1
|
Penicillin-binding proteins: evergreen drug targets. Curr Opin Pharmacol 2014; 18:112-9. [DOI: 10.1016/j.coph.2014.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/12/2014] [Indexed: 02/07/2023]
|
2
|
Johnson JW, Evanoff DP, Savard ME, Lange G, Ramadhar TR, Assoud A, Taylor NJ, Dmitrienko GI. Cyclobutanone Mimics of Penicillins: Effects of Substitution on Conformation and Hemiketal Stability. J Org Chem 2008; 73:6970-82. [PMID: 18710291 DOI: 10.1021/jo801274m] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jarrod W. Johnson
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Darryl P. Evanoff
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Marc E. Savard
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Gerald Lange
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Timothy R. Ramadhar
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Abdeljalil Assoud
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Nicholas J. Taylor
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Gary I. Dmitrienko
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
3
|
Maglia G, Jonckheer A, De Maeyer M, Frère JM, Engelborghs Y. An unusual red-edge excitation and time-dependent Stokes shift in the single tryptophan mutant protein DD-carboxypeptidase from Streptomyces: the role of dynamics and tryptophan rotamers. Protein Sci 2008; 17:352-61. [PMID: 18096643 PMCID: PMC2222716 DOI: 10.1110/ps.073147608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 10/18/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
Abstract
The fluorescence emission of the single tryptophan (W233) of the mutant protein DD-carboxypeptidase from streptomyces is characterized by a red-edge excitation shift (REES), i.e., the phenomenon that the wavelength of maximum emission depends on the excitation wavelength. This phenomenon is an indication for a strongly reduced dynamic environment of the single tryptophan, which has a very low accessibility to the solvent. The REES shows, however, an unusual temperature and time dependence. This, together with the fluorescence lifetime analysis, showing three resolvable lifetimes, can be explained by the presence of three rotameric states that can be identified using the Dead-End Elimination method. The three individual lifetimes increase with increasing emission wavelength, indicating the presence of restricted protein dynamics within the rotameric states. This is confirmed by time-resolved anisotropy measurements that show dynamics within the rotamers but not among the rotamers. The global picture is that of a protein with a single buried tryptophan showing strongly restricted dynamics within three distinct rotameric states with different emission spectra and an anisotropic environment.
Collapse
Affiliation(s)
- Giovanni Maglia
- Laboratory of Biomolecular Dynamics, Department of Chemistry, University of Leuven, Celestijnenlaan 200 G, B-3001 Leuven, Belgium
| | | | | | | | | |
Collapse
|
4
|
Nabuurs SB, Spronk CAEM, Vuister GW, Vriend G. Traditional biomolecular structure determination by NMR spectroscopy allows for major errors. PLoS Comput Biol 2006; 2:e9. [PMID: 16462939 PMCID: PMC1359070 DOI: 10.1371/journal.pcbi.0020009] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 12/29/2005] [Indexed: 12/04/2022] Open
Abstract
One of the major goals of structural genomics projects is to determine the three-dimensional structure of representative members of as many different fold families as possible. Comparative modeling is expected to fill the remaining gaps by providing structural models of homologs of the experimentally determined proteins. However, for such an approach to be successful it is essential that the quality of the experimentally determined structures is adequate. In an attempt to build a homology model for the protein dynein light chain 2A (DLC2A) we found two potential templates, both experimentally determined nuclear magnetic resonance (NMR) structures originating from structural genomics efforts. Despite their high sequence identity (96%), the folds of the two structures are markedly different. This urged us to perform in-depth analyses of both structure ensembles and the deposited experimental data, the results of which clearly identify one of the two models as largely incorrect. Next, we analyzed the quality of a large set of recent NMR-derived structure ensembles originating from both structural genomics projects and individual structure determination groups. Unfortunately, a visual inspection of structures exhibiting lower quality scores than DLC2A reveals that the seriously flawed DLC2A structure is not an isolated incident. Overall, our results illustrate that the quality of NMR structures cannot be reliably evaluated using only traditional experimental input data and overall quality indicators as a reference and clearly demonstrate the urgent need for a tight integration of more sophisticated structure validation tools in NMR structure determination projects. In contrast to common methodologies where structures are typically evaluated as a whole, such tools should preferentially operate on a per-residue basis. Three-dimensional biomolecular structures provide an invaluable source of biologically relevant information. To be able to learn the most of the wealth of information that these structures can provide us, it is of great importance that the quality and accuracy of the protein structure models deposited in the Protein Data Bank are as high as possible. In this work, the authors describe an analysis that illustrates that this is unfortunately not the case for many protein structures solved using nuclear magnetic resonance spectroscopy. They present an example in which two strikingly different models describing the same protein are analyzed using commonly available structure validation tools, and the results of this analysis show one of the two models to be incorrect. Subsequently, using a large set of recently determined structures, the authors demonstrate that unfortunately this example does not stand on its own. The analyses and examples clearly illustrate that relying solely on the experimental data to evaluate structural quality can provide a false sense of correctness and the combination of multiple sophisticated structure validation tools is required to detect the presence of errors in protein nuclear magnetic resonance structures.
Collapse
Affiliation(s)
- Sander B Nabuurs
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Chris A. E. M Spronk
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Geerten W Vuister
- Department of Biophysical Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
- * To whom correspondence should be addressed. E-mail: (GWV); (GV)
| | - Gert Vriend
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
- * To whom correspondence should be addressed. E-mail: (GWV); (GV)
| |
Collapse
|
5
|
Contreras-Martel C, Job V, Di Guilmi AM, Vernet T, Dideberg O, Dessen A. Crystal structure of penicillin-binding protein 1a (PBP1a) reveals a mutational hotspot implicated in beta-lactam resistance in Streptococcus pneumoniae. J Mol Biol 2005; 355:684-96. [PMID: 16316661 DOI: 10.1016/j.jmb.2005.10.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 10/10/2005] [Accepted: 10/11/2005] [Indexed: 11/17/2022]
Abstract
Streptococcus pneumoniae is a major human pathogen whose infections have been treated with beta-lactam antibiotics for over 60 years, but the proliferation of strains that are highly resistant to such drugs is a problem of worldwide concern. Beta-lactams target penicillin-binding proteins (PBPs), membrane-associated enzymes that play essential roles in the peptidoglycan biosynthetic process. Bifunctional PBPs catalyze both the polymerization of glycan chains (glycosyltransfer) and the cross-linking of adjacent pentapeptides (transpeptidation), while monofunctional enzymes catalyze only the latter reaction. Although S. pneumoniae has six PBPs, only three (PBP1a, PBP2x, PBP2b) are major resistance determinants, with PBP1a being the only bifunctional enzyme. PBP1a plays a key role in septum formation during the cell division cycle and its modification is essential for the development of high-level resistance to penicillins and cephalosporins. The crystal structure of a soluble form of pneumococcal PBP1a (PBP1a*) has been solved to 2.6A and reveals that it folds into three domains. The N terminus contains a peptide from the glycosyltransfer domain bound to an interdomain linker region, followed by a central, transpeptidase domain, and a small C-terminal unit. An analysis of PBP1a sequences from drug-resistant clinical strains in light of the structure reveals the existence of a mutational hotspot at the entrance of the catalytic cleft that leads to the modification of the polarity and accessibility of the mutated PBP1a active site. The presence of this hotspot in all variants sequenced to date is of key relevance for the development of novel antibiotherapies for the treatment of beta-lactam-resistant pneumococcal strains.
