1
|
Kimura T, Kimura AK, Epand RM. Systematic crosstalk in plasmalogen and diacyl lipid biosynthesis for their differential yet concerted molecular functions in the cell. Prog Lipid Res 2023; 91:101234. [PMID: 37169310 DOI: 10.1016/j.plipres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Plasmalogen is a major phospholipid of mammalian cell membranes. Recently it is becoming evident that the sn-1 vinyl-ether linkage in plasmalogen, contrasting to the ester linkage in the counterpart diacyl glycerophospholipid, yields differential molecular characteristics for these lipids especially related to hydrocarbon-chain order, so as to concertedly regulate biological membrane processes. A role played by NMR in gaining information in this respect, ranging from molecular to tissue levels, draws particular attention. We note here that a broad range of enzymes in de novo synthesis pathway of plasmalogen commonly constitute that of diacyl glycerophospholipid. This fact forms the basis for systematic crosstalk that not only controls a quantitative balance between these lipids, but also senses a defect causing loss of lipid in either pathway for compensation by increase of the counterpart lipid. However, this inherent counterbalancing mechanism paradoxically amplifies imbalance in differential effects of these lipids in a diseased state on membrane processes. While sharing of enzymes has been recognized, it is now possible to overview the crosstalk with growing information for specific enzymes involved. The overview provides a fundamental clue to consider cell and tissue type-dependent schemes in regulating membrane processes by plasmalogen and diacyl glycerophospholipid in health and disease.
Collapse
Affiliation(s)
- Tomohiro Kimura
- Department of Chemistry & Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, USA.
| | - Atsuko K Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
2
|
Assay of Phospholipase D Activity by an Amperometric Choline Oxidase Biosensor. SENSORS 2020; 20:s20051304. [PMID: 32121031 PMCID: PMC7085753 DOI: 10.3390/s20051304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 11/24/2022]
Abstract
A novel electrochemical method to assay phospholipase D (PLD) activity is proposed based on the employment of a choline biosensor realized by immobilizing choline oxidase through co-crosslinking on an overoxidized polypyrrole film previously deposited on a platinum electrode. To perform the assay, an aliquot of a PLD standard solution is typically added to borate buffer containing phosphatidylcholine at a certain concentration and the oxidation current of hydrogen peroxide is then measured at the rotating modified electrode by applying a detection potential of +0.7 V vs. SCE. Various experimental parameters influencing the assay were studied and optimized. The employment of 0.75% (v/v) Triton X-100, 0.2 mM calcium chloride, 5 mM phosphatidylcholine, and borate buffer at pH 8.0, ionic strength (I) 0.05 M allowed to achieve considerable current responses. In order to assure a controlled mass transport and, at the same time, high sensitivity, an electrode rotation rate of 200 rpm was selected. The proposed method showed a sensitivity of 24 (nA/s)⋅(IU/mL)−1, a wide linear range up to 0.33 IU/mL, fast response time and appreciable long-term stability. The limit of detection, evaluated from the linear calibration curve, was 0.005 IU/mL (S/N = 3). Finally, due to the presence of overoxidized polypyrrole film characterized by notable rejection properties towards electroactive compounds, a practical application to real sample analysis can be envisaged.
Collapse
|
3
|
Santiago MF, López-Aparicio P, Recio MN, Pérez-Albarsanz MA. Effect of aroclor 1248 and two pure PCB congeners on phospholipase D activity in rat renal tubular cell cultures. J Biochem Mol Toxicol 2007; 21:68-75. [PMID: 17427178 DOI: 10.1002/jbt.20160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper elucidates the effect of different polychlorinated biphenyls (PCBs) on the phospholipase D (PLD) activity in soluble and particulate fractions of rat renal proximal tubular culture cells. Treatment with Aroclor 1248 (a commercial PCB mixture) caused a marked increase in the activity of PLD in intact renal tubular cells. The PLD activity was increased by Aroclor 1248 in the particulate fraction while the enzyme activity was unaffected in the soluble fraction. This work also shows that PCB 153 (2,2',4,4',5,5'-hexachlorobiphenyl, a di-ortho-substituted nonplanar congener) can increase the activity of PLD only in the particulate fraction. The exposure of cell cultures to PCB 77 (3,3',4,4'-tetrachlorobiphenyl, a non-ortho-substituted planar congener) does not alter PLD activity. These results suggest that PCB effects are structure dependent. Therefore, in order to clarify the molecular mechanism of activation of PLD by PCBs, the contents of immunoreactive PLD were examined by immunoblot analysis. Renal tubular cells expressed a PLD protein of 120 kDa corresponding with the PLD1 mammalian isoform in both the particulate and the soluble fraction. Aroclor 1248, PCB 153, and PCB 77 do not induce changes in the levels of PLD protein. These data indicate that PCBs, particularly nonplanar congeners, increase PLD activity. Moreover, these changes could not be demonstrated in the enzyme content in rat renal tubular cell cultures.
Collapse
Affiliation(s)
- Mercedes Fernández Santiago
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | | | | | | |
Collapse
|
4
|
Hughes WE, Larijani B, Parker PJ. Detecting protein-phospholipid interactions. Epidermal growth factor-induced activation of phospholipase D1b in situ. J Biol Chem 2002; 277:22974-9. [PMID: 11950840 DOI: 10.1074/jbc.m201391200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase D (PLD) proteins have been identified in secretory and endocytic vesicles, consistent with their proposed role in regulating membrane traffic. However, their sites of catalytic action remain obscure. We have developed here a novel, analytical approach to monitor PLD activation in intact cells employing lifetime imaging microscopy to measure fluorescence resonance energy transfer between protein and membrane phospholipid. Verification and application of this technique demonstrates a dispersed endosomal, epidermal growth factor-induced activation of the PLD1b isoform. Application of this approach will facilitate the spatial resolution of many protein-phospholipid interactions that are key events in the regulation of cellular processes.
Collapse
Affiliation(s)
- William E Hughes
- Protein Phosphorylation Laboratory, Cancer Research United Kingdom London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
5
|
Rizzo M, Romero G. Pharmacological importance of phospholipase D and phosphatidic acid in the regulation of the mitogen-activated protein kinase cascade. Pharmacol Ther 2002; 94:35-50. [PMID: 12191592 DOI: 10.1016/s0163-7258(02)00170-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The stimulation of cells with many extracellular agonists leads to the activation of phospholipase (PL)D. PLD metabolizes phosphatidylcholine to generate phosphatidic acid (PA). Neither the mechanism through which cell surface receptors regulate PLD activation nor the functional consequences of PLD activity in mitogenic signaling are completely understood. PLD is activated by protein kinase C, phospholipids, and small GTPases of the ADP-ribosylation factor and Rho families, but the mechanisms linking cell surface receptors to the activation of PLD still require detailed analysis. Furthermore, the latest data on the functional consequences of the generation of cellular PA suggest an important role for this lipid in the regulation of membrane traffic and on the activation of the mitogen-activated protein kinase cascade. This review addresses these issues, examining some novel models for the physiological role of PLD and PA and discussing their potential usefulness as specific targets for the development of new therapies.
Collapse
Affiliation(s)
- Mark Rizzo
- Department of Pharmacology, W 1345 BSTWR, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
6
|
Kobayashi M, Kidd D, Hutson E, Grafton J, McNulty S, Rumsby M. Protein kinase C activation by 12-0-tetradecanoylphorbol 13-acetate in CG-4 line oligodendrocytes stimulates turnover of choline and ethanolamine phospholipids by phospholipase D and induces rapid process contraction. J Neurochem 2001; 76:361-71. [PMID: 11208899 DOI: 10.1046/j.1471-4159.2001.00007.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Treatment of [3H]-choline- or [14C]-ethanolamine-labelled undifferentiated bipolar and differentiated multipolar CG-4 line oligodendrocytes with 12-0-tetradecanoylphorbol 13-acetate (TPA) to activate protein kinase C stimulated the release of choline or ethanolamine metabolites to the medium over controls. Ro31-8220, a PKC inhibitor, reduced TPA-stimulated release of choline- and ethanolamine-metabolites to basal levels. TPA treatment of both bipolar and multipolar cells caused rapid contraction of processes leaving rounded up cells: this effect was blocked by Ro31-8220. After 12-15 h exposure to TPA, bipolar undifferentiated CG-4 line cells extended short processes again and the cells became multipolar. Nocodozole, an agent which disrupts microtubules and caused CG-4 line cells to round up, caused increased choline or ethanolamine-metabolite release to the medium over basal levels suggesting that some release during TPA-treatment might occur due to process fragmentation. However, the transphosphatidylation reaction confirmed that phospholipase D was active in these cells. Exposure of bipolar undifferentiated CG-4 line cells to TPA resulted in down-regulatation of PKC-alpha and PKC-beta which could not be detected by Western blotting after a few hours; PKC-epsilon was down-regulated much more slowly but PKCs delta, zeta and iota were not influenced by 48 h exposure of cells to TPA. Formation of phosphatidylethanol in the transphosphatidylation reaction was markedly reduced in TPA down-regulated cells indicating a role for PKCs alpha and beta in phospholipase D activation in CG-4 line oligodendrocytes.
