1
|
Albataineh MT, Kadosh D. Regulatory roles of phosphorylation in model and pathogenic fungi. Med Mycol 2015; 54:333-52. [PMID: 26705834 PMCID: PMC4818690 DOI: 10.1093/mmy/myv098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/01/2015] [Indexed: 12/25/2022] Open
Abstract
Over the past 20 years, considerable advances have been made toward our understanding
of how post-translational modifications affect a wide variety of biological
processes, including morphology and virulence, in medically important fungi.
Phosphorylation stands out as a key molecular switch and regulatory modification that
plays a critical role in controlling these processes. In this article, we first
provide a comprehensive and up-to-date overview of the regulatory roles that both
Ser/Thr and non-Ser/Thr kinases and phosphatases play in model and pathogenic fungi.
Next, we discuss the impact of current global approaches that are being used to
define the complete set of phosphorylation targets (phosphoproteome) in medically
important fungi. Finally, we provide new insights and perspectives into the potential
use of key regulatory kinases and phosphatases as targets for the development of
novel and more effective antifungal strategies.
Collapse
Affiliation(s)
- Mohammad T Albataineh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - David Kadosh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
2
|
Distinct and redundant roles of protein tyrosine phosphatases Ptp1 and Ptp2 in governing the differentiation and pathogenicity of Cryptococcus neoformans. EUKARYOTIC CELL 2014; 13:796-812. [PMID: 24728196 DOI: 10.1128/ec.00069-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein tyrosine phosphatases (PTPs) serve as key negative-feedback regulators of mitogen-activated protein kinase (MAPK) signaling cascades. However, their roles and regulatory mechanisms in human fungal pathogens remain elusive. In this study, we characterized the functions of two PTPs, Ptp1 and Ptp2, in Cryptococcus neoformans, which causes fatal meningoencephalitis. PTP1 and PTP2 were found to be stress-inducible genes, which were controlled by the MAPK Hog1 and the transcription factor Atf1. Ptp2 suppressed the hyperphosphorylation of Hog1 and was involved in mediating vegetative growth, sexual differentiation, stress responses, antifungal drug resistance, and virulence factor regulation through the negative-feedback loop of the HOG pathway. In contrast, Ptp1 was not essential for Hog1 regulation, despite its Hog1-dependent induction. However, in the absence of Ptp2, Ptp1 served as a complementary PTP to control some stress responses. In differentiation, Ptp1 acted as a negative regulator, but in a Hog1- and Cpk1-independent manner. Additionally, Ptp1 and Ptp2 localized to the cytosol but were enriched in the nucleus during the stress response, affecting the transient nuclear localization of Hog1. Finally, Ptp1 and Ptp2 played minor and major roles, respectively, in the virulence of C. neoformans. Taken together, our data suggested that PTPs could be exploited as novel antifungal targets.
Collapse
|
3
|
Zhang ZY, Dixon JE. Protein tyrosine phosphatases: mechanism of catalysis and substrate specificity. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 68:1-36. [PMID: 8154323 DOI: 10.1002/9780470123140.ch1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Z Y Zhang
- Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor
| | | |
Collapse
|
4
|
Lu JMY, Deschenes RJ, Fassler JS. Role for the Ran binding protein, Mog1p, in Saccharomyces cerevisiae SLN1-SKN7 signal transduction. EUKARYOTIC CELL 2005; 3:1544-56. [PMID: 15590828 PMCID: PMC539023 DOI: 10.1128/ec.3.6.1544-1556.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Yeast Sln1p is an osmotic stress sensor with histidine kinase activity. Modulation of Sln1 kinase activity in response to changes in the osmotic environment regulates the activity of the osmotic response mitogen-activated protein kinase pathway and the activity of the Skn7p transcription factor, both important for adaptation to changing osmotic stress conditions. Many aspects of Sln1 function, such as how kinase activity is regulated to allow a rapid response to the continually changing osmotic environment, are not understood. To gain insight into Sln1p function, we conducted a two-hybrid screen to identify interactors. Mog1p, a protein that interacts with the yeast Ran1 homolog, Gsp1p, was identified in this screen. The interaction with Mog1p was characterized in vitro, and its importance was assessed in vivo. mog1 mutants exhibit defects in SLN1-SKN7 signal transduction and mislocalization of the Skn7p transcription factor. The requirement for Mog1p in normal localization of Skn7p to the nucleus does not fully account for the mog1-related defects in SLN1-SKN7 signal transduction, raising the possibility that Mog1p may play a role in Skn7 binding and activation of osmotic response genes.
Collapse
Affiliation(s)
- Jade Mei-Yeh Lu
- Department of Biological Sciences, University of Iowa, 202 BBE, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
5
|
McCabe BD, Hom S, Aberle H, Fetter RD, Marques G, Haerry TE, Wan H, O'Connor MB, Goodman CS, Haghighi AP. Highwire Regulates Presynaptic BMP Signaling Essential for Synaptic Growth. Neuron 2004; 41:891-905. [PMID: 15046722 DOI: 10.1016/s0896-6273(04)00073-x] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 12/15/2003] [Accepted: 01/13/2004] [Indexed: 10/26/2022]
Abstract
Highwire (Hiw), a putative RING finger E3 ubiquitin ligase, negatively regulates synaptic growth at the neuromuscular junction (NMJ) in Drosophila. hiw mutants have dramatically larger synaptic size and increased numbers of synaptic boutons. Here we show that Hiw binds to the Smad protein Medea (Med). Med is part of a presynaptic bone morphogenetic protein (BMP) signaling cascade consisting of three receptor subunits, Wit, Tkv, and Sax, in addition to the Smad transcription factor Mad. When compared to wild-type, mutants of BMP signaling components have smaller NMJ size, reduced neurotransmitter release, and aberrant synaptic ultrastructure. BMP signaling mutants suppress the excessive synaptic growth in hiw mutants. Activation of BMP signaling, which in wild-type does not cause additional growth, in hiw mutants does lead to further synaptic expansion. These results reveal a balance between positive BMP signaling and negative regulation by Highwire, governing the growth of neuromuscular synapses.
