1
|
Oh S, Mai XL, Kim J, de Guzman ACV, Lee JY, Park S. Glycerol 3-phosphate dehydrogenases (1 and 2) in cancer and other diseases. Exp Mol Med 2024; 56:1066-1079. [PMID: 38689091 PMCID: PMC11148179 DOI: 10.1038/s12276-024-01222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 05/02/2024] Open
Abstract
The glycerol 3-phosphate shuttle (GPS) is composed of two different enzymes: cytosolic NAD+-linked glycerol 3-phosphate dehydrogenase 1 (GPD1) and mitochondrial FAD-linked glycerol 3-phosphate dehydrogenase 2 (GPD2). These two enzymes work together to act as an NADH shuttle for mitochondrial bioenergetics and function as an important bridge between glucose and lipid metabolism. Since these genes were discovered in the 1960s, their abnormal expression has been described in various metabolic diseases and tumors. Nevertheless, it took a long time until scientists could investigate the causal relationship of these enzymes in those pathophysiological conditions. To date, numerous studies have explored the involvement and mechanisms of GPD1 and GPD2 in cancer and other diseases, encompassing reports of controversial and non-conventional mechanisms. In this review, we summarize and update current knowledge regarding the functions and effects of GPS to provide an overview of how the enzymes influence disease conditions. The potential and challenges of developing therapeutic strategies targeting these enzymes are also discussed.
Collapse
Affiliation(s)
- Sehyun Oh
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Xuan Linh Mai
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Jiwoo Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Arvie Camille V de Guzman
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Ji Yun Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea.
| | - Sunghyouk Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
2
|
Zhou W, Simic P, Zhou IY, Caravan P, Vela Parada X, Wen D, Washington OL, Shvedova M, Pierce KA, Clish CB, Mannstadt M, Kobayashi T, Wein MN, Jüppner H, Rhee EP. Kidney glycolysis serves as a mammalian phosphate sensor that maintains phosphate homeostasis. J Clin Invest 2023; 133:e164610. [PMID: 36821389 PMCID: PMC10104895 DOI: 10.1172/jci164610] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
How phosphate levels are detected in mammals is unknown. The bone-derived hormone fibroblast growth factor 23 (FGF23) lowers blood phosphate levels by reducing kidney phosphate reabsorption and 1,25(OH)2D production, but phosphate does not directly stimulate bone FGF23 expression. Using PET scanning and LC-MS, we found that phosphate increases kidney-specific glycolysis and synthesis of glycerol-3-phosphate (G-3-P), which then circulates to bone to trigger FGF23 production. Further, we found that G-3-P dehydrogenase 1 (Gpd1), a cytosolic enzyme that synthesizes G-3-P and oxidizes NADH to NAD+, is required for phosphate-stimulated G-3-P and FGF23 production and prevention of hyperphosphatemia. In proximal tubule cells, we found that phosphate availability is substrate-limiting for glycolysis and G-3-P production and that increased glycolysis and Gpd1 activity are coupled through cytosolic NAD+ recycling. Finally, we show that the type II sodium-dependent phosphate cotransporter Npt2a, which is primarily expressed in the proximal tubule, conferred kidney specificity to phosphate-stimulated G-3-P production. Importantly, exogenous G-3-P stimulated FGF23 production when Npt2a or Gpd1 were absent, confirming that it was the key circulating factor downstream of glycolytic phosphate sensing in the kidney. Together, these findings place glycolysis at the nexus of mineral and energy metabolism and identify a kidney-bone feedback loop that controls phosphate homeostasis.
Collapse
Affiliation(s)
- Wen Zhou
- Nephrology Division, Department of Medicine, and
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Petra Simic
- Nephrology Division, Department of Medicine, and
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Xavier Vela Parada
- Nephrology Division, Department of Medicine, and
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Donghai Wen
- Nephrology Division, Department of Medicine, and
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Onica L. Washington
- Nephrology Division, Department of Medicine, and
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Shvedova
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kerry A. Pierce
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael Mannstadt
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tatsuya Kobayashi
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marc N. Wein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eugene P. Rhee
- Nephrology Division, Department of Medicine, and
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
GPD1 Specifically Marks Dormant Glioma Stem Cells with a Distinct Metabolic Profile. Cell Stem Cell 2019; 25:241-257.e8. [DOI: 10.1016/j.stem.2019.06.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/15/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022]
|
4
|
Mest and Sfrp5 are biomarkers for healthy adipose tissue. Biochimie 2015; 124:124-133. [PMID: 26001362 DOI: 10.1016/j.biochi.2015.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/09/2015] [Indexed: 01/17/2023]
Abstract
Obesity depends on a close interplay between genetic and environmental factors. However, it is unknown how these factors interact to cause changes in the obese condition during the progression of obesity from the neonatal to the aged individual. We have utilized Mest and Sfrp5 genes, two genes highly correlated with adipose tissue expansion in diet-induced obesity, to characterize the obese condition during development of 2 genetic models of obesity. A model for the early onset of obesity was presented by leptin-deficient mice (ob/ob), whereas late onset of obesity was induced with high-fat diet (HFD) consumption in C57BL/6J mice with inherent risk of obesity (DIO). We correlated obese and diabetic phenotypes with Mest and Sfrp5 gene expression profiles in subcutaneous fat during pre-weaning, pre-adulthood and adulthood. A rapid development of obesity began in ob/ob mice immediately after weaning at 21 days of age, whereas the obesity of DIO mice was not evident until after 2 months of age. Even after 5 months of HFD treatment, the adiposity index of DIO mice was lower than in ob/ob mice at 2 months of age. In both obesity models, the expression of Mest and Sfrp5 genes increased in parallel with fat mass expansion; however, gene expression proceeded to decrease when the adiposity reached a plateau. The reduction in the expression of genes of caveolae structure and glucose metabolism were also suppressed in the aging adipose tissue. The analysis of fat mass and adipocyte size suggests that reduction in Mest and Sfrp5 is more sensitive to the age of the fat than its morphology. The balance of factors controlling fat deposition can be evaluated in part by the differential expression profiles of Mest and Sfrp5 genes with functions linked to fat deposition as long as there is an active accumulation of fat mass.