Collapse
Affiliation(s)
- Carlos Contreras-Martel
- Institut de Biologie Structurale Jean-Pierre Ebel (CNRS/CEA/UJF), Laboratoire de Cristallographie Macromoléculaire, 41 rue Jules Horowitz, Grenoble 38027, France
| | | | | | | | | | | |
Collapse
|
6
|
Macheboeuf P, Di Guilmi AM, Job V, Vernet T, Dideberg O, Dessen A. Active site restructuring regulates ligand recognition in class A penicillin-binding proteins. Proc Natl Acad Sci U S A 2005; 102:577-82. [PMID: 15637155 PMCID: PMC545533 DOI: 10.1073/pnas.0407186102] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial cell division is a complex, multimolecular process that requires biosynthesis of new peptidoglycan by penicillin-binding proteins (PBPs) during cell wall elongation and septum formation steps. Streptococcus pneumoniae has three bifunctional (class A) PBPs that catalyze both polymerization of glycan chains (glycosyltransfer) and cross-linking of pentapeptidic bridges (transpeptidation) during the peptidoglycan biosynthetic process. In addition to playing important roles in cell division, PBPs are also the targets for beta-lactam antibiotics and thus play key roles in drug-resistance mechanisms. The crystal structure of a soluble form of pneumococcal PBP1b (PBP1b*) has been solved to 1.9 A, thus providing previously undescribed structural information regarding a class A PBP from any organism. PBP1b* is a three-domain molecule harboring a short peptide from the glycosyltransferase domain bound to an interdomain linker region, the transpeptidase domain, and a C-terminal region. The structure of PBP1b* complexed with beta-lactam antibiotics reveals that ligand recognition requires a conformational modification involving conserved elements within the cleft. The open and closed structures of PBP1b* suggest how class A PBPs may become activated as novel peptidoglycan synthesis becomes necessary during the cell division process. In addition, this structure provides an initial framework for the understanding of the role of class A PBPs in the development of antibiotic resistance.
Collapse
Affiliation(s)
- Pauline Macheboeuf
- Laboratoires de Cristallographie Macromoléculaire, Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique/Université Joseph Fourier, 41 Rue Jules Horowitz, 38027 Grenoble, France
| | | | | | | | | | | |
Collapse
|
7
|
Ogino H, Mimitsuka T, Muto T, Matsumura M, Yasuda M, Ishimi K, Ishikawa H. Cloning, expression, and characterization of a lipolytic enzyme gene (lip8) from Pseudomonas aeruginosa LST-03. J Mol Microbiol Biotechnol 2004; 7:212-23. [PMID: 15383719 DOI: 10.1159/000079830] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A lipolytic enzyme gene (lip8) was cloned from organic solvent-tolerant Pseudomonas aeruginosa LST-03 and sequenced. In the sequenced nucleotides, an open reading frame consisting of 1,173 nucleotides and encoding 391 amino acids was found. Lip8 is considered to belong to the family VIII of lipolytic enzymes whose serine in the consensus sequence of -Ser-Xaa-Xaa-Lys- acts as catalytic nucleophile. The gene was expressed in Escherichia coli and purified by a combination of ammonium sulfate fractionation and hydrophobic interaction and ion-exchange chromatographies to homogeneity on SDS-PAGE analysis. The optimum temperature and heat stability of Lip8 were not as high as those of Lip3 and LST-03 lipase, two other lipolytic enzymes from the same strain. Addition of glycerol to a solution containing Lip8 stabilized this enzyme. By measuring the activities against various triacylglycerols and fatty acid methyl esters having carbon chains of different lengths, Lip8 was categorized as an esterase which has higher activities against fatty acid methyl esters with short-chain fatty acids.
Collapse
Affiliation(s)
- Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Prefecture University, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Boyd DB, Snoddy JD, Lin HS. Molecular simulations of DD-peptidase, a model ß-lactam-binding protein: Synergy between X-ray crystallography and computational chemistry. J Comput Chem 2004. [DOI: 10.1002/jcc.540120514] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Parschat K, Hauer B, Kappl R, Kraft R, Huttermann J, Fetzner S. Gene cluster of Arthrobacter ilicis Ru61a involved in the degradation of quinaldine to anthranilate: characterization and functional expression of the quinaldine 4-oxidase qoxLMS genes. J Biol Chem 2003; 278:27483-94. [PMID: 12730200 DOI: 10.1074/jbc.m301330200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A genetic analysis of the anthranilate pathway of quinaldine degradation was performed. A 23-kb region of DNA from Arthrobacter ilicis Rü61a was cloned into the cosmid pVK100. Although Escherichia coli clones containing the recombinant cosmid did not transform quinaldine, cosmids harboring the 23-kb region, or a 10.8-kb stretch of this region, conferred to Pseudomonas putida KT2440 the ability to cometabolically convert quinaldine to anthranilate. The 10.8-kb fragment thus contains the genes coding for quinaldine 4-oxidase (Qox), 1H-4-oxoquinaldine 3-monooxygenase, 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, and N-acetylanthranilate amidase. The qoxLMS genes coding for the molybdopterin cytosine dinucleotide-(MCD-), FeSI-, FeSII-, and FAD-containing Qox were inserted into the expression vector pJB653, generating pKP1. Qox is the first MCD-containing enzyme to be synthesized in a catalytically fully competent form by a heterologous host, P. putida KT2440 pKP1; the catalytic properties and the UV-visible and EPR spectra of Qox purified from P. putida KT2440 pKP1 were essentially like those of wild-type Qox. This provides a starting point for the construction of protein variants of Qox by site-directed mutagenesis. Downstream of the qoxLMS genes, a putative gene whose deduced amino acid sequence showed 37% similarity to the cofactor-inserting chaperone XdhC was located. Additional open reading frames identified on the 23-kb segment may encode further enzymes (a glutamyl tRNA synthetase, an esterase, two short-chain dehydrogenases/reductases, an ATPase belonging to the AAA family, a 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase/5-oxopent-3-ene-1,2,5-tricarboxylate decarboxylase-like protein, and an enzyme of the mandelate racemase group) and hypothetical proteins involved in transcriptional regulation, and metabolite transport.
Collapse
Affiliation(s)
- Katja Parschat
- AG Mikrobiologie, Institut für Chemie und Biologie des Meeres, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | | | | | | | | | | |
Collapse
|
10
|
McDonough MA, Anderson JW, Silvaggi NR, Pratt RF, Knox JR, Kelly JA. Structures of two kinetic intermediates reveal species specificity of penicillin-binding proteins. J Mol Biol 2002; 322:111-22. [PMID: 12215418 DOI: 10.1016/s0022-2836(02)00742-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Penicillin-binding proteins (PBPs), the target enzymes of beta-lactam antibiotics such as penicillins and cephalosporins, catalyze the final peptidoglycan cross-linking step of bacterial cell-wall biosynthesis. beta-Lactams inhibit this reaction because they mimic the D-alanyl-D-alanine peptide precursors of cell-wall structure. Prior crystallographic studies have described the site of beta-lactam binding and inhibition, but they have failed to show the binding of D-Ala-D-Ala substrates. We present here the first high-resolution crystallographic structures of a PBP, D-Ala-D-Ala-peptidase of Streptomyces sp. strain R61, non-covalently complexed with a highly specific fragment (glycyl-L-alpha-amino-epsilon-pimelyl-D-Ala-D-Ala) of the cell-wall precursor in both enzyme-substrate and enzyme-product forms. The 1.9A resolution structure of the enzyme-substrate Henri-Michaelis complex was achieved by using inactivated enzyme, which was formed by cross-linking two catalytically important residues Tyr159 and Lys65. The second structure at 1.25A resolution of the uncross-linked, active form of the DD-peptidase shows the non-covalent binding of the two products of the carboxypeptidase reaction. The well-defined substrate-binding site in the two crystallographic structures shows a subsite that is complementary to a portion of the natural cell-wall substrate that varies among bacterial species. In addition, the structures show the displacement of 11 water molecules from the active site, the location of residues responsible for substrate binding, and clearly demonstrate the necessity of Lys65 and or Tyr159 for the acylation step with the donor peptide. Comparison of the complexed structures described here with the structures of other known PBPs suggests the design of species-targeted antibiotics as a counter-strategy towards beta-lactamase-elicited bacterial resistance.