Collapse
Affiliation(s)
- Brian D McCabe
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Modesti A, Bini L, Carraresi L, Magherini F, Liberatori S, Pallini V, Manao G, Pinna LA, Raugei G, Ramponi G. Expression of the small tyrosine phosphatase (Stp1) in Saccharomyces cerevisiae: a study on protein tyrosine phosphorylation. Electrophoresis 2001; 22:576-85. [PMID: 11258771 DOI: 10.1002/1522-2683(200102)22:3<576::aid-elps576>3.0.co;2-p] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Small tyrosine phoshatase 1 (Stp1) is a Schizosaccharomyces pombe low-molecular-mass phosphotyrosine-phosphatase 50% identical to Saccharomyces cerevisiae Ltp1. In order to investigate the role of Stp1 in yeast, a mutant was generated having the characteristic of a dominant negative molecule. Changes in protein tyrosine phosphorylation in S. cerevisiae proteome in response to Stp1 or its dominant negative mutant expression were analyzed by high-resolution two-dimensional (2-D) electrophoresis. The most remarkable result is the modification by phosphorylation on tyrosine of several proteins involved in carbohydrate metabolism. Twelve proteins were identified on the basis of their positions in the anti-phosphotyrosine immunoblot of the 2-D electrophoresis. Ten of these present tyrosyl residues that are within the consensus sequence for protein kinase CK2 (casein kinase-2). These data open the possibility for the identification of Stp1 substrates in yeast and provide hints about the nature of tyrosine phosphorylating agents in yeast and in other organisms where bona fide tyrosine kinases are lacking.
Collapse
Affiliation(s)
- A Modesti
- Dipartimento di Scienze Biochemiche, Università di Firenze, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lee SW, Reimer CL, Fang L, Iruela-Arispe ML, Aaronson SA. Overexpression of kinase-associated phosphatase (KAP) in breast and prostate cancer and inhibition of the transformed phenotype by antisense KAP expression. Mol Cell Biol 2000; 20:1723-32. [PMID: 10669749 PMCID: PMC85355 DOI: 10.1128/mcb.20.5.1723-1732.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/1999] [Accepted: 11/19/1999] [Indexed: 11/20/2022] Open
Abstract
Accumulating evidence suggests that phosphatases play an important role in regulating a variety of signal transduction pathways that have a bearing on cancer. The kinase-associated phosphatase (KAP) is a human dual-specificity protein phosphatase that was identified as a Cdc2- or Cdk2-interacting protein by a yeast two-hybrid screening, yet the biological significance of these interactions remains elusive. We have identified the KAP gene as an overexpressed gene in breast and prostate cancer by using a phosphatase domain-specific differential-display PCR strategy. Here we report that breast and prostate malignancies are associated with high levels of KAP expression. The sublocalization of KAP is variable. In normal cells, KAP is primarily found in the perinuclear region, but in tumor cells, a significant portion of KAP is found in the cytoplasm. Blocking KAP expression by antisense KAP in a tetracycline-regulatable system results in a reduced population of S-phase cells and reduced Cdk2 kinase activity. Furthermore, lowering KAP expression led to inhibition of the transformed phenotype, with reduced anchorage-independent growth and tumorigenic potential in athymic nude mice. These findings suggest that therapeutic intervention might be aimed at repression of KAP gene overexpression in human breast and prostate cancer.
Collapse
Affiliation(s)
- S W Lee
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
8
|
Zhan XL, Hong Y, Zhu T, Mitchell AP, Deschenes RJ, Guan KL. Essential functions of protein tyrosine phosphatases PTP2 and PTP3 and RIM11 tyrosine phosphorylation in Saccharomyces cerevisiae meiosis and sporulation. Mol Biol Cell 2000; 11:663-76. [PMID: 10679022 PMCID: PMC14801 DOI: 10.1091/mbc.11.2.663] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tyrosine phosphorylation plays a central role in eukaryotic signal transduction. In yeast, MAP kinase pathways are regulated by tyrosine phosphorylation, and it has been speculated that other biochemical processes may also be regulated by tyrosine phosphorylation. Previous genetic and biochemical studies demonstrate that protein tyrosine phosphatases (PTPases) negatively regulate yeast MAP kinases. Here we report that deletion of PTP2 and PTP3 results in a sporulation defect, suggesting that tyrosine phosphorylation is involved in regulation of meiosis and sporulation. Deletion of PTP2 and PTP3 blocks cells at an early stage of sporulation before premeiotic DNA synthesis and induction of meiotic-specific genes. We observed that tyrosine phosphorylation of several proteins, including 52-, 43-, and 42-kDa proteins, was changed in ptp2Deltaptp3Delta homozygous deletion cells under sporulation conditions. The 42-kDa tyrosine-phosphorylated protein was identified as Mck1, which is a member of the GSK3 family of protein kinases and previously known to be phosphorylated on tyrosine. Mutation of MCK1 decreases sporulation efficiency, whereas mutation of RIM11, another GSK3 member, specifically abolishes sporulation; therefore, we investigated regulation of Rim11 by Tyr phosphorylation during sporulation. We demonstrated that Rim11 is phosphorylated on Tyr-199, and the Tyr phosphorylation is essential for its in vivo function, although Rim11 appears not to be directly regulated by Ptp2 and Ptp3. Biochemical characterizations indicate that tyrosine phosphorylation of Rim11 is essential for the activity of Rim11 to phosphorylate substrates. Our data demonstrate important roles of protein tyrosine phosphorylation in meiosis and sporulation
Collapse
Affiliation(s)
- X L Zhan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
9
|
Moeslein FM, Myers MP, Landreth GE. The CLK family kinases, CLK1 and CLK2, phosphorylate and activate the tyrosine phosphatase, PTP-1B. J Biol Chem 1999; 274:26697-704. [PMID: 10480872 DOI: 10.1074/jbc.274.38.26697] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein-tyrosine phosphatase PTP-1B is an important regulator of intracellular protein tyrosine phosphorylation, and is itself regulated by phosphorylation. We report that PTP-1B and its yeast analog, YPTP, are phosphorylated and activated by members of the CLK family of dual specificity kinases. CLK1 and CLK2 phosphorylation of PTP-1B in vitro activated the phosphatase activity approximately 3-5-fold using either p-nitrophenol phosphate, or tyrosine-phosphorylated myelin basic protein as substrates. Co-expression of CLK1 or CLK2 with PTP-1B in HEK 293 cells led to a 2-fold stimulation of phosphatase activity in vivo. Phosphorylation of PTP-1B at Ser(50) by CLK1 or CLK2 is responsible for its enzymatic activation. These findings suggest that phosphorylation at Ser(50) by serine threonine kinases may regulate the activation of PTP-1B in vivo. We also show that CLK1 and CLK2 phosphorylate and activate the S. cerevisiae PTP-1B family member, YPTP1. CLK1 phosphorylation of YPTP1 led to a 3-fold stimulation of phosphatase activity in vitro. We demonstrate that CLK phosphorylation of Ser(83) on YPTP1 is responsible for the activation of this enzyme. These findings demonstrate that the CLK kinases activate PTP-1B family members, and this phosphatase may be an important cellular target for CLK action.
