1
|
Osickova A, Balashova N, Masin J, Sulc M, Roderova J, Wald T, Brown AC, Koufos E, Chang EH, Giannakakis A, Lally ET, Osicka R. Cytotoxic activity of Kingella kingae RtxA toxin depends on post-translational acylation of lysine residues and cholesterol binding. Emerg Microbes Infect 2018; 7:178. [PMID: 30405113 PMCID: PMC6221878 DOI: 10.1038/s41426-018-0179-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 11/28/2022]
Abstract
Kingella kingae is a member of the commensal oropharyngeal flora of young children. Improvements in detection methods have led to the recognition of K. kingae as an emerging pathogen that frequently causes osteoarticular infections in children and a severe form of infective endocarditis in children and adults. Kingella kingae secretes a membrane-damaging RTX (Repeat in ToXin) toxin, RtxA, which is implicated in the development of clinical infections. However, the mechanism by which RtxA recognizes and kills host cells is largely unexplored. To facilitate structure-function studies of RtxA, we have developed a procedure for the overproduction and purification of milligram amounts of biologically active recombinant RtxA. Mass spectrometry analysis revealed the activation of RtxA by post-translational fatty acyl modification on the lysine residues 558 and/or 689 by the fatty-acyltransferase RtxC. Acylated RtxA was toxic to various human cells in a calcium-dependent manner and possessed pore-forming activity in planar lipid bilayers. Using various biochemical and biophysical approaches, we demonstrated that cholesterol facilitates the interaction of RtxA with artificial and cell membranes. The results of analyses using RtxA mutant variants suggested that the interaction between the toxin and cholesterol occurs via two cholesterol recognition/interaction amino acid consensus motifs located in the C-terminal portion of the pore-forming domain of the toxin. Based on our observations, we conclude that the cytotoxic activity of RtxA depends on post-translational acylation of the K558 and/or K689 residues and on the toxin binding to cholesterol in the membrane.
Collapse
Affiliation(s)
- Adriana Osickova
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Nataliya Balashova
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiri Masin
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Miroslav Sulc
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Roderova
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Tomas Wald
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic.,Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Evan Koufos
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - En Hyung Chang
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Alexander Giannakakis
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Department of Cell and Molecular Biology at Karolinska Institutet, Stockholm, Sweden
| | - Edward T Lally
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Radim Osicka
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic.
| |
Collapse
|
2
|
Cannella SE, Ntsogo Enguéné VY, Davi M, Malosse C, Sotomayor Pérez AC, Chamot-Rooke J, Vachette P, Durand D, Ladant D, Chenal A. Stability, structural and functional properties of a monomeric, calcium-loaded adenylate cyclase toxin, CyaA, from Bordetella pertussis. Sci Rep 2017; 7:42065. [PMID: 28186111 PMCID: PMC5301233 DOI: 10.1038/srep42065] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/04/2017] [Indexed: 12/21/2022] Open
Abstract
Bordetella pertussis, the causative agent of whooping cough, secretes an adenylate cyclase toxin, CyaA, which invades eukaryotic cells and alters their physiology by cAMP overproduction. Calcium is an essential cofactor of CyaA, as it is the case for most members of the Repeat-in-ToXins (RTX) family. We show that the calcium-bound, monomeric form of CyaA, hCyaAm, conserves its permeabilization and haemolytic activities, even in a fully calcium-free environment. In contrast, hCyaAm requires sub-millimolar calcium in solution for cell invasion, indicating that free calcium in solution is involved in the CyaA toxin translocation process. We further report the first in solution structural characterization of hCyaAm, as deduced from SAXS, mass spectrometry and hydrodynamic studies. We show that hCyaAm adopts a compact and stable state that can transiently conserve its conformation even in a fully calcium-free environment. Our results therefore suggest that in hCyaAm, the C-terminal RTX-domain is stabilized in a high-affinity calcium-binding state by the N-terminal domains while, conversely, calcium binding to the C-terminal RTX-domain strongly stabilizes the N-terminal regions. Hence, the different regions of hCyaAm appear tightly connected, leading to stabilization effects between domains. The hysteretic behaviour of CyaA in response to calcium is likely shared by other RTX cytolysins.