Collapse
Affiliation(s)
- Michael A McDonough
- Department of Molecular and Cell Biology and Institute for Materials Science, University of Connecticut, Storrs 06269-3125, USA
| | | | | | | | | | | |
Collapse
|
11
|
Grail BM, Payne JW. Conformational analysis of bacterial cell wall peptides indicates how particular conformations have influenced the evolution of penicillin-binding proteins, beta-lactam antibiotics and antibiotic resistance mechanisms. J Mol Recognit 2002; 15:113-25. [PMID: 12203837 DOI: 10.1002/jmr.566] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our aim was to use a conformational analysis technique developed for peptides to identify structural relationships between bacterial cell wall peptides and beta-lactam antibiotics that might help to explain their different actions as substrates and inhibitors of penicillin binding proteins (PBPs). The conformational forms of the model cell wall peptide Ac-L-Lys(Ac)-D-Ala-D-Ala are described by just a few backbone torsion combinations: three C-terminal carboxylate regions, with Tor8 (psi(i+1)) ranges of D3 region (50 degrees to 70 degrees ), D6 region (140 degrees to 170 degrees ) and D9 region (-50 degrees to -70 degrees ) are combined with either of two Tor6 (phi(i))-Tor4 (psi(i)) combinations, C4 region (-50 degrees to -80 degrees ) with B8 region (-40 degrees to -70 degrees ) or C11 region (30 degrees to 50 degrees ) with B2 region (30 degrees to 70 degrees ). From these results, and comparisons with conformational analyses of various beta-lactams and Ac-L-Lys(Ac)-D-Ala-D-Lac, it is concluded that molecular recognition of cell wall peptide substrates by PBPs requires conformers with backbone torsion angles of D3C4B8. beta-Lactam antibiotics are constrained compounds with fewer conformational forms; these match well the backbone torsions of cell wall peptides at D3C4, allowing their recognition and acylation by PBPs, whereas their unique Tor4 produces differently orientated CO and N atoms that appear to prevent subsequent deacylation, leading to their action as suicide substrates. The results are also related to the selective pressures involved in evolution of beta-lactamases from PBPs. From analysis of conformers of Ac-L-Lys(Ac)-D-Ala-D-Ala and the vancomycin-resistant analogue Ac-L-Lys(Ac)-D-Ala-D-Lac, it is concluded that vancomycin may recognise D6C11B2 conformers, giving it complementary substrate specificity to PBPs. This approach could have applications in the rational design of antibiotics targeted against PBPs and their substrates.
Collapse
Affiliation(s)
- Barry M Grail
- School of Biological Sciences, University of Wales Bangor, Bangor, Gwynedd LL57 2UW, UK
| | | |
Collapse
|
12
|
Wolfe S, Ro S, Kim CK, Shi Z. Synthesis and decarboxylation of Δ2-cephem-4,4-dicarboxylic acids. CAN J CHEM 2001. [DOI: 10.1139/v01-100] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Penicillin V was converted in 14 steps into Δ2-cephems having hydrogen at C-3, hydrogen or ethyl at C-2, and two methoxycarbonyl, two benzyloxycarbonyl, or one methoxycarbonyl and one benzyloxycarbonyl substituent at C-4. Deprotection of these Δ2-cephem-4,4-dicarboxylic acid esters by alkaline hydrolysis (in the case of methyl esters) or hydrogenolysis (in the case of benzyl esters) led in all cases to rapid decarboxylation of the Δ2-cephem-4,4-dicarboxylic acid or Δ2-cephem-4,4-dicarboxylic acid monoester. With hydrogen at C-2, hydrolysis of the dimethyl ester with 1 equiv of base produced a Δ2-cephem. With 2 equiv of base, and with all compounds having methyl at C-2, hydrolysis or hydrogenolysis afforded 4α-substituted-Δ2-cephems.In contrast, simpler benzyl or methyl acetamidomalonates could be deprotected without difficulty to afford stable malonic acids. Reasons for the differences in ease of decarboxylation were examined using semiempirical (AM1) and ab initio (3-21G) molecular orbital calculations. The decarboxylation barriers of unionized cephem or acetamido malonic acids were found to be high (3540 kcal mol1). Although the monoanion of acetamidomalonic acid retained a high barrier, the epimeric monoanions of a Δ2-cephem malonic acid decarboxylated with barriers of only 2 kcal mol1.Key words: mercaptoazetidinone, bromomalonate esters, MO calculations, sulfoxides, hydrogenolysis.
Collapse
|
13
|
Kallberg Y, Gustafsson M, Persson B, Thyberg J, Johansson J. Prediction of amyloid fibril-forming proteins. J Biol Chem 2001; 276:12945-50. [PMID: 11134035 DOI: 10.1074/jbc.m010402200] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Alzheimer's disease and spongiform encephalopathies proteins transform from their native states into fibrils. We find that several amyloid-forming proteins harbor an alpha-helix in a polypeptide segment that should form a beta-strand according to secondary structure predictions. In 1324 nonredundant protein structures, 37 beta-strands with > or =7 residues were predicted in segments where the experimentally determined structures show helices. These discordances include the prion protein (helix 2, positions 179-191), the Alzheimer amyloid beta-peptide (Abeta, positions 16-23), and lung surfactant protein C (SP-C, positions 12-27). In addition, human coagulation factor XIII (positions 258-266), triacylglycerol lipase from Candida antarctica (positions 256-266), and d-alanyl-d-alanine transpeptidase from Streptomyces R61 (positions 92-106) contain a discordant helix. These proteins have not been reported to form fibrils but in this study were found to form fibrils in buffered saline at pH 7.4. By replacing valines in the discordant helical part of SP-C with leucines, an alpha-helix is found experimentally and by secondary structure predictions. This analogue does not form fibrils under conditions where SP-C forms abundant fibrils. Likewise, when Abeta residues 14-23 are removed or changed to a nondiscordant sequence, fibrils are no longer formed. We propose that alpha-helix/beta-strand-discordant stretches are associated with amyloid fibril formation.