Collapse
Affiliation(s)
- F M Moeslein
- Departments of Neurology and Neurosciences and the Alzheimer Research Laboratory, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
10
|
Jolivet P, Queiroz-Claret C, Bergeron E, Meunier JC. Characterization of an exocellular protein phosphatase with dual substrate specificity from the yeast Yarrowia lipolytica. Int J Biochem Cell Biol 1998; 30:783-96. [PMID: 9722983 DOI: 10.1016/s1357-2725(98)00036-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In previous work, the major endocellular protein phosphatase activity has been identified in the secretory yeast Yarrowia lipolytica as a PP2A. The aim of the present work was to seek the presence of one protein phosphatase excreted in the exocellular medium and to study its activity during yeast growth in media supplemented or not supplemented with inorganic phosphate. Protein phosphatase was purified and activity was assayed by following the dephosphorylation of three substrates, [32P]casein, phosphotyrosine and a synthetic tyrosine-phosphorylated peptide. Phosphatase activity recovered in the medium after 25 h culture was greatly enhanced by Pi-deficiency. After several purification steps, the enzyme preparation presents an apparent electrophoretic homogeneity on SDS-PAGE with associated phosphoseryl/threonyl and phosphotyrosyl activities. The kinetic properties exclude contamination by a copurified protein and it is concluded that the two activities are carried by the same single proteic species. It was characterized by gel filtration as a 33 kDa protein with one single subunit demonstrated by SDS-PAGE. An absolute requirement for reducing-agents is observed suggesting that the enzyme contains at least one essential reactive cysteinyl residue. Optimum pH value is 6.1, apparent K(m) for phosphotyrosine was calculated to be 760 microM and Hill coefficient 3.2 indicating a rather high cooperativity. These results showed that the involvement of alkaline and/or acid phosphatase was unlikely. In conclusion, a protein phosphatase distinct from endocellular PP2A is secreted by Yarrowia lipolytica and characterized as a phosphotyrosine protein phosphatase with associated phosphoseryl/threonyl activity.
Collapse
Affiliation(s)
- P Jolivet
- Laboratoire de Chimie Biologique, INRA, INA PG, Centre de Biotechnologies Agro-Industrielles, Thiverval-Grignon, France.
| | | | | | | |
Collapse
|
11
|
Zhan XL, Deschenes RJ, Guan KL. Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2/PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae. Genes Dev 1997; 11:1690-702. [PMID: 9224718 DOI: 10.1101/gad.11.13.1690] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Saccharomyces cerevisiae mating pheromone response is mediated by activation of a MAP kinase (Fus3p and Kss1p) signaling pathway. Pheromone stimulation causes cell cycle arrest. Therefore, inactivation of the Fus3p and Kss1p MAP kinases is required during recovery phase for the resumption of cell growth. We have isolated a novel protein tyrosine phosphatase gene, PTP3, as a negative regulator of this pathway. Ptp3p directly dephosphorylates and inactivates Fus3p MAP kinase in vitro. Multicopy PTP3 represses pheromone-induced transcription and promotes recovery. In contrast, disruption of PTP3 in combination with its homolog PTP2 results in constitutive tyrosine phosphorylation, enhanced kinase activity of Fus3p MAP kinase on stimulation, and delayed recovery from the cell cycle arrest. Both tyrosine phosphorylation and kinase activity of Fus3p are further increased by disruption of PTP3 and PTP2 in combination with MSG5, which encodes a dual-specificity phosphatase. Cells deleted for all three of the phosphatases (ptp2delta ptp3delta msg5delta) are hypersensitive to pheromone and exhibit a severe defect in recovery from pheromone-induced growth arrest. Our data indicate that Ptp3p is the major phosphatase responsible for tyrosine dephosphorylation of Fus3p to maintain a low basal activity; it also has important roles, along with Msg5p, in inactivation of Fus3p following pheromone stimulation. These data present the first evidence for a coordinated regulation of MAP kinase function through differential actions of protein tyrosine phosphatases and a dual-specificity phosphatase.
Collapse
Affiliation(s)
- X L Zhan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109-0606, USA
| | | | | |
Collapse
|
12
|
Jolivet P, Queiroz-Claret C, Bergeron E, Meunier JC. Purification and characterization of a type 2A protein phosphatase from Yarrowia lipolytica grown on a phosphate-deficient medium. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1997; 320:441-9. [PMID: 9247023 DOI: 10.1016/s0764-4469(97)81971-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intracellular protein phosphatase activity has been identified in the yeast Yarrowia lipolytica. This activity was maximal early in its exponential growth phase, and it was enhanced by Pi-deficiency of the culture medium. On a Pi-deficient medium, the major protein phosphatase was purified. This enzyme was dissociated with 80% ethanol treatment, its activity was slightly increased (30%) with heparine and largely enhanced (1.5 to 3-fold) with polycations. This enzyme could be classified as a type 2A protein phosphatase. It is composed of a catalytic subunit and other subunits. Its optimum pH value is 7.2, the apparent Km for casein is 37 microM and the apparent velocity 3.6 pmol hydrolyzed32 Pi min-1 pmol-1 enzyme.
