanted editing byproducts, we need to explore the underlying mechanisms for the formation of diverse editing outcomes from the perspective of DNA repair. Here, we describe the involved DNA repair pathways in sealing Cas enzyme-induced DNA double-stranded breaks and discuss the origins and effects of unwanted editing byproducts on genome stability. Furthermore, we propose the potential risk of inhibiting DNA repair pathways to enhance gene editing. The recent combined studies of DNA repair and CRISPR-Cas editing provide a framework for further optimizing genome editing to enhance editing safety.
Collapse
|
15
|
Lei T, Du S, Peng Z, Chen L. Multifaceted regulation and functions of 53BP1 in NHEJ‑mediated DSB repair (Review). Int J Mol Med 2022; 50:90. [PMID: 35583003 PMCID: PMC9162042 DOI: 10.3892/ijmm.2022.5145] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) is crucial for the preservation of genomic integrity and the maintenance of cellular homeostasis. Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism for any type of DNA DSB during the majority of the cell cycle. NHEJ defects regulate tumor sensitivity to ionizing radiation and anti-neoplastic agents, resulting in immunodeficiencies and developmental abnormalities in malignant cells. p53-binding protein 1 (53BP1) is a key mediator involved in DSB repair, which functions to maintain a balance in the repair pathway choices and in preserving genomic stability. 53BP1 promotes DSB repair via NHEJ and antagonizes DNA end overhang resection. At present, novel lines of evidence have revealed the molecular mechanisms underlying the recruitment of 53BP1 and DNA break-responsive effectors to DSB sites, and the promotion of NHEJ-mediated DSB repair via 53BP1, while preventing homologous recombination. In the present review article, recent advances made in the elucidation of the structural and functional characteristics of 53BP1, the mechanisms of 53BP1 recruitment and interaction with the reshaping of the chromatin architecture around DSB sites, the post-transcriptional modifications of 53BP1, and the up- and downstream pathways of 53BP1 are discussed. The present review article also focuses on the application perspectives, current challenges and future directions of 53BP1 research.
Collapse
Affiliation(s)
- Tiantian Lei
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Zhe Peng
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| | - Lin Chen
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| |
Collapse
|
16
|
Matsumoto Y. Development and Evolution of DNA-Dependent Protein Kinase Inhibitors toward Cancer Therapy. Int J Mol Sci 2022; 23:ijms23084264. [PMID: 35457081 PMCID: PMC9032228 DOI: 10.3390/ijms23084264] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/04/2022] Open
Abstract
DNA double-strand break (DSB) is considered the most deleterious type of DNA damage, which is generated by ionizing radiation (IR) and a subset of anticancer drugs. DNA-dependent protein kinase (DNA-PK), which is composed of a DNA-PK catalytic subunit (DNA-PKcs) and Ku80-Ku70 heterodimer, acts as the molecular sensor for DSB and plays a pivotal role in DSB repair through non-homologous end joining (NHEJ). Cells deficient for DNA-PKcs show hypersensitivity to IR and several DNA-damaging agents. Cellular sensitivity to IR and DNA-damaging agents can be augmented by the inhibition of DNA-PK. A number of small molecules that inhibit DNA-PK have been developed. Here, the development and evolution of inhibitors targeting DNA-PK for cancer therapy is reviewed. Significant parts of the inhibitors were developed based on the structural similarity of DNA-PK to phosphatidylinositol 3-kinases (PI3Ks) and PI3K-related kinases (PIKKs), including Ataxia-telangiectasia mutated (ATM). Some of DNA-PK inhibitors, e.g., NU7026 and NU7441, have been used extensively in the studies for cellular function of DNA-PK. Recently developed inhibitors, e.g., M3814 and AZD7648, are in clinical trials and on the way to be utilized in cancer therapy in combination with radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Yoshihisa Matsumoto
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
17
|
Al-Soodani AT, Wu X, Kelp NC, Brown AJ, Roberts SA, Her C. hMSH5 Regulates NHEJ and Averts Excessive Nucleotide Alterations at Repair Joints. Genes (Basel) 2022; 13:genes13040673. [PMID: 35456479 PMCID: PMC9026759 DOI: 10.3390/genes13040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 02/05/2023] Open
Abstract
Inappropriate repair of DNA double-strand breaks (DSBs) leads to genomic instability, cell death, or malignant transformation. Cells minimize these detrimental effects by selectively activating suitable DSB repair pathways in accordance with their underlying cellular context. Here, we report that hMSH5 down-regulates NHEJ and restricts the extent of DSB end processing before rejoining, thereby reducing “excessive” deletions and insertions at repair joints. RNAi-mediated knockdown of hMSH5 led to large nucleotide deletions and longer insertions at the repair joints, while at the same time reducing the average length of microhomology (MH) at repair joints. Conversely, hMSH5 overexpression reduced end-joining activity and increased RPA foci formation (i.e., more stable ssDNA at DSB ends). Furthermore, silencing of hMSH5 delayed 53BP1 chromatin spreading, leading to increased end resection at DSB ends.
Collapse
|
18
|
De Falco M, De Felice M. Take a Break to Repair: A Dip in the World of Double-Strand Break Repair Mechanisms Pointing the Gaze on Archaea. Int J Mol Sci 2021; 22:ijms222413296. [PMID: 34948099 PMCID: PMC8708640 DOI: 10.3390/ijms222413296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
All organisms have evolved many DNA repair pathways to counteract the different types of DNA damages. The detection of DNA damage leads to distinct cellular responses that bring about cell cycle arrest and the induction of DNA repair mechanisms. In particular, DNA double-strand breaks (DSBs) are extremely toxic for cell survival, that is why cells use specific mechanisms of DNA repair in order to maintain genome stability. The choice among the repair pathways is mainly linked to the cell cycle phases. Indeed, if it occurs in an inappropriate cellular context, it may cause genome rearrangements, giving rise to many types of human diseases, from developmental disorders to cancer. Here, we analyze the most recent remarks about the main pathways of DSB repair with the focus on homologous recombination. A thorough knowledge in DNA repair mechanisms is pivotal for identifying the most accurate treatments in human diseases.
Collapse
|
19
|
Chen S, Chen D, Liu B, Haisma HJ. Modulating CRISPR/Cas9 genome-editing activity by small molecules. Drug Discov Today 2021; 27:951-966. [PMID: 34823004 DOI: 10.1016/j.drudis.2021.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022]
Abstract
Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated genome engineering has become a standard procedure for creating genetic and epigenetic changes of DNA molecules in basic biology, biotechnology, and medicine. However, its versatile applications have been hampered by its overall low precise gene modification efficiency and uncontrollable prolonged Cas9 activity. Therefore, overcoming these problems could broaden the therapeutic use of CRISPR/Cas9-based technologies. Here, we review small molecules with the clinical potential to precisely modulate CRISPR/Cas9-mediated genome-editing activity and discuss their mechanisms of action. Based on these data, we suggest that direct-acting small molecules for Cas9 are more suitable for precisely regulating Cas9 activity. These findings provide useful information for the identification of novel small-molecule enhancers and inhibitors of Cas9 and Cas9-associated endonucleases.