Collapse
Affiliation(s)
- M Kobayashi
- Department of Biology, University of York, UK
| | | | | | | | | | | |
Collapse
|
7
|
Siddiqi AR, Srajer GE, Leslie CC. Regulation of human PLD1 and PLD2 by calcium and protein kinase C. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1497:103-14. [PMID: 10838164 DOI: 10.1016/s0167-4889(00)00049-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous studies show that PLD is activated in cells by calcium and by protein kinase C (PKC). We found that human PLD1 and PLD2 expressed in Sf9 cells can be activated by calcium-mobilizing agonists and by co-expression with PKCalpha. The calcium-mobilizing agonists A23187 and CryIC toxin triggered large increases in phosphatidylethanol (PtdEth) production in Sf9 cells over-expressing PLD1 and PLD2, but not in vector controls. PLD activation by these agonists was largely dependent on extracellular calcium. Membrane assays demonstrated significant PLD1 and PLD2 activity in the absence of divalent cations, which could be enhanced by low levels of calcium either in the presence or absence of magnesium. PLD1 but not PLD2 activity was slightly enhanced by magnesium. Treatment of Sf9 cells expressing PLD1 and PLD2 with PMA resulted in little PtdEth production. However, a significant and comparable formation of PtdEth occurred when PLD1 or PLD2 were co-expressed with PKCalpha, but not PKCdelta, and was further augmented by PMA. In contrast to PLD1, co-expressing PLD2 with PKCalpha or PKCdelta further enhanced A23187-induced PtdEth production. Immunoprecipitation experiments demonstrated that PLD1 and PLD2 associated with the PKC isoforms in Sf9 cells. Furthermore, in membrane reconstitution assays, both PLD1 and PLD2 could be stimulated by calmodulin and PKCalpha-enriched cytosol. The results indicate that PLD2 as well as PLD1 is subject to agonist-induced activation in intact cells and can be regulated by calcium and PKC.
Collapse
Affiliation(s)
- A R Siddiqi
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson St., Denver, CO 80206, USA
| | | | | |
Collapse
|
8
|
Lainé J, Bourgoin S, Bourassa J, Morisset J. Subcellular distribution and characterization of rat pancreatic phospholipase D isoforms. Pancreas 2000; 20:323-36. [PMID: 10824686 DOI: 10.1097/00006676-200005000-00001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study was undertaken to characterize the biochemical properties of rat pancreatic phospholipase D (PLD). Based on Western blot analysis of pancreas subcellular fractions, PLD1 was detected as a protein of 120 kDa associated with the microsomal fraction, whereas PLD2 appeared as a 105-kDa protein enriched in the microvesicular fraction. In these fractions, a low level of PLD activity was measured with an exogenous substrate containing phosphatidylinositol-4,5-bisphosphate (PIP2), unresponsive to guanosine triphosphate (GTP)gammaS and adenosine diphosphate (ADP)-ribosylation factor (ARF). Addition of unsaturated but not saturated fatty acids stimulated an oleate-dependent PLD activity that colocalized with the PLD1 enzyme in the crude plasma membrane and microsomal fractions. The transphosphatidylation reaction was maximal with either 200-400 mM (1.2-2.3%) ethanol or 25 mM (0.23%) 1-butanol, with an optimal pH between 6.5 and 7.2. Lipids extracted from the pancreatic membranes were potent inhibitors of the HL60 cell PLD activity when compared with those isolated from HL60 cells. Oleate-dependent PLD activity was less susceptible to these inhibitions. A phospholipase A1 (PLA1) activity hydrolyzing phosphatidylethanol also was found in the pancreatic membrane fractions and was nearly absent in the HL60 cells. This activity was completely inhibited by 400 nM tetrahydrolipstatin (THL), a lipase inhibitor. Pancreatic PLD1 and PLD2 activities could be measured after a chromatographic separation from microsomal membranes and high-speed supernatants, respectively. Activities of both enzymes were inhibited by oleate and required the presence of PIP2 in the substrate vesicles. ARF1 strongly activated PLD1 in a dose-dependent manner, and PLD2 was slightly responsive. Indirect immunofluorescence revealed that PLD2 is distributed throughout the pancreas, with a more intense staining in the islets. This study presents for the first time biochemical characteristics of the pancreatic PLD activities and shows the presence of oleate-dependent PLD1 and PLD2 activities, as well as PLD1 and PLD2 proteins in this gland.
Collapse
Affiliation(s)
- J Lainé
- Service de Gastroentérologie, Département de Médecine, Faculté de Médecine, Université de Sherbrooke, Québec, Canada
| | | | | | | |
Collapse
|
9
|
Bychenok S, Foster DA. A low molecular weight factor from dividing cells activates phospholipase D in caveolin-enriched membrane microdomains. Arch Biochem Biophys 2000; 377:139-45. [PMID: 10775453 DOI: 10.1006/abbi.2000.1766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipase D (PLD) activity is elevated in Ras-transformed NIH 3T3 cells. This difference in PLD activity between Ras-transformed and nontransformed parental cells disappeared in isolated membranes from these cells. In reconstitution experiments, heat-denatured cytosolic fractions from Ras-transformed, but not parental, NIH 3T3 cells elevated PLD activity in isolated membranes. This heat-resistant PLD-stimulating activity from the Ras-transformed cells was sensitive to proteases and passed through a 1-kDa MW cutoff membrane, suggesting that the factor is a peptide of less than 10 amino acids. The ability of this PLD-stimulating factor, designated PLD-SF, to elevate PLD activity in isolated membranes was restricted to the caveolin-enriched light membranes, where many signaling molecules are localized. PLD-SF was also elevated in v-Src- and v-Raf-transformed cells and in serum-stimulated NIH 3T3 cells. PLD-SF was detected in a variety of rat tissues but was highest in testes, where a large percentage of cells are dividing. A similar low molecular weight PLD-stimulating activity was found in actively dividing, but not stationary yeast, cells. The data here provide evidence for a highly conserved PLD-stimulating peptide that is elevated in response to mitogenic stimuli.
Collapse
Affiliation(s)
- S Bychenok
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10021, USA
| | | |
Collapse
|
10
|
Liscovitch M, Czarny M, Fiucci G, Lavie Y, Tang X. Localization and possible functions of phospholipase D isozymes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1439:245-63. [PMID: 10425399 DOI: 10.1016/s1388-1981(99)00098-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The activation of PLD is believed to play an important role in the regulation of cell function and cell fate by extracellular signal molecules. Multiple PLD activities have been characterized in mammalian cells and, more recently, several PLD genes have been cloned. Current evidence indicates that diverse PLD activities are localized in most, if not all, cellular organelles, where they are likely to subserve different functions in signal transduction, membrane vesicle trafficking and cytoskeletal dynamics.
Collapse
Affiliation(s)
- M Liscovitch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
11
|
Ching TT, Wang DS, Hsu AL, Lu PJ, Chen CS. Identification of multiple phosphoinositide-specific phospholipases D as new regulatory enzymes for phosphatidylinositol 3,4, 5-trisphosphate. J Biol Chem 1999; 274:8611-7. [PMID: 10085097 DOI: 10.1074/jbc.274.13.8611] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the course of delineating the regulatory mechanism underlying phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) metabolism, we have discovered three distinct phosphoinositide-specific phospholipase D (PI-PLD) isozymes from rat brain, tentatively designated as PI-PLDa, PI-PLDb, and PI-PLDc. These enzymes convert [3H]PI(3,4,5)P3 to generate a novel inositol phosphate, D-myo-[3H]inositol 3,4,5-trisphosphate ([3H]Ins(3,4,5)P3) and phosphatidic acid. These isozymes are predominantly associated with the cytosol, a notable difference from phosphatidylcholine PLDs. They are partially purified by a three-step procedure consisting of DEAE, heparin, and Sephacryl S-200 chromatography. PI-PLDa and PI-PLDb display a high degree of substrate specificity for PI(3,4, 5)P3, with a relative potency of PI(3,4,5)P3 >> phosphatidylinositol 3-phosphate (PI(3)P) or phosphatidylinositol 4-phosphate (PI(4)P) > phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) > phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). In contrast, PI-PLDc preferentially utilizes PI(3)P as substrate, followed by, in sequence, PI(3,4,5)P3, PI(4)P, PI(3,4)P2, and PI(4,5)P2. Both PI(3, 4)P2 and PI(4,5)P2 are poor substrates for all three isozymes, indicating that the regulatory mechanisms underlying these phosphoinositides are different from that of PI(3,4,5)P3. None of these enzymes reacts with phosphatidylcholine, phosphatidylserine, or phosphatidylethanolamine. All three PI-PLDs are Ca2+-dependent. Among them, PI-PLDb and PI-PLDc show maximum activities within a sub-microM range (0.3 and 0.9 microM Ca2+, respectively), whereas PI-PLDa exhibits an optimal [Ca2+] at 20 microM. In contrast to PC-PLD, Mg2+ has no significant effect on the enzyme activity. All three enzymes require sodium deoxycholate for optimal activities; other detergents examined including Triton X-100 and Nonidet P-40 are, however, inhibitory. In addition, PI(4,5)P2 stimulates these isozymes in a dose-dependent manner. Enhancement in the enzyme activity is noted only when the molar ratio of PI(4,5)P2 to PI(3,4, 5)P3 is between 1:1 and 2:1.