Collapse
Affiliation(s)
- P Jolivet
- Laboratoire de chimie biologique, Inra, Ina-PG, Centre de biotechnologies agro-industrielles, Thiverval-Grignon, France
| | | | | | | |
Collapse
|
13
|
Ernsting BR, Dixon JE. The PPS1 gene of Saccharomyces cerevisiae codes for a dual specificity protein phosphatase with a role in the DNA synthesis phase of the cell cycle. J Biol Chem 1997; 272:9332-43. [PMID: 9083070 DOI: 10.1074/jbc.272.14.9332] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We report the identification of the PPS1 gene of Saccharomyces cerevisiae. The deduced amino acid sequence of PPS1p shows similarity with protein-tyrosine phosphatases (PTPases) and is most closely related to a subfamily of PTPases that are capable of dephosphorylating phosphoseryl and phosphothreonyl residues as well as phosphotyrosyl residues. Analysis of the predicted amino acid sequence suggests that the protein consists of an active phosphatase domain, an inactive phosphatase-like domain, and an NH2-terminal extension. Mutation of the catalytic cysteinyl residue in the active phosphatase domain reduced the in vitro activity of the mutant protein to less than 0.5% of wild type activity, while mutation of the corresponding cysteinyl residue of the inactive phosphatase-like domain had no effect on in vitro activity. The PPS1 protein was expressed in Escherichia coli, and the protein was shown to catalyze the hydrolysis of p-nitrophenyl phosphate, dephosphorylate phosphotyrosyl, and phosphothreonyl residues in synthetic diphosphorylated peptides and to inactivate the human ERK1 protein. PPS1 transcript abundance is coregulated with that of the divergently transcribed DPB3 gene, which codes for a subunit of DNA polymerase II, with both transcripts showing peak abundance in S phase. pps1Delta mutant strains did not differ from PPS1 strains under any of the conditions tested, but overexpression of the PPS1 protein in S. cerevisiae led to synchronous growth arrest and to aberrant DNA synthesis. A screen for suppressors of this growth arrest identified the RAS2 gene as a multicopy suppressor of the PPS1p overexpression arrest. The arrest was not suppressed by the presence of multicopy RAS1, TPK2, or TPK3 genes or by the presence of 5 mM cAMP in the growth medium, suggesting that PPS1 functions in a pathway involving RAS2, but not TPK kinases or adenylate cyclase.
Collapse
Affiliation(s)
- B R Ernsting
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | |
Collapse
|
14
|
Trager JB, Martin GS. The role of the Src homology-2 domain in the lethal effect of Src expression in the yeast Saccharomyces cerevisiae. Int J Biochem Cell Biol 1997; 29:635-48. [PMID: 9363641 DOI: 10.1016/s1357-2725(96)00162-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Expression of the retroviral transforming gene v-src arrests the proliferation of the yeast Saccharomyces cerevisiae. A functional Src SH2 (Src homology 2) domain is required for this arrest. To examine the mechanism by which Src blocks yeast cell proliferation, and to determine the role of the Src SH2 domain in the growth arrest, src variants were expressed in yeast under the control of the galactose-inducible GAL1 promoter. Following galactose induction of Src expression, phosphotyrosyl-proteins were isolated by immunoprecipitation with beads coupled to either anti-phosphotyrosine antibody or to a recombinant fusion protein containing the Src SH2 domain. A group of SH2-binding phosphotyrosyl proteins was detected in cells expressing toxic forms of Src, but were not detected in cells expressing non-toxic variants. This group of phosphotyrosyl-proteins represents a minor subset of the proteins phosphorylated by v-Src. The lethality of v-Src and the phosphorylation of SH2-binding proteins were co-ordinately affected by alterations in phosphotyrosine-phosphatase activity. These observations indicate that the lethality of Src is correlated with the phosphorylation of proteins that bind to the Src SH2 domain. The role of the SH2 domain in determining the lethal effects of Src in yeast may be similar to its role in targeting Src to substrates necessary for its biological effects in vertebrate cells.
Collapse
Affiliation(s)
- J B Trager
- Department of Molecular and Cell Biology, University of California at Berkeley 94720-3204, USA
| | | |
Collapse
|
15
|
Park HD, Beeser AE, Clancy MJ, Cooper TG. The S. cerevisiae nitrogen starvation-induced Yvh1p and Ptp2p phosphatases play a role in control of sporulation. Yeast 1996; 12:1135-51. [PMID: 8896280 DOI: 10.1002/(sici)1097-0061(19960915)12:11<1135::aid-yea11>3.0.co;2-l] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Starvation for nitrogen in the absence of a fermentable carbon source causes diploid Saccharomyces cerevisiae cells to leave vegetative growth, enter meiosis, and sporulare; the former nutritional condition also induces expression of the YVH1 gene that encodes a protein phosphatase. This correlation prompted us to determine whether the Yvh1p phosphatase was a participant in the network that controls the onset of meiosis and sporulation. We found that expression of the IME2 gene, encoding a protein kinase homologue required for meiosis- and sporulation-specific gene expression, is decreased in a yvh1 disrupted strain. We also observed a decrease, albeit a smaller one, in the expression of IME1 which encodes an activator protein required for IME2 expression. Under identical experimental conditions, expression of the MCKI and IME4 genes (which promote sporulation but do not require Ime1p for expression) was not affected. These results demonstrate the specificity of the yvh1 disruption phenotype. They suggest that decreased steady-state levels of IME1 and IME2 mRNA were not merely the result of non-specific adverse affects on nucleic acid metabolism caused by the yvh1 disruption. Sporulation of a homozygous yvh1 disruption mutant was delayed and less efficient overall compared to an isogenic wild-type strain, a result which correlates with decreased IME1 and IME2 gene expression. We also observed that expression of the PTP2 tyrosine phosphatase gene (a negative regulator of the osmosensing MAP kinase cascade), but not the PTP1 gene (also encoding a tyrosine phosphatase) was induced by nitrogen-starvation. Although disruption of PTP2 alone did not demonstrably affect sporulation or IME2 gene expression, sporulation was decreased more in a yvh1, ptp2 double mutant than in a yvh1 single mutant; it was nearly abolished in the double mutant. These data suggest that the YVH1 and PTP2 encoded phosphatases likely participate in the control network regulating meiosis and sporulation. Expression of YVH1 and PTP2 was not affected by nitrogen source quality (asparagine compared to proline) suggesting that nitrogen starvation-induced YVH1 and PTP2 expression and sensitivity to nitrogen catabolite repression are on two different branches of the nitrogen regulatory network.