Collapse
|
5
|
Wu JW, Yang H, Wang SP, Soni KG, Brunel-Guitton C, Mitchell GA. Inborn errors of cytoplasmic triglyceride metabolism. J Inherit Metab Dis 2015; 38:85-98. [PMID: 25300978 DOI: 10.1007/s10545-014-9767-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 08/25/2014] [Indexed: 01/14/2023]
Abstract
Triglyceride (TG) synthesis, storage, and degradation together constitute cytoplasmic TG metabolism (CTGM). CTGM is mostly studied in adipocytes, where starting from glycerol-3-phosphate and fatty acyl (FA)-coenzyme A (CoA), TGs are synthesized then stored in cytoplasmic lipid droplets. TG hydrolysis proceeds sequentially, producing FAs and glycerol. Several reactions of CTGM can be catalyzed by more than one enzyme, creating great potential for complex tissue-specific physiology. In adipose tissue, CTGM provides FA as a systemic energy source during fasting and is related to obesity. Inborn errors and mouse models have demonstrated the importance of CTGM for non-adipose tissues, including skeletal muscle, myocardium and liver, because steatosis and dysfunction can occur. We discuss known inborn errors of CTGM, including deficiencies of: AGPAT2 (a form of generalized lipodystrophy), LPIN1 (childhood rhabdomyolysis), LPIN2 (an inflammatory condition, Majeed syndrome, described elsewhere in this issue), DGAT1 (protein loosing enteropathy), perilipin 1 (partial lipodystrophy), CGI-58 (gene ABHD5, neutral lipid storage disease (NLSD) with ichthyosis and "Jordan's anomaly" of vacuolated polymorphonuclear leukocytes), adipose triglyceride lipase (ATGL, gene PNPLA2, NLSD with myopathy, cardiomyopathy and Jordan's anomaly), hormone-sensitive lipase (HSL, gene LIPE, hypertriglyceridemia, and insulin resistance). Two inborn errors of glycerol metabolism are known: glycerol kinase (GK, causing pseudohypertriglyceridemia) and glycerol-3-phosphate dehydrogenase (GPD1, childhood hepatic steatosis). Mouse models often resemble human phenotypes but may diverge markedly. Inborn errors have been described for less than one-third of CTGM enzymes, and new phenotypes may yet be identified.
Collapse
Affiliation(s)
- Jiang Wei Wu
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014; 510:542-6. [PMID: 24847880 PMCID: PMC4074244 DOI: 10.1038/nature13270] [Citation(s) in RCA: 916] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 03/21/2014] [Indexed: 12/24/2022]
Abstract
Metformin is considered to be one of the most effective therapeutics for the treatment of type 2 diabetes (T2D) since it specifically reduces hepatic gluconeogenesis without increasing insulin secretion, inducing weight gain, or posing a risk of hypoglycemia1,2. For over half a century, this agent has been prescribed to T2D patients worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase (mGPD), resulting in an altered hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis. Acute and chronic low-dose metformin treatment effectively reduced endogenous glucose production (EGP), while increasing cytosolic redox and decreasing mitochondrial redox states. Antisense oligonucleotide (ASO) knockdown of hepatic mGPD in rats resulted in a phenotype akin to chronic metformin treatment, and abrogated metformin-mediated increases in cytosolic redox state, decrease in plasma glucose concentrations and inhibition of EGP. These findings were replicated in whole-body mGPD knockout mice. These results have significant implications for understanding the mechanism of metformin’s blood glucose lowering effects and provide a novel therapeutic target for T2D.