Collapse
Affiliation(s)
- T T Ching
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0082, USA
| | | | | | | | | |
Collapse
|
12
|
Misra UK, Pizzo SV. Upregulation of macrophage plasma membrane and nuclear phospholipase D activity on ligation of the alpha2-macroglobulin signaling receptor: involvement of heterotrimeric and monomeric G proteins. Arch Biochem Biophys 1999; 363:68-80. [PMID: 10049500 DOI: 10.1006/abbi.1998.1074] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of ligating the alpha2-macroglobulin signaling receptor (alpha2MSR) with receptor-recognized forms of alpha2M (alpha2M*) was studied with respect to phospholipase D (PLD) activity in murine macrophages, their plasma membranes, and nuclei. PLD activity in plasma membranes and nuclei increased linearly up to a ligand concentration of about 100 pM of either alpha2M* or a cloned and expressed receptor binding fragment (RBF). The RBF binding site mutant K1370A, which binds with high affinity to alpha2MSR, also increased nuclear PLD activity comparable to RBF and alpha2M*. Phorbol dibutyrate caused a two- to threefold stimulation of membrane and nuclear PLD activity, whereas PLD activity was nearly abolished by downregulation of protein kinase C; prior treatment with staurosporin, genestein, cyclosporin A, actinomycin D; or chelation of intracellular Ca2+. In permeabilized macrophages, isolated plasma membranes, and nuclei, GTP-gamma-S increased alpha2M*-stimulated PLD activity via a pertussis toxin-insensitive G protein and this effect was abolished on preincubation with GDP-beta-S. Incubation of plasma membranes with polyclonal antibody against sARFII, or the addition of cytosol which was immunoprecipitated with antibody against sARFII, greatly reduced alpha2M*-stimulated PLD activity in the presence of GTP-gamma-S. Preincubation of plasma membranes with GDP-beta-S prior to the addition of GTP-gamma-S and recombinant ARF1 significantly inhibited alpha2M*-stimulation of PLD activity. Nuclear PLD activity was maximally stimulated in the presence of both GTP-gamma-S and rARF1, whereas plasma membrane PLD activity was maximally stimulated in the presence of rARF1, GTP-gamma-S, RhoA, and ATP. In contrast, nuclear PLD activity was not affected by RhoA either alone or in combination with GTP-gamma-S or ATP.
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
13
|
Li J, Wurtman RJ. Mechanisms whereby nerve growth factor increases diacylglycerol levels in differentiating PC12 cells. Brain Res 1999; 818:252-9. [PMID: 10082810 DOI: 10.1016/s0006-8993(98)01280-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We previously showed indirectly that the increase in diacylglycerol (DAG) levels caused by exposing differentiating PC12 cells to nerve growth factor (NGF) must derive mainly from de novo synthesis and, to a lesser and transient extent, from the hydrolysis of [3H]phosphatidylinositol (PI). To explore further the biochemical mechanisms of this increase, we measured, in PC12 cells, DAG synthesis from glycerol or various fatty acids; its liberation from phosphatidylcholine (PC); and the activities of various enzymes involved in DAG production and metabolism. Among cells exposed to NGF (0-116 h), the labeling of DAG from [3H]glycerol peaked earlier than that of [3H]PC, and the specific radioactivity of [3H]glycerol-labeled DAG was much higher than those of the [3H]phospholipids, indicating that [3H]DAG synthesis precedes [3H]phospholipid synthesis. NGF treatment also increased (by 50-330%) the incorporation of monounsaturated ([3H]oleic acid) and polyunsaturated ([14C]linoleic acid or [3H]arachidonic acid) fatty acids into DAG, and, by 15-70%, into PC. NGF treatment increased the activities of long chain acyl-CoA synthetases (LCASs), including oleoyl-CoA synthetase and arachidonoyl-CoA synthetase, by 150-580% over control, but cholinephosphotransferase activity rose by only 60%, suggesting that the synthesis of DAG in the cells was increased to a greater extent than its utilization. NGF did not promote the breakdown of newly formed [3H]PC to [3H]DAG, nor did it consistently affect the activities of phospholipase C or D. NGF did increase phospholipase A2 activity, however the hydrolysis catalyzed by this enzyme does not liberate DAG. Hence the major source of the increased DAG levels in PC12 cells exposed to NGF appears to be enhanced de novo DAG synthesis, probably initiated by the activation of LCASs, rather than the breakdown of PC or PI.
Collapse
Affiliation(s)
- J Li
- Department of Brain and Cognitive Sciences, E25-604, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
14
|
Lindmar R, Löffelholz K. Phospholipase D in rat myocardium: formation of lipid messengers and synergistic activation by G-protein and protein kinase C. Biochem Pharmacol 1998; 56:799-805. [PMID: 9774141 DOI: 10.1016/s0006-2952(97)00636-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Activation of phospholipase D (PLD) and phosphoinositide-specific phospholipase C (PI-PLC) by fluoride, to stimulate heterotrimeric G-proteins, and by phorbol esters, to stimulate protein kinase C (PKC), was studied in rat atria. Fluoride and 4beta-phorbol-12beta,13alpha-dibutyrate (PDB), in contrast to 4beta-phorbol-13alpha-acetate (PAc), activated PLD, catalyzing the formation of [3H]-phosphatidylethanol ([3H]-PETH), [3H]-phosphatidic acid ([3H]-PA), choline and sn-1,2-diacylglycerol (DAG). Basal PLD activity was resistant to drastic changes in Ca2+ and to Ro 31-8220, a PKC inhibitor, but was decreased by genistein, an inhibitor of tyrosine kinase, and increased by vanadate, a tyrosine phosphatase inhibitor; both effects were, however, very small. Fluoride-evoked PLD activity was resistant to Ro 31-8220 and to genistein, but was Ca2+-dependent. The rate of fluoride-induced PLD activation was maintained for at least 60 min. In contrast, PDB-mediated PLD activity was blocked by Ro 31-8220 and was resistant to extracellular Ca2+-depletion and desensitized within ca. 15 min. PDB markedly potentiated the fluoride-evoked generation of [3H]-phosphatidylethanol and of choline, but inhibited the formation of [3H]-inositol phosphates ([3H]-IP(1-3)). Ethanol (2%) blocked the PDB-evoked generation of both [3H]-phosphatidic acid and of sn-1,2-diacylglycerol, whereas fluoride-evoked responses were reduced only to approximately 50%. In conclusion, the trimeric G-protein-PLD pathway in heart tissue did not enclose PKC activation and was long-lasting and Ca2+-dependent; there was no evidence for an involvement of tyrosine phosphorylation. However, PKC activation modulated G-protein-coupled PLD and PI-PLC activities in opposite directions. PLD activity significantly contributed to the mass production of sn-1,2-diacylglycerol in the heart. The evidence for a pathophysiological role of PLD activation in cardiac hypertrophy and in ischemic preconditioning is discussed.
Collapse
Affiliation(s)
- R Lindmar
- Department of Pharmacology, University of Mainz, Germany
| | | |
Collapse
|
15
|
Zhao D, Berse B, Holler T, Cermak JM, Blusztajn JK. Developmental changes in phospholipase D activity and mRNA levels in rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 109:121-7. [PMID: 9729325 DOI: 10.1016/s0165-3806(98)00071-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phospholipase D (PLD) activity and PLD1 mRNA levels were determined in rat brain at ages ranging from embryonic day (E) 19 to postnatal day (P) 49. Basal, oleate-, and phosphatidylinositol-4, 5-bisphosphate-stimulated PLD activity increased between E19 and P24 by approximately 3-fold and remained unaltered thereafter. A similar developmental pattern of mRNA levels of PLD1 isoform was found by Northern blotting. The development of PLD correlates with synaptogenesis and myelination suggesting that the enzyme might have an important function in these processes.
Collapse
Affiliation(s)
- D Zhao
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 85 East Newton Street, room M1009, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
The role of the mammalian phospholipase D (PLD) in the control of key cellular responses has been recognised for a long time, but only recently have there been the reagents to properly study this very important enzyme in the signalling pathways, linking cell agonists with intracellular targets. With the recent cloning of PLD isoenzymes, their association with low-molecular-weight G proteins, protein kinase C and tyrosine kinases, the availability of antibodies and an understanding of the role of PLD product, phosphatidic acid (PA), in cell physiology, the field is gaining momentum. In this review, we will explore the molecular properties of mammalian PLD and its gene(s), the complexity of this enzyme regulation and the myriad physiological roles for PLD and PA and related metabolic products, with particular emphasis on a role in the activation of NADPH oxidase, or respiratory burst, leading to the generation of oxygen radicals.