Collapse
Affiliation(s)
- H D Park
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | | | | | |
Collapse
|
16
|
Kenner KA, Anyanwu E, Olefsky JM, Kusari J. Protein-tyrosine phosphatase 1B is a negative regulator of insulin- and insulin-like growth factor-I-stimulated signaling. J Biol Chem 1996; 271:19810-6. [PMID: 8702689 DOI: 10.1074/jbc.271.33.19810] [Citation(s) in RCA: 343] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To understand the physiological role of protein-tyrosine phosphatase 1B (PTPase 1B) in insulin and insulin-like growth factor-I (IGF-I) signaling, we established clonal cell lines overexpressing wild type or inactive mutant (C215S) PTPase 1B in cells overexpressing insulin (Hirc) or IGF-I (CIGFR) receptors. PTPase 1B overexpression in transfected cells was verified by immunoblot analysis with a monoclonal PTPase 1B antibody. Subfractionation of parental cells demonstrated that greater than 90% of PTPase activity was localized in the Triton X-100-soluble particulate (P1) cell fraction. PTPase activity in the P1 fraction of cells overexpressing wild type PTPase 1B was 3-6-fold higher than parental cells but was unaltered in all fractions from C215S PTPase 1B-containing cells. The overexpression of wild type and C215S PTPase 1B had no effects on intrinsic receptor kinase activity, growth rate, or general cell morphology. The effects of PTPase 1B overexpression on cellular protein tyrosine phosphorylation were examined by anti-phosphotyrosine immunoblot analysis. No differences were apparent under basal conditions, but hormone-stimulated receptor autophosphorylation and/or insulin receptor substrate tyrosine phosphorylation were inhibited in cells overexpressing wild type PTPase 1B and increased in cells expressing mutant PTPase 1B, in comparison with parental cells. Metabolic signaling, assessed by ligand-stimulated [14C]glucose incorporation into glycogen, was also inhibited in cells overexpressing active PTPase 1B and enhanced in cells containing C215S PTPase 1B. These data strongly suggest that PTPase 1B acts as a negative regulator of insulin and IGF-I signaling.
Collapse
Affiliation(s)
- K A Kenner
- Department of Physiology, Tulane University Medical Center, New Orleans, Louisiana 70112-2699, USA
| | | | | | | |
Collapse
|
17
|
Shirayama M, Matsui Y, Toh-e A. Dominant mutant alleles of yeast protein kinase gene CDC15 suppress the lte1 defect in termination of M phase and genetically interact with CDC14. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:176-85. [PMID: 8668128 DOI: 10.1007/bf02172916] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
LTE1 encodes a homolog of GDP-GTP exchange factors for the Ras superfamily and is required at low temperatures for cell cycle progression at the stage of the termination of M phase in Saccharomyces cerevisiae. We isolated extragenic suppressors which suppress the cold sensitivity of lte1 cells and confer a temperature-sensitive phenotype on cells. Cells mutant for the suppressor alone were arrested at telophase at non-permissive temperatures and the terminal phenotype was almost identical to that of lte1 cells at non-permissive temperatures. Genetic analysis revealed that the suppressor is allelic to CDC15, which encodes a protein kinase. The cdc15 mutations thus isolated were recessive with regard to the temperature-sensitive phenotype and were dominant with respect to suppression of lte1. We isolated CDC14 as a low-copy-number suppressor of cdc15-rlt1. CDC14 encodes a phosphotyrosine phosphatase (PTPase) and is essential for termination of M phase. An extra copy of CDC14 suppressed the temperature sensitivity of cdc15-rlt1 cells, but not that of cdc15-1 cells. In addition, some residues that are essential for the CDC14 PTPase activity were found to be non-essential for the suppression. These results strongly indicate that Cdc14 possesses dual functions; PTPase activity is needed for one function but not for the other. We postulate that the cooperative action of Cdc14 and Cdc15 plays an essential role in the termination of M phase.
Collapse
Affiliation(s)
- M Shirayama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| | | | | |
Collapse
|
18
|
Eckstein JW, Beer-Romero P, Berdo I. Identification of an essential acidic residue in Cdc25 protein phosphatase and a general three-dimensional model for a core region in protein phosphatases. Protein Sci 1996; 5:5-12. [PMID: 8771191 PMCID: PMC2143238 DOI: 10.1002/pro.5560050102] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The reaction mechanism of protein tyrosine phosphatases (PTPases) and dual-specificity protein phosphatases is thought to involve a catalytic aspartic acid residue. This residue was recently identified by site-directed mutagenesis in Yersinia PTPase, VHR protein phosphatase, and bovine low molecular weight protein phosphatase. Herein we identify aspartic acid 383 as a potential candidate for the catalytic acid in human Cdc25A protein phosphatase, using sequence alignment, structural information, and site-directed mutagenesis. The D383N mutant enzyme exhibits a 150-fold reduction in kcat, with Kw only slightly changed. Analysis of sequence homologies between several members of the Cdc25 family and deletion mutagenesis substantiate the concept of a two-domain structure for Cdc25, with a regulatory N-terminal and a catalytic C-terminal domain. Based on the alignment of catalytic residues and secondary structure elements, we present a three-dimensional model for the core region of Cdc25. By comparing this three-dimensional model to the crystal structures of PTP1b, Yersinia PTPase, and bovine low molecular weight PTPase, which share only very limited amino acid sequence similarities, we identify a general architecture of the protein phosphatase core region, encompassing the active site loop motif HCXXXXXR and the catalytic aspartic acid residue.
Collapse
Affiliation(s)
- J W Eckstein
- Mitotix, Inc., Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
19
|
Elson A, Leder P. Protein-tyrosine phosphatase epsilon. An isoform specifically expressed in mouse mammary tumors initiated by v-Ha-ras OR neu. J Biol Chem 1995; 270:26116-22. [PMID: 7592814 DOI: 10.1074/jbc.270.44.26116] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transgenic mice that overexpress v-Ha-ras, c-myc, c-neu or int-2 proto-oncogenes in the mammary epithelium develop breast tumors with morphologies that are characteristic of each initiating oncogene. Since these morphological differences reflect distinctive patterns of tumor-specific gene expression, the identification of the products of these genes might shed light on the mechanisms of transformation and/or the identity of target cells that are transformed by specific classes of oncogenes. By focusing on the tyrosine phosphorylation pathway, we have found that the transmembranal protein-tyrosine phosphatase epsilon (PTP epsilon) is highly expressed in murine mammary tumors initiated by c-neu and v-Haras, but not in mammary tumors initiated by c-myc or int-2. This difference is striking and occurs both in primary tumors and in epithelial cells cultured from them. Moreover, PTP epsilon overexpression appears to be mammary tumor-specific in that it is not found in other ras-based tumors and cell lines. These observations suggest that PTP epsilon either plays a role in ras- and neu-mediated transformation of mammary epithelium or marks mammary epithelial cells particularly susceptible to transformation by these oncogenes. Because of its distinctive expression in these mammary tumors, we have further characterized murine PTP epsilon, cloning and determining the complete structures of its cDNAs and showing that it is a glycoprotein that is N-glycosylated in a tissue-specific manner.