Collapse
Affiliation(s)
- Siwei Chen
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, the Netherlands
| | - Deng Chen
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, the Netherlands
| | - Bin Liu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, the Netherlands; RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA(1)
| | - Hidde J Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, the Netherlands.
| |
Collapse
|
20
|
van de Kamp G, Heemskerk T, Kanaar R, Essers J. DNA Double Strand Break Repair Pathways in Response to Different Types of Ionizing Radiation. Front Genet 2021; 12:738230. [PMID: 34659358 PMCID: PMC8514742 DOI: 10.3389/fgene.2021.738230] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/30/2021] [Indexed: 01/12/2023] Open
Abstract
The superior dose distribution of particle radiation compared to photon radiation makes it a promising therapy for the treatment of tumors. However, the cellular responses to particle therapy and especially the DNA damage response (DDR) is not well characterized. Compared to photons, particles are thought to induce more closely spaced DNA lesions instead of isolated lesions. How this different spatial configuration of the DNA damage directs DNA repair pathway usage, is subject of current investigations. In this review, we describe recent insights into induction of DNA damage by particle radiation and how this shapes DNA end processing and subsequent DNA repair mechanisms. Additionally, we give an overview of promising DDR targets to improve particle therapy.
Collapse
Affiliation(s)
- Gerarda van de Kamp
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands.,Oncode Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tim Heemskerk
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands.,Oncode Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands.,Oncode Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Radiation Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
21
|
Crist RC, Arauco-Shapiro G, Zhang A, Reiner BC, Berrettini WH, Doyle GA. Differential expression and transcription factor binding associated with genotype at a pharmacogenetic variant in OPRD1. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2021; 47:581-589. [PMID: 34407719 DOI: 10.1080/00952990.2021.1954189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The functional mechanism is unknown for many genetic variants associated with substance use disorder phenotypes. Rs678849, an intronic variant in the delta-opioid receptor gene (OPRD1), has been found to predict regional brain volume, addiction risk, and the efficacy of buprenorphine/naloxone in treating opioid use disorder. The variant has also been implicated as an expression quantitative trait locus (eQTL) for several genes. OBJECTIVES The objective of this study was to identify functional differences between the two alleles of rs678849 in vitro. We hypothesized that the two alleles of rs678849 would have different effects on transcriptional activity due to differential interactions with transcription factors. METHODS 15bp regions containing the C or T alleles of rs678849 were cloned into luciferase constructs and transfected into BE(2)C neuroblastoma cells to test the effect on transcription. Electrophoretic mobility shift assays (EMSA) using nuclear lysates from BE(2)C cell or human postmortem medial prefrontal cortex were used to identify proteins that differentially bound the two alleles. RESULTS At 24 hours post-transfection, the C allele construct had significantly lower luciferase expression than the T allele construct and empty vector control (ANOVA p < .001). Proteomic analysis and supershift assays identified XRCC6 as a transcription factor specifically binding the C allele, whereas hnRNP D0 was found to specifically bind the T allele. CONCLUSION These functional differences between the C and T alleles may help explain the psychiatric and neurological phenotype differences predicted by rs678849 genotype and the potential role of the variant as an eQTL.
Collapse
Affiliation(s)
- Richard C Crist
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gabriella Arauco-Shapiro
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alexander Zhang
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Benjamin C Reiner
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wade H Berrettini
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Geisinger Clinic, Danville, PA, USA
| | - Glenn A Doyle
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
22
|
Abbasi S, Parmar G, Kelly RD, Balasuriya N, Schild-Poulter C. The Ku complex: recent advances and emerging roles outside of non-homologous end-joining. Cell Mol Life Sci 2021; 78:4589-4613. [PMID: 33855626 PMCID: PMC11071882 DOI: 10.1007/s00018-021-03801-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Since its discovery in 1981, the Ku complex has been extensively studied under multiple cellular contexts, with most work focusing on Ku in terms of its essential role in non-homologous end-joining (NHEJ). In this process, Ku is well-known as the DNA-binding subunit for DNA-PK, which is central to the NHEJ repair process. However, in addition to the extensive study of Ku's role in DNA repair, Ku has also been implicated in various other cellular processes including transcription, the DNA damage response, DNA replication, telomere maintenance, and has since been studied in multiple contexts, growing into a multidisciplinary point of research across various fields. Some advances have been driven by clarification of Ku's structure, including the original Ku crystal structure and the more recent Ku-DNA-PKcs crystallography, cryogenic electron microscopy (cryoEM) studies, and the identification of various post-translational modifications. Here, we focus on the advances made in understanding the Ku heterodimer outside of non-homologous end-joining, and across a variety of model organisms. We explore unique structural and functional aspects, detail Ku expression, conservation, and essentiality in different species, discuss the evidence for its involvement in a diverse range of cellular functions, highlight Ku protein interactions and recent work concerning Ku-binding motifs, and finally, we summarize the clinical Ku-related research to date.
Collapse
Affiliation(s)
- Sanna Abbasi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gursimran Parmar
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Rachel D Kelly
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Nileeka Balasuriya
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
23
|
Zahid S, Seif El Dahan M, Iehl F, Fernandez-Varela P, Le Du MH, Ropars V, Charbonnier JB. The Multifaceted Roles of Ku70/80. Int J Mol Sci 2021; 22:ijms22084134. [PMID: 33923616 PMCID: PMC8073936 DOI: 10.3390/ijms22084134] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
DNA double-strand breaks (DSBs) are accidental lesions generated by various endogenous or exogenous stresses. DSBs are also genetically programmed events during the V(D)J recombination process, meiosis, or other genome rearrangements, and they are intentionally generated to kill cancer during chemo- and radiotherapy. Most DSBs are processed in mammalian cells by the classical nonhomologous end-joining (c-NHEJ) pathway. Understanding the molecular basis of c-NHEJ has major outcomes in several fields, including radiobiology, cancer therapy, immune disease, and genome editing. The heterodimer Ku70/80 (Ku) is a central actor of the c-NHEJ as it rapidly recognizes broken DNA ends in the cell and protects them from nuclease activity. It subsequently recruits many c-NHEJ effectors, including nucleases, polymerases, and the DNA ligase 4 complex. Beyond its DNA repair function, Ku is also involved in several other DNA metabolism processes. Here, we review the structural and functional data on the DNA and RNA recognition properties of Ku implicated in DNA repair and in telomeres maintenance.
Collapse
|
24
|
Ghosh D, Raghavan SC. Nonhomologous end joining: new accessory factors fine tune the machinery. Trends Genet 2021; 37:582-599. [PMID: 33785198 DOI: 10.1016/j.tig.2021.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023]
Abstract
Nonhomologous DNA end joining (NHEJ) is one of the major DNA double-strand break (DSB) repair pathways in eukaryotes. The well-known critical proteins involved in NHEJ include Ku70/80, DNA-PKcs, Artemis, DNA pol λ/μ, DNA ligase IV-XRCC4, and XLF. Recent studies have added a number of new proteins to the NHEJ repertoire namely paralog of XRCC4 and XLF (PAXX), modulator of retroviral infection (MRI)/ cell cycle regulator of NHEJ (CYREN), transactivation response DNA-binding protein (TARDBP) of 43 kDa (TDP-43), intermediate filament family orphan (IFFO1), ERCC excision repair 6 like 2 (ERCC6L2), and RNase H2. PAXX acts as a stabilizing factor for the main NHEJ components. MRI/CYREN seems to play a dual role stimulating NHEJ in the G1 phase of the cell cycle, while inhibiting the pathway in the S and G2 phases. TDP-43 can recruit the ligase IV-XRCC4 complex to the DSB sites and stimulate ligation in neuronal cells. RNase H2 excises out the ribonucleotides inserted during repair by DNA polymerase μ/TdT. This review provides a brief glimpse into how these new partners were discovered and their contribution to the mechanism and regulation of NHEJ.