Collapse
Affiliation(s)
- Sara E. Cannella
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | | | - Marilyne Davi
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | - Christian Malosse
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | | | - Julia Chamot-Rooke
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | - Patrice Vachette
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Université Paris-Sud, F-91405 ORSAY Cedex, France
| | - Dominique Durand
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Université Paris-Sud, F-91405 ORSAY Cedex, France
| | - Daniel Ladant
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | - Alexandre Chenal
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| |
Collapse
|
3
|
Karst JC, Ntsogo Enguéné VY, Cannella SE, Subrini O, Hessel A, Debard S, Ladant D, Chenal A. Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form. J Biol Chem 2014; 289:30702-30716. [PMID: 25231985 DOI: 10.1074/jbc.m114.580852] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adenylate cyclase (CyaA) toxin, a multidomain protein of 1706 amino acids, is one of the major virulence factors produced by Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic target cells in which it produces high levels of cAMP, thus altering the cellular physiology. Although CyaA has been extensively studied by various cellular and molecular approaches, the structural and functional states of the toxin remain poorly characterized. Indeed, CyaA is a large protein and exhibits a pronounced hydrophobic character, making it prone to aggregation into multimeric forms. As a result, CyaA has usually been extracted and stored in denaturing conditions. Here, we define the experimental conditions allowing CyaA folding into a monomeric and functional species. We found that CyaA forms mainly multimers when refolded by dialysis, dilution, or buffer exchange. However, a significant fraction of monomeric, folded protein could be obtained by exploiting molecular confinement on size exclusion chromatography. Folding of CyaA into a monomeric form was found to be critically dependent upon the presence of calcium and post-translational acylation of the protein. We further show that the monomeric preparation displayed hemolytic and cytotoxic activities suggesting that the monomer is the genuine, physiologically active form of the toxin. We hypothesize that the structural role of the post-translational acylation in CyaA folding may apply to other RTX toxins.
Collapse
Affiliation(s)
- Johanna C Karst
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - V Yvette Ntsogo Enguéné
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Sara E Cannella
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Orso Subrini
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Audrey Hessel
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Sylvain Debard
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Daniel Ladant
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | - Alexandre Chenal
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
4
|
Cloning, expression, and characterization of an adenylate cyclase from Arthrobacter sp. CGMCC 3584. Appl Microbiol Biotechnol 2012; 96:963-70. [DOI: 10.1007/s00253-012-3890-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/29/2011] [Accepted: 01/04/2012] [Indexed: 11/25/2022]
|
5
|
Knapp O, Maier E, Mašín J, Šebo P, Benz R. Pore formation by the Bordetella adenylate cyclase toxin in lipid bilayer membranes: Role of voltage and pH. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:260-9. [DOI: 10.1016/j.bbamem.2007.09.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 09/25/2007] [Accepted: 09/27/2007] [Indexed: 11/25/2022]
|
6
|
Ross PJ, Lavelle EC, Mills KHG, Boyd AP. Adenylate cyclase toxin from Bordetella pertussis synergizes with lipopolysaccharide to promote innate interleukin-10 production and enhances the induction of Th2 and regulatory T cells. Infect Immun 2004; 72:1568-79. [PMID: 14977963 PMCID: PMC356053 DOI: 10.1128/iai.72.3.1568-1579.2004] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Adenylate cyclase toxin (CyaA) from Bordetella pertussis can subvert host immune responses allowing bacterial colonization. Here we have examined its adjuvant and immunomodulatory properties and the possible contribution of lipopolysaccharide (LPS), known to be present in purified CyaA preparations. CyaA enhanced antigen-specific interleukin-5 (IL-5) and IL-10 production and immunoglobulin G1 antibodies to coadministered antigen in vivo. Antigen-specific CD4(+)-T-cell clones generated from mice immunized with antigen and CyaA had cytokine profiles characteristic of Th2 or type 1 regulatory T (Tr1) cells. Since innate immune cells direct the induction of T-cell subtypes, we examined the influence of CyaA on activation of dendritic cells (DC) and macrophages. CyaA significantly augmented LPS-induced IL-6 and IL-10 and inhibited LPS-driven tumor necrosis factor alpha and IL-12p70 production from bone marrow-derived DC and macrophages. CyaA also enhanced cell surface expression of CD80, CD86, and major histocompatibility class II on immature DC. The stimulatory activity of our CyaA preparation for IL-10 production and CD80, CD86, and major histocompatibility complex class II expression was attenuated following the addition of polymyxin B or with the use of DC from Toll-like receptor (TLR) 4-defective mice. However, treatment of DC with LPS alone at the concentration present in the CyaA preparation (0.2 ng/ml) failed to activate DC in vitro. Our findings demonstrate that activation of innate cells in vitro by CyaA is dependent on a second signal through a TLR and that CyaA can promote Th2/Tr1-cell responses by inhibiting IL-12 and promoting IL-10 production by DC and macrophages.