Collapse
Affiliation(s)
- Y Kallberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Medical Nobel Institute, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
14
|
Davies C, White SW, Nicholas RA. Crystal structure of a deacylation-defective mutant of penicillin-binding protein 5 at 2.3-A resolution. J Biol Chem 2001; 276:616-23. [PMID: 10967102 DOI: 10.1074/jbc.m004471200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Penicillin-binding protein 5 (PBP 5) of Escherichia coli functions as a d-alanine carboxypeptidase, cleaving the C-terminal d-alanine residue from cell wall peptides. Like all PBPs, PBP 5 forms a covalent acyl-enzyme complex with beta-lactam antibiotics; however, PBP 5 is distinguished by its high rate of deacylation of the acyl-enzyme complex (t(12) approximately 9 min). A Gly-105 --> Asp mutation in PBP 5 markedly impairs this beta-lactamase activity (deacylation), with only minor effects on acylation, and promotes accumulation of a covalent complex with peptide substrates. To gain further insight into the catalytic mechanism of PBP 5, we determined the three-dimensional structure of the G105D mutant form of soluble PBP 5 (termed sPBP 5') at 2.3 A resolution. The structure is composed of two domains, a penicillin binding domain with a striking similarity to Class A beta-lactamases (TEM-1-like) and a domain of unknown function. In addition, the penicillin-binding domain contains an active site loop spatially equivalent to the Omega loop of beta-lactamases. In beta-lactamases, the Omega loop contains two amino acids involved in catalyzing deacylation. This similarity may explain the high beta-lactamase activity of wild-type PBP 5. Because of the low rate of deacylation of the G105D mutant, visualization of peptide substrates bound to the active site may be possible.
Collapse
Affiliation(s)
- C Davies
- School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | | | |
Collapse
|
15
|
Bourne DG, Riddles P, Jones GJ, Smith W, Blakeley RL. Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR. ENVIRONMENTAL TOXICOLOGY 2001; 16:523-534. [PMID: 11769251 DOI: 10.1002/tox.10013] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A novel pathway for degradation of the cyanobacterial heptapeptide hepatotoxin microcystin LR was identified in a newly isolated Sphingomonas sp. (Bourne et al. 1996 Appl. Environ. Microbiol. 62: 4086-4094). We now report the cloning and molecular characterisation of four genes from this Sphingomonas sp. that exist on a 5.8-kb genomic fragment and encode the three hydrolytic enzymes involved in this pathway together with a putative oligopeptide transporter. The heterologously expressed degradation pathway proteins are enzymatically active. Microcystinase (MlrA), the first enzyme in the degradative pathway, is a 336-residue endopeptidase, which displays only low sequence identity with a hypothetical protein from Methanobacterium thermoautotrophicum. Inhibition of microcystinase by EDTA and 1,10-phenanthroline suggests that it is a metalloenzyme. The most likely residues that could potentially chelate an active-site transition metal ion are in the sequence HXXHXE, which would be unique for a metalloproteinase. Situated immediately downstream of mlrA with the same direction of transcription is a gene mlrD, whose conceptual translation (MlrD, 442 residues) shows significant sequence identity and similar potential transmembrane spanning regions to the PTR2 family of oligopeptide transporters. A gene mlrB is situated downstream of the mlrA and mlrD genes, but transcribed in the opposite direction. The gene encodes the enzyme MlrB (402 residues) which cleaves linear microcystin LR to a tetrapeptide degradation product. This enzyme belongs to the "penicillin-binding enzyme" family of active site serine hydrolases. The final gene in the cluster mlrC, is located upstream of the mlrA gene and is transcribed in the opposite direction. It codes for MlrC (507 residues) which mediates further peptidolytic degradation of the tetrapeptide. This protein shows significant sequence identity to a hypothetical protein from Streptomyces coelicolor. It is suspected to be a metallopeptidase based on inhibition by metal chelators. It is postulated on the basis of comparison with other microorganisms that the genes in this cluster may all be involved in cell wall peptidoglycan cycling and subsequently act fortuitously in hydrolysis of microcystin LR.
Collapse
Affiliation(s)
- D G Bourne
- CSIRO Tropical Agriculture, Indooroopilly QLD 4068, Australia
| | | | | | | | | |
Collapse
|
16
|
Jiang H, Kendrick KE. Cloning and characterization of the gene encoding penicillin-binding protein A of Streptomyces griseus. FEMS Microbiol Lett 2000; 193:63-8. [PMID: 11094280 DOI: 10.1111/j.1574-6968.2000.tb09403.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
An internal segment of the penicillin-binding protein gene, pbpA, of Streptomyces griseus was amplified from genomic DNA using the polymerase chain reaction and used as a hybridization probe to isolate the complete gene from a cosmid library. pbpA encodes a 485 amino acid sequence that conserves three motifs of PBPs, SXXK, SXN, and KTG. The pbpA gene was located downstream of a gene homologous to the Bacillus subtilis spoVE gene. The pbpA gene was disrupted by replacing an ApaI fragment of the pbpA gene in S. griseus chromosome with an apramycin resistance gene cassette or directly inserting this apramycin resistance gene cassette at the NcoI site of pbpA penicillin-binding domain. No obvious defects in growth, sporulation, or spore sonication resistance were observed in the constructed pbpA mutants, suggesting that PBPA is not essential for growth and sporulation under normal laboratory conditions in S. griseus.
Collapse
Affiliation(s)
- H Jiang
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
17
|
Martínez JH, Navarro PG, Garcia AA, de las Parras PJ. Beta-lactam degradation catalysed by Cd2+ ion in methanol. Int J Biol Macromol 1999; 25:337-43. [PMID: 10456774 DOI: 10.1016/s0141-8130(99)00052-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Kinetic schemes are established for degradation catalysed by Cd2+ ions in methanolic medium for penicillin G, penicillin V and cephalothin, a cephalosporin. Methanolysis of penicillin V and cephalothin occurs with the formation of a single substrate-metal ion intermediate complex, SM, while degradation of penicillin G occurs with the initial formation of two complexes with different stoichiometry, SM and S2M. In each case. degradation is of first order with respect to SM with rate constant values equal to 0.079 min(-1), 0.120 min(-1) and 0.166 min(-1) at 20, 25 and 30 degrees C, respectively, for penicillin G; 0.061 min(-1) at 20 degrees C for penicillin V; and 2.0 x 10(-3) min(-1) at 20 degrees C for cephalothin. Activation energy for the decomposition process of the SM intermediate for penicillin G was calculated to be about 5.5 x 10(4) J/mol. Equilibrium constant values between SM compound and S2M at 20 degrees C (77.1 l/mol), 25 degrees C (45.3 l/mol) and at 30 degrees C (25.7 l/mol) were also calculated as well as the normal enthalpy of this equilibrium. With respect to the reaction products there is evidence that Cd2+ becomes part of their structure, forming complexes between Cd2+ and the product resulting from antibiotic methanolysis (L). Some characteristics of these complexes are discussed.
Collapse
Affiliation(s)
- J H Martínez
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Spain
| | | | | | | |
Collapse
|
18
|
Ropp PA, Nicholas RA. Cloning and characterization of the ponA gene encoding penicillin-binding protein 1 from Neisseria gonorrhoeae and Neisseria meningitidis. J Bacteriol 1997; 179:2783-7. [PMID: 9098083 PMCID: PMC179034 DOI: 10.1128/jb.179.8.2783-2787.1997] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ponA gene encoding penicillin-binding protein 1 (PBP 1) from Neisseria gonorrhoeae was cloned by a reverse genetic approach. PBP 1 was purified from solubilized membranes of penicillin-susceptible strain FA19 by covalent ampicillin affinity chromatography and used to obtain an NH2-terminal amino acid sequence. A degenerate oligonucleotide based on this protein sequence and a highly degenerate oligonucleotide based on a conserved amino acid motif found in all class A high-molecular-mass PBPs were used to isolate the PBP 1 gene (ponA). The ponA gene encodes a protein containing all of the conserved sequence motifs found in class A PBPs, and expression of the gene in Escherichia coli resulted in the appearance of a new PBP that comigrated with PBP 1 purified from N. gonorrhoeae. A comparison of the gonococcal ponA gene to its homolog isolated from Neisseria meningitidis revealed a high degree of identity between the two gene products, with the greatest variability found at the carboxy terminus of the two deduced PBP 1 protein sequences.