Collapse
MESH Headings
- Aging
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- DNA Primers
- Female
- Fibroblast Growth Factor 3
- Fibroblast Growth Factors/genetics
- Gene Expression
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Gene Library
- Genes, erbB-2
- Genes, myc
- Genes, ras
- Isoenzymes/biosynthesis
- Lactation
- Mammary Glands, Animal/enzymology
- Mammary Glands, Animal/growth & development
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/genetics
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Organ Specificity
- Polymerase Chain Reaction
- Pregnancy
- Protein Tyrosine Phosphatases/biosynthesis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogenes
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- RNA, Messenger/isolation & purification
Collapse
Affiliation(s)
- A Elson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
20
|
Wilson LK, Benton BM, Zhou S, Thorner J, Martin GS. The yeast immunophilin Fpr3 is a physiological substrate of the tyrosine-specific phosphoprotein phosphatase Ptp1. J Biol Chem 1995; 270:25185-93. [PMID: 7559654 DOI: 10.1074/jbc.270.42.25185] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The tyrosine-specific phosphoprotein phosphatase encoded by the Saccharomyces cerevisiae PTP1 gene dephosphorylates artificial substrates in vitro, but little is known about its functions and substrates in vivo. The presence of Ptp1 resulted in dephosphorylation of multiple tyrosine-phosphorylated proteins in yeast expressing a heterologous tyrosine-specific protein kinase, indicating that Ptp1 can dephosphorylate a broad range of substrates in vivo. Correspondingly, several proteins phosphorylated at tyrosine by endogenous protein kinases exhibited a marked increase in tyrosine phosphorylation in ptp1 mutant cells. One of these phosphotyrosyl proteins (p70) was also dephosphorylated in vitro when incubated with recombinant Ptp1. p70 was purified to homogeneity; analysis of four tryptic peptides revealed that p70 is identical to the recently described FPR3 gene product, a nucleolarly localized proline rotamase of the FK506- and rapamycin-binding family. The identity of p70 with Fpr3 was confirmed in the demonstration that the abundance of tyrosine-phosphorylated p70 in ptp1 mutants was strictly correlated with the level of FPR3 expression; immobilized phosphotyrosyl Fpr3 was directly dephosphorylated by recombinant Ptp1. Site-directed mutagenesis demonstrated that the site of tyrosine phosphorylation is Tyr-184, which resides within the nucleolin-like amino-terminal domain of Fpr3. Protein kinase activities from yeast cell extracts can bind to and phosphorylate the immobilized amino-terminal domain of Fpr3 on serine, threonine, and tyrosine. Fpr3 represents the first phosphotyrosyl protein identified in S. cerevisiae that is not itself a protein kinase and is as yet the only known physiological substrate of Ptp1.
Collapse
Affiliation(s)
- L K Wilson
- Division of Biochemistry and Molecular Biology, University of California at Berkeley 94720-3204, USA
| | | | | | | | | |
Collapse
|
21
|
Mallet L, Bussereau F, Jacquet M. A 43.5 kb segment of yeast chromosome XIV, which contains MFA2, MEP2, CAP/SRV2, NAM9, FKB1/FPR1/RBP1, MOM22 and CPT1, predicts an adenosine deaminase gene and 14 new open reading frames. Yeast 1995; 11:1195-209. [PMID: 8619318 DOI: 10.1002/yea.320111210] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A 43,481 bp fragment from the left arm of chromosome XIV of Saccharomyces cerevisiae was sequenced. A gene for tRNA(phe) and 23 non-overlapping open reading frames (ORFs) were identified, seven of which correspond to known yeast genes: MFA2, MEP2, CAP/SRV2, NAM9, FKB1/FPR1/RBP1, MOM22 and CPT1. One ORF may correspond to the yet unidentified yeast adenosine deaminase gene. Among the 15 other ORFs, four exhibit known signatures, which include a protein tyrosine phosphatase, a cytoskeleton-associated protein and two ATP-binding proteins, four have similarities with putative proteins of yeast or proteins from other organisms and seven exibit no significant similarity with amino acid sequences described in data banks. One ORF is identical to yeast expressed sequence tags (EST) and therefore corresponds to an expressed gene. Six ORFs present similarities to human dbESTs, thus identifying motifs conserved during evolution. Nine ORFs are putative transmembrane proteins. In addition, one overlapping and three antisense ORFs, which are not likely to be functional, were detected.
Collapse
Affiliation(s)
- L Mallet
- Isntitut de Genétique et Microbiologie, URA1354 du CNRS, Laboratoire Information Genétique et Développement, Université Paris-Sud, Orsay, France
| | | | | |
Collapse
|
22
|
Ostanin K, Pokalsky C, Wang S, Van Etten RL. Cloning and characterization of a Saccharomyces cerevisiae gene encoding the low molecular weight protein-tyrosine phosphatase. J Biol Chem 1995; 270:18491-9. [PMID: 7629177 DOI: 10.1074/jbc.270.31.18491] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The low molecular weight protein-tyrosine phosphatase (low M(r) PTPase) is an 18-kDa cytoplasmic enzyme of unknown function that has been previously found in several vertebrates. Using an oligonucleotide probe derived from the active site sequence of the mammalian low M(r) PTPases, a Saccharomyces cerevisiae gene that encodes a homolog of this enzyme was cloned by low stringency hybridization. This gene, LTP1, together with a neighboring gene, TKL1, is shown to be located on the right arm of chromosome XVI. The deduced amino acid sequence of its 161-amino acid residue product shows a 39% average identity with that of the mammalian enzymes. The yeast Ltp1 protein was expressed in Escherichia coli, purified to homogeneity, and shown to possess PTPase activity. The recombinant Ltp1 efficiently hydrolyzes phosphotyrosine and a phosphotyrosine-containing peptide, Tyr531-fyn, but it shows low activity toward phosphoserine and phosphothreonine. The catalytic activity of Ltp1 toward a number of substrates was approximately 30-fold lower than the corresponding values measured for the bovine low M(r) PTPase. However, the yeast enzyme was markedly activated by adenine and some purine nucleosides and nucleotides, including cAMP and cGMP. In the case of adenine, the activity of Ltp1 was increased by approximately 30-fold. The high degree of evolutionary conservation of the low M(r) PTPases implies a significant role for this enzyme. However, neither the disruption of the LTP1 gene nor an approximately 10-fold overexpression of its product in S. cerevisiae caused any apparent phenotypic changes under the conditions tested. No proteins related to Ltp1 could be detected in extracts of the ltp1 null mutant, either by immunoblotting or by gel-filtration analysis accompanied by extended kinetic assays, consistent with the conclusion that LTP1 is the only low M(r) PTPase-encoding gene in S. cerevisiae.