Collapse
Affiliation(s)
- J Gomez-Cambronero
- Department of Physiology and Biophysics, Wright State University School of Medicine, Dayton, OH 45435, USA
| | | |
Collapse
|
17
|
Li L, Mellow L, Bhullar RP, Fleming N. Activation of phospholipase D by ADP-ribosylation factor in rat submandibular acinar cells. Arch Oral Biol 1998; 43:211-9. [PMID: 9631174 DOI: 10.1016/s0003-9969(98)00007-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hydrolysis of membrane phosphatidylcholine by the enzyme phospholipase D is a key initial step in the intracellular release of the signalling molecules phosphatidic acid, diacylglycerol and arachidonic acid. Guanine nucleotide-dependent pathway leading to PLD activation were investigated in enzymatically dispersed rat submandibular acinar cells. Guanosine 5'-O-[gamma-thio]triphosphate (GTP gamma S) caused the time- and concentration-dependent stimulation of PLD in permeabilized cells. This effect was lost in prepermeabilized cells, from which cytosolic components had been allowed to leak, but was restored when endogenous cytosol, or cytosol from platelets, was added back to such cells. PLD was also activated in cytosol-depleted cells by GTP gamma S in combination with purified ARF (ADP-ribosylation factor), a low M(r) guanine nucleotide-binding protein of the ras superfamily. Additional evidence for the involvement of ARF in PLD activation was the inhibition of carbachol- or GTP gamma S-induced stimulation of the enzyme by brefeldin A, a blocker of ARF activation; and the observed translocation of ARF from cytosol to membrane on GTP gamma S treatment in permeabilized cells. The heterotrimeric G-protein stimulator, AlFn, also activated PLD, and this response, too, was inhibited by brefeldin A, suggesting the downstream involvement of ARF in coupling AlFn action to phospholipase D elevation. PLD activation caused by both GTP gamma S and AlFn was only partially reduced after treatment of cells with U73122, a demonstrated inhibitor of phospholipase C in the Gq-coupled phosphoinositide signal-transduction pathway. It is therefore proposed that in rat submandibular mucous acinar cells, a guanine nucleotide-regulated PLD activation pathway exists that involves the sequential actions of a G heterotrimeric protein and ARF. It is further suggested that this pathway is independent of the Gq/PLC/phosphatidylinositol signal transduction system.
Collapse
Affiliation(s)
- L Li
- Department of Oral Biology, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
18
|
Davis LL, Maglio JJ, Horwitz J. Phospholipase D hydrolyzes short-chain analogs of phosphatidylcholine in the absence of detergent. Lipids 1998; 33:223-7. [PMID: 9507245 DOI: 10.1007/s11745-998-0199-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phospholipase D is an important enzyme in signal transduction in neuronal tissue. A variety of assays have been used to measure phospholipase D activity in vitro. The most typical measure of phospholipase D activity is the production of phosphatidylethanol in the presence of ethanol. Phosphatidylethanol is a product of transphosphatidylation activity that is considered a unique property of phospholipase D. To support transphosphatidylation activity, high concentrations of ethanol may be required. Furthermore, most assays in the literature utilize a detergent. These extreme conditions, detergent and ethanol, may alter phospholipase D and hinder the study of its regulation. In this manuscript we describe an assay that eliminates these potentially confounding conditions. It utilizes high specific activity [3H]butanol as a nucleophilic receptor. This eliminates the need for high concentrations of alcohol. The substrate is an analog of phosphatidylcholine that contains short-chain fatty acids, 1,2-dioctanoyl-sn-glycero-3-phosphocholine. Phospholipase D readily hydrolyzes this substrate in the absence of detergent. This novel assay should be useful in the further characterization of phospholipase D.
Collapse
Affiliation(s)
- L L Davis
- MCP Hahnemann School of Medicine, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19129, USA
| | | | | |
Collapse
|
19
|
Munnik T, Irvine RF, Musgrave A. Phospholipid signalling in plants. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1389:222-72. [PMID: 9512651 DOI: 10.1016/s0005-2760(97)00158-6] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- T Munnik
- Institute for Molecular Cell Biology, BioCentrum Amsterdam, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
20
|
Morreale A, Mallon B, Beale G, Watson J, Rumsby M. Ro31-8220 inhibits protein kinase C to block the phorbol ester-stimulated release of choline- and ethanolamine-metabolites from C6 glioma cells: p70 S6 kinase and MAPKAP kinase-1beta do not function downstream of PKC in activating PLD. FEBS Lett 1997; 417:38-42. [PMID: 9395070 DOI: 10.1016/s0014-5793(97)01252-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The use of bisindolylmaleimide derivatives of staurosporine as selective inhibitors of protein kinase C (PKC) is in doubt following the report by Alessi [FEBS Lett. 402 (1997) 121-123] that Ro31-8220 and GF109203X are potent in vitro inhibitors of p70 S6 kinase and mitogen-activated protein kinase-activated protein kinase-1beta, as well as of PKC. Here we show that the phorbol ester-stimulated release of choline- and ethanolamine-metabolites from C6 glioma cells due to phospholipid hydrolysis by phospholipase D (PLD) is not inhibited by rapamycin or PD98059, specific inhibitors respectively of p70 S6 kinase and MAPKK (MEK) and thus of MAPKAP kinase-1beta but is still completely blocked by Ro31-8220. We conclude therefore that p70S6k and MAPKAP kinase-1beta as well as MAPK are not involved in signalling pathways downstream of PKC that regulate phorbol ester-stimulated phospholipid turnover and that the inhibitory action of Ro31-8220 occurs by blocking PKC which regulates at least one pathway to PLD activation. The PI-3 kinase inhibitor, wortmannin, inhibits the phorbol ester-stimulated release of ethanolamine- but not choline-metabolites from C6 cells suggesting that different PLD isoforms regulate the turnover of PtdEth and PtdCho in C6 cells. Both PLD isoforms are activated via PKC but the PtdEth-PLD is also regulated via a wortmannin-sensitive pathway.
Collapse
Affiliation(s)
- A Morreale
- Department of Biology, University of York, UK
| | | | | | | | | |
Collapse
|
21
|
Madesh M, Balasubramanian KA. Activation of intestinal mitochondrial phospholipase D by polyamines and monoamines. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1348:324-30. [PMID: 9366248 DOI: 10.1016/s0005-2760(97)00074-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Intestinal mitochondria have a phospholipase D (PLD) activity which was stimulated by polyamines and monoamines resulting in the formation of phosphatidic acid (PA) from endogenous phospholipids. When stimulated by polyamines, mitochondrial PLD utilized endogenous phosphatidylethanolamine (PE) as substrate whereas stimulated by monoamines, both PE and phosphatidylcholine (PC) were hydrolysed. Stimulation of PA formation by spermine was enhanced by the presence of calcium. Since polyamines are known to alter the calcium transport by mitochondria and PA is known to possess an ionophore effect, stimulation of PA formation in mitochondria by polyamines suggests that polyamine-induced alteration in calcium homeostasis might involve a PA related mechanism.
Collapse
Affiliation(s)
- M Madesh
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore, India
| | | |
Collapse
|
22
|
Vasudevan C, Freund R, Gorga FR. The elevation of cellular phosphatidic acid levels caused by polyomavirus transformation can be disassociated from the activation of phospholipase D. Virology 1997; 233:392-401. [PMID: 9217062 DOI: 10.1006/viro.1997.8630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Middle T (mT), the oncogene of murine polyomavirus, causes transformation of rat fibroblasts by activating a number of signal transducing pathways usually used by polypeptide growth factors and their receptors. Here, we report data regarding the activation of signal transducing pathways involving phospholipase D (PL-D). The hydrolysis of phospholipids by PL-D produces phosphatidic acid (PA), a compound with multiple biological effects. The PA content of cells expressing wild-type mT, introduced via a number of different methods, is approximately 50% higher than their untransformed counterparts. This increase in cellular PA content is associated with an approximately 65% increase in PL-D activity in cells expressing wild-type mT. We have also examined the effects of a number of site-directed mutants of mT, on both cellular PA levels and on PL-D activity. Mutants that do not produce mT (Py808A) or that produce a truncated, nonmembrane bound mT (Py1387T) have PA levels similar to that of control cells. Cells expressing the 322YF mutant of mT (which abolishes interaction of mT with phospholipase C gamma1) show increases in both PA levels and PL-D activity that are similar to those seen with wild-type mT. Expression of mutants that abolish the interaction of mT with either shc or with phosphatidylinositol 3-kinase (250YS and 315YF, respectively) cause an increase in PL-D activity comparable to that seen with wild-type mT. However, the PA content of cells expressing these mutants is not elevated. These results suggest that mT causes activation of cellular PL-D, but this activation alone is not sufficient to cause an increase in cellular PA content. Therefore, wild-type mT must affect another, as yet unknown, step in PA metabolism.
Collapse
Affiliation(s)
- C Vasudevan
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | | | |
Collapse
|
23
|
Ella KM, Qi C, McNair AF, Park JH, Wisehart-Johnson AE, Meier KE. Phospholipase D activity in PC12 cells. Effects of overexpression of alpha2A-adrenergic receptors. J Biol Chem 1997; 272:12909-12. [PMID: 9148895 DOI: 10.1074/jbc.272.20.12909] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PC12 neuronal cells express a membrane phospholipase D (PLD) activity that is detected at similar levels in undifferentiated or differentiated cells. The regulation of this activity by agonists was explored. Membrane phospholipase D activity was increased by treatment of cells with the phorbol ester phorbol 12-myristate 13-acetate (PMA) or with nerve growth factor. The ability of PMA to activate PLD was confirmed in intact PC12 cells. Basal activity of PLD in membranes was reduced in RG20, a PC12 cell line overexpressing the human alpha2A-adrenergic receptor. PMA did not increase PLD activity in RG20 cells, as assessed both in membrane preparations and in intact cells. Cyclic AMP levels did not regulate phospholipase D activity in either cell type. However, incubation of RG20 cells with the alpha2-adrenergic antagonist rauwolscine or with pertussis toxin increased membrane PLD activity and restored activation of PLD by PMA. These data suggest that the effects of the overexpressed alpha2A-adrenergic receptor on PLD activity are mediated by precoupling of the receptor to the heterotrimeric GTP-binding protein, Gi, but are independent of adenylate cyclase regulation. The results of this study suggest that membrane phospholipase D activity can be negatively regulated via Gi in PC12 cells.
