1
|
Ramhorst R, Grasso E, Vota D, Gori S, Hauk V, Paparini D, Calo G, Leirós CP. From decidualization to pregnancy progression: An overview of immune and metabolic effects of VIP. Am J Reprod Immunol 2022; 88:e13601. [DOI: 10.1111/aji.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Rosanna Ramhorst
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN‐CONICET) Laboratorio de Inmunofarmacología Universidad de Buenos Aires (UBA) Buenos Aires Argentina
| | - Esteban Grasso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN‐CONICET) Laboratorio de Inmunofarmacología Universidad de Buenos Aires (UBA) Buenos Aires Argentina
| | - Daiana Vota
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN‐CONICET) Laboratorio de Inmunofarmacología Universidad de Buenos Aires (UBA) Buenos Aires Argentina
| | - Soledad Gori
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN‐CONICET) Laboratorio de Inmunofarmacología Universidad de Buenos Aires (UBA) Buenos Aires Argentina
| | - Vanesa Hauk
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN‐CONICET) Laboratorio de Inmunofarmacología Universidad de Buenos Aires (UBA) Buenos Aires Argentina
| | - Daniel Paparini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN‐CONICET) Laboratorio de Inmunofarmacología Universidad de Buenos Aires (UBA) Buenos Aires Argentina
| | - Guillermina Calo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN‐CONICET) Laboratorio de Inmunofarmacología Universidad de Buenos Aires (UBA) Buenos Aires Argentina
| | - Claudia Pérez Leirós
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN‐CONICET) Laboratorio de Inmunofarmacología Universidad de Buenos Aires (UBA) Buenos Aires Argentina
| |
Collapse
|
2
|
Merech F, Hauk V, Paparini D, Fernandez L, Naguila Z, Ramhorst R, Waschek J, Pérez Leirós C, Vota D. Growth impairment, increased placental glucose uptake and altered transplacental transport in VIP deficient pregnancies: Maternal vs. placental contributions. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166207. [PMID: 34186168 DOI: 10.1016/j.bbadis.2021.166207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/02/2023]
Abstract
Glucose uptake by the placenta and its transfer to the fetus is a finely regulated process required for placental and fetal development. Deficient placentation is associated with pregnancy complications such as fetal growth restriction (FGR). The vasoactive intestinal peptide (VIP) has embryotrophic effects in mice and regulates human cytotrophoblast metabolism and function. Here we compared glucose uptake and transplacental transport in vivo by VIP-deficient placentas from normal or VIP-deficient maternal background. The role of endogenous VIP in placental glucose and amino acid uptake was also investigated. Wild type C57BL/6 (WT) or VIP+/- (VIP HT) females were mated with WT, VIP knock-out (VIP KO) or VIP HT males. Glucose uptake and transplacental transport were evaluated by the injection of the fluorescent d-glucose analogue 2-NBDG in pregnant mice at gestational day (gd) 17.5. Glucose and amino acid uptake in vitro by placental explants were measured with 2-NBDG or 14C-MeAIB respectively. In normal VIP maternal background, fetal weight was reduced in association with placental VIP deficiency, whereas placental weight was unaltered. Paradoxically, VIP+/- placentas presented higher glucose uptake and higher gene expression of GLUT1 and mTOR than VIP+/+ placentas. However, in a maternal VIP-deficient environment placental uptake and transplacental transport of glucose increased while fetal weights were unaffected, regardless of feto-placental genotype. Results point to VIP-deficient pregnancy in a normal background as a suitable FGR model with increased placental glucose uptake and transplacental transport. The apparently compensatory actions are unable to sustain normal fetal growth and could result in complications later in life.
Collapse
Affiliation(s)
- Fátima Merech
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - Vanesa Hauk
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - Daniel Paparini
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - Laura Fernandez
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - Zaira Naguila
- Bioterio Central, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - Rosanna Ramhorst
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina
| | - James Waschek
- The David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Claudia Pérez Leirós
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina.