Collapse
Affiliation(s)
- Dipayan Ghosh
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
25
|
Abstract
Cells activate their DNA damage response (DDR) in response to DNA virus infection, including adenoviruses, papillomaviruses, polyomaviruses, and herpesviruses. In this study, we found that the DDR kinase pathways activated in normal human fibroblasts by herpes simplex virus 1 (HSV-1) input genomic DNA, HSV-1 replicating DNA, and progeny DNA and in uninfected cells treated with etoposide are different. We also found using clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 technology that different host gene products are required for the DDR in uninfected versus infected cells. Individual DDR components can be proviral or antiviral in that ataxia-telangiectasia mutated (ATM) and p53 promote and Mre11 restricts replication of ICP0-null HSV-1, but ICP0 expression eliminates these DDR effects. Thus, in total, these results argue that HSV-1 manipulates the host cell DDR to utilize specific components for its optimal replication while inactivating the antiviral aspects of the DDR.IMPORTANCE We investigated the relationship between the DNA damage response, a collection of vital cellular pathways that repair potentially lethal damage to the genome, and the DNA virus herpes simplex virus 1. We found that infection by the virus triggers the DNA damage response, and key proteins that mediate this response have opposing effects on the replication and production of progeny viruses. Our work provides novel insights into the relationship between DNA virus infection and the cellular response to the viral genome. We speculate that viral gene products modulate this response, providing potentially novel targets for therapeutic intervention against the virus.
Collapse
|
26
|
Thapar R, Wang JL, Hammel M, Ye R, Liang K, Sun C, Hnizda A, Liang S, Maw SS, Lee L, Villarreal H, Forrester I, Fang S, Tsai MS, Blundell TL, Davis AJ, Lin C, Lees-Miller SP, Strick TR, Tainer J. Mechanism of efficient double-strand break repair by a long non-coding RNA. Nucleic Acids Res 2020; 48:10953-10972. [PMID: 33045735 PMCID: PMC7641761 DOI: 10.1093/nar/gkaa784] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022] Open
Abstract
Mechanistic studies in DNA repair have focused on roles of multi-protein DNA complexes, so how long non-coding RNAs (lncRNAs) regulate DNA repair is less well understood. Yet, lncRNA LINP1 is over-expressed in multiple cancers and confers resistance to ionizing radiation and chemotherapeutic drugs. Here, we unveil structural and mechanistic insights into LINP1's ability to facilitate non-homologous end joining (NHEJ). We characterized LINP1 structure and flexibility and analyzed interactions with the NHEJ factor Ku70/Ku80 (Ku) and Ku complexes that direct NHEJ. LINP1 self-assembles into phase-separated condensates via RNA-RNA interactions that reorganize to form filamentous Ku-containing aggregates. Structured motifs in LINP1 bind Ku, promoting Ku multimerization and stabilization of the initial synaptic event for NHEJ. Significantly, LINP1 acts as an effective proxy for PAXX. Collective results reveal how lncRNA effectively replaces a DNA repair protein for efficient NHEJ with implications for development of resistance to cancer therapy.
Collapse
Affiliation(s)
- Roopa Thapar
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing L Wang
- Ecole Normale Supérieure, IBENS, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Ruiqiong Ye
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Alberta, T2N 4N1, Canada
| | - Ke Liang
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Chengcao Sun
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ales Hnizda
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Shikang Liang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Su S Maw
- Biological Systems and Bioengineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Linda Lee
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Alberta, T2N 4N1, Canada
| | | | - Isaac Forrester
- CryoEM Core at Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shujuan Fang
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Alberta, T2N 4N1, Canada
| | - Miaw-Sheue Tsai
- Biological Systems and Bioengineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Anthony J Davis
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Alberta, T2N 4N1, Canada
| | - Terence R Strick
- Ecole Normale Supérieure, IBENS, CNRS, INSERM, PSL Research University, Paris 75005, France
- Programme “Equipe Labellisée’’, Ligue Nationale Contre le Cancer, Paris 75005, France
| | - John A Tainer
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
27
|
Rzeszutek I, Betlej G. The Role of Small Noncoding RNA in DNA Double-Strand Break Repair. Int J Mol Sci 2020; 21:ijms21218039. [PMID: 33126669 PMCID: PMC7663326 DOI: 10.3390/ijms21218039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/01/2023] Open
Abstract
DNA damage is a common phenomenon promoted through a variety of exogenous and endogenous factors. The DNA damage response (DDR) pathway involves a wide range of proteins, and as was indicated, small noncoding RNAs (sncRNAs). These are double-strand break-induced RNAs (diRNAs) and DNA damage response small RNA (DDRNA). Moreover, RNA binding proteins (RBPs) and RNA modifications have also been identified to modulate diRNA and DDRNA function in the DDR process. Several theories have been formulated regarding the synthesis and function of these sncRNAs during DNA repair; nevertheless, these pathways’ molecular details remain unclear. Here, we review the current knowledge regarding the mechanisms of diRNA and DDRNA biosynthesis and discuss the role of sncRNAs in maintaining genome stability.
Collapse
Affiliation(s)
- Iwona Rzeszutek
- Institute of Biology and Biotechnology, Department of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
- Correspondence: ; Tel.: +48-17-851-86-20; Fax: +48-17-851-87-64
| | - Gabriela Betlej
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland;
| |
Collapse
|
28
|
Guo F, Dai Z, Peng W, Zhang S, Zhou J, Ma J, Dong W, Xin F, Zhang W, Jiang M. Metabolic engineering of Pichia pastoris for malic acid production from methanol. Biotechnol Bioeng 2020; 118:357-371. [PMID: 32965690 DOI: 10.1002/bit.27575] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/24/2020] [Accepted: 09/19/2020] [Indexed: 01/03/2023]
Abstract
The application of rational design in reallocating metabolic flux to accumulate desired chemicals is always restricted by the native regulatory network. In this study, recombinant Pichia pastoris was constructed for malic acid production from sole methanol through rational redistribution of metabolic flux. Different malic acid accumulation modules were systematically evaluated and optimized in P. pastoris. The recombinant PP-CM301 could produce 8.55 g/L malic acid from glucose, which showed a 3.45-fold increase compared to the parent strain. To improve the efficiency of site-directed gene knockout, NHEJ-related protein Ku70 was destroyed, whereas leading to the silencing of heterogenous genes. Hence, genes related to by-product generation were deleted via a specially designed FRT/FLP system, which successfully reduced succinic acid and ethanol production. Furthermore, a key node in the methanol assimilation pathway, glucose-6-phosphate isomerase was knocked out to liberate metabolic fluxes trapped in the XuMP cycle, which finally enabled 2.79 g/L malic acid accumulation from sole methanol feeding with nitrogen source optimization. These results will provide guidance and reference for the metabolic engineering of P. pastoris to produce value-added chemicals from methanol.