Collapse
Affiliation(s)
- K M Ella
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
24
|
Thompson MG, Mackie SC, Thom A, Palmer RM. Regulation of phospholipase D in L6 skeletal muscle myoblasts. Role of protein kinase c and relationship to protein synthesis. J Biol Chem 1997; 272:10910-6. [PMID: 9099748 DOI: 10.1074/jbc.272.16.10910] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The addition of vasopressin or 12-O-tetradecanoylphorbol-13-acetate (TPA) to prelabeled L6 myoblasts elicited increases in [14C]ethanolamine release, suggesting the activation of phospholipase D activity or activities. While the effects of both agonists on intracellular release were rapid and transient, when extracellular release of [14C]ethanolamine was measured, the effect of vasopressin was again rapid and transient, whereas that of TPA was delayed but sustained. Effects of both agonists on intra- and extracellular release were inhibited by the protein kinase C (PKC) inhibitor, Ro-31-8220, and PKC down-regulation by preincubation with TPA. The formation of phosphatidylbutanol elicited by vasopressin and TPA mirrored their effects on extracellular [14C]ethanolamine release in that the former was transient, whereas the latter was sustained. Responses to both agonists were abolished by PKC down-regulation. When protein synthesis was examined, the stimulation of translation by TPA and transcription by vasopressin were inhibited by Ro-31-8220. In contrast, down-regulation of PKC inhibited the synthesis response to TPA but not vasopressin. Furthermore, following down-regulation, the effect of vasopressin was still blocked by the PKC inhibitors, Ro-31-8220 and bisindolylmaleimide. Analysis of PKC isoforms in L6 cells showed the presence of alpha, epsilon, delta, mu, iota, and zeta. Down-regulation removed both cytosolic (alpha) and membrane-bound (epsilon and delta) isoforms. Thus, the elevation of phospholipase D activity or activities induced by both TPA and vasopressin and the stimulation of translation by TPA involves PKC-alpha, -epsilon, and/or -delta. In contrast, the increase in transcription elicited by vasopressin involves mu, iota, and/or zeta. Hence, although phospholipase D may be linked to increases in translation elicited by TPA, it is not involved in the stimulation of transcription by vasopressin.
Collapse
Affiliation(s)
- M G Thompson
- Rowett Research Institute, Bucksburn, Aberdeen AB21 9SB, United Kingdom
| | | | | | | |
Collapse
|
25
|
Vinggaard AM, Provost JJ, Exton JH, Hansen HS. Arf and RhoA regulate both the cytosolic and the membrane-bound phospholipase D from human placenta. Cell Signal 1997; 9:189-96. [PMID: 9113419 DOI: 10.1016/s0898-6568(96)00140-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this paper we demonstrate for the first time that human placenta contains a cytosolic phospholipase D (PLD) activity. This activity had a pH optimum of 7.0 and was stimulated by PIP2 and inhibited by oleate. Furthermore, cytosolic PLD was stimulated by 30 microM GTP gamma S (6-14-fold) and by the small G proteins 1 microM mArf3 (2-fold) and 0.37 nM RhoA (2-fold). This is the first report to show RhoA activation of a cytosolic PLD. The activation by mArf3 was maintained after partial purification on DEAE Sepharose of the enzyme. We have previously reported the existence of a membrane-bound PLD from human placenta, which is stimulated by PIP2, but not by oleate (Vinggaard, A. M. & Hansen, H. S. (1995) Biochim. Biophys. Acta 1258, 169-176). Here we show that oleic acid and alpha-linolenic acid both dose-dependently inhibited solubilized membrane PLD (65% inhibition at 4 mM), whereas stearic acid (4 mM) had no effect. Thus, the presence of double bonds in the fatty acid is important for the inhibitory effect. Furthermore, placental membrane PLD was activated by 30 microM GTP gamma S (4-fold) and by mArf3 (1 microM) and RhoA (0.37 nM) by a factor of 3 and 2, respectively. The solubilized membrane phospholipase D was partially purified to a basal specific activity of 25-37 nmol/min/mg. This preparation was devoid of endogenous RhoA and Arf and could not be stimulated by GTP gamma S. However, mArf3 (1 microM) still activated this partially purified membrane PLD, whereas RhoA (0.37 nM) was not able to activate this PLD fraction. In conclusion, our results suggest that the human placenta contains a PLD that is located both in the cytosol and the membranes, and that is activated by PIP2, mArf3 and RhoA but inhibited by oleate.
Collapse
Affiliation(s)
- A M Vinggaard
- Department of Biological Sciences, Royal Danish School of Pharmacy, Copenhagen, Denmark
| | | | | | | |
Collapse
|
26
|
Waksman M, Tang X, Eli Y, Gerst JE, Liscovitch M. Identification of a novel Ca2+-dependent, phosphatidylethanolamine-hydrolyzing phospholipase D in yeast bearing a disruption in PLD1. J Biol Chem 1997; 272:36-9. [PMID: 8995222 DOI: 10.1074/jbc.272.1.36] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have previously reported the identification and partial characterization of a gene encoding a phospholipase D activity (PLD1) in the yeast, Saccharomyces cerevisiae. Here we report the existence of a second phospholipase D activity, designated PLD2, in yeast cells bearing disruption at the PLD1 locus. PLD2 is a Ca2+-dependent enzyme which preferentially utilizes phosphatidylethanolamine over phosphatidylcholine as a substrate. In contrast to PLD1, the activity of PLD2 is insensitive to phosphatidylinositol 4,5-bisphosphate, and the enzyme is incapable of catalyzing the transphosphatidylation reaction with short chain alcohols as acceptors. Subcellular fractionation shows that PLD2 localizes mainly to the cytosol, but could also be detected in the particulate fraction. Thus, the biochemical properties of PLD2 appear to be substantially different from those of PLD1. PLD2 activity is significantly and transiently elevated upon exit of wild type yeast cells from stationary phase, suggesting that it may play a role in the initiation of mitotic cell division in yeast. In view of the significantly different properties of PLD1 and PLD2, and because the yeast genome contains PLD1 as the sole member of the recently defined PLD gene family, it may be concluded that PLD2 is structurally unrelated to PLD1. Thus, the novel PLD2 activity described herein is likely to represent the first identified member of a new PLD gene family.
Collapse
Affiliation(s)
- M Waksman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
27
|
Singer WD, Brown HA, Sternweis PC. Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Annu Rev Biochem 1997; 66:475-509. [PMID: 9242915 DOI: 10.1146/annurev.biochem.66.1.475] [Citation(s) in RCA: 335] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review focuses on two phospholipase activities involved in eukaryotic signal transduction. The action of the phosphatidylinositol-specific phospholipase C enzymes produces two well-characterized second messengers, inositol 1,4,5-trisphosphate and diacylglycerol. This discussion emphasizes recent advances in elucidation of the mechanisms of regulation and catalysis of the various isoforms of these enzymes. These are especially related to structural information now available for a phospholipase C delta isozyme. Phospholipase D hydrolyzes phospholipids to produce phosphatidic acid and the respective head group. A perspective of selected past studies is related to emerging molecular characterization of purified and cloned phospholipases D. Evidence for various stimulatory agents (two small G protein families, protein kinase C, and phosphoinositides) suggests complex regulatory mechanisms, and some studies suggest a role for this enzyme activity in intracellular membrane traffic.
Collapse
Affiliation(s)
- W D Singer
- Department of Pharmacology, University of Texas-Southwestern Medical Center, DaHas 75235-9041, USA
| | | | | |
Collapse
|
28
|
Kim JH, Suh YJ, Lee TG, Kim Y, Bae SS, Kim MJ, Lambeth JD, Suh PG, Ryu SH. Inhibition of phospholipase D by a protein factor from bovine brain cytosol. Partial purification and characterization of the inhibition mechanism. J Biol Chem 1996; 271:25213-9. [PMID: 8810281 DOI: 10.1074/jbc.271.41.25213] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A specific protein inhibitor of partially purified bovine brain phospholipase D (PLD) was identified from bovine brain cytosol. The PLD inhibitor has been enriched through several chromatographic steps and characterized with respect to size and mechanism of inhibition. The inhibitor showed an apparent molecular mass of 30 kDa by Superose 12 gel exclusion chromatography and inhibited PLD activity with an IC50 of 7 nM. The inhibitor had neither proteolytic activity nor phospholipid-hydrolyzing activity. Because phosphatidylinositol 4,5-bisphosphate (PIP2), which is included in substrate vesicles, is an essential cofactor for PLD, we examined whether the inhibition might be mediated by sequestration of PIP2. PIP2 hydrolysis by phospholipase C (PLC)-beta1 was not affected by the inhibitor and the inhibitor did not bind to substrate vesicles containing PIP2. In contrast, a PH domain derived from PLC-delta1, which could bind to PIP2, showed a nearly identical inhibition of both PLC-beta1 and PLD activities. Thus, the PLD inhibition by the inhibitor is due to the specific interaction with not PIP2 but PLD. The suppression of PLD activity by the inhibitor was largely eliminated by the addition of ADP-ribosylation factor (ARF) and GTPgammaS. We propose that the inhibitor plays a negative role in regulation of PLD activity by PIP2 and ARF.
