1
|
Lysophosphatidic acid (LPA) as a modulator of plasma membrane Ca 2+-ATPase from basolateral membranes of kidney proximal tubules. J Physiol Biochem 2021; 77:321-329. [PMID: 33704695 DOI: 10.1007/s13105-021-00800-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 02/15/2021] [Indexed: 01/10/2023]
Abstract
Lysophosphatidic acid (LPA) acts through the activation of G protein-coupled receptors, in a Ca2+-dependent manner. We show the effects of LPA on the plasma membrane Ca2+-ATPase (PMCA) from kidney proximal tubule cells. The Ca2+-ATPase activity was inhibited by nanomolar concentrations of LPA, with maximal inhibition (~50%) obtained with 20 nM LPA. This inhibitory action on PMCA activity was blocked by Ki16425, an antagonist for LPA receptors, indicating that this lipid acts via LPA1 and/or LPA3 receptor. This effect is PKC-dependent, since it is abolished by calphostin C and U73122, PKC, and PLC inhibitors, respectively. Furthermore, the addition of 10-8 M PMA, a well-known PKC activator, mimicked PMCA modulation by LPA. We also demonstrated that the PKC activation leads to an increase in PMCA phosphorylation. These results indicate that LPA triggers LPA1 and/or LPA3 receptors at the BLM, inducing PKC-dependent phosphorylation with further inhibition of PMCA. Thus, LPA is part of the regulatory lipid network present at the BLM and plays an important role in the regulation of intracellular Ca2+ concentration that may result in significant physiological alterations in other Ca2+-dependent events ascribed to the renal tissue.
Collapse
|
2
|
Caldirola P, Mannhold R, Timmerman H. Overview: Calmodulin and Calmodulin-Antagonists. ACTA ACUST UNITED AC 2011. [DOI: 10.1517/13543776.2.11.1889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Axelband F, Dias J, Miranda F, Ferrão FM, Barros NM, Carmona AK, Lara LS, Vieyra A. A scrutiny of the biochemical pathways from Ang II to Ang-(3-4) in renal basolateral membranes. ACTA ACUST UNITED AC 2009; 158:47-56. [PMID: 19703499 DOI: 10.1016/j.regpep.2009.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 08/06/2009] [Accepted: 08/16/2009] [Indexed: 12/15/2022]
Abstract
In a previous paper we demonstrated that Ang-(3-4) counteracts inhibition of the Ca(2+)-ATPase by Ang II in the basolateral membranes of kidney proximal tubules cells (BLM). We have now investigated the enzymatic routs by which Ang II is converted to Ang-(3-4). Membrane-bound angiotensin converting enzyme, aminopeptidases and neprilysin were identified using fluorescent substrates. HPLC showed that Plummer's inhibitor but not Z-pro-prolinal blocks Ang II metabolism, suggesting that carboxypeptidase N catalyzes the conversion Ang II--> Ang-(1-7). Different combinations of bestatin, thiorphan, Plummer's inhibitor, Ang II and Ang-(1-5), and use of short proteolysis times, indicate that Ang-(1-7)--> Ang-(1-5)--> Ang-(1-4)--> Ang-(3-4) is a major route. When Ang III was combined with the same inhibitors, the following pathway was demonstrated: Ang III--> Ang IV--> Ang-(3-4). Ca(2+)-ATPase assays with different Ang II concentrations and different peptidase inhibitors confirm the existence of these pathways in BLM and show that a prolyl-carboxypeptidase may be an alternative catalyst for converting Ang II to Ang-(1-7). Overall, we demonstrated that BLM have all the peptidase machinery required to produce Ang-(3-4) in the vicinity of the Ca(2+)-ATPase, enabling a local RAS axis to effect rapid modulation of active Ca(2+) fluxes.