Collapse
Affiliation(s)
- K Ostanin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA
| | | | | | | |
Collapse
|
23
|
Mossman K, Ostergaard H, Upton C, McFadden G. Myxoma virus and Shope fibroma virus encode dual-specificity tyrosine/serine phosphatases which are essential for virus viability. Virology 1995; 206:572-82. [PMID: 7831813 DOI: 10.1016/s0042-6822(95)80074-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sequence analysis of the genomes of the Leporipoxviruses myxoma virus and Shope fibroma virus (SFV) led to the discovery of open reading frames homologous to the vaccinia H1L gene encoding a soluble protein phosphatase with dual tyrosine/serine specificity. These viral phosphatase genes were subsequently localized to the myxoma BamHI-I fragment and the SFV BamHI-M fragment, and the resulting encoded proteins were designated I1L and M1L, respectively. The localization and orientation of the myxoma I1L and SFV M1L open reading frames within the well conserved central core of the viral genomes closely mirror that of the Orthopoxviruses vaccinia virus and variola virus. The myxoma I1L and SFV M1L phosphatases each contain the conserved tyrosine phosphatase signature sequence motif, (I/V)HCXAGXXR(S/T)G, including the active site cysteine, found previously to be essential for phosphotyrosine dephosphorylation. The vaccinia H1L phosphatase was originally shown to have the ability to dephosphorylate phosphotyrosyl and phosphoseryl residues in vitro. To assess whether this is a common feature of poxvirus phosphatases, myxoma I1L was expressed as a GST-fusion protein, purified, and shown to dephosphorylate substrates containing tyrosine and serine phosphorylated residues, in a similar fashion to vaccinia H1L. A myxoma I1L variant, in which the active site cysteine 110 was mutated to serine, was expressed in a parallel fashion to the wild-type I1L protein and found to be completely deficient in its ability to dephosphorylate both phosphotyrosine and phosphoserine amino acids. In an attempt to ascertain the biological requirement for the myxoma I1L phosphatase, we constructed a recombinant myxoma virus containing a disrupted I1L open reading frame. This I1L mutant virus was able to successfully propagate in tissue culture only in the presence of a wild-type complementing gene, and pure virus clones containing only the disrupted allele were not viable. Thus, we conclude that the myxoma I1L dual specificity phosphatase is an essential factor for virus viability.
Collapse
Affiliation(s)
- K Mossman
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
24
|
Bolander FF. Molecular Evolution of the Endocrine System. Mol Endocrinol 1994. [DOI: 10.1016/b978-0-12-111231-8.50020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
25
|
Hannig G, Ottilie S, Schievella AR, Erikson RL. Comparison of the biochemical and biological functions of tyrosine phosphatases from fission yeast, budding yeast and animal cells. Yeast 1993; 9:1039-52. [PMID: 8256510 DOI: 10.1002/yea.320091002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In a previous communication, we have shown that two protein tyrosine tyrosine phosphatases (PTPases) from fission yeast, pyp1+ and pyp2+, act as novel inhibitors of mitosis upstream of the wee1+/mik1+ pathway (Ottilie et al., 1992). Here we describe that both genes possess intrinsic PTPase activity as judged by in vitro PTPase assays using 32P-labeled Raytide as a substrate, and that 32P-labeled p107wee1 is an in vitro substrate for pyp1. To compare the biological activity of pyp1 and pyp2 to that of other known PTPases, we expressed the budding yeast PTP1 and human placental phosphatase 1B (PTP1B) genes in either a cdc25-22 or wee1-50 genetic background and established that, in contrast to pyp1+ and pyp2+, Saccharomyces cerevisiae PTP1 and human PTP1B complement the cdc25 mutant, opposing the wee1+/mik1+ pathway.
Collapse
Affiliation(s)
- G Hannig
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138
| | | | | | | |
Collapse
|
26
|
Guan K, Farh L, Marshall TK, Deschenes RJ. Normal mitochondrial structure and genome maintenance in yeast requires the dynamin-like product of the MGM1 gene. Curr Genet 1993; 24:141-8. [PMID: 7916673 DOI: 10.1007/bf00324678] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The isolation and characterization of MGM1, an yeast gene with homology to members of the dynamin gene family, is described. The MGM1 gene is located on the right arm of chromosome XV between STE4 and PTP2. Sequence analysis revealed a single open reading frame of 902 residues capable of encoding a protein with an approximate molecular mass of 101 kDa. Loss of MGM1 resulted in slow growth on rich medium, failure to grow on non-fermentable carbon sources, and loss of mitochondrial DNA. The mitochondria also appeared abnormal when visualized with an antibody to a mitochondrial-matrix marker. MGM1 encodes a dynamin-like protein involved in the propagation of functional mitochondria in yeast.
Collapse
Affiliation(s)
- K Guan
- Department of Biochemistry, University of Michigan, Ann Arbor 48109-0606
| | | | | | | |
Collapse
|
27
|
Mitchell DA, Marshall TK, Deschenes RJ. Vectors for the inducible overexpression of glutathione S-transferase fusion proteins in yeast. Yeast 1993; 9:715-22. [PMID: 8368005 DOI: 10.1002/yea.320090705] [Citation(s) in RCA: 250] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A rapid and convenient method of protein purification involves creating a fusion protein with glutathione S-transferase (GST) (Smith and Johnson, Gene 67, 31-40, 1988). In this report, we describe two vectors for the conditional expression of GST fusions in Saccharomyces cerevisiae. The parent plasmid is based on a high-copy, galactose-inducible shuttle vector previously described (Baldari et al., EMBO J. 6, 229-243, 1987). We have demonstrated the use of this system by creating fusions between GST and the yeast RAS2 gene. GST-Ras2 fusion proteins undergo the post-translational modifications required for Ras2p to become membrane localized. These vectors provide a useful system for the expression and purification of eukaryotic proteins requiring post-translational modification.