Collapse
Affiliation(s)
- J H Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liscovitch M. Phospholipase D: role in signal transduction and membrane traffic. JOURNAL OF LIPID MEDIATORS AND CELL SIGNALLING 1996; 14:215-21. [PMID: 8906565 DOI: 10.1016/0929-7855(96)00528-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The activation of phospholipase D (PLD) in response to cell stimulation by extracellular signal molecules is a widespread phenomenon. A variety of extracellular signal molecules cause a rapid and dramatic stimulation of PLD activity. G proteins and protein kinases appear to be involved in the receptor-mediated regulation of PLD. There is indirect evidence for the existence of multiple PLD subtypes, both membrane-associated and cytosolic. Recent studies indicate that PLD activities require a lipid cofactor, phosphatidylinositol 4,5-bisphosphate (PIP2). Addition of PIP2 at physiological concentrations stimulates both membrane-associated and partially purified PLD activity. Other acidic phospholipids have little or no effect. Neomycin, a high affinity ligand of PIP2, inhibits membrane PLD activity, presumably by binding to endogenous PIP2. A monoclonal antibody to phosphatidylinositol 4-kinase inhibits PIP2 synthesis in permeabilized U937 cells and blocks PLD activation by GTP gamma S and TPA. These results indicate that PIP2 synthesis is required for G protein- and protein kinase C-mediated activation of PLD in the cells. Recent evidence has implicated PLD and phosphoinositide kinases in vesicular trafficking. The main lipid mediator produced by PLD, phosphatidic acid, could regulate membrane traffic events by direct regulation of target proteins involved in vesicle targeting, docking and fusion. In addition, under certain circumstances, the formation of phosphatidic acid may lead to changes in lipid bilayer properties that would facilitate vesicle budding and fusion events in the course of intracellular membrane traffic.
Collapse
Affiliation(s)
- M Liscovitch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
30
|
Nakamura Y, Nakashima S, Kumada T, Ojio K, Miyata H, Nozawa Y. Brefeldin A inhibits antigen- or calcium ionophore-mediated but not PMA-induced phospholipase D activation in rat basophilic leukemia (RBL-2H3) cells. Immunobiology 1996; 195:231-42. [PMID: 8877399 DOI: 10.1016/s0171-2985(96)80042-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent reports have indicated that ADP-ribosylation factor (ARF) plays a role in the regulation of phospholipase D (PLD) activity in the in vitro assay system. Since a fungal metabolite brefeldin A (BFA) is known to interfere with ARF function, the effect of BFA on antigen-induced PLD activation was examined in rat basophilic leukemia (RBL-2H3) cells. BFA inhibited the antigen-induced formation of phosphatidylbutanol (PBut), a specific and stable metabolite produced by PLD activity in a concentration-dependent manner. The maximal inhibition obtained at 10 micrograms/ml of the drug was nearly 70% and further inhibition was not observed at higher concentrations. Ca(2+)-ionophore A23187-mediated PLD activation was also prevented by BFA. In contrast, BFA failed to inhibit PLD activation in response to 4 beta-phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC). This indicates that there are BFA-sensitive and BFA-insensitive pathways leading to PLD activation in RBL-2H3 cells and also that the PKC-mediated pathway may be insensitive to BFA treatment, suggesting the existence of PLD isozymes. BFA inhibited Ag-induced serotonin release at a concentration 20-fold lower than that needed for the inhibition of PLD. Moreover, PMA caused a marked production of PBut, but it failed to elicit secretory response. This implies that PLD may be not a crucial element for secretory responses.
Collapse
Affiliation(s)
- Y Nakamura
- Department of Otolaryngology, Gifu University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The existence of multiple forms of phopholipase D was clearly established in a large number of biochemical studies that described and characterized the enzymological properties of the different PLD activities. This review summarizes the in vitro evidence showing differential subcellular localization and chromatographic properties of putative PLD isozymes, their phospholipid and alcohol substrate specificities, their modulation by various divalent cations, small G proteins and protein kinase c isozymes, and the role of phosphatidylinositol 4,5-bisphosphate as a cofactor of phospholipase D.
Collapse
Affiliation(s)
- M Liscovitch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
32
|
Abstract
Phospholipase D activity is stimulated rapidly upon occupation of cell-surface receptors. One of the intracellular regulators of phospholipase D activity has been identified as ADP ribosylation factor (ARF). ARF is a small GTP binding protein whose function has been elucidated in vesicular traffic. This review puts into context the connection between the two fields of signal transduction and vesicular transport.
Collapse
Affiliation(s)
- S Cockcroft
- Department of Physiology, University College London, UK.
| |
Collapse
|
33
|
Abstract
In nearly all mammalian cells and tissues examined, protein kinase C (PKC) has been shown to serve as a major regulator of a phosphatidylcholine-specific phospholipase D (PLD) activity. At least 12 distinct isoforms of PKC have been described so far; of these enzymes only the alpha- and beta-isoforms were found to regulate PLD activity. While the mechanism of this regulation has remained unknown, available evidence suggests that both phosphorylating and non-phosphorylating mechanisms may be involved. A phosphatidylcholine-specific PLD activity was recently purified from pig lung, but its possible regulation by PKC has not been reported yet. Several cell types and tissues appear to express additional forms of PLD which can hydrolyze either phosphatidylethanolamine or phosphatidylinositol. It has also been reported that at least one form of PLD can be activated by oncogenes, but not by PKC activators. Similar to activated PKC, some of the primary and secondary products of PLD-mediated phospholipid hydrolysis, including phosphatidic acid, 1,2-diacylglycerol, choline phosphate and ethanolamine, also exhibit mitogenic/co-mitogenic effects in cultured cells. Furthermore, both the PLD and PKC systems have been implicated in the regulation of vesicle transport and exocytosis. Recently the PLD enzyme has been cloned and the tools of molecular biology to study its biological roles will soon be available. Using specific inhibitors of growth regulating signals and vesicle transport, so far no convincing evidence has been reported to support the role of PLD in the mediation of any of the above cellular effects of activated PKC.
Collapse
Affiliation(s)
- Z Kiss
- Hormel Institute, University of Minnesota, Austin 55912, USA
| |
Collapse
|
34
|
Abstract
Neutrophils play a major role host defense against invading microbes. Recent studies have emphasized the importance of the phospholipase D (PLD) in the signalling cascade leading to neutrophil activation. Phospholipase D catalyzes the hydrolysis of phospholipids to generate phosphatidic acid with secondarily generation of diradylglycerol; both of these products have been implicated as second messengers. Herein, we discuss the regulation and the biochemistry of the receptor-regulated PLD in human neutrophils. In vivo and in vitro studies suggest an activation mode in which initial receptor-linked activation of phospholipase C generates diacylglycerol and inositol trisphosphate. The resulting calcium flux along with the diacylglycerol activate a conventional isoform of protein kinase C (PKC), probably PKC beta 1. This PKC, in turn phosphorylates a plasma membrane component resulting in PLD activation and a second outpouring of diradylglycerol. The small GTP-binding proteins, RhoA and ARF, also participate in this process, and synergize with a 50 kDa cytosolic regulatory factor.
Collapse
Affiliation(s)
- S C Olson
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla 10595, USA
| | | |
Collapse
|
35
|
Abstract
1. Endothelin mediates its effects in a variety of renal cells via a multiplicity of intracellular signalling pathways. 2. Stimulation of phosphatidylinositol-specific phospholipase C (PI-PLC), resulting in the activation of inositol trisphosphate and diacylglycerol, can be detected even at picomolar concentrations of peptide. 3. Endothelin activation of cPLA2 is sensitive to ambient [Ca2+]i, is not contingent upon protein kinase C activation and is independent of PI-PLC stimulation, being coupled to the endothelin receptor in a yet to be determined manner. 4. Activation by endothelin of phosphatidylcholine-specific phospholipase D is under the dual regulation of protein kinase C and [Ca2+]i, with protein kinase C being the major regulator and [Ca2+]i playing a secondary, modulatory role. 5. Phosphatidylcholine-specific phospholipase C (PC-PLC) is stimulated by endothelin and accounts for the prolonged activation of diacylglycerol by this peptide. PC-PLC activity is critically dependent upon [Ca2+]i, whereas protein kinase C plays no role in modulating the activity of this enzyme. 6. Endothelin enhances the phosphorylation of protein tyrosine kinases, with evidence that phosphorylation of pp60 Src may be an important early event.