| | - Daiana Vota
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Laboratorio de Inmunofarmacología, Facultad de Ciencias Exactas y Naturales (FCEN-UBA), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Merech F, Soczewski E, Hauk V, Paparini D, Ramhorst R, Vota D, Pérez Leirós C. Vasoactive Intestinal Peptide induces glucose and neutral amino acid uptake through mTOR signalling in human cytotrophoblast cells. Sci Rep 2019; 9:17152. [PMID: 31748639 PMCID: PMC6868285 DOI: 10.1038/s41598-019-53676-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/31/2019] [Indexed: 11/21/2022] Open
Abstract
The transport of nutrients across the placenta involves trophoblast cell specific transporters modulated through the mammalian target of rapamycin (mTOR). The vasoactive intestinal peptide (VIP) has embryotrophic effects in mice and regulates human cytotrophoblast cell migration and invasion. Here we explored the effect of VIP on glucose and System A amino acid uptake by human trophoblast-derived cells (Swan 71 and BeWo cell lines). VIP activated D-glucose specific uptake in single cytotrophoblast cells in a concentration-dependent manner through PKA, MAPK, PI3K and mTOR signalling pathways. Glucose uptake was reduced in VIP-knocked down cytotrophoblast cells. Also, VIP stimulated System A amino acid uptake and the expression of GLUT1 glucose transporter and SNAT1 neutral amino acid transporter. VIP increased mTOR expression and mTOR/S6 phosphorylation whereas VIP silencing reduced mTOR mRNA and protein expression. Inhibition of mTOR signalling with rapamycin reduced the expression of endogenous VIP and of VIP-induced S6 phosphorylation. Our findings support a role of VIP in the transport of glucose and neutral amino acids in cytotrophoblast cells through mTOR-regulated pathways and they are instrumental for understanding the physiological regulation of nutrient sensing by endogenous VIP at the maternal-foetal interface.
Collapse
Affiliation(s)
- Fatima Merech
- CONICET - Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Elizabeth Soczewski
- CONICET - Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Vanesa Hauk
- CONICET - Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Daniel Paparini
- CONICET - Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Rosanna Ramhorst
- CONICET - Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Daiana Vota
- CONICET - Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Claudia Pérez Leirós
- CONICET - Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Paparini DE, Choudhury RH, Vota DM, Karolczak-Bayatti M, Finn-Sell S, Grasso EN, Hauk VC, Ramhorst R, Pérez Leirós C, Aplin JD. Vasoactive intestinal peptide shapes first-trimester placenta trophoblast, vascular, and immune cell cooperation. Br J Pharmacol 2019; 176:964-980. [PMID: 30726565 DOI: 10.1111/bph.14609] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/10/2018] [Accepted: 01/01/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Extravillous trophoblast (EVT) cells are responsible for decidual stromal invasion, vascular transformation, and the recruitment and functional modulation of maternal leukocytes in the first-trimester pregnant uterus. An early disruption of EVT function leads to placental insufficiency underlying pregnancy complications such as preeclampsia and fetal growth restriction. Vasoactive intestinal peptide (VIP) is a vasodilating and immune modulatory factor synthesized by trophoblast cells. However, its role in first-trimester placenta has not been explored. Here, we tested the hypothesis that VIP is involved in first-trimester EVT outgrowth, spiral artery remodelling, balancing angiogenesis, and maintenance of immune homeostasis. EXPERIMENTAL APPROACH First-trimester placental tissue (five to nine weeks of gestation) was collected, and was used for EVT outgrowth experiments, immunofluorescence, isolation of decidual natural killer (dNK) cells and decidual macrophages (dMA), and functional assays. Peripheral blood monocytes were differentiated with GM-CSF and used for angiogenesis assays. KEY RESULTS In decidua basalis, VIP+ EVT were observed sprouting from cell columns and lining spiral arterioles. EVT migrating from placental explants were also VIP+. VIP increased EVT outgrowth and IL-10 release, whereas it decreased pro-inflammatory cytokine production in EVT, dNK cells, and dMA. VIP disrupted endothelial cell networks, both directly and indirectly via an effect on macrophages. CONCLUSION AND IMPLICATIONS The results suggest that VIP assists the progress of EVT invasion and vessel remodelling in first-trimester placental bed in an immunologically "silent" milieu. The effects of VIP in the present ex vivo human placental model endorse its potential as a therapeutic candidate for deep placentation disorders.