Collapse
|
7
|
Sato T, Morita A, Mori N, Miura S. The role of glycerol-3-phosphate dehydrogenase 1 in the progression of fatty liver after acute ethanol administration in mice. Biochem Biophys Res Commun 2014; 444:525-30. [PMID: 24472537 DOI: 10.1016/j.bbrc.2014.01.096] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 01/19/2014] [Indexed: 12/20/2022]
Abstract
Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2h and was 1.7-fold greater than that observed in the control group after 6h. The up-regulation of GPD1 began 2h after administering ethanol, and significantly increased 6h later with the concomitant escalation in the glycolytic gene expression. The incorporation of (14)C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation.
Collapse
Affiliation(s)
- Tomoki Sato
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Akihito Morita
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Nobuko Mori
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai 599-8570, Japan.
| | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
8
|
Transient infantile hypertriglyceridemia, fatty liver, and hepatic fibrosis caused by mutated GPD1, encoding glycerol-3-phosphate dehydrogenase 1. Am J Hum Genet 2012; 90:49-60. [PMID: 22226083 DOI: 10.1016/j.ajhg.2011.11.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/16/2011] [Accepted: 11/29/2011] [Indexed: 01/24/2023] Open
Abstract
The molecular basis for primary hereditary hypertriglyceridemia has been identified in fewer than 5% of cases. Investigation of monogenic dyslipidemias has the potential to expose key metabolic pathways. We describe a hitherto unreported disease in ten individuals manifesting as moderate to severe transient childhood hypertriglyceridemia and fatty liver followed by hepatic fibrosis and the identification of the mutated gene responsible for this condition. We performed SNP array-based homozygosity mapping and found a single large continuous segment of homozygosity on chromosomal region 12q13.12. The candidate region contained 35 genes that are listed in Online Mendelian Inheritance in Man (OMIM) and 27 other genes. We performed candidate gene sequencing and screened both clinically affected individuals (children and adults with hypertriglyceridemia) and also a healthy cohort for mutations in GPD1, which encodes glycerol-3-phosphate dehydrogenase 1. Mutation analysis revealed a homozygous splicing mutation, c.361-1G>C, which resulted in an aberrantly spliced mRNA in the ten affected individuals. This mutation is predicted to result in a truncated protein lacking essential conserved residues, including a functional site responsible for initial substrate recognition. Functional consequences of the mutation were evaluated by measuring intracellular concentrations of cholesterol and triglyceride as well as triglyceride secretion in HepG2 (hepatocellular carcinoma) human cells lines overexpressing normal and mutant GPD1 cDNA. Overexpression of mutant GPD1 in HepG2 cells, in comparison to overexpression of wild-type GPD1, resulted in increased secretion of triglycerides (p = 0.01). This finding supports the pathogenicity of the identified mutation.
Collapse
|
9
|
Gao YZ, Jiang Y, Wu X, Bai CY, Pan YC, Sun YZ. Molecular characteristics and expression profiles of glycerol-3-phosphate dehydrogenase 1 (GPD1) gene in pig. Mol Biol Rep 2010; 38:1875-81. [PMID: 20857217 DOI: 10.1007/s11033-010-0305-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 09/03/2010] [Indexed: 11/26/2022]
Abstract
The cytosolic activity of glycerol-3-phosphate dehydrogenase 1 (GPD1, EC 1.1.1.8) plays an important role in the synthesis of triacylglycerol and in the transport of reducing equivalents from the cytosol to mitochondria. Here we report the full-length genomic sequence of porcine GPD1 gene including promoter region. Porcine GPD1 gene contains eight exons and seven introns. Using the ImpRH, the GPD1 gene was mapped on chromosome 5. Sub-cellular localization of the pig GPD1 was localized in cytoplasm by GFP reporter gene. The full-length CDS of porcine GPD1 gene comprises 1050 nucleotides and it encodes 349 amino acids. Using the CDS sequences of 17 species, we built the phylogeny tree of GPD1 gene. We investigated the expression level of the gene in 13 different tissues and time course from birth to postnatal day 28 in longissinus doris muscle (LD) and in cerebrum. The result shows that porcine GPD1 gene is expressed in almost all tissues we tested but its levels of expression varies widely over 2 orders of magnitude. LD and the cerebrum have similar expression pattern that is at a low level at birth and increasing with aging to the highest level at postnatal day 8 in LD and postnatal day 14 in cerebrum. But weaning decreased the expression level of the GPD1 gene. This may partially explains the effects of weaning on energy metabolism.