Collapse
Affiliation(s)
- D A Mitchell
- Department of Biochemistry, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
28
|
Zhu G, Decker S, Mayer B, Saltiel A. Direct analysis of the binding of the abl Src homology 2 domain to the activated epidermal growth factor receptor. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53920-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
James P, Hall BD, Whelen S, Craig EA. Multiple protein tyrosine phosphatase-encoding genes in the yeast Saccharomyces cerevisiae. Gene X 1992; 122:101-10. [PMID: 1452018 DOI: 10.1016/0378-1119(92)90037-p] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In higher eukaryotic organisms, the regulation of tyrosine phosphorylation is known to play a major role in the control of cell division. Recently, a wide variety of protein tyrosine phosphatase (PTPase)-encoding genes (PTPs) have been identified to accompany the many tyrosine kinases previously studied. However, in the yeasts, where the cell cycle has been most extensively studied, identification of the genes involved in the direct regulation of tyrosine phosphorylation has been difficult. We have identified a pair of genes in the yeast Saccharomyces cerevisiae, which we call PTP1 and PTP2, whose products are highly homologous to PTPases identified in other systems. Both genes are poorly expressed, and contain sequence elements consistent with low-abundance proteins. We have carried out an extensive genetic analysis of PTP1 and PTP2, and found that they are not essential either singly or in combination. Neither deletion nor overexpression results in any strong phenotypes in a number of assays. Deletions also do not affect the mitotic blockage caused by deletion of the MIH1 gene (encoding a positive regulator of mitosis) and induction of the heterologous Schizosaccharomyces pombe wee1+ gene (encoding a negative regulator of mitosis). Molecular analysis has shown that PTP1 and PTP2 are quite different structurally and are not especially well conserved at the amino acid sequence level. Low-stringency Southern blots indicate that yeast may contain a family of PTPase-encoding genes. These results suggest that yeast may contain other PTPase-encoding genes that overlap functionally with PTP1 and PTP2.
Collapse
Affiliation(s)
- P James
- Department of Genetics, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
30
|
Ottilie S, Chernoff J, Hannig G, Hoffman CS, Erikson RL. The fission yeast genes pyp1+ and pyp2+ encode protein tyrosine phosphatases that negatively regulate mitosis. Mol Cell Biol 1992; 12:5571-80. [PMID: 1448087 PMCID: PMC360496 DOI: 10.1128/mcb.12.12.5571-5580.1992] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have used degenerate oligonucleotide probes based on sequences conserved among known protein tyrosine phosphatases (PTPases) to identify two Schizosaccharomyces pombe genes encoding PTPases. We previously described the cloning of pyp1+ (S. Ottilie, J. Chernoff, G. Hannig, C. S. Hoffman, and R. L. Erikson, Proc. Natl. Acad. Sci. USA 88:3455-3459, 1991), and here we describe a second gene, called pyp2+. The C terminus of each protein contains sequences conserved in the apparent catalytic domains of all known PTPases. Disruption of pyp2+ results in viable cells, as was the case for pyp1+, whereas disruption of pyp2+ and pyp1+ results in synthetic lethality. Overexpression of either pyp1+ or pyp2+ in wild-type strains leads to a delay in mitosis but is suppressed by a wee1-50 mutation at 35 degrees C or a cdc2-1w mutation. A pyp1 disruption suppresses the temperature-sensitive lethality of a cdc25-22 mutation. Our data suggest that pyp1+ and pyp2+ act as negative regulators of mitosis upstream of the wee1+/mik1+ pathway.
Collapse
Affiliation(s)
- S Ottilie
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | | | | | |
Collapse
|
31
|
Brautigan DL. Great expectations: protein tyrosine phosphatases in cell regulation. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1114:63-77. [PMID: 1390871 DOI: 10.1016/0304-419x(92)90007-l] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- D L Brautigan
- Brown University, J.W. Wilson Laboratory, Providence, RI 02912
| |
Collapse
|
32
|
Schepens J, Zeeuwen P, Wieringa B, Hendriks W. Identification and typing of members of the protein-tyrosine phosphatase gene family expressed in mouse brain. Mol Biol Rep 1992; 16:241-8. [PMID: 1454056 DOI: 10.1007/bf00419663] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein-tyrosine phosphatases (PTPases) form a novel and important class of cell regulatory proteins. We evaluated the expression of PTPases in mouse brain by polymerase chain amplification of cDNA segments that encode the catalytic domains of these enzymes. Degenerate primer pairs devised on the basis of conserved protein motifs were used to generate a series of distinct PCR-derived clones. In this way, murine homologues of the human PTPases LRP, PTP beta, PTP delta, PTP epsilon and LAR were obtained. Corresponding regions in their catalytic domains were used to reveal the evolutionary relationships between all currently known mammalian PTPase protein family members. Phylogenetic reconstruction displayed considerable differences in mutation rates for closely related PTPases.
Collapse
Affiliation(s)
- J Schepens
- Department of Cell Biology & Histology, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
33
|
Pot DA, Dixon JE. A thousand and two protein tyrosine phosphatases. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1136:35-43. [PMID: 1643113 DOI: 10.1016/0167-4889(92)90082-m] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D A Pot
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109-0606
| | | |
Collapse
|
34
|
Wan J, Xu H, Grunstein M. CDC14 of Saccharomyces cerevisiae. Cloning, sequence analysis, and transcription during the cell cycle. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49907-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
35
|
Trowbridge IS, Johnson P, Ostergaard H, Hole N. Structure and function of CD45: a leukocyte-specific protein tyrosine phosphatase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 323:29-37. [PMID: 1485564 DOI: 10.1007/978-1-4615-3396-2_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- I S Trowbridge
- Department of Cancer Biology, Salk Institute, San Diego, CA 92186-5800
| | | | | | | |
Collapse
|
36
|
|
37
|
Gautier J, Solomon MJ, Booher RN, Bazan JF, Kirschner MW. cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 1991; 67:197-211. [PMID: 1913817 DOI: 10.1016/0092-8674(91)90583-k] [Citation(s) in RCA: 628] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
cdc25 controls the activity of the cyclin-p34cdc2 complex by regulating the state of tyrosine phosphorylation of p34cdc2. Drosophila cdc25 protein from two different expression systems activates inactive cyclin-p34cdc2 and induces M phase in Xenopus oocytes and egg extracts. We find that the cdc25 sequence shows weak but significant homology to a phylogenetically diverse group of protein tyrosine phosphatases. cdc25 itself is a very specific protein tyrosine phosphatase. Bacterially expressed cdc25 directly dephosphorylates bacterially expressed p34cdc2 on Tyr-15 in a minimal system devoid of eukaryotic cell components, but does not dephosphorylate other tyrosine-phosphorylated proteins at appreciable rates. In addition, mutations in the putative catalytic site abolish the in vivo activity of cdc25 and its phosphatase activity in vitro. Therefore, cdc25 is a specific protein phosphatase that dephosphorylates tyrosine and possibly threonine residues on p34cdc2 and regulates MPF activation.
Collapse
Affiliation(s)
- J Gautier
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448
| | | | | | | | | |
Collapse
|