Collapse
Affiliation(s)
- Daniel E Paparini
- IQUIBICEN-CONICET, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, UK
| | - Ruhul H Choudhury
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, UK
| | - Daiana M Vota
- IQUIBICEN-CONICET, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Magdalena Karolczak-Bayatti
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, UK
| | - Sarah Finn-Sell
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, UK
| | - Esteban N Grasso
- IQUIBICEN-CONICET, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Vanesa C Hauk
- IQUIBICEN-CONICET, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Rosanna Ramhorst
- IQUIBICEN-CONICET, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Claudia Pérez Leirós
- IQUIBICEN-CONICET, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - John D Aplin
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, UK
| |
Collapse
|
5
|
Ramhorst R, Calo G, Paparini D, Vota D, Hauk V, Gallino L, Merech F, Grasso E, Leirós CP. Control of the inflammatory response during pregnancy: potential role of VIP as a regulatory peptide. Ann N Y Acad Sci 2018; 1437:15-21. [PMID: 29740848 DOI: 10.1111/nyas.13632] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 12/24/2022]
Abstract
A network of cell-cell communications through contact and soluble factors supports the maternal-placental interaction and provides a suitable environment for fetal growth. Trophoblast cells take center stage at these loops: they interact with maternal leukocytes to sustain the varying demands of gestation, and they synthesize hormones, cytokines among other factors that contribute to the maintenance of immune homeostasis. Here, we discuss vasoactive intestinal peptide (VIP) and its potential as a regulatory neuropeptide in pregnancy. VIP is synthesized by trophoblast cells; it regulates trophoblast cell function and interaction with the major immune cell populations present in the pregnant uterus. VIP activity produces an anti-inflammatory microenvironment by modulating the functional profile of monocytes, macrophages, and regulatory T cells. Trophoblast VIP inhibits neutrophil extracellular trap formation and accelerates neutrophil apoptosis, enabling their silent clearance by phagocytic cells. The effects of VIP on the trophoblast-immune interaction are consistent with its regulatory role throughout pregnancy for immune homeostasis maintenance. These observations may provide new clues for pharmacological targeting of pregnancy complications associated with exacerbated inflammation.
Collapse
Affiliation(s)
- Rosanna Ramhorst
- Laboratory of Immunopharmacology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Guillermina Calo
- Laboratory of Immunopharmacology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Daniel Paparini
- Laboratory of Immunopharmacology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Daiana Vota
- Laboratory of Immunopharmacology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Vanesa Hauk
- Laboratory of Immunopharmacology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Lucila Gallino
- Laboratory of Immunopharmacology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Fatima Merech
- Laboratory of Immunopharmacology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Esteban Grasso
- Laboratory of Immunopharmacology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Claudia Pérez Leirós
- Laboratory of Immunopharmacology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
6
|
Vasoactive Intestinal Peptide modulates trophoblast-derived cell line function and interaction with phagocytic cells through autocrine pathways. Sci Rep 2016; 6:26364. [PMID: 27212399 PMCID: PMC4876379 DOI: 10.1038/srep26364] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/27/2016] [Indexed: 02/08/2023] Open
Abstract
Trophoblast cells migrate and invade the decidual stroma in a tightly regulated process to maintain immune homeostasis at the maternal-placental interface during the first weeks of pregnancy. Locally synthesized factors modulate trophoblast cell function and their interaction with maternal leukocytes to promote the silent clearance of apoptotic cells. The vasoactive intestinal peptide (VIP) is a pleiotropic polypeptide with trophic and anti-inflammatory effects in murine pregnancy models. We explored the effect of VIP on two human first trimester trophoblast cell lines, particularly on their migration, invasiveness and interaction with phagocytic cells, and the signalling and regulatory pathways involved. We found that VIP enhanced trophoblast cell migration and invasion through the activation of high affinity VPAC receptors and PKA-CRE signalling pathways. VIP knocked-down trophoblast cells showed reduced migration in basal and leukemic inhibitor factor (LIF)-elicited conditions. In parallel, VIP-silenced trophoblast cells failed to induce the phagocytosis of apoptotic bodies and the expression of immunosuppressant markers by human monocytes. Our results suggest that VIP-mediated autocrine pathways regulate trophoblast cell function and contribute to immune homeostasis maintenance at placentation and may provide new clues for therapeutic intervention in pregnancies complicated by defective deep placentation.
Collapse
|
7
|
Ramhorst R, Grasso E, Paparini D, Hauk V, Gallino L, Calo G, Vota D, Pérez Leirós C. Decoding the chemokine network that links leukocytes with decidual cells and the trophoblast during early implantation. Cell Adh Migr 2016; 10:197-207. [PMID: 26891097 DOI: 10.1080/19336918.2015.1135285] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chemokine network is central to the innate and adaptive immunity and entails a variety of proteins and membrane receptors that control physiological processes such as wound healing, angiogenesis, embryo growth and development. During early pregnancy, the chemokine network coordinates not only the recruitment of different leukocyte populations to generate the maternal-placental interface, but also constitutes an additional checkpoint for tissue homeostasis maintenance. The normal switch from a pro-inflammatory to an anti-inflammatory predominant microenvironment characteristic of the post-implantation stage requires redundant immune tolerance circuits triggered by key master regulators. In this review we will focus on the recruitment and conditioning of maternal immune cells to the uterus at the early implantation period with special interest on high plasticity macrophages and dendritic cells and their ability to induce regulatory T cells. We will also point to putative immunomodulatory polypeptides involved in immune homeostasis maintenance at the maternal-placental interface.