Collapse
Affiliation(s)
- Feng Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Zhongxue Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Shangjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| |
Collapse
|
29
|
Shibata A, Jeggo PA. Roles for 53BP1 in the repair of radiation-induced DNA double strand breaks. DNA Repair (Amst) 2020; 93:102915. [DOI: 10.1016/j.dnarep.2020.102915] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Reginato G, Cejka P. The MRE11 complex: A versatile toolkit for the repair of broken DNA. DNA Repair (Amst) 2020; 91-92:102869. [PMID: 32480356 DOI: 10.1016/j.dnarep.2020.102869] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
When DNA breaks, the ends need to be stabilized and processed to facilitate subsequent repair, which can occur by either direct but error-prone end-joining with another broken DNA molecule or a more accurate homology-directed repair by the recombination machinery. At the same time, the presence of broken DNA triggers a signaling cascade that regulates the repair events and cellular progression through the cell cycle. The MRE11 nuclease, together with RAD50 and NBS1 forms a complex termed MRN that participates in all these processes. Although MRE11 was first identified more than 20 years ago, deep insights into its mechanism of action and regulation are much more recent. Here we review how MRE11 functions within MRN, and how the complex is further regulated by CtIP and its phosphorylation in a cell cycle dependent manner. We describe how RAD50, NBS1 and CtIP convert MRE11, exhibiting per se a 3'→5' exonuclease activity, into an ensemble that instead degrades primarily the 5'-terminated strand by endonucleolytic cleavage at DNA break sites to generate 3' overhangs, as required for the initiation of homologous recombination. The unique mechanism of DNA end resection by MRN-CtIP makes it a very flexible toolkit to process DNA breaks with a variety of secondary structures and protein blocks. Such a block can also be the Ku heterodimer, and emerging evidence suggests that MRN-CtIP may often need to remove Ku from DNA ends before initiating homologous recombination. Misregulation of DNA break repair results in mutations and chromosome rearrangements that can drive cancer development. Therefore, a detailed understanding of the underlying processes is highly relevant for human health.
Collapse
Affiliation(s)
- Giordano Reginato
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| |
Collapse
|
31
|
Liu W, Palovcak A, Li F, Zafar A, Yuan F, Zhang Y. Fanconi anemia pathway as a prospective target for cancer intervention. Cell Biosci 2020; 10:39. [PMID: 32190289 PMCID: PMC7075017 DOI: 10.1186/s13578-020-00401-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Fanconi anemia (FA) is a recessive genetic disorder caused by biallelic mutations in at least one of 22 FA genes. Beyond its pathological presentation of bone marrow failure and congenital abnormalities, FA is associated with chromosomal abnormality and genomic instability, and thus represents a genetic vulnerability for cancer predisposition. The cancer relevance of the FA pathway is further established with the pervasive occurrence of FA gene alterations in somatic cancers and observations of FA pathway activation-associated chemotherapy resistance. In this article we describe the role of the FA pathway in canonical interstrand crosslink (ICL) repair and possible contributions of FA gene alterations to cancer development. We also discuss the perspectives and potential of targeting the FA pathway for cancer intervention.
Collapse
Affiliation(s)
- Wenjun Liu
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Anna Palovcak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Fang Li
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Alyan Zafar
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Fenghua Yuan
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Yanbin Zhang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| |
Collapse
|
32
|
Pharmacological methods to transcriptionally modulate double-strand break DNA repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 354:187-213. [PMID: 32475473 DOI: 10.1016/bs.ircmb.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is much interest in targeting DNA repair pathways for use in cancer therapy, as the effectiveness of many therapeutic agents relies on their ability to cause damage to DNA, and deficiencies in DSB repair pathways can make cells more sensitive to specific cancer therapies. For example, defects in the double-strand break (DSB) pathways, non-homologous end joining (NHEJ) and homology-directed repair (HDR), induce sensitivity to radiation therapy and poly(ADP)-ribose polymerase (PARP) inhibitors, respectively. However, traditional approaches to inhibit DNA repair through small molecule inhibitors have often been limited by toxicity and poor bioavailability. This review identifies several pharmacologic manipulations that modulate DSB repair by reducing expression of DNA repair factors. A number of pathways have been identified that modulate activity of NHEJ and HDR through this mechanism, including growth and hormonal receptor signaling pathways as well as epigenetic modifiers. We also discuss the effects of anti-angiogenic therapy on DSB repair. Preclinically, these pharmacological manipulations of DNA repair factor expression have been shown to increase sensitivity to specific cancer therapies, including ionizing radiation and PARP inhibitors. When applicable, relevant clinical trials are discussed and areas for future study are identified.
Collapse
|
33
|
Harpprecht L, Baldi S, Schauer T, Schmidt A, Bange T, Robles MS, Kremmer E, Imhof A, Becker PB. A Drosophila cell-free system that senses DNA breaks and triggers phosphorylation signalling. Nucleic Acids Res 2019; 47:7444-7459. [PMID: 31147711 PMCID: PMC6698661 DOI: 10.1093/nar/gkz473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 11/23/2022] Open
Abstract
Preblastoderm Drosophila embryo development is characterized by fast cycles of nuclear divisions. Extracts from these embryos can be used to reconstitute complex chromatin with high efficiency. We now discovered that this chromatin assembly system contains activities that recognize unprotected DNA ends and signal DNA damage through phosphorylation. DNA ends are initially bound by Ku and MRN complexes. Within minutes, the phosphorylation of H2A.V (homologous to γH2A.X) initiates from DNA breaks and spreads over tens of thousands DNA base pairs. The γH2A.V phosphorylation remains tightly associated with the damaged DNA and does not spread to undamaged DNA in the same reaction. This first observation of long-range γH2A.X spreading along damaged chromatin in an in vitro system provides a unique opportunity for mechanistic dissection. Upon further incubation, DNA ends are rendered single-stranded and bound by the RPA complex. Phosphoproteome analyses reveal damage-dependent phosphorylation of numerous DNA-end-associated proteins including Ku70, RPA2, CHRAC16, the exonuclease Rrp1 and the telomer capping complex. Phosphorylation of spindle assembly checkpoint components and of microtubule-associated proteins required for centrosome integrity suggests this cell-free system recapitulates processes involved in the regulated elimination of fatally damaged syncytial nuclei.