Collapse
Affiliation(s)
- Y Z Gao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Don Chuan Road, Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
10
|
Doyle TJ, Oudes AJ, Kim KH. Temporal profiling of rat transcriptomes in retinol-replenished vitamin A-deficient testis. Syst Biol Reprod Med 2010; 55:145-63. [PMID: 19886770 DOI: 10.3109/19396360902896844] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
At least in mammals, retinoic acid is a pivotal factor in maintaining the functionality of the testis, in particular, for the progression of germ cells from mitosis to meiosis. Removal of dietary vitamin A or a targeted deletion of retinoic acid receptor alpha gene (Rara), the receptor for retinoic acid, in mice, led to testicular degeneration by a dramatic loss of germ cells and a loss of control of the spermatogenic cycle. The germ cells that remained in the vitamin A deficient (VAD) rat testis were spermatogonia and a few preleptotene spermatocytes. Spermatogenesis can be reinitiated by injection of VAD rats with retinol, the metabolic precursor of retinoic acid, but to date, the functions of retinoic acid in the testis remain elusive. We have applied DNA microarray technology to investigate the time-dependent transcriptome changes that occur 4 to 24 h after retinol replenishment in the VAD rat testis. The retinol-regulated gene expression occurred both in germ cells and Sertoli cells. Bioinformatic analyses revealed time-dependent clusters of genes and canonical pathways that may have critical functions for proper progression through spermatogenesis. In particular, gene clusters that emerged dealt with: (1) cholesterol and oxysterol homeostasis, * (2) the regulation of steroidogenesis, (3) glycerophospholipid metabolism, (4) the regulation of acute inflammation, (5) the regulation of the cell cycle including ubiquitin-mediated degradation of cell cycle proteins and control of centrosome and genome integrity, and (6) the control of membrane scaffolding proteins that can integrate multiple small GTPase signals within a cell. These results provide insights into the potential role of retinoic acid in the testis.
Collapse
Affiliation(s)
- Timothy J Doyle
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-4234, USA
| | | | | |
Collapse
|
11
|
Liu X, Rossmeisl M, McClaine J, Kozak LP. Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. J Clin Invest 2003. [DOI: 10.1172/jci200315737] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Brown LJ, Koza RA, Marshall L, Kozak LP, MacDonald MJ. Lethal hypoglycemic ketosis and glyceroluria in mice lacking both the mitochondrial and the cytosolic glycerol phosphate dehydrogenases. J Biol Chem 2002; 277:32899-904. [PMID: 12093800 DOI: 10.1074/jbc.m202409200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activities of either the mitochondrial or cytosolic glycerol phosphate dehydrogenase (mGPD, cGPD) plus that of glycerol kinase are required for the use of glycerol in aerobic metabolism and gluconeogenesis. A knockout mouse lacking mGPD has reduced body weight and fertility but shows remarkably normal liver and muscle metabolite levels. The BALB/cHeA mouse strain, which lacks cGPD, breeds well and is phenotypically normal, although it demonstrates metabolite abnormalities in certain tissues. Crosses were made between these two strains, and mice were generated that lacked both dehydrogenases. These mice, although active and nursing well for several days, failed to grow, and usually died within the first week. Liver glycerol phosphate levels were elevated 30-fold, whereas liver ATP, ADP, and AMP levels were reduced by 30-40%. Plasma glycerol was elevated 30- to 50-fold to 30-50 mm, and urine glycerol exceeded 0.45 m (4% w/v). GPD-deficient mice were hypoglycemic, had a 50% increase in plasma free fatty acids, and developed ketonuria within the first day of life. Uncoupling protein-1 mRNA in brown adipose tissue was reduced 60%. These mice share some features of both glycerol kinase deficiency and hereditary fructose intolerance, suggesting the phenotype may be due to the combined effects of the loss of a gluconeogenic substrate, the osmotic effects of glycerol, and the metabolic effects of the accumulation of a phosphorylated metabolite.
Collapse
Affiliation(s)
- Laura J Brown
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | | | |
Collapse
|
13
|
Brown LJ, Koza RA, Everett C, Reitman ML, Marshall L, Fahien LA, Kozak LP, MacDonald MJ. Normal thyroid thermogenesis but reduced viability and adiposity in mice lacking the mitochondrial glycerol phosphate dehydrogenase. J Biol Chem 2002; 277:32892-8. [PMID: 12093799 DOI: 10.1074/jbc.m202408200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial glycerol phosphate dehydrogenase (mGPD) is important for metabolism of glycerol phosphate for gluconeogenesis or energy production and has been implicated in thermogenesis induced by cold and thyroid hormone treatment. mGPD in combination with the cytosolic glycerol phosphate dehydrogenase (cGPD) is proposed to form the glycerol phosphate shuttle, catalyzing the interconversion of dihydroxyacetone phosphate and glycerol phosphate with net oxidation of cytosolic NADH. We made a targeted deletion in Gdm1 and produced mice lacking mGPD. On a C57BL/6J background these mice showed a 50% reduction in viability compared with wild-type littermates. Uncoupling protein-1 mRNA levels in brown adipose tissue did not differ between mGPD knockout and control pups, suggesting normal thermogenesis. Pups lacking mGPD had decreased liver ATP and slightly increased liver glycerol phosphate. In contrast, liver and muscle metabolites were normal in adult animals. Adult mGPD knockout animals had a normal cold tolerance, normal circadian rhythm in body temperature, and demonstrated a normal temperature increase in response to thyroid hormone. However, they were found to have a lower body mass index, a 40% reduction in the weight of white adipose tissue, and a slightly lower fasting blood glucose than controls. The phenotype may be secondary to consequences of the obligatory production of cytosolic NADH from glycerol metabolism in the mGPD knockout animal. We conclude that, although mGPD is not essential for thyroid thermogenesis, variations in its function affect viability and adiposity in mice.