Collapse
Affiliation(s)
- Rosanna Ramhorst
- a Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET , Buenos Aires , Argentina
| | - Esteban Grasso
- a Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET , Buenos Aires , Argentina
| | - Daniel Paparini
- a Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET , Buenos Aires , Argentina
| | - Vanesa Hauk
- a Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET , Buenos Aires , Argentina
| | - Lucila Gallino
- a Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET , Buenos Aires , Argentina
| | - Guillermina Calo
- a Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET , Buenos Aires , Argentina
| | - Daiana Vota
- a Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET , Buenos Aires , Argentina
| | - Claudia Pérez Leirós
- a Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET , Buenos Aires , Argentina
| |
Collapse
|
8
|
Fraccaroli L, Grasso E, Hauk V, Paparini D, Soczewski E, Mor G, Pérez Leirós C, Ramhorst R. VIP boosts regulatory T cell induction by trophoblast cells in an in vitro model of trophoblast-maternal leukocyte interaction. J Leukoc Biol 2015; 98:49-58. [PMID: 25877932 DOI: 10.1189/jlb.1a1014-492rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/28/2015] [Indexed: 12/17/2022] Open
Abstract
Inducible regulatory T cells (Tregs) exert a timely and efficient immunosuppressive action at the critical peri-implantation stage essential for maternal tolerance to the conceptus. Vasoactive intestinal peptide (VIP) promotes anti-inflammatory and tolerogenic profiles through binding to VIP receptors on immune cells. We evaluated whether VIP produced by trophoblast cells induces Tregs during the early interaction of maternal leukocytes with trophoblast cells, thus contributing to maternal tolerance. We used an in vitro model of maternal leukocyte-trophoblast cell interaction represented by cocultures of fertile women's PBMCs with a human trophoblast cell line (Swan-71) and evaluated the effect of VIP added exogenously and of the endogenous polypeptide. VIP increased the frequency of CD4(+)CD25(+)FoxP3(+) cells after coculture, and these cells were able to suppress the maternal alloresponse. VIP also increased the frequency of CD4(+)IL10(+) and CD4(+)TGFβ(+) cells, but it did not modulate IFN-γ or IL-17 production. Swan-71 secreted VIP, and their coculture with maternal PBMCs significantly increased the frequency of Tregs. This effect was even more pronounced if the trophoblast cells had been pretreated with VIP. In both situations, the VIP antagonist prevented the increase in the frequency of CD4(+)Foxp3(+) cells, reflecting a specific effect of the polypeptide after the interaction with Swan-71 cells. Finally, the increase in CD4(+)CD25(+)FoxP3(+) frequency was prevented by an anti-TGF-β Ab and a VIP antagonist. These results suggest that VIP could have an active role in the immunoregulatory processes operating in the maternal-placental interface by contributing to the induction of Tregs through a mechanism involving TGF-β1.
Collapse
Affiliation(s)
- Laura Fraccaroli
- *Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina; Reproductive Immunology Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA; and University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Esteban Grasso
- *Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina; Reproductive Immunology Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA; and University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Vanesa Hauk
- *Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina; Reproductive Immunology Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA; and University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Daniel Paparini
- *Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina; Reproductive Immunology Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA; and University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Elizabeth Soczewski
- *Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina; Reproductive Immunology Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA; and University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Gil Mor
- *Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina; Reproductive Immunology Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA; and University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Claudia Pérez Leirós
- *Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina; Reproductive Immunology Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA; and University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - Rosanna Ramhorst
- *Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina; Reproductive Immunology Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA; and University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| |
Collapse
|
9
|
Hauk V, Azzam S, Calo G, Gallino L, Paparini D, Franchi A, Ramhorst R, Leirós CP. Vasoactive Intestinal Peptide Induces an Immunosuppressant Microenvironment in the Maternal-Fetal Interface ofNon-Obese DiabeticMice and Improves Early Pregnancy Outcome. Am J Reprod Immunol 2013; 71:120-30. [DOI: 10.1111/aji.12167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/18/2013] [Indexed: 12/12/2022] Open
Affiliation(s)
- Vanesa Hauk
- Departamento de Química Biológica; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; IQUIBICEN-CONICET; Buenos Aires Argentina
| | - Sofía Azzam
- Departamento de Química Biológica; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; IQUIBICEN-CONICET; Buenos Aires Argentina
| | - Guillermina Calo
- Departamento de Química Biológica; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; IQUIBICEN-CONICET; Buenos Aires Argentina