Collapse
Affiliation(s)
- Pádraig J Ross
- Immune Regulation Research Group, Department of Biochemistry, Trinity College, Dublin 2, Ireland
| | | | | | | |
Collapse
|
7
|
Knapp O, Maier E, Polleichtner G, Masín J, Sebo P, Benz R. Channel formation in model membranes by the adenylate cyclase toxin of Bordetella pertussis: effect of calcium. Biochemistry 2003; 42:8077-84. [PMID: 12834359 DOI: 10.1021/bi034295f] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calmodulin-dependent adenylate cyclase toxin (ACT or CyaA) of Bordetella pertussis requires calcium ions for target cell binding, formation of hemolytic channels, and delivery of its enzyme component into cells. We examined the effect of calcium and calmodulin on toxin interaction with planar lipid bilayers. While calmodulin binding did not affect the properties of CyaA channels, addition of calcium ions and toxin to the same side of the membrane caused a steep increase of the channel-forming capacity of CyaA. The calcium effect was highly specific, since among other divalent cations only strontium caused some CyaA activity enhancement. The minimal stimulatory concentration of calcium ions ranged from 0.6 to 0.8 mM, depending on the ionic strength of the aqueous phase. Half-maximal channel activity of CyaA was observed at 2-4 mM, and saturation was reached at 10 mM calcium concentration, respectively. The unit size of single CyaA channels, assessed as single-channel conductance, was not affected by calcium ions, while the frequency of CyaA channel formation strongly depended on calcium concentration. The calcium effect was abrogated upon deletion of the RTX repeats of the toxin, suggesting that binding of calcium ions to the repeats modulates the propensity of CyaA to form membrane channels.
Collapse
Affiliation(s)
- Oliver Knapp
- Lehrstuhl für Biotechnologie, Theodor-Boveri-Institut (Biozentrum) der Universität Würzburg, Am Hubland, D-97074 Würzburg, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
8
|
Smith AM, Guzmán CA, Walker MJ. The virulence factors ofBordetella pertussis: a matter of control. FEMS Microbiol Rev 2001; 25:309-33. [PMID: 11348687 DOI: 10.1111/j.1574-6976.2001.tb00580.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bordetella pertussis is the causative agent of whooping cough, a contagious childhood respiratory disease. Increasing public concern over the safety of whole-cell vaccines led to decreased immunisation rates and a subsequent increase in the incidence of the disease. Research into the development of safer, more efficacious, less reactogenic vaccine preparations was concentrated on the production and purification of detoxified B. pertussis virulence factors. These virulence factors include adhesins such as filamentous haemagglutinin, fimbriae and pertactin, which allow B. pertussis to bind to ciliated epithelial cells in the upper respiratory tract. Once attachment is initiated, toxins produced by the bacterium enable colonisation to proceed by interfering with host clearance mechanisms. B. pertussis co-ordinately regulates the expression of virulence factors via the Bordetella virulence gene (bvg) locus, which encodes a response regulator responsible for signal-mediated activation and repression. This strict regulation mechanism allows the bacterium to express different gene subsets in different environmental niches within the host, according to the stage of disease progression.