Collapse
Affiliation(s)
- Flavia Axelband
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Axelband F, Assunção-Miranda I, de Paula IR, Ferrão FM, Dias J, Miranda A, Miranda F, Lara LS, Vieyra A. Ang-(3-4) suppresses inhibition of renal plasma membrane calcium pump by Ang II. ACTA ACUST UNITED AC 2009; 155:81-90. [PMID: 19345245 DOI: 10.1016/j.regpep.2009.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 03/20/2009] [Accepted: 03/25/2009] [Indexed: 01/27/2023]
Abstract
We previously demonstrated that Ang II inhibits the renal plasma membrane Ca(2+)-ATPase. In the present work we have studied the effect of Ang II, at concentrations similar to those found in the renal interstitium, on the Ca(2+)-ATPase from proximal tubule cells. High Ang II concentration (5 x 10(-7) mol/L) led to the recovery of Ca(2+)-ATPase activity previously inhibited by 50% at low Ang II concentration (10(-10) mol/L). Reactivation occurred in parallel with: (i) formation of only two dead-end metabolites [Ang-(3-4) and Tyr] after incubation of isolated membranes with micromolar Ang II; and (ii) dissociation of constitutive AT(1)R/AT(2)R heterodimers, which are preserved with 10(-10) mol/L Ang II. When the membranes were incubated with 10(-14) mol/L Ang-(3-4), inhibition by 10(-10) mol/L Ang II was no longer observed. The counteracting effect of Ang-(3-4) was abolished by PD123319, an antagonist of AT(2)R, and mimicked by CGP42112A, an agonist of AT(2)R. Ang-(1-7) is an intermediate in the formation of Ang-(3-4) via a pathway involving angiotensin-converting enzyme (ACE), and complete dipeptide breakdown to Tyr and Val is impaired by low Ang II. We conclude that Ang-(3-4) may be a physiological regulator of active Ca(2+) fluxes in renal proximal cells by acting within the renin-angiotensin axis.
Collapse
Affiliation(s)
- Flavia Axelband
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Cabral LMP, Wengert M, da Ressurreição AAA, Feres-Elias PHP, Almeida FG, Vieyra A, Caruso-Neves C, Einicker-Lamas M. Ceramide is a potent activator of plasma membrane Ca2+-ATPase from kidney-promixal tubule cells with protein kinase A as an intermediate. J Biol Chem 2007; 282:24599-606. [PMID: 17606608 DOI: 10.1074/jbc.m701669200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kidney-proximal tubules are involved in reabsorbing two-thirds of the glomerular ultrafiltrate, a key Ca(2+)-modulated process that is essential for maintaining homeostasis in body fluid compartments. The basolateral membranes of these cells have a Ca(2+)-ATPase, which is thought to be responsible for the fine regulation of intracellular Ca(2+) levels. In this paper we show that nanomolar concentrations of ceramide (Cer(50) = 3.5 nm), a natural product derived from sphingomyelinase activity in biological membranes, promotes a 50% increase of Ca(2+)-ATPase activity in purified basolateral membranes. The stimulatory effect of ceramide occurs through specific and direct (cAMP-independent) activation of a protein kinase A (blocked by 10 nm of the specific inhibitor of protein kinase A (PKA), the 5-22 peptide). The activation of PKA by ceramide results in phosphorylation of the Ca(2+)-ATPase, as detected by an anti-Ser/Thr specific PKA substrate antibody. It is observed a straight correlation between increase of Ca(2+)-ATPase activity and PKA-mediated phosphorylation of the Ca(2+) pump molecule. Ceramide also stimulates phosphorylation of renal Ca(2+)-ATPase via protein kinase C, but stimulation of this pathway, which inhibits the Ca(2+) pump in kidney cells, is counteracted by the ceramide-triggered PKA-mediated phosphorylation. The potent effect of ceramide reveals a new physiological activator of the plasma membrane Ca(2+)-ATPase, which integrates the regulatory network of glycerolipids and sphingolipids present in the basolateral membranes of kidney cells.