| | - Lucila Gallino
- Departamento de Química Biológica; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; IQUIBICEN-CONICET; Buenos Aires Argentina
| | - Daniel Paparini
- Departamento de Química Biológica; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; IQUIBICEN-CONICET; Buenos Aires Argentina
| | - Ana Franchi
- Facultad de Medicina; Universidad de Buenos Aires; CEFYBO-CONICET; Buenos Aires Argentina
| | - Rosanna Ramhorst
- Departamento de Química Biológica; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; IQUIBICEN-CONICET; Buenos Aires Argentina
| | - Claudia Pérez Leirós
- Departamento de Química Biológica; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; IQUIBICEN-CONICET; Buenos Aires Argentina
| |
Collapse
|
10
|
Pérez Leirós C, Ramhorst R. Tolerance induction at the early maternal-placental interface through selective cell recruitment and targeting by immune polypeptides. Am J Reprod Immunol 2013; 69:359-68. [PMID: 23405982 DOI: 10.1111/aji.12087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/07/2013] [Indexed: 12/12/2022] Open
Abstract
Pregnancy challenges immune cells and immunomodulatory circuits of the mother and the developing fetus to dynamically adapt to each other in an homeostatic and tolerant environment for fetal growth. This entails the coordination of multiple cellular processes all devoted to accommodate and nourish the fetus while protecting the mother from endogenous and exogenous threatens. From the earliest stages of pregnancy, several strategies to efficiently communicate immune and trophoblast cells within the interface or at a distance were identified and chemokines might act at on different targets through direct or indirect mechanisms. Here, we briefly review some mechanisms of T regulatory cell recruitment to the early maternal-placental interfaces to accomplish immunotolerance and homeostatic control and we discuss evidence on two locally released polypeptides, RANTES (regulated on activation, normal, T-cell expressed, and secreted) and vasoactive intestinal peptide (VIP), as novel contributors to the multiplicity of immune tolerant responses and uterine quiescence requirements.
Collapse
Affiliation(s)
- Claudia Pérez Leirós
- Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| | | |
Collapse
|
11
|
Marzioni D, Fiore G, Giordano A, Nabissi M, Florio P, Verdenelli F, Petraglia F, Castellucci M. Placental expression of substance P and vasoactive intestinal peptide: evidence for a local effect on hormone release. J Clin Endocrinol Metab 2005; 90:2378-83. [PMID: 15623814 DOI: 10.1210/jc.2004-1512] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The present study evaluated vasoactive intestinal peptide (VIP) and substance P (SP) mRNA expressions and the localization of both peptides in first- and third-trimester human placentas. VIP and SP mRNAs were detected by slot blot analysis in first- and third-trimester placental tissues. By immunohistochemistry both neuropeptides were localized in the trophoblast (syncytium and cytotrophoblastic cells) of the chorionic villi. Because little information is available on the role of VIP and/or SP on the secretion of placental hormones, we investigated the effect of these neuropeptides on human chorionic gonadotropin (hCG) and progesterone release from primary cultured human trophoblastic and JEG-3 cells. The addition of increasing doses of VIP resulted in a dose-dependent stimulation of hCG release from cultured human trophoblast and JEG-3 cells. Increasing doses of VIP also dose-dependently stimulated progesterone secretion from primary cultured trophoblastic cells at all time points evaluated and from JEG-3 cells only after 3 h. SP did not affect hCG and progesterone secretion either in cultured human trophoblast or in JEG-3 cells. In conclusion, the present study demonstrates that VIP and SP are mainly expressed in human trophoblasts, and that VIP modulates the in vitro secretion of hCG and progesterone, suggesting a different role in trophoblastic function of the two peptides.
Collapse
Affiliation(s)
- D Marzioni
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Torino, 10127 Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pazos F, Sánchez-Franco F, Balsa J, Escalada J, Cacicedo L. Differential regulation of gonadotropins and glycoprotein hormone alpha-subunit by IGF-I in anterior pituitary cells from male rats. J Endocrinol Invest 2004; 27:670-5. [PMID: 15505992 DOI: 10.1007/bf03347501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
IGF-I has been demonstrated to stimulate basal and GnRH-induced gonadotropin release. IGF-I also elicites alpha-subunit secretion in human pituitary tumor cells. The aims of this study were to evaluate both the effect of IGF-I on gonadotropin LH-beta and FSH-beta mRNA levels and glycoprotein alpha-subunit gene expression in cultured rat anterior pituitary cells. The exposure of pituitary cells to recombinant human IGF-I (rhlGF-I; 2 microg/ml) for 72 h markedly stimulated basal LH and FSH release whereas their mRNA levels remained unmodified. IGF-I elicited a-subunit release from pituitary cells (p < 0.01) and augmented its mRNA levels. Exposure to IGF-I consistently reduced GH release from pituitary cells. This study shows that the gonadotropin-releasing effects of IGF-I are not paralleled by changes in their mRNAs whereas IGF-I stimulates not only alpha-subunit release but also its mRNA levels. This study provides the first observation of alpha-subunit regulation by IGF-I in normal pituitary cells, where a differential regulation between release and synthesis for gonadotropin a-and 1-subunits is also shown.