Collapse
Affiliation(s)
- P A Ropp
- Department of Pharmacology, University of North Carolina at Chapel Hill, 27599-7365, USA
| | | |
Collapse
|
19
|
Abstract
The first look at the three-dimensional structure of an essential penicillin binding protein from a human pathogen, and its complex with a beta-lactam antibiotic provides hope for the future design of improved antibiotics.
Collapse
Affiliation(s)
- A M Thunnissen
- Department of Chemistry, University of Groningen, The Netherlands
| | | |
Collapse
|
20
|
Nangia A, Biradha K, Desiraju GR. Correlation of biological activity in β-lactam antibiotics with Woodward and Cohen structural parameters—a Cambridge database study. ACTA ACUST UNITED AC 1996. [DOI: 10.1039/p29960000943] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Nishizawa M, Shimizu M, Ohkawa H, Kanaoka M. Stereoselective production of (+)-trans-chrysanthemic acid by a microbial esterase: cloning, nucleotide sequence, and overexpression of the esterase gene of Arthrobacter globiformis in Escherichia coli. Appl Environ Microbiol 1995; 61:3208-15. [PMID: 7574629 PMCID: PMC167599 DOI: 10.1128/aem.61.9.3208-3215.1995] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The gene coding for a novel esterase which stereoselectively hydrolyzes the (+)-trans (1R,3R) stereoisomer of ethyl chrysanthemate was cloned from Arthrobacter globiformis SC-6-98-28 and overexpressed in Escherichia coli. The cellular content of the active enzyme reached 33% of the total soluble protein in the recombinant E. coli JM105 cells and 5.6 g/liter of culture by high-density cell cultivation. The hydrolytic activity of the recombinant E. coli cells for ethyl chrysanthemate reached 605 mumol of chrysanthemic acid per min per g of dry cells, which is approximately 2,500-fold higher than that of A. globiformis cells. The stereoselective hydrolysis by the recombinant E. coli cells was efficient at substrate concentrations of up to 40% by removing the produced chrysanthemic acid by ultrafiltration. The (+)-trans-chrysanthemic acid produced had 100% optical purity. The amino acid sequence of the esterase was found to be similar to that of several class C beta-lactamases, D,D-carboxypeptidase, D-aminopeptidase, 6-aminohexanoate-dimer hydrolase, and Pseudomonas esterase. The sequence comparison also suggested that the Ser-X-X-Lys motif in the esterase was at the active site of the enzyme.
Collapse
Affiliation(s)
- M Nishizawa
- Biotechnology Laboratory, Takarazuka Research Center, Sumitomo Chemical Co., Ltd., Hyogo, Japan
| | | | | | | |
Collapse
|
22
|
Kuzin AP, Liu H, Kelly JA, Knox JR. Binding of cephalothin and cefotaxime to D-ala-D-ala-peptidase reveals a functional basis of a natural mutation in a low-affinity penicillin-binding protein and in extended-spectrum beta-lactamases. Biochemistry 1995; 34:9532-40. [PMID: 7626623 DOI: 10.1021/bi00029a030] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two clinically-important beta-lactam antibiotics, cephalothin and cefotaxime, have been observed by X-ray crystallography bound to the reactive Ser62 of the D-alanyl-D-alanine carboxypeptidase/transpeptidase of Streptomyces sp. R61. Refinement of the two crystal structures produced R factors for 3 sigma (F) data of 0.166 (to 1.8 A) and 0.170 (to 2.0 A) for the cephalothin and cefotaxime complexes, respectively. In each complex, a water molecule is within 3.1 and 3.6 A of the acylated beta-lactam carbonyl carbon atom, but is poorly activated by active site residues for nucleophilic attack and deacylation. This apparent lack of good stereochemistry for facile hydrolysis is in accord with the long half-lives of cephalosporin intermediates in solution (20-40 h) and the efficacy of these beta-lactams as inhibitors of bacterial cell wall synthesis. Different hydrogen binding patterns of the two cephalosporins to Thr301 are consistent with the low cefotaxime affinity of an altered penicillin-binding protein, PBP-2x, reported in cefotaxime-resistant strains of Streptococcus pneumoniae, and with the ability of mutant class A beta-lactamases to hydrolyze third-generation cephalosporins.
Collapse
Affiliation(s)
- A P Kuzin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3125, USA
| | | | | | | |
Collapse
|
23
|
Abstract
This chapter examines families of serine peptidases. Serine peptidases are found in viruses, bacteria, and eukaryotes. They include exopeptidases, endopeptidases, oligopeptidases, and omega peptidases. On the basis of three-dimensional structures, most of the serine peptidase families can be grouped together into about six clans that may have common ancestors. The structures are known for members of four of the clans, chymotrypsin, subtilisin, carboxypeptidase C, and Escherichia D-Ala-D-Ala peptidase A. The peptidases of chymotrypsin, subtilisin, and carboxypeptidase C clans have a common “catalytic triad” of three amino acids—namely, serine (nucleophile), aspartate (electrophile), and histidine (base). The geometric orientations of these are closely similar between families; however the protein folds are quite different. The arrangements of the catalytic residues in the linear sequences of members of the various families commonly reflect their relationships at the clan level. The members of the chymotrypsin family are almost entirely confined to animals. 10 families are included in chymotrypsin clan (SA), and all the active members of these families are endopeptidases. The order of catalytic residues in the polypeptide chain in clan SA is His/Asp/Ser.
Collapse
Affiliation(s)
- N D Rawlings
- Strangeways Research Laboratory, Cambridge, United Kingdom
| | | |
Collapse
|
24
|
A serine and a lysine residue implicated in the catalytic mechanism of the Escherichia coli leader peptidase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74256-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Abstract
A major problem in the determination of the three-dimensional structure of proteins concerns the quality of the structural models obtained from the interpretation of experimental data. New developments in X-ray crystallography and nuclear magnetic resonance spectroscopy have accelerated the process of structure determination and the biological community is confronted with a steadily increasing number of experimentally determined protein folds. However, in the recent past several experimentally determined protein structures have been proven to contain major errors, indicating that in some cases the interpretation of experimental data is difficult and may yield incorrect models. Such problems can be avoided when computational methods are employed which complement experimental structure determinations. A prerequisite of such computational tools is that they are independent of the parameters obtained from a particular experiment. In addition such techniques are able to support and accelerate experimental structure determinations. Here we present techniques based on knowledge based mean fields which can be used to judge the quality of protein folds. The methods can be used to identify misfolded structures as well as faulty parts of structural models. The techniques are even applicable in cases where only the C alpha trace of a protein conformation is available. The capabilities of the technique are demonstrated using correct and incorrect protein folds.