Collapse
Affiliation(s)
- Lindsey M P Cabral
- Laboratório de Físico-Química Biológica Aída Hassón-Voloch, Universidade Federal do Rio de Janeiro, 21949-900, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Assunção-Miranda I, Guilherme AL, Reis-Silva C, Costa-Sarmento G, Oliveira MM, Vieyra A. Protein kinase C-mediated inhibition of renal Ca2+ ATPase by physiological concentrations of angiotensin II is reversed by AT1- and AT2-receptor antagonists. ACTA ACUST UNITED AC 2005; 127:151-7. [PMID: 15680481 DOI: 10.1016/j.regpep.2004.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 10/28/2004] [Accepted: 11/13/2004] [Indexed: 01/27/2023]
Abstract
Angiotensin II (Ang II) increases the cytosolic Ca2+ concentration in different cell types. In this study, we investigate the effect of Ang II on the Ca2+ ATPase of purified basolateral membranes of kidney proximal tubules. This enzyme pumps Ca2+ out of the cytosol in a reaction coupled to ATP hydrolysis, and it is responsible for the fine-tuned regulation of cytosolic Ca2+ activity. Ca2+-ATPase activity is inhibited by picomolar concentrations of Ang II, with maximal inhibition being attained at approximately 50% of the control values. The presence of raising concentrations (10(-11) to 10(-7) M) of losartan (an AT1-receptor antagonist) or PD123319 (an AT2-receptor antagonist) gradually reverts inhibition by Ang II. Both the phospholipase C (PLC) inhibitor U-73122 (10(-6) M) and the inhibitor of protein kinase C (PKC) staurosporine (10(-7) M) prevent inhibition of the Ca2+ pump by Ang II. Incubation of the previously isolated membranes with a PKC activator-the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (10(-8) M)-mimics the inhibition found with Ang II, and the effects of the compounds are not additive. Taken as a whole, these results indicate the Ang II inhibits Ca2+-ATPase by activation of a PKC system present in primed state in these membranes after binding of the hormone to losartan- and PD123319-sensitive receptors coupled to a PLC. Therefore, inhibition of the basolateral membrane Ca2+-ATPase by kinase-mediated phosphorylation appears to be one of the pathways by which Ang II promotes an increase in the cytosolic Ca2+ concentration of proximal tubule cells.
Collapse
Affiliation(s)
- Iranaia Assunção-Miranda
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro 21941-590, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
7
|
Tortelote GG, Valverde RHF, Lemos T, Guilherme A, Einicker-Lamas M, Vieyra A. The plasma membrane Ca2+pump from proximal kidney tubules is exclusively localized and active in caveolae. FEBS Lett 2004; 576:31-5. [PMID: 15474005 DOI: 10.1016/j.febslet.2004.08.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 08/19/2004] [Accepted: 08/25/2004] [Indexed: 11/20/2022]
Abstract
Plasma membrane Ca2+-ATPase is involved in the fine-tuned regulation of intracellular Ca2+. In this study, the presence of Ca2+-ATPase in caveolae from kidney basolateral membranes was investigated. With the use of a discontinuous sucrose gradient, we show that Ca2+-ATPase is exclusively located and fully active in caveolin-containing microdomains. Treatment with methyl-beta-cyclodextrin--a cholesterol chelator--leads to a spreading of both caveolin and completely inactive Ca2+-ATPase toward high-density fractions. These data support the view that Ca2+ fluxes mediated by Ca2+-ATPase in kidney epithelial cells occur only in caveolae, being strictly dependent on the integrity of these microdomains.
Collapse
Affiliation(s)
- Giovane G Tortelote
- Laboratório de Físico-Química Biológica Aída Hassón-Voloch, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21949-900 Ilha do Fundão, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Haunsø A, Simpson J, Antoni FA. Small ligands modulating the activity of mammalian adenylyl cyclases: a novel mode of inhibition by calmidazolium. Mol Pharmacol 2003; 63:624-31. [PMID: 12606770 DOI: 10.1124/mol.63.3.624] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Molecular cloning of membrane-spanning mammalian adenylyl cyclases (ACs) has led to the discovery of nine different isotypes, making ACs potentially useful therapeutic targets. This study investigated the mechanism by which fungicidal nitroimidazole compounds modulate AC activity. Current evidence indicates that biological control of AC activity occurs through the cytosolic domains. Hence, full-length ACII, ACIX, and recombinant fusion proteins composed of the cytoplasmic loops of human ACIX or the first and second cytoplasmic loops of rat ACV and ACII, respectively, were expressed in human embryonic kidney 293 cells. The AC activities of the respective proteins were characterized, and their modulation by nitroimidazoles was investigated. Calmidazolium inhibited the activities of both full-length ACs and soluble fusion proteins (IC(50), approximately 10 microM). Inhibition of ACIX by calmidazolium was mediated by direct interaction with the catalytic core in a noncompetitive fashion. ACIX was essentially insensitive to 2'-deoxyadenosine 3'-monophosphate, a known blocker of AC activity. The ACV-ACII fusion protein was inhibited by calmidazolium (IC(50), approximately 20 microM) as well as by 2'-deoxyadenosine 3'-AMP (IC(50), approximately 2 microM), in a manner indicating independent mechanisms of action. Taken together, the data demonstrate that ACIX is insensitive to adenosine analogs and that calmidazolium inhibits AC activity by a novel, noncompetitive mechanism.