Collapse
Affiliation(s)
- F Pazos
- Servicio de Endocrinologia, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | | | | |
Collapse
|
13
|
Obrietan K, Impey S, Smith D, Athos J, Storm DR. Circadian regulation of cAMP response element-mediated gene expression in the suprachiasmatic nuclei. J Biol Chem 1999; 274:17748-56. [PMID: 10364217 DOI: 10.1074/jbc.274.25.17748] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A program of stringently-regulated gene expression is thought to be a fundamental component of the circadian clock. Although recent work has implicated a role for E-box-dependent transcription in circadian rhythmicity, the contribution of other enhancer elements has yet to be assessed. Here, we report that cells of the suprachiasmatic nuclei (SCN) exhibit a prominent circadian oscillation in cAMP response element (CRE)-mediated gene expression. Maximal reporter gene expression occurred from late-subjective night to mid-subjective day. Cycling of CRE-dependent transcription was not observed in other brain regions, including the supraoptic nucleus and piriform cortex. Levels of the phospho-active form of the transcription factor CREB (P-CREB) varied as a function of circadian time. Peak P-CREB levels occurred during the mid- to late-subjective night. Furthermore, photic stimulation during the subjective night, but not during the subjective day, triggered a marked increase in CRE-mediated gene expression in the SCN. Reporter gene experiments showed that activation of the p44/42 mitogen-activated protein kinase signaling cascade is required for Ca2+-dependent stimulation of CRE-mediated transcription in the SCN. These findings reveal the CREB/CRE transcriptional pathway to be circadian-regulated within the SCN, and raise the possibility that this pathway provides signaling information essential for normal clock function.
Collapse
Affiliation(s)
- K Obrietan
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA
| | | | | | | | | |
Collapse
|
14
|
Ottesen B, Fahrenkrug J. Vasoactive intestinal polypeptide and other preprovasoactive intestinal polypeptide-derived peptides in the female and male genital tract: localization, biosynthesis, and functional and clinical significance. Am J Obstet Gynecol 1995; 172:1615-31. [PMID: 7755080 DOI: 10.1016/0002-9378(95)90506-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vasoactive intestinal polypeptide, a neuropeptide with wide distribution in the central and peripheral nervous system, has a broad spectrum of biologic actions. The demonstration of vasoactive intestinal polypeptide containing nerve fibers within the female and male genital tract 17 years ago indicated a putative role for this peptide in the local nervous control of reproductive functions. The genes encoding the preprovasoactive intestinal polypeptide precursor molecule and the vasoactive intestinal polypeptide receptor have been identified. The gene expression has been studied by the use of specific antibodies against the functional domains of the vasoactive intestinal polypeptide precursor and the biologic action elucidated by both in vivo and in vitro methods. Evidence has been provided to support vasoactive intestinal polypeptide as a neurotransmitter in several physiologic events in the genital tracts (i.e., blood flow and nonvascular smooth muscle relaxation). In the ovary vasoactive intestinal polypeptide seems to play an important role as regulator and/or modulator of folliculogenesis and steroidogenesis. In the male genital tract vasoactive intestinal polypeptide seems to participate in the control of erection. Vasoactive intestinal polypeptide has been suggested as a causative factor in some diseases of the genital organs (e.g., it may play a pathophysiologic role in male impotence and the peptide is currently used in the treatment of this condition). Vasoactive intestinal polypeptide may be important for control of the low resistance in the fetomaternal vascular bed and is therefore a putative factor involved in the development of preeclampsia. The therapeutic potential of vasoactive intestinal polypeptide and future agonists and antagonists will be revealed by ongoing and forthcoming studies.
