1
|
Wróbel TM, Jørgensen FS, Pandey AV, Grudzińska A, Sharma K, Yakubu J, Björkling F. Non-steroidal CYP17A1 Inhibitors: Discovery and Assessment. J Med Chem 2023; 66:6542-6566. [PMID: 37191389 DOI: 10.1021/acs.jmedchem.3c00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
CYP17A1 is an enzyme that plays a major role in steroidogenesis and is critically involved in the biosynthesis of steroid hormones. Therefore, it remains an attractive target in several serious hormone-dependent cancer diseases, such as prostate cancer and breast cancer. The medicinal chemistry community has been committed to the discovery and development of CYP17A1 inhibitors for many years, particularly for the treatment of castration-resistant prostate cancer. The current Perspective reflects upon the discovery and evaluation of non-steroidal CYP17A1 inhibitors from a medicinal chemistry angle. Emphasis is placed on the structural aspects of the target, key learnings from the presented chemotypes, and design guidelines for future inhibitors.
Collapse
Affiliation(s)
- Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Amit V Pandey
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Angelika Grudzińska
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
| | - Katyayani Sharma
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Jibira Yakubu
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Wang Z, Sun Y, Dong JJ, Shi LL, Nakayama SF, Kido T, Jung CR, Ma C, Feng H, Hang JG, Sun XL. Relationship between dioxins and steroid hormone in 6-year-olds: A follow-up study in an e-waste region of China. CHEMOSPHERE 2022; 296:134018. [PMID: 35181420 DOI: 10.1016/j.chemosphere.2022.134018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
We conducted a follow-up observational study on the effects of dioxin exposure on the synthesis of steroid hormones in infants during the perinatal period. The participants included 42 pairs of mothers and infants that were previously studied in 2015. We analyzed four types of steroid hormones including progesterone, testosterone, androstenedione (A-dione), and dehydroepiandrosterone (DHEA) in the serum samples of 6-year-olds and the concentration of dioxins in breast milk. A multivariate linear regression was performed to associate steroid hormones (dependent variables) and dioxins with the body mass index (BMI), sex, age, and residence of participants (independent variables). The results were reported as β (standardized coefficient) and p-values. We found that dioxins have a significant negative correlation with DHEA and A-dione but no significant relationship with progesterone and testosterone. However, in previous studies, we found that testosterone and progesterone levels were significantly related to dioxins in 4-year-olds. We concluded that dioxins can affect the level of steroid hormones, but their effects fluctuate, and the harm caused by dioxins in children requires further long-term monitoring.
Collapse
Affiliation(s)
- Zheng Wang
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Ying Sun
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Jing Jian Dong
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Li Li Shi
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Shoji F Nakayama
- Centre for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 3058506, Japan
| | - Teruhiko Kido
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 9200942, Japan
| | - Chau-Ren Jung
- Department of Public Health, College of Public Health, China Medical University, Taichung, 406040, Taiwan
| | - Chaochen Ma
- Cancer Control Center, Osaka International Cancer Institute, Osaka, 541-8567, Japan
| | - Hao Feng
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Jin Guo Hang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 318050, China.
| | - Xian Liang Sun
- School of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China; Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 9200942, Japan.