Collapse
Affiliation(s)
- E P Nord
- Department of Medicine, State University of New York at Stony Brook, USA
| |
Collapse
|
36
|
Tran K, Zha X, Chan M, Choy PC. Enhancement of phospholipid hydrolysis in vasopressin-stimulated BHK-21 and H9c2 cells. Mol Cell Biochem 1995; 151:69-76. [PMID: 8584016 DOI: 10.1007/bf01076898] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The hydrolysis of phospholipids in vasopressin-stimulated baby hamster kidney (BHK)-21 and H9c2 myoblastic cells was investigated. Phosphatidylcholine and phosphatidylethanolamine in these cells were pulse labelled with [3H]glycerol, [3H]myristate, [3H]choline or [3H]ethanolamine, and chased with the non-labelled precursor until linear turnover rates were obtained. When cells labelled with [3H]glycerol or [3H]myristate were stimulated by vasopressin, no significant decrease in the labelling of phosphatidylcholine was detected, but the labelling of phosphatidic acid was elevated. However, the labellings of phosphatidylethanolamine and its hydrolytic product were not affected by vasopressin stimulation. When the cells were pulse labelled with [3H]-choline, vasopressin stimulation caused a decrease in the labelled phosphatidylcholine with a corresponding increase in the labelled choline. The apparent discrepancy between the two types of labelling might be explained by the recycling of labelled phosphatidic acid back into phosphatidylcholine, thus masking the reduction in the labelled phospholipid during vasopressin stimulation. Alternatively, the labelled choline produced by vasopressin stimulation was released into the medium, thus reducing the recycling of label precursor back into the phospholipid and making the decrease in the labelling of phosphatidylcholine readily detectable. Further studies revealed that vasopressin treatment caused an enhancement of phospholipase D activity in these cells. The presence of substrate-specific phospholipase D isoforms in mammalian tissues led us to postulate that the differential stimulation of phospholipid hydrolysis by vasopressin was caused by the enhancement of a phosphatidylcholine-specific phospholipase D in both BHK-21 and the H9c2 cells.
Collapse
Affiliation(s)
- K Tran
- Department of Biochemistry and Molecular Biology, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
37
|
Vinggaard AM, Hansen HS. Characterization and partial purification of phospholipase D from human placenta. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1258:169-76. [PMID: 7548180 DOI: 10.1016/0005-2760(95)00121-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report the existence in the human placenta of a phosphatidylcholine-hydrolyzing phospholipase D (PLD) activity, which has been characterized and partially purified. Triton X-100 effectively solubilized PLD from the particulate fraction of human placenta in a dose-dependent manner. However, Triton X-100 caused decreasing enzyme activities. Maximum transphosphatidylation was obtained with 2% ethanol. The enzyme was found to have a pH optimum of 7.0-7.5 and an apparent Km of 33 mol% (or 0.8 mM). Ca2+ and Mg2+ was not required for the enzyme activity. Addition of phosphatidyl-4,5-bisphosphate, but not phosphatidylethanolamine, to the substrate mixture gave rise to a pronounced dose-dependent increase in PLD activity (EC50 = 0.3 mol%), suggesting a regulatory role of this phospholipid in PLD action. The enzyme was inhibited by sodium oleate when partly or fully substituting for octylglucoside in the substrate mixture. The PLD activity was enriched 15-fold by solubilization and purification on a DEAE-Sepharose column. N-Ethylmaleimide (10 mM) markedly inhibited the purified enzyme, indicating the presence of free thiol groups on PLD. Sphingosine (20 microM) and (+/-) propranolol (53 microM) had no direct effect on PLD activity. The present results form the basis for further purification of a PLD from human tissue.
Collapse
Affiliation(s)
- A M Vinggaard
- Department of Biological Sciences, Royal Danish School of Pharmacy, Copenhagen
| | | |
Collapse
|
38
|
Geny B, Paris S, Dubois T, Franco M, Lukowski S, Chardin P, Russo Marie F. A Soluble Protein Negatively Regulates Phospholipase D Activity. Partial Purification and Characterization. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20666.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Siddiqi AR, Smith JL, Ross AH, Qiu RG, Symons M, Exton JH. Regulation of phospholipase D in HL60 cells. Evidence for a cytosolic phospholipase D. J Biol Chem 1995; 270:8466-73. [PMID: 7721742 DOI: 10.1074/jbc.270.15.8466] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phospholipase D (PLD) activity that was stimulated by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) was detected in cytosol and membranes of HL60 cells. GTP gamma S-stimulated PLD activity was detected in the membranes when exogenous labeled phosphatidylcholine was used in the presence of phosphatidylethanolamine and phosphatidylinositol 4,5-bisphosphate, but not when [3H]myristic acid-labeled endogenous substrate was used. Cytosolic PLD co-chromatographed with small GTP-binding proteins on anion-exchange columns, but subsequent chromatography separated these. Reconstitution studies demonstrated ADP ribosylation factor (ARF) as a regulator of cytosolic PLD, whereas the Rho proteins RhoA and CDC42Hs were ineffective. The cytosolic enzyme showed very little activity in the absence of GTP gamma S and was stimulated by 2 mM Ca2+, whereas the membrane enzyme had significant basal activity and was inhibited by Ca2+. Rho-specific GDP dissociation inhibitor inhibited GTP gamma S stimulation of membrane PLD activity in the presence and absence of cytosol. The stimulation in GDP dissociation inhibitor-treated membranes could be partially recovered by the addition of recombinant Rho proteins (RhoA, Rac1, CDC42Hs). RhoA and Rac1 were also stimulatory in untreated membranes. However, Western blot analysis of membranes showed the presence of RhoA, but not Rac1 or CDC42Hs, suggesting that RhoA was the endogenous small GTP-binding protein involved in GTP-dependent PLD activity in membranes in the absence of cytosol. ARF also stimulated the membrane PLD in the presence of GTP gamma S, and the combination of RhoA and ARF showed a synergistic effect. These results show the presence of ARF-dependent PLD activity in both cytosol and membranes. The membranes contain another PLD activity for which the endogenous regulator appears to be RhoA. The data suggest the existence of at least two different PLD isozymes in HL60 cells.
Collapse
Affiliation(s)
- A R Siddiqi
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
40
|
Pertile P, Liscovitch M, Chalifa V, Cantley LC. Phosphatidylinositol 4,5-bisphosphate synthesis is required for activation of phospholipase D in U937 cells. J Biol Chem 1995; 270:5130-5. [PMID: 7890622 DOI: 10.1074/jbc.270.10.5130] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Phospholipase D (PLD) has been implicated in signal transduction and membrane traffic. We have previously shown that phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) stimulates in vitro partially purified brain membrane PLD activity, defining a novel function of PtdIns-4,5-P2 as a PLD cofactor. In the present study we extend these observations to permeabilized U937 cells. In these cells, the activation of PLD by guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) is greatly potentiated by MgATP. We have utilized this experimental system to test the hypothesis that MgATP potentiates PLD activation by G proteins because it is required for PtdIns-4,5-P2 synthesis by phosphoinositide kinases. As expected, MgATP was absolutely required for maintaining elevated phosphatidylinositol 4-phosphate (PtdIns-4-P) and PtdIns-4,5-P2 levels in the permeabilized cells. In the presence of MgATP, GTP gamma S further elevated the levels of the phosphoinositides. The importance of PtdIns-4,5-P2 for PLD activation was examined by utilizing a specific inhibitory antibody directed against phosphatidylinositol 4-kinase (PtdIns 4-kinase), the enzyme responsible for the first step in the synthesis of PtdIns-4,5-P2. Anti-PtdIns 4-kinase completely inhibited PtdIns 4-kinase activity in vitro and reduced by 75-80% PtdIns-4-P and PtdIns-4,5-P2 levels in the permeabilized cells. In parallel, the anti-PtdIns 4-kinase fully inhibited the activation of PLD by GTP gamma S and caused a 60% inhibition of PLD activation by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate, indicating that elevated PtdIns-4,5-P2 levels are required for PLD activation. This conclusion is supported by the fact that neomycin, a high affinity ligand of PtdIns-4,5-P2, also blocked PLD activation. Furthermore, the activity of PLD in U937 cell lysate was stimulated by PtdIns-4,5-P2 in a dose-dependent manner. The current results indicate that PtdIns-4,5-P2 synthesis is required for PLD activation in permeabilized U937 cells and strongly support the proposed function of PtdIns-4,5-P2 as a cofactor for PLD. In addition, the results further establish PtdIns-4,5-P2 as a key component in the generation of second messengers via multiple pathways including phosphoinositide-phospholipase C, phosphoinositide 3-kinase and PLD.