Collapse
Affiliation(s)
- Laura J Brown
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Saint-Marc P, Kozak LP, Ailhaud G, Darimont C, Negrel R. Angiotensin II as a trophic factor of white adipose tissue: stimulation of adipose cell formation. Endocrinology 2001; 142:487-92. [PMID: 11145613 DOI: 10.1210/endo.142.1.7883] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
White adipose tissue is known to contain the components of the renin-angiotensin system giving rise to angiotensin II (AngII). In vitro, prostacyclin is synthesized from arachidonic acid through the activity of cyclooxygenases 1 and 2 and is released from AngII-stimulated adipocytes. Prostacyclin, in turn, is able to favor adipocyte formation. Based upon in vivo and ex vivo experiments combined to immunocytochemical staining of glycerol-3-phosphate dehydrogenase (GPDH), an indicator of adipocyte formation, it is reported herein that AngII favors the appearance of GPDH-positive cells. In the presence of a cyclooxygenase inhibitor, this adipogenic effect is abolished, whereas that of (carba)prostacyclin, a stable analog of prostacyclin that bypasses this inhibition, appears unaltered. Taken together, these results are in favor of AngII acting as a trophic factor implicated locally in adipose tissue development. It is proposed that AngII enhances the formation of GPDH-expressing cells from preadipocytes in response to prostacyclin released from adipocytes.
Collapse
Affiliation(s)
- P Saint-Marc
- Institut de Recherches Signalisation, Biologie du Développement et Cancer, Laboratoire Biologie du Développement du Tissu Adipeux, Centre de Biochimie, 06108 Nice, France
| | | | | | | | | |
Collapse
|
15
|
MacDonald MJ, Marshall LK. Mouse lacking NAD+-linked glycerol phosphate dehydrogenase has normal pancreatic beta cell function but abnormal metabolite pattern in skeletal muscle. Arch Biochem Biophys 2000; 384:143-53. [PMID: 11147825 DOI: 10.1006/abbi.2000.2107] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We surveyed the BALB/cHeA mouse, which lacks cytosolic glycerol phosphate dehydrogenase an enzyme that catalyzes a reaction in the glycerol phosphate shuttle. The other enzyme of this shuttle, mitochondrial glycerol phosphate dehydrogenase, is abundant in skeletal muscle and pancreatic islets suggesting that the shuttle's activity is high in these tissues. Levels of glycerol phosphate (low) and dihydroxyacetone phosphate (high) were very abnormal in nonislet tissue, especially in skeletal muscle. Intermediates situated before the triose phosphates in the glycolysis pathway were increased and those after the triose phosphates were generally low, depending on the tissue. The lactate/pyruvate ratio in muscle was low signifying a low cytosolic NAD/NADH ratio. This suggests that a nonfunctional glycerol phosphate shuttle caused a block in glycolysis at the step catalyzed by glyceraldehyde phosphate dehydrogenase. When exercised, mice were unable to maintain normal ATP levels in skeletal muscle. Blood glucose, serum insulin levels, and pancreatic islet mass were normal. In isolated pancreatic islets insulin release, glucose metabolism and ATP levels were normal, but lactate levels and lactate/pyruvate ratios with a glucose load were slightly abnormal. The BALB/cHeA mouse can maintain NAD/ NADH ratios sufficient to function normally under most conditions, but the redox state is not normal. Glycerol phosphate is apparently formed at a slow rate. Skeletal muscle is severely affected probably because it is dependent on the glycerol phosphate shuttle more than other tissues. It most likely utilizes glycerol phosphate rapidly and, due to the absence of glycerol kinase in muscle, is unable to rapidly form glycerol phosphate from glycerol. Glycerol kinase is also absent in the pancreatic insulin cell, but this cell's function is essentially normal probably because of redundancy of NAD(H) shuttles.