Collapse
Affiliation(s)
- Anders Haunsø
- Department of Neuroscience, University of Edinburgh, Edinburgh, Scotland, United Kingdom.
| | | | | |
Collapse
|
9
|
Jan CR, Tseng CJ. Calmidazolium-induced rises in cytosolic calcium concentrations in Madin Darby canine kidney cells. Toxicol Appl Pharmacol 2000; 162:142-50. [PMID: 10637138 DOI: 10.1006/taap.1999.8844] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of calmidazolium on Ca(2+) signaling in Madin Darby canine kidney (MDCK) cells was investigated using fura-2 as a Ca(2+) probe. Calmidazolium at 2-5 microM increased [Ca(2+)](i) concentration dependently. The [Ca(2+)](i) rise induced by 2-5 microM calmidazolium comprised an immediate rise and a slow decay. External Ca(2+) removal partly inhibited the Ca(2+) signals, suggesting that calmidazolium activated external Ca(2+) influx and internal Ca(2+) release. In Ca(2+)-free medium, pretreatment with 3 microM calmidazolium abolished the Ca(2+) release induced by 1 microM thapsigargin, an endoplasmic reticulum Ca(2+) pump inhibitor, and, vice versa, pretreatment with thapsigargin inhibited calmidazolium-induced Ca(2+) release. This indicates that thapsigargin-sensitive Ca(2+) store was the source of calmidazolium-induced Ca(2+) release. Calmidazolium (3 microM) induced Mn(2+) quench of fura-2 fluorescence at 360 nm excitation wavelength, which was suppressed by 0.1 mM La(3+). Addition of 3 mM Ca(2+) increased [Ca(2+)](i) after pretreatment with 3-5 microM calmidazolium in Ca(2+)-free medium. This implies that calmidazolium activated concentration-dependent capacitative Ca(2+) entry. Calmidazolium (3 microM) augmented the capacitative Ca(2+) entry induced by 1 microM thapsigargin or 0.1 mM ATP by 38%. Calmidazolium (3 microM)-induced Ca(2+) release was blocked by pretreatment with 40 microM aristolochic acid and 2 microM U73122 (2 microM) to inhibit phospholipase A(2) and phospholipase, respectively, but pretreatment with 0.1 mM propranolol to inhibit phospholipase D had no effect. This suggests that calmidazolium induced internal Ca(2+) release in a manner dependent on phospholipases C- and A(2)-coupled events.
Collapse
Affiliation(s)
- C R Jan
- Department of Medical Education and Research, Veterans General Hospital-Kaohsiung, Kaohsiung, 813, Taiwan.
| | | |
Collapse
|
10
|
Coka-Guevara S, Markus RP, Caruso-Neves C, Lopes AG, Vieyra A. Adenosine inhibits the renal plasma-membrane (Ca2+ + Mg2+)-ATPase through a pathway sensitive to cholera toxin and sphingosine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:71-8. [PMID: 10429189 DOI: 10.1046/j.1432-1327.1999.00456.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine, a potent autacoid produced and released in kidneys, affects nearly all aspects of renal function, and an increase in cytosolic calcium has been implicated in adenosine effects. The aim of this work was to investigate whether adenosine modifies the calcium pump present in basolateral membranes of kidney proximal tubule cells. Adenosine exerts a biphasic influence on (Ca2+ + Mg2+)-ATPase activity. Inhibition occurs up to 0.1 microM and then gradually disappears as the adenosine concentration increases to 100 microM, an effect mimicked by the adenosine analog N6-cyclohexyladenosine, which preferentially binds to A1-type receptors. In contrast, the A2 receptor agonist 5', N-ethylcarboxamideadenosine is ineffective. The A1 receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine blocks the inhibitory effect of 0.1 microM adenosine and stimulates (Ca2+ + Mg2+)-ATPase activity in the presence of 1 mM adenosine, a concentration high enough to occupy the low-affinity A2 receptors. Inhibition by adenosine increases as medium ATP is lowered to micromolar concentrations, is maintained in the presence of pertussis toxin, and is completely abolished with 0.1 microM cholera toxin or 1 microM sphingosine. The inhibitory effect of adenosine can be reproduced by guanosine 5'-[gamma-thio]triphosphate, inositol 1,4, 5-trisphosphate or the diacylglycerol analog 12-O-tetradecanoylphorbol 13-acetate. In conjunction with the selectivity for its analogs and for its receptor agonist, the concentration profile of adenosine effects indicates that both inhibitory (A1) and stimulatory (A2) receptors are involved. The results obtained with the toxins indicate that a pathway that is modulated by G-proteins, involves a phospholipase C and a protein kinase C, and is affected by local variations in adenosine concentrations participates in the regulation of the (Ca2+ + Mg2+)-ATPase resident in basolateral membranes of kidney proximal tubules.