| |
Collapse
|
3
|
Liu Y, Grinkova Y, Gregory MC, Denisov IG, Kincaid JR, Sligar SG. Mechanism of the Clinically Relevant E305G Mutation in Human P450 CYP17A1. Biochemistry 2021; 60:3262-3271. [PMID: 34662099 PMCID: PMC8822902 DOI: 10.1021/acs.biochem.1c00282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Steroid metabolism in humans originates from cholesterol and involves several enzyme reactions including dehydrogenation, hydroxylation, and carbon-carbon bond cleavage that occur at regio- and stereo-specific points in the four-membered ring structure. Cytochrome P450s occur at critical junctions that control the production of the male sex hormones (androgens), the female hormones (estrogens) as well as the mineralocorticoids and glucocorticoids. An important branch point in human androgen production is catalyzed by cytochrome P450 CYP17A1 and involves an initial Compound I-mediated hydroxylation at the 17-position of either progesterone (PROG) or pregnenolone (PREG) to form 17-hydroxy derivatives, 17OH-PROG and 17OH-PREG, with approximately similar efficiencies. Subsequent processing of the 17-hydroxy substrates involves a C17-C20 bond scission (lyase) activity that is heavily favored for 17OH-PREG in humans. The mechanism for this lyase reaction has been debated for several decades, some workers favoring a Compound I-mediated process, with others arguing that a ferric peroxo- is the active oxidant. Mutations in CYP17A1 can have profound clinical manifestations. For example, the replacement of the glutamic acid side with a glycine chain at position 305 in the CYP17A1 structure causes a clinically relevant steroidopathy; E305G CYP17A1 displays a dramatic decrease in the production of dehydroepiandrosterone from pregnenolone but surprisingly increases the activity of the enzyme toward the formation of androstenedione from progesterone. To better understand the functional consequences of this mutation, we self-assembled wild-type and the E305G mutant of CYP17A1 into nanodiscs and examined the detailed catalytic mechanism. We measured substrate binding, spin state conversion, and solvent isotope effects in the hydroxylation and lyase pathways for these substrates. Given that, following electron transfer, the ferric peroxo- species is the common intermediate for both mechanisms, we used resonance Raman spectroscopy to monitor the positioning of important hydrogen-bonding interactions of the 17-OH group with the heme-bound peroxide. We discovered that the E305G mutation changes the orientation of the lyase substrate in the active site, which alters a critical hydrogen bonding of the 17-alcohol to the iron-bound peroxide. The observed switch in substrate specificity of the enzyme is consistent with this result if the hydrogen bonding to the proximal peroxo oxygen is necessary for a proposed nucleophilic peroxoanion-mediated mechanism for CYP17A1 in carbon-carbon bond scission.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Chemistry, Marquette University, 1414W Clybourn Street, Milwaukee, Wisconsin 53233, United States
| | | | | | | | - James R Kincaid
- Department of Chemistry, Marquette University, 1414W Clybourn Street, Milwaukee, Wisconsin 53233, United States
| | | |
Collapse
|
4
|
Hartz P, Strohmaier SJ, El-Gayar BM, Abdulmughni A, Hutter MC, Hannemann F, Gillam EMJ, Bernhardt R. Resurrection and characterization of ancestral CYP11A1 enzymes. FEBS J 2021; 288:6510-6527. [PMID: 34092040 DOI: 10.1111/febs.16054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/22/2021] [Accepted: 06/04/2021] [Indexed: 01/16/2023]
Abstract
Mitochondrial cytochromes P450 presumably originated from a common microsomal P450 ancestor. However, it is still unknown how ancient mitochondrial P450s were able to retain their oxygenase function following relocation to the mitochondrial matrix and later emerged as enzymes specialized for steroid hormone biosynthesis in vertebrates. Here, we used the approach of ancestral sequence reconstruction (ASR) to resurrect ancient CYP11A1 enzymes and characterize their unique biochemical properties. Two ancestral CYP11A1 variants, CYP11A_Mammal_N101 and CYP11A_N1, as well as an extant bovine form were recombinantly expressed and purified to homogeneity. All enzymes showed characteristic P450 spectral properties and were able to convert cholesterol as well as other sterol substrates to pregnenolone, yet with different specificities. The vertebrate CYP11A_N1 ancestor preferred the cholesterol precursor, desmosterol, as substrate suggesting a convergent evolution of early cholesterol metabolism and CYP11A1 enzymes. Both ancestors were able to withstand increased levels of hydrogen peroxide but only the ancestor CYP11A_N1 showed increased thermostability (~ 25 °C increase in T50 ) compared with the extant CYP11A1. The extraordinary robustness of ancient mitochondrial P450s, as demonstrated for CYP11A_N1, may have allowed them to stay active when presented with poorly compatible electron transfer proteins and resulting harmful ROS in the new environment of the mitochondrial matrix. To the best of our knowledge, this work represents the first study that describes the resurrection of ancient mitochondrial P450 enzymes. The results will help to understand and gain fundamental functional insights into the evolutionary origins of steroid hormone biosynthesis in animals.