Collapse
Affiliation(s)
- M J MacDonald
- University of Wisconsin Childrens Diabetes Center, Madison 53706, USA.
| | | |
Collapse
|
16
|
Hajra AK, Larkins LK, Das AK, Hemati N, Erickson RL, MacDougald OA. Induction of the peroxisomal glycerolipid-synthesizing enzymes during differentiation of 3T3-L1 adipocytes. Role in triacylglycerol synthesis. J Biol Chem 2000; 275:9441-6. [PMID: 10734090 DOI: 10.1074/jbc.275.13.9441] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glycerophosphate backbone for triglyceride synthesis is commonly believed to be created through the conversion of dihydroxyacetone phosphate (DHAP) by glycerophosphate dehydrogenase (GPD) to sn-glycerol 3-phosphate (GP), which is then converted by glycerophosphate acyltransferase (GPAT) to 1-acyl-GP. Consistent with this, GPD and GPAT are highly induced during differentiation of mouse 3T3-L1 preadipocytes. While the acyl dihydroxyacetone phosphate (acyl-DHAP) pathway for glycerolipid synthesis is commonly believed to be involved only in glycerol ether lipid synthesis, we report here that during conversion of 3T3-L1 preadipocytes to adipocytes, the specific activity of peroxisomal DHAP acyltransferase (DHAPAT) is increased by 9-fold in 6 days, while acyl-DHAP:NADPH reductase is induced by 5-fold. A parallel increase in the catalase (the peroxisomal marker enzyme) activity is also seen. In contrast, the specific activity of alkyl-DHAP synthase, the enzyme catalyzing the synthesis of the ether bond, is decreased by 60% during the same period. Unlike microsomal GPAT, the induced DHAPAT is found to have high activity at pH 5.5 and is resistant to inhibition by sulfhydryl agents, heat, and proteolysis. On subcellular fractionation, DHAPAT is found to be associated with microperoxisomes whereas GPAT activity is mainly present in microsomes. Northern blot analyses reveal that induction of DHAPAT can be largely explained through increases in DHAPAT mRNA. A comparison of microsomal and peroxisomal glycerolipid synthetic pathways, using D-[3-(3)H, U-(14)C]glucose as the precursor of the lipid glycerol backbone shows that about 40-50% of triglyceride is synthesized via the acyl-DHAP pathway. These results indicate that the acyl-DHAP pathway is important not only for the synthesis of ether lipids, but also for the synthesis of triacylglycerol and other non-ether glycerolipids.
Collapse
Affiliation(s)
- A K Hajra
- Department of Biological Chemistry and Mental Health Research Institute, The University of Michigan, Ann Arbor, Michigan 48104-1687, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Antinozzi PA, Berman HK, O'Doherty RM, Newgard CB. Metabolic engineering with recombinant adenoviruses. Annu Rev Nutr 1999; 19:511-44. [PMID: 10448535 DOI: 10.1146/annurev.nutr.19.1.511] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fuel homeostasis in mammals is accomplished by the interplay between tissues and organs with distinct metabolic roles. These regulatory mechanisms are disrupted in obesity and diabetes, leading to a renewed emphasis on discovery of molecular and pharmacologic methods for reversing metabolic disorders. In this chapter, we review the use of recombinant adenoviral vectors as tools for delivering metabolic regulatory genes to cells in culture and to tissues of intact animals. Included are studies on the use of these vectors for gaining insights into the biochemical mechanisms that regulate glucose-stimulated insulin secretion from pancreatic islet beta-cells. We also highlight their use for understanding the function of newly discovered genes that regulate glycogen metabolism in liver and other tissues, and for evaluating "candidate" genes such as glucose-6-phosphatase, which may contribute to development of metabolic dysfunction in pancreatic islets and liver. Finally, we discuss the use of adenoviral and related vectors for causing chronic increases in the levels of circulating hormones. These examples serve to highlight the power of viral gene transfer vectors as tools for understanding metabolic regulatory mechanisms.
Collapse
Affiliation(s)
- P A Antinozzi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | |
Collapse
|
18
|
Fahien LA, Laboy JI, Din ZZ, Prabhakar P, Budker T, Chobanian M. Ability of cytosolic malate dehydrogenase and lactate dehydrogenase to increase the ratio of NADPH to NADH oxidation by cytosolic glycerol-3-phosphate dehydrogenase. Arch Biochem Biophys 1999; 364:185-94. [PMID: 10190973 DOI: 10.1006/abbi.1999.1117] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At the normal pH of the cytosol (7.0 to 7.1) and in the presence of physiological (1.0 mM) levels of free Mg2+, the Vmax of the NADPH oxidation is only slightly lower than the Vmax of NADH oxidation in the cytosolic glycerol-3-phosphate dehydrogenase (E.C. 1.1.1.8) reaction. Under these conditions physiological (30 microM) levels of cytosolic malate dehydrogenase (E.C. 1.1.1.37) inhibited oxidation of 20 microM NADH but had no effect on oxidation of 20 microM NADPH by glycerol-3-phosphate dehydrogenase. Consequently malate dehydrogenase increased the ratio of NADPH to NADH oxidation of glycerol-3-phosphate dehydrogenase. On the basis of the measured KD of complexes between malate dehydrogenase and these reduced pyridine nucleotides, and their Km in the glycerol-3-phosphate dehydrogenase reactions, it could be concluded that malate dehydrogenase would have markedly inhibited NADPH oxidation and inhibited NADH oxidation considerably more than observed if its only effect were to decrease the level of free NADH or NADPH. This indicates that due to the opposite chiral specificity of the two enzymes with respect to reduced pyridine nucleotides, complexes between malate dehydrogenase and NADH or NADPH can function as substrates for glycerol-3-phosphate dehydrogenase, but the complex with NADH is less active than free NADH, while the complex with NADPH is as active as free NADPH. Mg2+ enhanced the interactions between malate dehydrogenase and glycerol-3-phosphate dehydrogenase described above. Lactate dehydrogenase (E.C. 1.1.1.27) had effects similar to those of malate dehydrogenase only in the presence of Mg2+. In the absence of Mg2+, there was no evidence of interaction between lactate dehydrogenase and glycerol-3-phosphate dehydrogenase.