Collapse
Affiliation(s)
- S Coka-Guevara
- Departmento de Bioquímica Médica, Instituto de Ciências Biomédicas,Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
11
|
Alves-Ferreira M, Scofano HM, Ferreira-Pereira A. Ca(2+)-ATPase from chicken (Gallus domesticus) erythrocyte plasma membrane: effects of calmodulin and taurine on the Ca(2+)-dependent ATPase activity and Ca2+ uptake. Comp Biochem Physiol B Biochem Mol Biol 1999; 122:269-76. [PMID: 10374256 DOI: 10.1016/s0305-0491(99)00008-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present report we describe a method for purifying plasma membranes from chicken erythrocytes using sonication under conditions that facilitate preferential lysis of plasma membrane, followed by centrifugation through a sucrose gradient. The Ca(2+)-dependent ATP hydrolysis by plasma membranes is activated by nanomolar levels of calmodulin, similarly to that from anucleated erythrocytes. Inside-out vesicles display a calmodulin-activated Ca2+ uptake. Purified Ca(2+)-ATPase is obtained from the plasma membrane by Sepharose-calmodulin affinity chromatography, and exhibits an apparent molecular mass of 150 kDa on SDS-polyacrylamide gel electrophoresis, clearly showing that the enzyme is distinct from that described in anucleated erythrocytes (140 kDa). The enzyme is insensitive to physiological concentrations of taurine, a beta-amino acid that has been proposed to be involved in Ca2+ homeostasis of nucleated erythrocytes, suggesting that the effect of taurine is not mediated by the Ca(2+)-ATPase. Taken together, these data suggest that the enzyme may be an isoform that resembles the previously described plasma membrane Ca(2+)-ATPase from anucleated erythrocytes in its regulation by calmodulin, but differs in its apparent molecular weight.
Collapse
Affiliation(s)
- M Alves-Ferreira
- Departamento de Bioquimica Médica-ICB/CCS, Universidade Federal do Rio de Janeiro, Brazil
| | | | | |
Collapse
|
12
|
Alonso GL, González DA, Takara D, Ostuni MA, Sánchez GA. Calcium additional to that bound to the transport sites is required for full activation of the sarcoplasmic reticulum Ca-ATPase from skeletal muscle. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1405:47-54. [PMID: 9784602 DOI: 10.1016/s0167-4889(98)00101-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The sarcoplasmic reticulum Ca-ATPase is fully activated when approximately 1 microM [Ca2+] saturates the two transport sites; higher [Ca] inhibits the ATPase by competition of Ca-ATP with Mg-ATP as substrates. Here we describe a novel effect of EGTA and other chelators, raising the possibility of an additional activating effect of Ca in the sub- or low microM range. Sarcoplasmic reticulum membranes were isolated from rabbit skeletal muscles. The ATPase activity was measured after incubation at 37 degreesC in 3 mM ATP, 3 mM MgCl2, 50 mM MOPS-Tris (pH 7.2), 100 mM KCl, and variable CaCl2, EGTA and calcimycin. In the absence of added EGTA and Ca the ATPase activity is high due to contaminant Ca. The determination of the ATPase activity in the presence of increasing amounts of EGTA, without added Ca, yields a decreasing sigmoidal function. Ki ranged between 20 and 100 microM, depending on the enzyme concentration. Pi production is linear with time for several [EGTA] yielding suboptimal ATPase activities, which are inhibited by thapsigargin. These suboptimal Ca-ATPase activities are inhibited by preincubation of the enzyme in EGTA, at pH 7.2. This effect increases upon increasing EGTA concentration and preincubation time. The inhibitory effect of the previous exposure of the enzyme to EGTA is partially but significantly reverted by increasing [Ca2+] during incubations. Calcimycin and EDTA have similar effects as EGTA when added in preincubations. The effect of calcimycin is fully reverted by optimal [Ca2+] in incubations. The effects of EGTA, EDTA and calcimycin in preincubation are not additive. The results suggest that an additional calcium, lost during preincubations from a site with affinity near 1 microM, is necessary for full activation of the ATPase.
Collapse
Affiliation(s)
- G L Alonso
- Cátedra de Biofísica, Facultad de Odontología, Universidad de Buenos Aires, M.T. de Alvear 2142, 1122 Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|