Collapse
Affiliation(s)
- M J Sippl
- Center for Applied Molecular Engineering, University of Salzburg, Austria
| |
Collapse
|
26
|
Malhotra K, Nicholas R. Substitution of lysine 213 with arginine in penicillin-binding protein 5 of Escherichia coli abolishes D-alanine carboxypeptidase activity without affecting penicillin binding. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49922-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
27
|
Kelly JA, Waley SG, Adam M, Frère JM. Crystalline enzyme kinetics: activity of the Streptomyces R61 D-alanyl-D-alanine peptidase. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1119:256-60. [PMID: 1547270 DOI: 10.1016/0167-4838(92)90211-u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The specificity constant, kcat/Km, for the hydrolysis of hippuryl-mercaptoacetate by crystals of the Streptomyces R61 D-D peptidase was measured by reaction of the thiol produced with 4,4'-dithiodipyridine. The values of kcat/Km for the crystal and in solution were the same (within experimental error). A novel method for treating the lag in the progress curves was developed.
Collapse
Affiliation(s)
- J A Kelly
- Sir William Dunn School of Pathology, University of Oxford, U.K
| | | | | | | |
Collapse
|
28
|
Jelsch C, Lenfant F, Masson JM, Samama JP. Beta-lactamase TEM1 of E. coli. Crystal structure determination at 2.5 A resolution. FEBS Lett 1992; 299:135-42. [PMID: 1544485 DOI: 10.1016/0014-5793(92)80232-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The crystal structure of beta-lactamase TEM1 from E. coli has been solved to 2.5 A resolution by X-ray diffraction methods and refined to a crystallographic R-factor of 22.7%. The structure was determined by multiple isomorphous replacement using four heavy atom derivatives. The solution from molecular replacement, using a polyalanine model constructed from the C alpha coordinates of S. Aureus PCl enzyme, provided a set of phases used for heavy atom derivatives analysis. The E. coli beta-lactamase TEM1 is made up of two domains whose topology is similar to that of the PCl enzyme. However, global superposition of the two proteins shows significant differences.
Collapse
Affiliation(s)
- C Jelsch
- Laboratoire de Cristallographie Biologique, IBMC du CNRS, Strasbourg, France
| | | | | | | |
Collapse
|
29
|
De Meester F, Frère JM, Piette JL, Jacquemin P, Grooters L, Llabres G, Defays S. Synthesis of 6R(β)-tritylaminopenicillanic-3R(β)-alcohol, a versatile stereoisomer of natural β-lactams. J Heterocycl Chem 1992. [DOI: 10.1002/jhet.5570290242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
AM1 Study on tetrahedral intermediates of the amides of β-lactam antibiotics and methanol. Bioorg Med Chem Lett 1992. [DOI: 10.1016/s0960-894x(00)80175-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
|
32
|
Mottl H, Keck W. Purification of penicillin-binding protein 4 of Escherichia coli as a soluble protein by dye-affinity chromatography. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 200:767-73. [PMID: 1833192 DOI: 10.1111/j.1432-1033.1991.tb16243.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The dacB gene of Escherichia coli, coding for penicillin-binding protein 4 (PBP4) was cloned under the control of the phage lambda pR promoter and cro gene translation signals. Depression of the phage lambda promoter for 2 h at 42 degrees C in E. coli led to the maximum over-production of PBP4 to 3.8% of the total soluble protein. Expression at 42 degrees C but not at 40 degrees C or 37 degrees C led to incomplete processing and aggregation of the preform of PBP4. Cibacron navyblue 2G-E was selected from a collection of triazine dyes as having a high affinity for PBP4. The immobilised dye was used in a two-step procedure to isolated 374 mg PBP4 from the soluble fraction of 125 g (wet mass) cells of the over-producing strain, with a recovery of 63.2% and a final purity of 99% as determined by active-site titration with radiolabelled penicillin. Saturation of PBP4 with various beta-lactam derivatives did not abolish binding to the dye material, nor was PBP4 eluted by addition of beta-lactams from the dye matrix. PBP4 behaved as a soluble protein throughout the purification, that was performed in the complete absence of detergents. Furthermore, in flotation experiments on sucrose density gradients and in Triton X-114 fractionation experiments, it showed the characteristics of a soluble protein. Cibacron navyblue 2G-E showed class specificity for all E. coli PBP except PBP3 and could be used for the isolation of these PBP from membrane extracts.
Collapse
Affiliation(s)
- H Mottl
- University of Groningen, Department of Biochemistry, The Netherlands
| | | |
Collapse
|
33
|
Boissinot M, Levesque RC. Nucleotide sequence of the PSE-4 carbenicillinase gene and correlations with the Staphylococcus aureus PC1 beta-lactamase crystal structure. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40181-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Moews PC, Knox JR, Dideberg O, Charlier P, Frère JM. Beta-lactamase of Bacillus licheniformis 749/C at 2 A resolution. Proteins 1990; 7:156-71. [PMID: 2326252 DOI: 10.1002/prot.340070205] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two crystal forms (A and B) of the 29,500 Da Class A beta-lactamase (penicillinase) from Bacillus licheniformis 749/C have been examined crystallographically. The structure of B-form crystals has been solved to 2 A resolution, the starting model for which was a 3.5 A structure obtained from A-form crystals. The beta-lactamase has an alpha + beta structure with 11 helices and 5 beta-strands seen also in a penicillin target DD-peptidase of Streptomyces R61. Atomic parameters of the two molecules in the asymmetric unit were refined by simulated annealing at 2.0 A resolution. The R factor is 0.208 for the 27,330 data greater than 3 sigma (F), with water molecules excluded from the model. The catalytic Ser-70 is at the N-terminus of a helix and is within hydrogen bonding distance of conserved Lys-73. Also interacting with the Lys-73 are Asn-132 and the conserved Glu-166, which is on a potentially flexible helix-containing loop. The structure suggests the binding of beta-lactam substrates is facilitated by interactions with Lys-234, Thr-235, and Ala-237 in a conserved beta-strand peptide, which is antiparallel to the beta-lactam's acylamido linkage; an exposed cavity near Asn-170 exists for acylamido substituents. The reactive double bond of clavulanate-type inhibitors may interact with Arg-244 on the fourth beta-strand. A very similar binding site architecture is seen in the DD-peptidase.
Collapse
Affiliation(s)
- P C Moews
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269
| | | | | | | | | |
Collapse
|
35
|
Kelly JA, Knox JR, Zhao H, Frère JM, Ghaysen JM. Crystallographic mapping of beta-lactams bound to a D-alanyl-D-alanine peptidase target enzyme. J Mol Biol 1989; 209:281-95. [PMID: 2585485 DOI: 10.1016/0022-2836(89)90277-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
X-ray crystallography has been used to examine the binding of three members of the beta-lactam family of antibiotics to the D-alanyl-D-alanine peptidase from Streptomyces R61, a target of penicillins. Cephalosporin C, the monobactam analog of penicillin G and (2,3)-alpha-methylene benzylpenicillin have been mapped at 2.3 A resolution in the form of acyl-enzyme complexes bound to serine 62. On the basis of the positions of these inhibitors, the binding of a tripeptide substrate for the enzyme, L-lysyl-D-alanyl-D-alanine, has been modeled in the active site. The binding of both inhibitors and substrate is facilitated by hydrogen-bonding interactions with a conserved beta-strand (297-303), which is antiparallel to the beta-lactam's acylamide linkage or the substrate's peptide bond. The active site is similar to that in beta-lactamases.