Collapse
Affiliation(s)
- P Pertile
- Division of Signal Transduction, Beth Israel Hospital, Boston, Massachusetts
| | | | | | | |
Collapse
|
41
|
Yamamoto I, Konto A, Handa T, Miyajima K. Regulation of phospholipase D activity by neutral lipids in egg-yolk phosphatidylcholine small unilamellar vesicles and by calcium ion in aqueous medium. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1233:21-6. [PMID: 7833345 DOI: 10.1016/0005-2736(94)00220-j] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hydrolysis activity of phospholipase D from Streptomyces chromofuscus (PLD) was studied in small unilamellar vesicles (SUV) of egg yolk phosphatidylcholine (PC). The enzyme was associated with PC-SUV in a Ca(2+)-dependent manner. Both apparent maximum velocity, Vmax(app), and reciprocal of apparent Michaelis constant, i.e., apparent binding constant, 1/Km(app), increased with Ca2+ concentration, and the maximum values of these kinetic parameters were obtained at about 20 microM Ca2+. Incorporation of 1,2-diacylglycerol (DAG), cholesterol (Chol) or alpha-tocopherol (Toc) into PC-SUV induced shift of the antisymmetric PO2- stretching band of PC to lower frequency. The neutral lipids in SUV brought about increase of the Vmax(app) value (Yamamoto et al. (1993) Biochim. Biophys. Acta 1145, 293-297). On the basis of these findings we discussed the regulation of PLD activity in terms of the Ca(2+)-dependent complex formation of PLD with SUV, and the enhancement of susceptibility of the P-O bond in PC molecule by neutral lipids.
Collapse
Affiliation(s)
- I Yamamoto
- Faculty of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | |
Collapse
|
42
|
Jung JH, Jung JC, Chung SH. Angiotensin II-mediated stimulation of phospholipase D in rabbit kidney proximal tubule cells. Arch Pharm Res 1994; 17:405-10. [PMID: 10319148 DOI: 10.1007/bf02979115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The present study was undertaken to demonstrate whether or not angiotensin II activates a phospholipase D in rabbit kidney proximal tubule cells. By measuring the formation of [3H]phosphatidic acid and [3H]phosphatidylethanol, we elucidate the direct stimulation of phospholipase D by angiotensin II. Angiotensin II leads to a rapid increase in [3H]phosphatidic acid and [3H]diacylglycerol, and [3H]phosphatidic acid formation preceded the formation of [3H]diacylglycerol. This result suggests that some phosphatidic acid seems to be formed directly from phosphatidylcholine by the action of phospholipase D, not from the action of diacylglycerol kinase on the diacylglycerol. In addition, the other mechanisms by which phospholipase D is activated was examined. We have found that phospholipase D was activated by extracellular calcium ion. It has also been shown that angiotensin II may activate phospholipase D through protein kinase C-independent pathway.
Collapse
Affiliation(s)
- J H Jung
- College of Pharmacy, Kyung Hee University, Seoul, Korea
| | | | | |
Collapse
|
43
|
|
44
|
Thompson MG, Mackie SC, Morrison KS, Thom A, Palmer RM. Stimulation of protein synthesis and phospholipase D activity by vasopressin and phorbol ester in L6 myoblasts. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1224:198-204. [PMID: 7981233 DOI: 10.1016/0167-4889(94)90191-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of 12-O-tetradecanoylphorbol-13-acetate (TPA) and vasopressin on protein synthesis and phospholipase D (PLD) activity were investigated in L6 myoblasts. TPA stimulated a concentration-dependent increase in protein synthesis (EC50 approx. 10 nM) during a 90 min incubation, but had no effect after 6 h. The maximum increase was about 15% and was mediated through changes in translation, as TPA had no effect on RNA accretion and the response was not prevented by actinomycin D. TPA also stimulated PLD activity as measured by an 8-fold increase in the formation of phosphatidylbutanol (PtdBuOH) and the release of choline (EC50 5-10 nM). In contrast to TPA, vasopressin stimulated protein synthesis (maximum increase 30%, EC50 approx. 10 nM) and RNA accretion after 6 h, but had no effect after 90 min. Vasopressin also increased PtdBuOH production 4-5-fold (EC50 approx. 0.5 nM) and choline release (EC50 approx. 1 nM). The addition of a highly purified preparation of PLD (2-10 units/ml) from Streptomyces sp. to L6 cells stimulated a concentration-dependent increase in choline release and protein synthesis after both 90 min (maximum stimulation 13%) and 6 h (maximum stimulation 12%). PLD also stimulated RNA accretion after 6 h but not 90 min. The data support a role for PLD in the regulation of protein synthesis in L6 cells.
Collapse
Affiliation(s)
- M G Thompson
- Rowett Research Institute, Bucksburn, Aberdeen, UK
| | | | | | | | | |
Collapse
|
45
|
Maria del Carmen BA, David R, Steina A, Christer A, Lena G. Protein kinase C-mediated phospholipase D activity is increased by linolenic acid supplementation in NG 108-15 cells. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0005-2760(94)90072-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Jones L, Ella K, Bradshaw C, Gause K, Dey M, Wisehart-Johnson A, Spivey E, Meier K. Activations of mitogen-activated protein kinases and phospholipase D in A7r5 vascular smooth muscle cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31585-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Wang X, Xu L, Zheng L. Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31993-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
48
|
Yamamoto I, Mazumi T, Asai Y, Handa T, Miyajima K. Effects of ?-tocopherol and its acetate on the hydrolytic activity of phospholipase D in egg yolk phosphatidylcholine bilayers. Colloid Polym Sci 1994. [DOI: 10.1007/bf00653227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Kiss Z. Sphingosine-like stimulatory effects of propranolol on phospholipase D activity in NIH 3T3 fibroblasts. Biochem Pharmacol 1994; 47:1581-6. [PMID: 8185671 DOI: 10.1016/0006-2952(94)90535-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Propranolol and sphingosine exhibit several common biochemical effects, including inhibition of phosphatidic acid phosphohydrolase and protein kinase C (PKC) activities. In NIH 3T3 fibroblasts, sphingosine has also been shown to stimulate phospholipase D (PLD)-mediated hydrolysis of both phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) (Kiss Z and Anderson WB, J Biol Chem 265: 7345-7350, 1990). The present study demonstrates that in [14C]palmitic acid-labeled NIH 3T3 fibroblasts, propranolol (50-100 microM) and sphingosine had similar stimulatory effects on PLD-mediated synthesis of phosphatidylethanol in the presence of ethanol. In [14C]choline- and [14C]-ethanolamine-labeled fibroblasts, both compounds also stimulated the hydrolysis of both [14C]PtdCho and [14C]PtdEtn. However, while sphingosine preferentially stimulated PtdEtn hydrolysis, propranolol had greater effects on PtdCho hydrolysis. At each time point examined (15-45 min), lower concentrations (25-50 microM) of propranolol and 100 nM phorbol 12-myristate 13-acetate (PMA) synergistically enhanced PtdEtn hydrolysis; a higher concentration (100 microM) of propranolol inhibited this PMA effect only when the incubation time was 45 min. On the other hand, propranolol (10-100 microM) had either no effect or it inhibited PMA-induced PtdCho hydrolysis after treatments for 15 or 45 min, respectively. These potentiating and inhibitory actions of propranolol on the hydrolysis of PtdCho and PtdEtn were similarly elicited by sphingosine. The present study identified the PLD system as another common target for the pharmacological actions of sphingosine and propranolol.
Collapse
Affiliation(s)
- Z Kiss
- Hormel Institute, University of Minnesota, Austin 55912
| |
Collapse
|
50
|
Abstract
PC hydrolysis by PLA2, PLC or PLD is a widespread response elicited by most growth factors, cytokines, neurotransmitters, hormones and other extracellular signals. The mechanisms can involve G-proteins, PKC, Ca2+ and tyrosine kinase activities. Although an agonist-responsive cytosolic PLA2 has been purified, cloned and sequenced, the agonist-responsive form(s) of PC-PLC has not been identified and no form of PC-PLD has been purified or cloned. Regulation of PLA2 by Ca2+ and MAPK is well established and involves membrane translocation and phosphorylation, respectively. PKC regulation of the enzyme in intact cells is probably mediated by MAPK. The question of G-protein control of PLA2 remains controversial since the nature of the G-protein is unknown and it is not established that its interaction with the enzyme is direct or not. Growth factor regulation of PLA2 involves tyrosine kinase activity, but not necessarily PKC. It may be mediated by MAPK. The physiological significance of PLA2 activation is undoubtedly related to the release of AA for eicosanoid production, but the LPC formed may have actions also. There is much evidence that PKC regulates PC-PLC and PC-PLD and this is probably a major mechanism by which agonists that promote PI hydrolysis secondarily activate PC hydrolysis. Since no agonist-responsive forms of either phospholipase have been isolated, it is not clear that PKC exerts its effects directly on the enzymes. Although it is assumed that a phosphorylation mechanism is involved, this may not be the case, and regulation may be by protein-protein interactions. G-protein control of PC-PLD is well-established, although, again, it has not been demonstrated that this is direct, and the nature of the G-protein(s) involved is unknown. In some cell types, there is evidence of the participation of a soluble protein, which may be a low Mr GTP-binding protein. What role this plays in the activation of PC-PLD is obscure. Agonist activation of PC hydrolysis in cells is usually Ca(2+)-dependent, but the step at which Ca2+ is involved is unclear, since PC-PLD and PC-PLC per se are not influenced by physiological concentrations of the ion. Most growth factors promote PC hydrolysis and this is mainly due to activation of PKC as a result of PI breakdown. However, in some cases, PC breakdown occurs in the absence of PI hydrolysis, implying another mechanism that does not involve PI-derived DAG.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J H Exton
- Howard Hughes Medical Institute, Nashville, TN
| |
Collapse
|