Collapse
Affiliation(s)
- Philip Hartz
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Silja J Strohmaier
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Basma M El-Gayar
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Ammar Abdulmughni
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Michael C Hutter
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Frank Hannemann
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
5
|
Dumontet T, Martinez A. Adrenal androgens, adrenarche, and zona reticularis: A human affair? Mol Cell Endocrinol 2021; 528:111239. [PMID: 33676986 DOI: 10.1016/j.mce.2021.111239] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
In humans, reticularis cells of the adrenal cortex fuel the production of androgen steroids, constituting the driver of numerous morphological changes during childhood. These steps are considered a precocious stage of sexual maturation and are grouped under the term "adrenarche". This review describes the molecular and enzymatic characteristics of the zona reticularis, along with the possible signals and mechanisms that control its emergence and the associated clinical features. We investigate the differences between species and discuss new studies such as genetic lineage tracing and transcriptomic analysis, highlighting the rodent inner cortex's cellular and molecular heterogeneity. The recent development and characterization of mouse models deficient for Prkar1a presenting with adrenocortical reticularis-like features prompt us to review our vision of the mouse adrenal gland maturation. We expect these new insights will help increase our understanding of the adrenarche process and the pathologies associated with its deregulation.
Collapse
Affiliation(s)
- Typhanie Dumontet
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA; Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, University of Michigan, Ann Arbor, MI, USA.
| | - Antoine Martinez
- Génétique, Reproduction et Développement (GReD), Centre National de La Recherche Scientifique CNRS, Institut National de La Santé & de La Recherche Médicale (INSERM), Université Clermont-Auvergne (UCA), France.
| |
Collapse
|
6
|
Steck V, Kolev JN, Ren X, Fasan R. Mechanism-Guided Design and Discovery of Efficient Cytochrome P450-Derived C-H Amination Biocatalysts. J Am Chem Soc 2020; 142:10343-10357. [PMID: 32407077 DOI: 10.1021/jacs.9b12859] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochromes P450 have been recently identified as a promising class of biocatalysts for mediating C-H aminations via nitrene transfer, a valuable transformation for forging new C-N bonds. The catalytic efficiency of P450s in these non-native transformations is however significantly inferior to that exhibited by these enzymes in their native monooxygenase function. Using a mechanism-guided strategy, we report here the rational design of a series of P450BM3-based variants with dramatically enhanced C-H amination activity acquired through disruption of the native proton relay network and other highly conserved structural elements within this class of enzymes. This approach further guided the identification of XplA and BezE, two "atypical" natural P450s implicated in the degradation of a man-made explosive and in benzastatins biosynthesis, respectively, as very efficient C-H aminases. Both XplA and BezE could be engineered to further improve their C-H amination reactivity, which demonstrates their evolvability for abiological reactions. These engineered and natural P450 catalysts can promote the intramolecular C-H amination of arylsulfonyl azides with over 10 000-14 000 catalytic turnovers, ranking among the most efficient nitrene transfer biocatalysts reported to date. Mechanistic and structure-reactivity studies provide insights into the origin of the C-H amination reactivity enhancement and highlight the divergent structural requirements inherent to supporting C-H amination versus C-H monooxygenation reactivity within this class of enzymes. Overall, this work provides new promising scaffolds for the development of nitrene transferases and demonstrates the value of mechanism-driven rational design as a strategy for improving the catalytic efficiency of metalloenzymes in the context of abiological transformations.
Collapse
Affiliation(s)
- Viktoria Steck
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Joshua N Kolev
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Xinkun Ren
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
7
|
Abstract
The adrenal gland is a source of sex steroid precursors, and its activity is particularly relevant during fetal development and adrenarche. Following puberty, the synthesis of androgens by the adrenal gland has been considered of little physiologic importance. Dehydroepiandrosterone (DHEA) and its sulfate, DHEAS, are the major adrenal androgen precursors, but they are biologically inactive. The second most abundant unconjugated androgen produced by the human adrenals is 11β-hydroxyandrostenedione (11OHA4). 11-Ketotestosterone, a downstream metabolite of 11OHA4 (which is mostly produced in peripheral tissues), and its 5α-reduced product, 11-ketodihydrotestosterone, are bioactive androgens, with potencies equivalent to those of testosterone and dihydrotestosterone. These adrenal-derived androgens all share an oxygen atom on carbon 11, so we have collectively termed them 11-oxyandrogens. Over the past decade, these androgens have emerged as major components of several disorders of androgen excess, such as congenital adrenal hyperplasia, premature adrenarche and polycystic ovary syndrome, as well as in androgen-dependent tumours, such as castration-resistant prostate cancer. Moreover, in contrast to the more extensively studied, traditional androgens, circulating concentrations of 11-oxyandrogens do not demonstrate an age-dependent decline. This Review focuses on the rapidly expanding knowledge regarding the implications of 11-oxyandrogens in human physiology and disease.