Collapse
Affiliation(s)
- J A Kelly
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269
| | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- W G Hol
- Laboratory of Chemical Physics, University of Groningen, The Netherlands
| |
Collapse
|
37
|
Shute RE, Jackson DE, Bycroft BW. Highly conformationally constrained halogenated 6-spiroepoxypenicillins as probes for the bioactive side-chain conformation of benzylpenicillin. J Comput Aided Mol Des 1989; 3:149-64. [PMID: 2778458 DOI: 10.1007/bf01557725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The halogenated 6-spiroepoxypenicillins are a series of novel semisynthetic beta-lactam compounds with highly conformationally restricted side chains incorporating an epoxide. Their biological activity profiles depend crucially on the configuration at position C-3 of that epoxide. In derivatives with aromatic-containing side chains, e.g., anilide, the 3R-compounds possess notable Gram-positive antibacterial activity and potent beta-lactamase inhibitory properties. The comparable 3S-compounds are antibacterially inactive, but retain beta-lactamase inhibitory activity. Using the molecular simulation programs COSMIC and ASTRAL, we attempted to map a putative, lipophilic accessory binding site on the PBPs that must interact with the side-chain aromatic residue. Comparative computer-assisted modelling of the 3R-, and 3S-anilides, along with benzylpenicillin, indicated that the available conformational space at room temperature for the side chains of the 3R- and the 3S-anilides was mutually exclusive. The conformational space for the more flexible benzylpenicillin could accommodate the side chains of both the constrained penicillin derivatives. By a combination of van der Waals surface calculations and a pharmacophoric distance approach, closely coincident conformers of the 3R-anilide and benzylpenicillin were identified. These conformers must be related to the antibacterial, 'bioactive' conformer for the classical beta-lactam antibiotics. From these proposed bioactive conformations, a model for the binding of benzylpenicillin to the PBPs relating the three-dimensional arrangement of a putative lipophilic S2-subsite, specific for the side-chain aromatic moiety, and the 3 alpha-carboxylate functionality is presented.
Collapse
Affiliation(s)
- R E Shute
- Department of Pharmaceutical Sciences, University of Nottingham, U.K
| | | | | |
Collapse
|
38
|
Kelly JA, Knox JR, Zhao H. Studying enzyme-beta-lactam interactions using X-ray diffraction. JOURNAL OF MOLECULAR GRAPHICS 1989; 7:87-92. [PMID: 2488268 DOI: 10.1016/s0263-7855(89)80005-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interaction of representative beta-lactam antibiotics with a bacterial enzyme target has been mapped in three dimensions using X-ray diffraction data to 2.25 A resolution. Examination of complexes of cephalosporin C, benzylmonobactam, and alpha-(2,3)-methylenepenicillin G with the D-alanyl-D-alanine transpeptidase-carboxypeptidase from Streptomyces R61 shows that the enzyme's reactive serine has acylated the beta-lactam ring of each inhibitor. The known half-lives of the three acyl complexes can be correlated with the distance of the drug's carboxylate (or sulfonate) group from complementary groups on the DD-peptidase.
Collapse
Affiliation(s)
- J A Kelly
- University of Connecticut, Department of Molecular and Cell Biology, Storrs
| | | | | |
Collapse
|
39
|
Allen NE, Boyd DB, Campbell JB, Deeter JB, Elzey TK, Foster BJ, Hatfield LD, Hobbs JN, Hornback WJ, Hunden DC, Jones ND, Kinnick MD, Morin JM, Munroe JE, Swartzendruber JK, Vogt DG. Molecular modeling of γ-lactam analogues of β-lactam antibacterial agents: synthesis and biological evaluation of selected penem and carbapenem analoques. Tetrahedron 1989. [DOI: 10.1016/s0040-4020(01)80055-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
40
|
Herzberg O, Moult J. Bacterial resistance to beta-lactam antibiotics: crystal structure of beta-lactamase from Staphylococcus aureus PC1 at 2.5 A resolution. Science 1987; 236:694-701. [PMID: 3107125 DOI: 10.1126/science.3107125] [Citation(s) in RCA: 305] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
beta-lactamases are enzymes that protect bacteria from the lethal effects of beta-lactam antibiotics, and are therefore of considerable clinical importance. The crystal structure of beta-lactamase from the Gram-positive bacterium Staphylococcus aureus PC1 has been determined at 2.5 angstrom resolution. It reveals a molecule of novel topology, made up of two closely associated domains. The active site is located at the interface between the domains, with the key catalytic residue Ser70 at the amino terminus of a buried helix. Examination of the disposition of the functionally important residues within the active site depression leads to a model for the binding of a substrate and a functional analogy to the serine proteases. The unusual topology of the secondary structure units is relevant to questions concerning the evolutionary relation to the beta-lactam target enzymes of the bacterial cell wall.
Collapse
|
41
|
Varetto L, Frère JM, Nguyen-Distèche M, Ghuysen JM, Houssier C. The pH dependence of the active-site serine DD-peptidase of Streptomyces R61. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 162:525-31. [PMID: 3830155 DOI: 10.1111/j.1432-1033.1987.tb10671.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Titration of the active-site serine DD-peptidase of Streptomyces R61 shows that formation of acyl enzyme during hydrolysis of the substrate Ac2-L-Lys-D-Ala-D-Ala and enzyme inactivation by the beta-lactam compounds benzylpenicillin, N-acetylampicillin and ampicillin relies on the acidic form of an enzyme's group of pK approximately equal to 9.5. It is proposed that protonation of a lysine epsilon-amino group facilitates initial binding by charge pairing with the free carboxylate of the substrate and the beta-lactam molecules. Lowering the pH from 7 to 5 has no effect on the second-order rate constant of enzyme acylation by benzylpenicillin and N-acetylampicillin but results in a decreased rate constant of acylation by ampicillin and Ac2-L-Lys-D-Ala-D-Ala. Protonation of the side-chain amino group of ampicillin and a decreased efficacy of the initial binding of the peptide to the enzyme seem to be responsible for the observed effects. Whatever the molecule bound to the enzyme, there is no sign for the active involvement of an enzyme's histidine residue of pK 6.5-7.0 in the hydrolysis pathway.
Collapse
|
42
|
Duez C, Piron-Fraipont C, Joris B, Dusart J, Urdea MS, Martial JA, Frère JM, Ghuysen JM. Primary structure of the Streptomyces R61 extracellular DD-peptidase. 1. Cloning into Streptomyces lividans and nucleotide sequence of the gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 162:509-18. [PMID: 3830154 DOI: 10.1111/j.1432-1033.1987.tb10669.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An 11,450-base DNA fragment containing the gene for the extracellular active-site serine DD-peptidase of Streptomyces R61 was cloned in Streptomyces lividans using the high-copy-number plasmid pIJ702 as vector. Amplified expression of the excreted enzyme was observed. Producing clones were identified with the help of a specific antiserum directed against the pure DD-peptidase. The coding sequence of the gene was then located by hybridization with a specific nucleotide probe and sub-fragments were obtained from which the nucleotide sequence of the structural gene and the putative promoter and terminator regions were determined. The sequence suggests that the gene codes for a 406-amino-acid protein precursor. When compared with the excreted, mature DD-peptidase, this precursor possesses a cleavable 31-amino-acid N-terminal extension which has the characteristics of a signal peptide, and a cleavable 26-amino-acid C-terminal extension. On the basis of the data of Joris et al. (following paper in this journal), the open reading frame coding for the synthesis of the DD-peptidase was established. Comparison of the primary structure of the Streptomyces R61 DD-peptidase with those of several active-site serine beta-lactamases and penicillin-binding proteins of Escherichia coli shows homology in those sequences that comprise the active-site serine residue. When the comparison is broadened to the complete amino acid sequences, significant homology is observed only for the pair Streptomyces R61 DD-peptidase/Escherichia coli ampC beta-lactamase (class C). Since the Streptomyces R61 DD-peptidase and beta-lactamases of class A have very similar three-dimensional structures [Kelly et al. (1986) Science (Wash. DC) 231, 1429-1431; Samraoui et al. (1986) Nature (Lond.) 320, 378-380], it is concluded that these tertiary features are probably also shared by the beta-lactamases of class C, i.e. that the Streptomyces R61 DD-peptidase and the beta-lactamases of classes A and C are related in an evolutionary sense.