Collapse
Affiliation(s)
- A M Smith
- Department of Biological Sciences, University of Wollongong, Wollongong. N.S.W. 2522, Australia
| | | | | |
Collapse
|
9
|
Abstract
Intracellular Ca2+ is normally maintained at submicromolar levels but increases during many forms of cellular stimulation. This increased Ca2+ binds to receptor proteins such as calmodulin (CaM) and alters the cell's metabolism and physiology. Calcium-CaM binds to target proteins and alters their function in such a way as to transduce the Ca2+ signal. Calcium-free or apocalmodulin (ApoCaM) binds to other proteins and has other specific effects. Apocalmodulin has roles in the cell that apparently do not require the ability to bind Ca2+ at all, and these roles appear to be essential for life. Apocalmodulin differs from Ca2+-CaM in its tertiary structure. It binds target proteins differently, utilizing different binding motifs such as the IQ motif and noncontiguous binding sites. Other kinds of binding potentially await discovery. The ApoCaM-binding proteins are a diverse group of at least 15 proteins including enzymes, actin-binding proteins, as well as cytoskeletal and other membrane proteins, including receptors and ion channels. Much of the cellular CaM is bound in a Ca2+-independent manner to membrane structures within the cell, and the proportion bound changes with cell growth and density, suggesting it may be a storage form. Apocalmodulin remains tightly bound to other proteins as subunits and probably hastens the response of these proteins to Ca2+. The overall picture that emerges is that CaM cycles between its Ca2+-bound and Ca2+-free states and in each state binds to different proteins and performs essential functions. Although much of the research focus has been on the roles of Ca2+-CaM, the roles of ApoCaM are equally vital but less well understood.
Collapse
Affiliation(s)
- L A Jurado
- Department of Biochemistry, University of Tennessee, Memphis, Tennessee, USA
| | | | | |
Collapse
|
10
|
Rose T, Sebo P, Bellalou J, Ladant D. Interaction of calcium with Bordetella pertussis adenylate cyclase toxin. Characterization of multiple calcium-binding sites and calcium-induced conformational changes. J Biol Chem 1995; 270:26370-6. [PMID: 7592850 DOI: 10.1074/jbc.270.44.26370] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The adenylate cyclase (CyaA) secreted by Bordetella pertussis is a toxin that is able to enter eukaryotic cells and cause a dramatic increase in cAMP level. In addition, the toxin also exhibits an intrinsic hemolytic activity that is independent from the ATP cycling catalytic activity of the toxin. Both the cytotoxic and hemolytic activities are calcium-dependent. In this work, we have analyzed the calcium interacting properties of CyaA. We have shown that CyaA exposed to CaCl2 could retain membrane binding capability and hemolytic activity when it was further assayed in the presence of an excess of EGTA. Determination of the calcium content of CyaA exposed first to calcium and subsequently to EGTA indicated that some (3-5) calcium ions remained bound to the protein, suggesting the existence of Ca2+ binding sites of high affinity. Binding of Ca2+ to these sites might be necessary for both the membrane binding capability and the hemolytic activity of the toxin. In addition, CyaA possesses a large number (about 45) of low affinity (KD = 0.5-0.8 mM) Ca2+ binding sites that are located in the C terminus of the toxin, between amino acids 1007 and 1706. This region mainly consists of about 45 repeated sequences of the type GGXGXDXLX (where X represents any amino acid) that are characteristic of the RTX (Repeat in ToXin) bacterial protein family. Our data suggest that each one can bind one calcium ion. Circular dichroism spectroscopy analysis showed that calcium binding to the low affinity sites induces a large conformational change of CyaA, as revealed by an important increase in the content of alpha-helical structures. This conformational change might be directly involved in the Ca(2+)-dependent translocation of the catalytic domain of CyaA through the plasma membrane of target cells.
Collapse
Affiliation(s)
- T Rose
- Laboratoire de Résonance Magnétique Nucléaire, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
11
|
Otero AS, Yi XB, Gray MC, Szabo G, Hewlett EL. Membrane depolarization prevents cell invasion by Bordetella pertussis adenylate cyclase toxin. J Biol Chem 1995; 270:9695-7. [PMID: 7730345 DOI: 10.1074/jbc.270.17.9695] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Adenylate cyclase toxin from Bordetella pertussis is a 177-kDa calmodulin-activated enzyme that has the ability to enter eukaryotic cells and convert endogenous ATP into cAMP. Little is known, however, about the mechanism of cell entry. We now demonstrate that intoxication of cardiac myocytes by adenylate cyclase toxin is driven and controlled by the electrical potential across the plasma membrane. The steepness of the voltage dependence of intoxication is comparable with that previously observed for the activation of K+ and Na+ channels of excitable membranes. The voltage-sensitive process is downstream from toxin binding to the cell surface and appears to correspond to the translocation of the catalytic domain across the membrane.