Collapse
Affiliation(s)
- L A Fahien
- Department of Pharmacology, University of Wisconsin Medical School, 1300 University Ave, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Prabhakar P, Laboy JI, Wang J, Budker T, Din ZZ, Chobanian M, Fahien LA. Effect of NADH-X on cytosolic glycerol-3-phosphate dehydrogenase. Arch Biochem Biophys 1998; 360:195-205. [PMID: 9851831 DOI: 10.1006/abbi.1998.0939] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At pH 7.05 NADH-X prepared by incubating NADH with glyceraldehyde-3-phosphate dehydrogenase (E.C. 1.2.1.12) was a potent noncompetitive inhibitor, with respect to coenzyme, of NADPH oxidation by pure rabbit muscle cytosolic glycerol-3-phosphate dehydrogenase (E.C. 1.1.1.8) and also a potent inhibitor of NADPH oxidation catalyzed by this enzyme in a rat pancreatic islet cytosolic fraction. It was a much less potent inhibitor of NADPH oxidation catalyzed by this enzyme in a rat liver cytosolic fraction and of NADH oxidation catalyzed by this enzyme from all three sources. Glycerol-3-phosphate dehydrogenase purified from muscle cytosol contains tightly bound NADH-X, NAD, and ADP-ribose, each in amounts of about 0.1 mol per mole of enzyme polypeptide chain. A deproteinized supernatant of this enzyme contained these three ligands and produced the same type of inhibition of the enzyme described above for prepared NADH-X with a Ki, in the reaction with NADPH at pH 7.05, in the range of 0.2 microM with respect to the total concentration of ligands ([ADP-ribose] + [NAD] + [NADH-X] = 0. 2 microM). However, only the NADH-X component could account for the potent inhibition because NAD, ADP-ribose, and the primary acid product (which can be produced from NADH-X) each had a Ki considerably higher than 0.2 microM. Although at pH 7.05 NADH-X inhibited NADPH oxidation considerably more than NADH oxidation, the reverse was the case at pH 7.38. Since the enzyme purified from muscle contains tightly bound NADH-X, NADH-X might become attached to the enzyme in vivo where it could play a role in regulating the ratio of NADH to NADPH oxidation of the enzyme.
Collapse
Affiliation(s)
- P Prabhakar
- Department of Pharmacology, Department of Pediatrics, University of Wisconsin Medical School, 1330 University Avenue, Madison, Wisconsin, 53706, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Gong DW, Bi S, Weintraub BD, Reitman M. Rat mitochondrial glycerol-3-phosphate dehydrogenase gene: multiple promoters, high levels in brown adipose tissue, and tissue-specific regulation by thyroid hormone. DNA Cell Biol 1998; 17:301-9. [PMID: 9539110 DOI: 10.1089/dna.1998.17.301] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial FAD-linked glycerol-3-phosphate dehydrogenase (mtGPDH) is one of the two enzymes of the glycerol phosphate shuttle. This shuttle transfers reducing equivalents from the cytoplasm to the mitochondria in a unidirectional, exothermic manner. Here, the isolation and characterization of the rat nuclear gene (Gpd2) encoding mtGPDH is reported. The mtGPDH gene spans 100 kb and consists of 17 exons. The use of alternate promoters was suggested by the presence of three different first exons and confirmed by transient expression for two of them. The first exons are expressed in a tissue-restricted manner. Exon 1a was found primarily in brain, exon 1b was used in all tissues examined, and exon 1c was detected predominantly in testis. Depending on the tissue, different transcript lengths were also observed: 5.9 kb (all tissues), 3.6 kb (skeletal muscle), and 2.5 kb (testis). The length isoforms are attributable to alternate splicing and polyadenylation site use. Very high mtGPDH mRNA levels were found in brown adipose tissue, 75 fold greater than in white adipose tissue. Thyroid hormone increased mtGPDH mRNA levels in liver and heart but not in brown adipose tissue, brain, or testis. This pattern corresponds to that of thyroid hormone-induced oxygen consumption and is consistent with a role for mtGPDH in thyroid hormone-induced thermogenesis. Both thyroid-responsive and nonresponsive tissues used promoter 1b, suggesting that tissue-specific factor(s) contribute to the tissue-restricted responsiveness to thyroid hormone.