Collapse
|
43
|
Joris B, Jacques P, Frère JM, Ghuysen JM, Van Beeumen J. Primary structure of the Streptomyces R61 extracellular DD-peptidase. 2. Amino acid sequence data. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 162:519-24. [PMID: 3030739 DOI: 10.1111/j.1432-1033.1987.tb10670.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In order to confirm the Streptomyces codon usage, the Streptomyces R61 DD-peptidase was fragmented by cyanogen bromide cleavage of the carboxymethylated protein, trypsin digestion of the carboxymethylated protein and trypsin digestion of the protein treated with beta-iodopenicillinate and endoxo-delta 4-tetrahydrophthalic acid. The isolated peptides, which altogether represented more than 50% of the polypeptide chain, were sequenced. The data thus obtained were in excellent agreement with the primary structure of the protein as deduced from the nucleotide sequence of the cloned gene. Though a weak acylating agent, beta-iodopenicillanate reacted selectively with the active site of the DD-peptidase and formed an adduct which mas much more stable than that formed with benzylpenicillin, thus facilitating the isolation and characterization of the active-site peptide.
Collapse
|
44
|
Page MI. The Mechanisms of Reactions of β-Lactam Antibiotics. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 1987. [DOI: 10.1016/s0065-3160(08)60204-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Hol WGJ. Proteinkristallographie und Computer-Graphik – auf dem Weg zu einer planvollen Arzneimittelentwicklung. Angew Chem Int Ed Engl 1986. [DOI: 10.1002/ange.19860980902] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Faraci WS, Pratt RF. Mechanism of inhibition of RTEM-2 beta-lactamase by cephamycins: relative importance of the 7 alpha-methoxy group and the 3' leaving group. Biochemistry 1986; 25:2934-41. [PMID: 3487346 DOI: 10.1021/bi00358a030] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cefoxitin is a poor substrate of many beta-lactamases, including the RTEM-2 enzyme. Fisher and co-workers [Fisher, J., Belasco, J. G., Khosla, S., & Knowles, J. R. (1980) Biochemistry 19, 2895-2901] showed that the reaction between cefoxitin and RTEM-2 beta-lactamase yielded a moderately stable acyl-enzyme whose hydrolysis was rate-determining to turnover at saturation. The present work shows first that the covalently bound substrate in this acyl-enzyme has a 5-exo-methylene-1,3-thiazine structure, i.e., that the good (carbamoyloxy) 3' leaving group of cefoxitin has been eliminated in formation of the acyl-enzyme. Such an elimination has recently been shown in another case to yield an acyl-beta-lactamase inert to hydrolysis [Faraci, W. S., & Pratt, R. F. (1985) Biochemistry 24, 903-910]. Thus the cefoxitin molecule has two potential sources of beta-lactamase resistance, the 7 alpha-methoxy group and the good 3' leaving group. That the latter is important in the present example is shown by the fact that with analogous substrates where no elimination occurs at the enzyme active site, such as 3'-de(carbamoyloxy)cefoxitin and 3'-decarbamoylcefoxitin, no inert acyl-enzyme accumulates. An analysis of the relevant rate constants shows that the 7 alpha-methoxy group weakens noncovalent binding and slows down both acylation and deacylation rates, but with major effect in the acylation rate, while elimination of the 3' leaving group affects deacylation only.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
47
|
Samraoui B, Sutton BJ, Todd RJ, Artymiuk PJ, Waley SG, Phillips DC. Tertiary structural similarity between a class A beta-lactamase and a penicillin-sensitive D-alanyl carboxypeptidase-transpeptidase. Nature 1986; 320:378-80. [PMID: 3485771 DOI: 10.1038/320378a0] [Citation(s) in RCA: 111] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
beta-Lactam antibiotics--the penicillins, cephalosporins and related compounds--act by inhibiting enzymes that catalyse the final stages of the synthesis of bacterial cell walls. Recent crystallographic studies of representative enzymes are beginning to reveal the structural bases of antibiotic specificity and mechanism of action, while intensive efforts are being made to understand the beta-lactamase enzymes that are largely responsible for bacterial resistance to these antibiotics. It has been suggested that the beta-lactamases and beta-lactam target enzymes may be evolutionarily related and some similarity of amino-acid sequence around a common active-site serine residue supports this idea. We present here the first evidence from a comparison of three-dimensional structures in support of this hypothesis: the structure of beta-lactamase I from Bacillus cereus is similar to that of the penicillin-sensitive D-alanyl-D-alanine carboxypeptidase-transpeptidase from Streptomyces R61.
Collapse
|
48
|
Kelly JA, Dideberg O, Charlier P, Wery JP, Libert M, Moews PC, Knox JR, Duez C, Fraipont C, Joris B. On the origin of bacterial resistance to penicillin: comparison of a beta-lactamase and a penicillin target. Science 1986; 231:1429-31. [PMID: 3082007 DOI: 10.1126/science.3082007] [Citation(s) in RCA: 165] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Structural data are now available for comparing a penicillin target enzyme, the D-alanyl-D-alanine-peptidase from Streptomyces R61, with a penicillin-hydrolyzing enzyme, the beta-lactamase from Bacillus licheniformis 749/C. Although the two enzymes have distinct catalytic properties and lack relatedness in their overall amino acid sequences except near the active-site serine, the significant similarity found by x-ray crystallography in the spatial arrangement of the elements of secondary structure provides strong support for earlier hypotheses that beta-lactamases arose from penicillin-sensitive D-alanyl-D-alanine-peptidases involved in bacterial wall peptidoglycan metabolism.
Collapse
|
49
|
Dehottay P, Dusart J, Duez C, Lenzini MV, Martial JA, Frère JM, Ghuysen JM, Kieser T. Cloning and amplified expression in Streptomyces lividans of a gene encoding extracellular beta-lactamase from Streptomyces albus G. Gene X 1986; 42:31-6. [PMID: 3013728 DOI: 10.1016/0378-1119(86)90147-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A 4.9-kb DNA fragment containing the bla gene for the extracellular beta-lactamase (BLA) of Streptomyces albus G was cloned in Streptomyces lividans using the conjugative, low-copy-number plasmid pIJ61 as vector. No expression of bla was observed when this DNA fragment was introduced into Escherichia coli HB101 on a plasmid vector. A 1.5-kb PstI-SstI fragment containing the bla gene was cloned in S. lividans on the nonconjugative, high-copy-number plasmid pIJ702. A tenfold higher yield of BLA was obtained from S. lividans carrying this plasmid than from S. albus G grown under optimal production conditions. The BLA from the clone reacts with beta-iodopenicillanate according to a branched pathway which is characteristic of the original S. albus G BLA enzyme.
Collapse
|