Collapse
Affiliation(s)
- Lisa Harpprecht
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Sandro Baldi
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, LMU Munich, 81377 Munich, Germany
| | - Tamas Schauer
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
- Bioinformatics Unit, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Andreas Schmidt
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
- Protein Analysis Unit, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Tanja Bange
- Institute of Medical Psychology, LMU Munich, 80336 Munich, Germany
| | - Maria S Robles
- Institute of Medical Psychology, LMU Munich, 80336 Munich, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, German Research Center for Environmental Health, 81377 Munich, Germany
| | - Axel Imhof
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, LMU Munich, 81377 Munich, Germany
- Protein Analysis Unit, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, LMU Munich, 81377 Munich, Germany
- To whom correspondence should be addressed. Tel: +49 89 2180 75427; Fax: +49 89 2180 75425;
| |
Collapse
|
34
|
Fox BJ, Hockley J, Rigsby P, Dolman C, Meroni PL, Rönnelid J. A WHO Reference Reagent for lupus (anti-dsDNA) antibodies: international collaborative study to evaluate a candidate preparation. Ann Rheum Dis 2019; 78:1677-1680. [PMID: 31488407 PMCID: PMC6900249 DOI: 10.1136/annrheumdis-2019-215845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Antibodies against double-stranded DNA (anti-dsDNA) are a specific biomarker for systemic lupus erythematosus (SLE). The first WHO International Standard (IS) for anti-dsDNA (established in 1985), which was used to assign units to diagnostic tests, was exhausted over a decade ago. METHODS Plasma from a patient with SLE was first evaluated in 42 European laboratories. The plasma was thereafter used by the National Institute for Biological Standards and Control to prepare a candidate WHO reference preparation for lupus (anti-dsDNA) antibodies. That preparation, coded 15/174, was subjected to an international collaborative study, including 36 laboratories from 17 countries. RESULTS The plasma mainly contained anti-dsDNA, other anti-chromatin antibodies and anti-Ku. The international collaborative study showed that the field would benefit from 15/174 as a common reference reagent improving differences in performance between different assays. However, no statistically meaningful overall potency or assay parallelism and commutability could be shown. CONCLUSION 15/174 cannot be considered equivalent to the first IS for anti-dsDNA (Wo/80) and was established as a WHO Reference Reagent for lupus (oligo-specific) anti-dsDNA antibodies with a nominal value of 100 units/ampoule. This preparation is intended to be used to align test methods quantifying levels of anti-dsDNA antibodies.
Collapse
Affiliation(s)
- Bernard J Fox
- Division of Biotherapeutics, National Institute for Biological Standards and Control, Potters Bar, UK
| | - Jason Hockley
- Division of Analytical & Biological Sciences, National Institute for Biological Standards and Control, Potters Bar, UK
| | - Peter Rigsby
- Division of Analytical & Biological Sciences, National Institute for Biological Standards and Control, Potters Bar, UK
| | - Carl Dolman
- Division of Biotherapeutics, National Institute for Biological Standards and Control, Potters Bar, UK
| | - Pier Luigi Meroni
- Immunorheumatology Research Laboratory, Istituto Auxologico Italiano, Milanino, Italy
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
35
|
Knyazhanskaya E, Anisenko A, Shadrina O, Kalinina A, Zatsepin T, Zalevsky A, Mazurov D, Gottikh M. NHEJ pathway is involved in post-integrational DNA repair due to Ku70 binding to HIV-1 integrase. Retrovirology 2019; 16:30. [PMID: 31690330 PMCID: PMC6833283 DOI: 10.1186/s12977-019-0492-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Background HIV-1 integration results in genomic DNA gaps that are repaired by cellular DNA repair pathways. This step of the lentiviral life cycle remains poorly understood despite its crucial importance for successful replication. We and others reported that Ku70 protein of the non-homologous end joining pathway (NHEJ) directly binds HIV-1 integrase (IN). Here, we studied the importance of this interaction for post-integrational gap repair and the recruitment of NHEJ factors in this process. Results We engineered HIV-based pseudovirus with mutant IN defective in Ku70 binding and generated heterozygous Ku70, Ku80 and DNA-PKcs human knockout (KO) cells using CRISPR/Cas9. KO of either of these proteins or inhibition of DNA-PKcs catalytic activity substantially decreased the infectivity of HIV-1 with native IN but not with the mutant one. We used a recently developed qPCR assay for the measurement of gap repair efficiency to show that HIV-1 with mutant IN was defective in DNA post-integrational repair, whereas the wild type virus displayed such a defect only when NHEJ system was disrupted in any way. This effect was present in CRISPR/Cas9 modified 293T cells, in Jurkat and CEM lymphoid lines and in primary human PBMCs. Conclusions Our data provide evidence that IN recruits DNA-PK to the site of HIV-1 post-integrational repair due to Ku70 binding—a novel finding that explains the involvement of DNA-PK despite the absence of free double stranded DNA breaks. In addition, our data clearly indicate the importance of interactions between HIV-1 IN and Ku70 in HIV-1 replication at the post-integrational repair step.
Collapse
Affiliation(s)
- Ekaterina Knyazhanskaya
- Chemistry Department, Lomonosov Moscow State University, Moscow, 199234, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Andrey Anisenko
- Chemistry Department, Lomonosov Moscow State University, Moscow, 199234, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Olga Shadrina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia Kalinina
- Federal State Budgetary Institution « N.N. Blokhin National Medical Research Center of Oncology » of the Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Timofei Zatsepin
- Chemistry Department, Lomonosov Moscow State University, Moscow, 199234, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, 121205, Russia
| | - Arthur Zalevsky
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitriy Mazurov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, RAS, Moscow, 119334, Russia.,NRC Institute of Immunology FMBA of Russia, Moscow, 115478, Russia
| | - Marina Gottikh
- Chemistry Department, Lomonosov Moscow State University, Moscow, 199234, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
36
|
Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol 2019; 20:698-714. [PMID: 31263220 PMCID: PMC7315405 DOI: 10.1038/s41580-019-0152-0] [Citation(s) in RCA: 889] [Impact Index Per Article: 148.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 11/09/2022]
Abstract
The major pathways of DNA double-strand break (DSB) repair are crucial for maintaining genomic stability. However, if deployed in an inappropriate cellular context, these same repair functions can mediate chromosome rearrangements that underlie various human diseases, ranging from developmental disorders to cancer. The two major mechanisms of DSB repair in mammalian cells are non-homologous end joining (NHEJ) and homologous recombination. In this Review, we consider DSB repair-pathway choice in somatic mammalian cells as a series of 'decision trees', and explore how defective pathway choice can lead to genomic instability. Stalled, collapsed or broken DNA replication forks present a distinctive challenge to the DSB repair system. Emerging evidence suggests that the 'rules' governing repair-pathway choice at stalled replication forks differ from those at replication-independent DSBs.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Rajula Elango
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Nicholas A Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Plugged into the Ku-DNA hub: The NHEJ network. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 147:62-76. [PMID: 30851288 DOI: 10.1016/j.pbiomolbio.2019.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022]
Abstract
In vertebrates, double-strand breaks in DNA are primarily repaired by Non-Homologous End-Joining (NHEJ). The ring-shaped Ku heterodimer rapidly senses and threads onto broken DNA ends forming a recruiting hub. Through protein-protein contacts eventually reinforced by protein-DNA interactions, the Ku-DNA hub attracts a series of specialized proteins with scaffolding and/or enzymatic properties. To shed light on these dynamic interplays, we review here current knowledge on proteins directly interacting with Ku and on the contact points involved, with a particular accent on the different classes of Ku-binding motifs identified in several Ku partners. An integrated structural model of the core NHEJ network at the synapsis step is proposed.