Collapse
Affiliation(s)
- D W Gong
- Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1770, USA
| | | | | | | |
Collapse
|
21
|
Cheng JD, Espinosa de los Monteros A, de Vellis J. Glial- and fat-specific expression of the rat glycerol phosphate dehydrogenase-luciferase fusion gene in transgenic mice. J Neurosci Res 1997; 50:300-11. [PMID: 9373039 DOI: 10.1002/(sici)1097-4547(19971015)50:2<300::aid-jnr18>3.0.co;2-b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glycerol phosphate dehydrogenase (GPDH) is a metabolic enzyme that catalyzes the conversion of dihydroxyacetone phosphate to glycerol-3-phosphate. It provides phospholipid precursors for lipid biosynthesis and energy metabolism. In the brain, GPDH enzymatic activity, protein, mRNA are exclusively associated with oligodendroglial and Bergmann glial cells. Expression of GPDH in the brain increases dramatically during the active period of myelination, and is regulated by extracellular signals. In an effort to understand the mechanism that confers glial-specific expression of GPDH, we have examined the role of the 5' flanking sequence of the rat GPDH gene in conferring cell-specific expression of reporter gene in transgenic mice. Luciferase reporter constructs containing either the full-length GPDH 5' flanking region (p4.3), or a distally truncated version (p2.6), were injected into mouse zygotes. Three independent lines of transgenic mice containing the p4.3, and seven lines of mice containing the p2.6 constructs, were analyzed. Luciferase enzyme activity was detectable only in brain and fat, not in other GPDH-positive organs such as liver, muscle, and kidney. Both the full-length and the distally deleted transgenes were expressed similarly in these two organs, indicating that the distal portion of the 5' flanking region was not required for brain- and fat-specific expression. Immunocytochemical analyses revealed that luciferase immunoreactivity colocalized with glial fibrillary acidic protein (GFAP)-positive Bergmann glia in the cerebellum, and myelin basic protein (MBP)-positive oligodendroglia in the cerebral cortex and the brainstem. Results here suggest that the rat GPDH 5' flanking region directs glial-specific expression of GPDH transcription in the brain, and provide a good model for analyses of changes in glial metabolism in response to extracellular perturbations in vivo.
Collapse
Affiliation(s)
- J D Cheng
- Department of Neurobiology, Mental Retardation Research Center, Brain Research Institute, UCLA School of Medicine, Los Angeles, California, USA
| | | | | |
Collapse
|
22
|
Walter L, Dirks B, Rothermel E, Heyens M, Szpirer C, Levan G, Günther E. A novel, conserved gene of the rat that is developmentally regulated in the testis. Mamm Genome 1994; 5:216-21. [PMID: 8012111 DOI: 10.1007/bf00360548] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
From a rat testis library three overlapping cDNA clones were isolated that represent a novel single-copy gene, designated Tegt. Two transcripts of 2.8 and 1.0 kb were found in each organ tested. The shorter transcript was highly abundant in adult testis. A similar expression pattern was found in the mouse. Analysis of rat RNA from different stages of spermatogenesis indicated that accumulation of the short transcript occurred mainly postmeiotically. The rat Tegt gene maps to Chromosome (Chr) 7, and its mouse homolog to Chr 15.
Collapse
Affiliation(s)
- L Walter
- Division of Immunogenetics, University of Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Fisher M, Trimmer P, Ruthel G. Bergmann glia require continuous association with Purkinje cells for normal phenotype expression. Glia 1993; 8:172-82. [PMID: 8225559 DOI: 10.1002/glia.440080305] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bergmann glia (Bg) respond to the early postnatal Purkinje cell (Pc) death in Lurcher (Lc) mutant mouse cerebellum by down-regulating expression of the enzyme glycerol-3-phosphate dehydrogenase (GPDH). To determine whether glial GPDH expression requires the continued presence of Pcs in adults, we used single intracerebellar injections of kainic acid to kill Pcs in wild-type mice from 7 weeks to 11 months old. Bg at all ages tested responded to Pc loss by down-regulating GPDH expression. To learn whether a high level of GPDH could be reinduced following down-regulation in Lc Bg, we grafted wild-type fetal Pcs into Lc cerebella. The influence of grafted Pcs on GPDH expression is host-age and implant-position dependent. Only Pcs implanted into hosts less than 6 weeks old were later found to be associated with GPDH-positive Bg. Grafted Pcs that migrated into the anterior folia of young hosts were more likely to be associated with GPDH-positive Bg than Pcs migrating to other positions. EM analysis showed that Bg ensheathment of grafted Pcs is thinner and more discontinuous, but qualitatively similar to normal. The results suggest that the interaction between host Bg and grafted Pcs can sustain elevated GPDH expression in Bg that have not yet down-regulated, but is not adequate to reinduce expression in those cells that have.
Collapse
Affiliation(s)
- M Fisher
- Department of Anatomy and Cell Biology, University of Virginia School of Medicine, Charlottesville 22908
| | | | | |
Collapse
|