Collapse
Affiliation(s)
- B Ottesen
- Department of Obstetrics and Gynecology, Hvidovre Hospital, University of Copenhagen, Denmark
| | | |
Collapse
|
15
|
Papavassiliou ED, Arvind P, Tsioulias GJ, Qiao L, Goldin E, Staiano-Coico L, Rigas B. The effect of ethanol on the expression of HLA class I genes in human colon adenocarcinoma cell lines. Cancer Lett 1994; 81:33-8. [PMID: 8019985 DOI: 10.1016/0304-3835(94)90161-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The loss of HLA antigens by neoplastic cells may allow tumors to escape immune surveillance. We observed reduced expression of HLA antigens during human colon carcinogenesis. Since ethanol, which is associated with human colonic carcinogenesis, modulates the expression of HLA genes, we examined whether it affects the expression of HLA class I genes in human colon adenocarcinoma cell lines. Ethanol (1.7 x 10(-10) M to 1.7 x 10(-1) M), had no effect on the expression of HLA class I antigens on these colonocytes, the corresponding mRNA levels, or the expression of HLA constructs. Our findings do not support the hypothesis that ethanol may modulate the expression of HLA class I genes in human colon cancer cells.
Collapse
Affiliation(s)
- E D Papavassiliou
- Department of Medicine, Cornell University Medical College, New York, NY
| | | | | | | | | | | | | |
Collapse
|
16
|
Arvind P, Papavassiliou ED, Tsioulias GJ, Duceman BW, Lovelace CI, Geng W, Staiano-Coico L, Rigas B. Lithocholic acid inhibits the expression of HLA class I genes in colon adenocarcinoma cells. Differential effect on HLA-A, -B and -C loci. Mol Immunol 1994; 31:607-14. [PMID: 8196671 DOI: 10.1016/0161-5890(94)90168-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Loss of HLA antigen expression is considered to be one of the mechanisms whereby tumor cells escape immune surveillance. We recently observed reduced or lost expression of HLA antigens during human colon carcinogenesis. We studied the effect of bile acids (BAs), long implicated in the pathogenesis of colon cancer, on the expression of HLA class I antigens in human colon adenocarcinoma cells. Lithocholic acid (LCA) decreased by 42% the expression of HLA class I antigens on the surface of these cells. This dose-dependent reduction was specific for both the target genes and the chemical structure of LCA, and was not evident in cultured liver cells. None of the other BAs that were tested manifested this effect. LCA, and to a lesser extent deoxycholic acid (DCA), decreased steady-state HLA class I mRNA levels. LCA decreased the rate of transcription of HLA-B (64%) and HLA-C (87%) but not HLA-A; DCA had a similar but less pronounced effect. In transient gene expression (CAT assays) experiments, we evaluated the role of a 0.6-0.7 kb EcoRI/XbaI sequence from the 5' flanking region of HLA-A2, -B7 and -Cw7 genes in the regulation of class I gene expression by LCA. LCA down-regulated by 70% the expression of the reporter gene for all three genes. We interpret these results as indicating a differential regulation of the three HLA loci by LCA. Our findings, demonstrating a profound effect of LCA on HLA class I gene regulation, raise the possibility that such a mechanism may be operative in vivo.
Collapse
Affiliation(s)
- P Arvind
- Department of Medicine, Cornell University Medical College, New York, NY 10021
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Deutsch PJ, Schadlow VC, Barzilai N. 38-Amino acid form of pituitary adenylate cyclase activating peptide induces process outgrowth in human neuroblastoma cells. J Neurosci Res 1993; 35:312-20. [PMID: 8102409 DOI: 10.1002/jnr.490350311] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Permanent cell lines from human neuroblastoma, a sympathoadrenal malignancy, are known to exhibit a more neuronal phenotype characterized by outgrowth of long processes in response to multiple second messenger analogs. In this report we demonstrate that the 38-amino acid form of a peptide homologous to vasoactive intestinal peptide (VIP), pituitary adenylate cyclase activating peptide (PACAP), as well as the 27-amino acid form of PACAP, induce NB-OK human neuroblastoma cells to extrude cellular processes within 5 hr of treatment with either peptide at 10(-8) M. Treatment of NB-OK cells with PACAP38 or PACAP27 at 10(-8) M for 1 hr also elevates cAMP content greater than 100-fold and inositol lipid turnover 11- to 12-fold. VIP acutely induces process outgrowth and elevates intracellular second messenger levels in NB-OK cells only at higher concentrations, 10(-6) M or greater. In contrast to the equipotency of PACAP27 and PACAP38 in stimulating the outgrowth of processes observed after 5 hr of treatment, PACAP38 is much more potent than PACAP27 when NB-OK cells are scored for process outgrowth after 72 hr of treatment. Correlating with the extended time course over which morphologic changes are seen with PACAP38, cAMP levels remain elevated for a more prolonged time span during treatment with PACAP38 than PACAP27. After 72 hr of treatment with PACAP38 versus treatment with PACAP27, cAMP levels are elevated 10-fold versus 3-fold, respectively. PACAP38 at 10(-8) M also induces process outgrowth in two additional human neuroblastoma lines tested, SMS-KAN and LA-N-1, whereas PACAP27 and VIP at the same concentration are less effective.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P J Deutsch