Collapse
|
38
|
Evangelista FM, Maglott-Roth A, Stierle M, Brino L, Soutoglou E, Tora L. Transcription and mRNA export machineries SAGA and TREX-2 maintain monoubiquitinated H2B balance required for DNA repair. J Cell Biol 2018; 217:3382-3397. [PMID: 30054449 PMCID: PMC6168256 DOI: 10.1083/jcb.201803074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/19/2018] [Accepted: 06/28/2018] [Indexed: 11/22/2022] Open
Abstract
The SAGA coactivator complex and the nuclear pore–associated TREX-2 complex couple transcription with mRNA export. Evangelista et al. identify a novel interplay between TREX-2 and the deubiquitination module of SAGA that is necessary to maintain monoubiquitinated H2B levels required for efficient DNA repair through homologous recombination. DNA repair is critical to maintaining genome integrity, and its dysfunction can cause accumulation of unresolved damage that leads to genomic instability. The Spt–Ada–Gcn5 acetyltransferase (SAGA) coactivator complex and the nuclear pore–associated transcription and export complex 2 (TREX-2) couple transcription with mRNA export. In this study, we identify a novel interplay between human TREX-2 and the deubiquitination module (DUBm) of SAGA required for genome stability. We find that the scaffold subunit of TREX-2, GANP, positively regulates DNA repair through homologous recombination (HR). In contrast, DUBm adaptor subunits ENY2 and ATXNL3 are required to limit unscheduled HR. These opposite roles are achieved through monoubiquitinated histone H2B (H2Bub1). Interestingly, the activity of the DUBm of SAGA on H2Bub1 is dependent on the integrity of the TREX-2 complex. Thus, we describe the existence of a functional interaction between human TREX-2 and SAGA DUBm that is key to maintaining the H2B/HB2ub1 balance needed for efficient repair and HR.
Collapse
Affiliation(s)
- Federica M Evangelista
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Anne Maglott-Roth
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Matthieu Stierle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Laurent Brino
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
39
|
Gobbini E, Cassani C, Vertemara J, Wang W, Mambretti F, Casari E, Sung P, Tisi R, Zampella G, Longhese MP. The MRX complex regulates Exo1 resection activity by altering DNA end structure. EMBO J 2018; 37:embj.201798588. [PMID: 29925516 DOI: 10.15252/embj.201798588] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 01/19/2023] Open
Abstract
Homologous recombination is triggered by nucleolytic degradation (resection) of DNA double-strand breaks (DSBs). DSB resection requires the Mre11-Rad50-Xrs2 (MRX) complex, which promotes the activity of Exo1 nuclease through a poorly understood mechanism. Here, we describe the Mre11-R10T mutant variant that accelerates DSB resection compared to wild-type Mre11 by potentiating Exo1-mediated processing. This increased Exo1 resection activity leads to a decreased association of the Ku complex to DSBs and an enhanced DSB resection in G1, indicating that Exo1 has a direct function in preventing Ku association with DSBs. Molecular dynamics simulations show that rotation of the Mre11 capping domains is able to induce unwinding of double-strand DNA (dsDNA). The R10T substitution causes altered orientation of the Mre11 capping domain that leads to persistent melting of the dsDNA end. We propose that MRX creates a specific DNA end structure that promotes Exo1 resection activity by facilitating the persistence of this nuclease on the DSB ends, uncovering a novel MRX function in DSB resection.
Collapse
Affiliation(s)
- Elisa Gobbini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Corinne Cassani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Jacopo Vertemara
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Weibin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Fabiana Mambretti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Erika Casari
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Renata Tisi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Giuseppe Zampella
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| |
Collapse
|
40
|
Pannunzio NR, Watanabe G, Lieber MR. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem 2017; 293:10512-10523. [PMID: 29247009 DOI: 10.1074/jbc.tm117.000374] [Citation(s) in RCA: 355] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nonhomologous DNA end-joining (NHEJ) is the predominant double-strand break (DSB) repair pathway throughout the cell cycle and accounts for nearly all DSB repair outside of the S and G2 phases. NHEJ relies on Ku to thread onto DNA termini and thereby improve the affinity of the NHEJ enzymatic components consisting of polymerases (Pol μ and Pol λ), a nuclease (the Artemis·DNA-PKcs complex), and a ligase (XLF·XRCC4·Lig4 complex). Each of the enzymatic components is distinctive for its versatility in acting on diverse incompatible DNA end configurations coupled with a flexibility in loading order, resulting in many possible junctional outcomes from one DSB. DNA ends can either be directly ligated or, if the ends are incompatible, processed until a ligatable configuration is achieved that is often stabilized by up to 4 bp of terminal microhomology. Processing of DNA ends results in nucleotide loss or addition, explaining why DSBs repaired by NHEJ are rarely restored to their original DNA sequence. Thus, NHEJ is a single pathway with multiple enzymes at its disposal to repair DSBs, resulting in a diversity of repair outcomes.
Collapse
Affiliation(s)
- Nicholas R Pannunzio
- From the Departments of Pathology, Biochemistry and Molecular Biology, and Molecular Microbiology and Immunology, Section of Molecular and Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| | - Go Watanabe
- From the Departments of Pathology, Biochemistry and Molecular Biology, and Molecular Microbiology and Immunology, Section of Molecular and Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| | - Michael R Lieber
- From the Departments of Pathology, Biochemistry and Molecular Biology, and Molecular Microbiology and Immunology, Section of Molecular and Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| |
Collapse
|
41
|
Trigg BJ, Lauer KB, Fernandes Dos Santos P, Coleman H, Balmus G, Mansur DS, Ferguson BJ. The Non-Homologous End Joining Protein PAXX Acts to Restrict HSV-1 Infection. Viruses 2017; 9:E342. [PMID: 29144403 PMCID: PMC5707549 DOI: 10.3390/v9110342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 01/27/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) has extensive interactions with the host DNA damage response (DDR) machinery that can be either detrimental or beneficial to the virus. Proteins in the homologous recombination pathway are known to be required for efficient replication of the viral genome, while different members of the classical non-homologous end-joining (c-NHEJ) pathway have opposing effects on HSV-1 infection. Here, we have investigated the role of the recently-discovered c-NHEJ component, PAXX (Paralogue of XRCC4 and XLF), which we found to be excluded from the nucleus during HSV-1 infection. We have established that cells lacking PAXX have an intact innate immune response to HSV-1 but show a defect in viral genome replication efficiency. Counterintuitively, PAXX-/- cells were able to produce greater numbers of infectious virions, indicating that PAXX acts to restrict HSV-1 infection in a manner that is different from other c-NHEJ factors.
Collapse
Affiliation(s)
- Ben J Trigg
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Katharina B Lauer
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Paula Fernandes Dos Santos
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Santa Catarina 88040-900, Brazil.
| | - Heather Coleman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Gabriel Balmus
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.