Collapse
Affiliation(s)
- A S Otero
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
12
|
Adenylate cyclase toxin (CyaA) of Bordetella pertussis. Evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46973-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Szabo G, Gray M, Hewlett E. Adenylate cyclase toxin from Bordetella pertussis produces ion conductance across artificial lipid bilayers in a calcium- and polarity-dependent manner. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31674-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Inhibiting effect ofYersinia pestis protein factor on the hormone-stimulated response of human platelets. Bull Exp Biol Med 1993. [DOI: 10.1007/bf00805163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Hewlett E, Gray M, Ehrmann I, Maloney N, Otero A, Gray L, Allietta M, Szabo G, Weiss A, Barry E. Characterization of adenylate cyclase toxin from a mutant of Bordetella pertussis defective in the activator gene, cyaC. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53034-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Peterkofsky A, Reizer A, Reizer J, Gollop N, Zhu PP, Amin N. Bacterial adenylyl cyclases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 44:31-65. [PMID: 8434125 DOI: 10.1016/s0079-6603(08)60216-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- A Peterkofsky
- Laboratory of Biochemical Genetics, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
17
|
Rogel A, Hanski E. Distinct steps in the penetration of adenylate cyclase toxin of Bordetella pertussis into sheep erythrocytes. Translocation of the toxin across the membrane. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41715-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
18
|
Ehrmann IE, Weiss AA, Goodwin MS, Gray MC, Barry E, Hewlett EL. Enzymatic activity of adenylate cyclase toxin from Bordetella pertussis is not required for hemolysis. FEBS Lett 1992; 304:51-6. [PMID: 1319923 DOI: 10.1016/0014-5793(92)80587-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adenylate cyclase (AC) toxin from Bordetella pertussis enters cells to cause supraphysiologic increases in cAMP. AC toxin is also hemolytic. Substitution of Lys-58 with a methionine residue by site-directed mutagenesis of the structural gene for AC toxin, cyaA, and introduction of this mutation onto the B. pertussis chromosome results in an organism that synthesizes an enzyme-deficient AC toxin molecule. This mutant toxin molecule exhibits 1000-fold reduction in enzymatic activity relative to wild-type and has no toxin activity in J774 cells. The enzyme-deficient toxin molecule is not, however, impaired in its ability to lyse sheep red blood cells. In order to ascertain the importance of these two separate activities of AC toxin in vivo the enzyme-deficient organisms were used to infect infant mice. The hemolytic, enzyme-deficient mutant organisms are reduced in virulence relative to wild-type organisms after intranasal challenge indicating that, although the enzymatic activity of AC toxin does not contribute to hemolysis, it is this property of the toxin which is important for virulence of B. pertussis.
Collapse
Affiliation(s)
- I E Ehrmann
- Department of Medicine, University of Virginia School of Medicine, Charlottesville 22908
| | | | | | | | | | | |
Collapse
|
19
|
Ladant D, Glaser P, Ullmann A. Insertional mutagenesis of Bordetella pertussis adenylate cyclase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)45869-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Hewlett E, Gray L, Allietta M, Ehrmann I, Gordon V, Gray M. Adenylate cyclase toxin from Bordetella pertussis. Conformational change associated with toxin activity. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)47400-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Rogel A, Meller R, Hanski E. Adenylate cyclase toxin from Bordetella pertussis. The relationship between induction of cAMP and hemolysis. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)49967-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Abstract
Adenylate cyclase (AC) toxin from B. pertussis enters eukaryotic cells where it produces supraphysiologic levels of cAMP. Purification of AC toxin activity [(1989) J. Biol. Chem. 264, 19279] results in increasing potency of hemolytic activity and electroelution of the 216-kDa holotoxin yields a single protein with AC enzymatic, toxin and hemolytic activities. AC toxin and E. coli hemolysin, which have DNA sequence homology [(1988) EMBO J. 7, 3997] are immunologically cross-reactive. The time courses of hemolysis elicited by the two molecules are strikingly different, however, with AC toxin eliciting cAMP accumulation with rapid onset, but hemolysis with a lag of greater than or equal to 45 min. Finally, osmotic protection experiments indicate that the size of the putative pore produced by AC toxin is 3-5-fold smaller than that of E. coli hemolysin.
Collapse
|