- Department of Medicine, Cornell University Medical College, New York, New York
| | | | | |
Collapse
|
18
|
Guidon PT, Salvatori R, Bockman RS. Gallium nitrate regulates rat osteoblast expression of osteocalcin protein and mRNA levels. J Bone Miner Res 1993; 8:103-12. [PMID: 8381250 DOI: 10.1002/jbmr.5650080113] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Gallium nitrate, a group IIIa metal salt, has been found to be clinically effective for the treatment of accelerated bone resorption in cancer-related hypercalcemia and Paget's disease. Here we report the effects of gallium nitrate on osteocalcin mRNA and protein levels on the rat osteoblast-like cell line ROS 17/2.8. Gallium nitrate reduced both constitutive and vitamin D3-stimulated osteocalcin protein levels in culture medium by one-half and osteocalcin mRNA levels to one-third to one-tenth of control. Gallium nitrate also inhibited vitamin D3 stimulation of osteocalcin and osteopontin mRNA levels but did not affect constitutive osteopontin mRNA levels. Among several different metals examined, gallium was unique in its ability to reduce osteocalcin mRNA levels without decreasing levels of other mRNAs synthesized by ROS 17/2.8 cells. The effects of gallium nitrate on osteocalcin mRNA and protein synthesis mimic those seen when ROS 17/2.8 cells are exposed to transforming growth factor beta 1 (TGF beta 1); however, TGF-beta 1 was not detected in gallium nitrate-treated ROS 17/2.8 cell media. Use of the RNA polymerase II inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole demonstrated that gallium nitrate did not alter the stability of osteocalcin mRNA. Transient transfection assays using the rat osteocalcin promoter linked to the bacterial reporter gene chloramphenicol acetyltransferase indicated that gallium nitrate blocked reporter gene expression stimulated by the osteocalcin promoter. This is the first reported effect of gallium nitrate on isolated osteoblast cells.
Collapse
Affiliation(s)
- P T Guidon
- Hospital for Special Surgery, New York, New York
| | | | | |
Collapse
|
19
|
Affiliation(s)
- J F Strauss
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | | | | | | | |
Collapse
|
20
|
The 38-amino acid form of pituitary adenylate cyclase-activating polypeptide stimulates dual signaling cascades in PC12 cells and promotes neurite outgrowth. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42737-8] [Citation(s) in RCA: 266] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
21
|
Alexander-Bridges M, Ercolani L, Kong XF, Nasrin N. Identification of a core motif that is recognized by three members of the HMG class of transcriptional regulators: IRE-ABP, SRY, and TCF-1 alpha. J Cell Biochem 1992; 48:129-35. [PMID: 1618927 DOI: 10.1002/jcb.240480204] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Insulin induces glyceraldehyde-3-phosphate dehydrogenase (GADPH) gene transcription in part by regulating one or more proteins that bind a cis-acting element, IRE-A. We have recently cloned a protein, IRE-ABP, that binds the IRE-A element. IRE-ABP is a member of the HMG class of transcriptional regulators and is 67% identical within its HMG box domain to the candidate gene for the testis-determining factor, SRY. IRE-ABP and SRY share binding specificity for the IRE-A motif. This sequence is also highly conserved with a core motif, 5'-Py-ctttg(a/t)-3', contained in T-cell specific genes that have high affinity for TCF-1 alpha, another member of the HMG class of transcriptional regulators. Thus, diverse members of the HMG family interact with similar nucleotide sequences to regulate expression of genes that initiate and maintain the differentiated phenotype. We have found this core motif in the upstream region of many genes that are positively and negatively regulated by insulin. These observations suggest that IRE-ABP or a related family member may coordinate the expression of these genes. The HMG family of proteins has diverse functions ranging from the regulation of differentiation and mating type in yeast to the regulation of tissue- and species-specific gene expression in mammals. Insulin regulates GAPDH gene transcription in a tissue-specific manner. We propose that members of the IRE-ABP family play an important role in controlling tissue specificity of the insulin response.
Collapse
Affiliation(s)
- M Alexander-Bridges
- Howard Hughes Medical Institute, Diabetes Unit, Massachusetts General Hospital, Boston
| | | | | | | |
Collapse
|