- Wellcome Trust Sanger Institute, Cambridge CB10 1HH, UK.
| | - Daniel S Mansur
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Santa Catarina 88040-900, Brazil.
| | - Brian J Ferguson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
42
|
Kelso AA, Waldvogel SM, Luthman AJ, Sehorn MG. Homologous Recombination in Protozoan Parasites and Recombinase Inhibitors. Front Microbiol 2017; 8:1716. [PMID: 28936205 PMCID: PMC5594099 DOI: 10.3389/fmicb.2017.01716] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/24/2017] [Indexed: 01/30/2023] Open
Affiliation(s)
- Andrew A. Kelso
- Department of Genetics and Biochemistry, Clemson University, ClemsonSC, United States
- Eukaryotic Pathogens Innovation Center, Clemson University, ClemsonSC, United States
| | - Sarah M. Waldvogel
- Department of Genetics and Biochemistry, Clemson University, ClemsonSC, United States
| | - Adam J. Luthman
- Department of Genetics and Biochemistry, Clemson University, ClemsonSC, United States
| | - Michael G. Sehorn
- Department of Genetics and Biochemistry, Clemson University, ClemsonSC, United States
- Eukaryotic Pathogens Innovation Center, Clemson University, ClemsonSC, United States
- Center for Optical Materials Science and Engineering Technologies, Clemson University, ClemsonSC, United States
- Clemson University School of Health Research, Clemson University, ClemsonSC, United States
- *Correspondence: Michael G. Sehorn,
| |
Collapse
|
43
|
Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Mol Cell 2017; 66:801-817. [PMID: 28622525 DOI: 10.1016/j.molcel.2017.05.015] [Citation(s) in RCA: 1288] [Impact Index Per Article: 161.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/28/2017] [Accepted: 05/16/2017] [Indexed: 01/09/2023]
Abstract
In vertebrate cells, the DNA damage response is controlled by three related kinases: ATM, ATR, and DNA-PK. It has been 20 years since the cloning of ATR, the last of the three to be identified. During this time, our understanding of how these kinases regulate DNA repair and associated events has grown profoundly, although major questions remain unanswered. Here, we provide a historical perspective of their discovery and discuss their established functions in sensing and responding to genotoxic stress. We also highlight what is known regarding their structural similarities and common mechanisms of regulation, as well as emerging non-canonical roles and how our knowledge of ATM, ATR, and DNA-PK is being translated to benefit human health.
Collapse
Affiliation(s)
- Andrew N Blackford
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | - Stephen P Jackson
- Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
44
|
Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 2017; 18:495-506. [PMID: 28512351 DOI: 10.1038/nrm.2017.48] [Citation(s) in RCA: 1083] [Impact Index Per Article: 135.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA double-strand breaks (DSBs) are the most dangerous type of DNA damage because they can result in the loss of large chromosomal regions. In all mammalian cells, DSBs that occur throughout the cell cycle are repaired predominantly by the non-homologous DNA end joining (NHEJ) pathway. Defects in NHEJ result in sensitivity to ionizing radiation and the ablation of lymphocytes. The NHEJ pathway utilizes proteins that recognize, resect, polymerize and ligate the DNA ends in a flexible manner. This flexibility permits NHEJ to function on a wide range of DNA-end configurations, with the resulting repaired DNA junctions often containing mutations. In this Review, we discuss the most recent findings regarding the relative involvement of the different NHEJ proteins in the repair of various DNA-end configurations. We also discuss the shunting of DNA-end repair to the auxiliary pathways of alternative end joining (a-EJ) or single-strand annealing (SSA) and the relevance of these different pathways to human disease.
Collapse
|
45
|
Fielder E, von Zglinicki T, Jurk D. The DNA Damage Response in Neurons: Die by Apoptosis or Survive in a Senescence-Like State? J Alzheimers Dis 2017; 60:S107-S131. [PMID: 28436392 DOI: 10.3233/jad-161221] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons are exposed to high levels of DNA damage from both physiological and pathological sources. Neurons are post-mitotic and their loss cannot be easily recovered from; to cope with DNA damage a complex pathway called the DNA damage response (DDR) has evolved. This recognizes the damage, and through kinases such as ataxia-telangiectasia mutated (ATM) recruits and activates downstream factors that mediate either apoptosis or survival. This choice between these opposing outcomes integrates many inputs primarily through a number of key cross-road proteins, including ATM, p53, and p21. Evidence of re-entry into the cell-cycle by neurons can be seen in aging and diseases such as Alzheimer's disease. This aberrant cell-cycle re-entry is lethal and can lead to the apoptotic death of the neuron. Many downstream factors of the DDR promote cell-cycle arrest in response to damage and appear to protect neurons from apoptotic death. However, neurons surviving with a persistently activated DDR show all the features known from cell senescence; including metabolic dysregulation, mitochondrial dysfunction, and the hyper-production of pro-oxidant, pro-inflammatory and matrix-remodeling factors. These cells, termed senescence-like neurons, can negatively influence the extracellular environment and may promote induction of the same phenotype in surrounding cells, as well as driving aging and age-related diseases. Recently developed interventions targeting the DDR and/or the senescent phenotype in a range of non-neuronal tissues are being reviewed as they might become of therapeutic interest in neurodegenerative diseases.
Collapse
Affiliation(s)
- Edward Fielder
- The Ageing Biology Centre and Institute for Cell and Molecular Biology, Newcastle University, Newcastle Upon Tyne, UK
| | - Thomas von Zglinicki
- The Ageing Biology Centre and Institute for Cell and Molecular Biology, Newcastle University, Newcastle Upon Tyne, UK
| | - Diana Jurk
- The Ageing Biology Centre and Institute for Cell and Molecular Biology, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
46
|
Chang HHY, Watanabe G, Gerodimos CA, Ochi T, Blundell TL, Jackson SP, Lieber MR. Different DNA End Configurations Dictate Which NHEJ Components Are Most Important for Joining Efficiency. J Biol Chem 2016; 291:24377-24389. [PMID: 27703001 PMCID: PMC5114395 DOI: 10.1074/jbc.m116.752329] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/26/2016] [Indexed: 02/02/2023] Open
Abstract
The nonhomologous DNA end-joining (NHEJ) pathway is a key mechanism for repairing dsDNA breaks that occur often in eukaryotic cells. In the simplest model, these breaks are first recognized by Ku, which then interacts with other NHEJ proteins to improve their affinity at DNA ends. These include DNA-PKcs and Artemis for trimming the DNA ends; DNA polymerase μ and λ to add nucleotides; and the DNA ligase IV complex to ligate the ends with the additional factors, XRCC4 (X-ray repair cross-complementing protein 4), XLF (XRCC4-like factor/Cernunos), and PAXX (paralog of XRCC4 and XLF). In vivo studies have demonstrated the degrees of importance of these NHEJ proteins in the mechanism of repair of dsDNA breaks, but interpretations can be confounded by other cellular processes. In vitro studies with NHEJ proteins have been performed to evaluate the nucleolytic resection, polymerization, and ligation steps, but a complete system has been elusive. Here we have developed a NHEJ reconstitution system that includes the nuclease, polymerase, and ligase components to evaluate relative NHEJ efficiency and analyze ligated junctional sequences for various types of DNA ends, including blunt, 5' overhangs, and 3' overhangs. We find that different dsDNA end structures have differential dependence on these enzymatic components. The dependence of some end joining on only Ku and XRCC4·DNA ligase IV allows us to formulate a physical model that incorporates nuclease and polymerase components as needed.
Collapse
Affiliation(s)
- Howard H Y Chang
- From the Departments of Pathology, Biochemistry & Molecular Biology, and Molecular Microbiology & Immunology and the Section of Molecular & Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033 and
| | - Go Watanabe
- From the Departments of Pathology, Biochemistry & Molecular Biology, and Molecular Microbiology & Immunology and the Section of Molecular & Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033 and
| | - Christina A Gerodimos
- From the Departments of Pathology, Biochemistry & Molecular Biology, and Molecular Microbiology & Immunology and the Section of Molecular & Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033 and
| | - Takashi Ochi
- the Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Tom L Blundell
- the Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Stephen P Jackson
- the Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Michael R Lieber
- From the Departments of Pathology, Biochemistry & Molecular Biology, and Molecular Microbiology & Immunology and the Section of Molecular & Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033 and.
| |
Collapse
|
47
|
Anisenko AN, Knyazhanskaya ES, Zatsepin TS, Gottikh MB. Human Ku70 protein binds hairpin RNA and double stranded DNA through two different sites. Biochimie 2016; 132:85-93. [PMID: 27825805 DOI: 10.1016/j.biochi.2016.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023]
Abstract
Human protein Ku usually functions in the cell as a complex of two subunits, Ku70 and Ku80. The Ku heterodimer plays a key role in the non-homologous end joining DNA repair pathway by specifically recognizing the DNA ends at the site of the lesion. The binding of the Ku heterodimer to DNA has been well-studied, and its interactions with RNA have been also described. However, Ku70 subunit is known to have independent DNA binding capability, which is less characterized. RNA binding properties of Ku70 have not been yet specially studied. We have prepared recombinant full-length Ku70 and a set of its truncated mutants in E. coli, and studied their interactions with nucleic acids of various structures: linear single- and double-stranded DNA and RNA, as well as closed circular DNA and hairpin RNA. Ku70 has demonstrated a high affinity binding to double stranded DNA and hairpin RNA with a certain structure only. Interestingly, in contrast to the Ku heterodimer, Ku70 is found to interact with closed circular DNA. We also show for the first time that Ku70 employs two different sites for DNA and RNA binding. The double-stranded DNA is recognized by the C-terminal part of Ku70 including SAP domain as it has been earlier demonstrated, whereas hairpin RNA binding is provided by amino acids 251-438.
Collapse
Affiliation(s)
- Andrey N Anisenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.
| | | | - Timofey S Zatsepin
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Russia.
| | - Marina B Gottikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
48
|
Vriend LEM, Prakash R, Chen CC, Vanoli F, Cavallo F, Zhang Y, Jasin M, Krawczyk PM. Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks. Nucleic Acids Res 2016; 44:5204-17. [PMID: 27001513 PMCID: PMC4914091 DOI: 10.1093/nar/gkw179] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 12/29/2022] Open
Abstract
DNA double-strand breaks (DSBs) are known to be powerful inducers of homologous recombination (HR), but single-strand breaks (nicks) have also been shown to trigger HR. Both DSB- and nick-induced HR ((nick)HR) are exploited in advanced genome-engineering approaches based on the bacterial RNA-guided nuclease Cas9. However, the mechanisms of (nick)HR are largely unexplored. Here, we applied Cas9 nickases to study (nick)HR in mammalian cells. We find that (nick)HR is unaffected by inhibition of major damage signaling kinases and that it is not suppressed by nonhomologous end-joining (NHEJ) components, arguing that nick processing does not require a DSB intermediate to trigger HR. Relative to a single nick, nicking both strands enhances HR, consistent with a DSB intermediate, even when nicks are induced up to ∼1kb apart. Accordingly, HR and NHEJ compete for repair of these paired nicks, but, surprisingly, only when 5' overhangs or blunt ends can be generated. Our study advances the understanding of molecular mechanisms driving nick and paired-nick repair in mammalian cells and clarify phenomena associated with Cas9-mediated genome editing.
Collapse
Affiliation(s)
- Lianne E M Vriend
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam, 1105 AZ, The Netherlands Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Rohit Prakash
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Chun-Chin Chen
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA Weill Cornell Graduate School of Medical Sciences, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Fabio Vanoli
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Francesca Cavallo
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Yu Zhang
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA Weill Cornell Graduate School of Medical Sciences, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Przemek M Krawczyk
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam, 1105 AZ, The Netherlands Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
49
|
Chang HHY, Lieber MR. Structure-Specific nuclease activities of Artemis and the Artemis: DNA-PKcs complex. Nucleic Acids Res 2016; 44:4991-7. [PMID: 27198222 PMCID: PMC4914130 DOI: 10.1093/nar/gkw456] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/06/2016] [Indexed: 12/23/2022] Open
Abstract
Artemis is a vertebrate nuclease with both endo- and exonuclease activities that acts on a wide range of nucleic acid substrates. It is the main nuclease in the non-homologous DNA end-joining pathway (NHEJ). Not only is Artemis important for the repair of DNA double-strand breaks (DSBs) in NHEJ, it is essential in opening the DNA hairpin intermediates that are formed during V(D)J recombination. Thus, humans with Artemis deficiencies do not have T- or B-lymphocytes and are diagnosed with severe combined immunodeficiency (SCID). While Artemis is the only vertebrate nuclease capable of opening DNA hairpins, it has also been found to act on other DNA substrates that share common structural features. Here, we discuss the key structural features that all Artemis DNA substrates have in common, thus providing a basis for understanding how this structure-specific nuclease recognizes its DNA targets.
Collapse
Affiliation(s)
- Howard H Y Chang
- University of Southern California Keck School of Medicine, Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA
| | - Michael R Lieber
- University of Southern California Keck School of Medicine, Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA
| |
Collapse
|
50
|
End-processing nucleases and phosphodiesterases: An elite supporting cast for the non-homologous end joining pathway of DNA double-strand break repair. DNA Repair (Amst) 2016; 43:57-68. [PMID: 27262532 DOI: 10.1016/j.dnarep.2016.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 11/20/2022]
Abstract
Nonhomologous end joining (NHEJ) is an error-prone DNA double-strand break repair pathway that is active throughout the cell cycle. A substantial fraction of NHEJ repair events show deletions and, less often, insertions in the repair joints, suggesting an end-processing step comprising the removal of mismatched or damaged nucleotides by nucleases and other phosphodiesterases, as well as subsequent strand extension by polymerases. A wide range of nucleases, including Artemis, Metnase, APLF, Mre11, CtIP, APE1, APE2 and WRN, are biochemically competent to carry out such double-strand break end processing, and have been implicated in NHEJ by at least circumstantial evidence. Several additional DNA end-specific phosphodiesterases, including TDP1, TDP2 and aprataxin are available to resolve various non-nucleotide moieties at DSB ends. This review summarizes the biochemical specificities of these enzymes and the evidence for their participation in the NHEJ pathway.
Collapse
|