Collapse
Affiliation(s)
- Adina F Turcu
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| | - Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - William E Rainey
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Mustafa G, Nandekar PP, Camp TJ, Bruce NJ, Gregory MC, Sligar SG, Wade RC. Influence of Transmembrane Helix Mutations on Cytochrome P450-Membrane Interactions and Function. Biophys J 2019; 116:419-432. [PMID: 30658838 PMCID: PMC6369400 DOI: 10.1016/j.bpj.2018.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/01/2018] [Accepted: 12/17/2018] [Indexed: 11/22/2022] Open
Abstract
Human cytochrome P450 (CYP) enzymes play an important role in the metabolism of drugs, steroids, fatty acids, and xenobiotics. Microsomal CYPs are anchored in the endoplasmic reticulum membrane by an N-terminal transmembrane (TM) helix that is connected to the globular catalytic domain by a flexible linker sequence. However, the structural and functional importance of the TM-helix is unclear because it has been shown that CYPs can still associate with the membrane and have enzymatic activity in reconstituted systems after truncation or modification of the N-terminal sequence. Here, we investigated the effect of mutations in the N-terminal TM-helix residues of two human steroidogenic enzymes, CYP 17A1 and CYP 19A1, that are major drug targets for cancer therapy. These mutations were originally introduced to increase the expression of the proteins in Escherichia coli. To investigate the effect of the mutations on protein-membrane interactions and function, we carried out coarse-grained and all-atom molecular dynamics simulations of the CYPs in a phospholipid bilayer. We confirmed the orientations of the globular domain in the membrane observed in the simulations by linear dichroism measurements in a Nanodisc. Whereas the behavior of CYP 19A1 was rather insensitive to truncation of the TM-helix, mutations in the TM-helix of CYP 17A1, especially W2A and E3L, led to a gradual drifting of the TM-helix out of the hydrophobic core of the membrane. This instability of the TM-helix could affect interactions with the allosteric redox partner, cytochrome b5, required for CYP 17A1's lyase activity. Furthermore, the simulations showed that the mutant TM-helix influenced the membrane interactions of the CYP 17A1 globular domain. In some simulations, the mutated TM-helix obstructed the substrate access tunnel from the membrane to the CYP active site, indicating a possible effect on enzyme function.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Prajwal P Nandekar
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Tyler J Camp
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Neil J Bruce
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Michael C Gregory
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Chemistry, University of Illinois, Urbana, Illinois
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
9
|
Mak PJ, Duggal R, Denisov IG, Gregory MC, Sligar SG, Kincaid JR. Human Cytochrome CYP17A1: The Structural Basis for Compromised Lyase Activity with 17-Hydroxyprogesterone. J Am Chem Soc 2018; 140:7324-7331. [PMID: 29758981 DOI: 10.1021/jacs.8b03901] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The multifunctional enzyme, cytochrome P450 (CYP17A1), plays a crucial role in the production of androgens, catalyzing two key reactions on pregnenolone (PREG) and progesterone (PROG), the first being a 17-hydroxylation to generate 17-OH PREG and 17-OH PROG, with roughly equal efficiencies. The second is a C-C bond scission or "lyase" reaction in which the C17-C20 bond is cleaved, leading to the eventual production of powerful androgens, whose involvement in the proliferation of prostate cancer has generated intense interest in developing inhibitors of CYP17A1. For humans, the significance of the C-C bond cleavage of 17-OH PROG is lessened, because it is about 50 times less efficient than for 17-OH PREG in terms of kcat/Km. Recognizing the need to clarify relevant reaction mechanisms involved with such transformations, we first report studies of solvent isotope effects, results of which are consistent with a Compound I mediated PROG hydroxylase activity, yet exclude this intermediate as a participant in the formation of androstenedione (AD) via the lyase reaction. This finding is also supported by a combination of cryoreduction and resonance Raman spectroscopy that traps and structurally characterizes the key hemiketal reaction intermediates. Adding to a previous study of PREG and 17-OH PREG metabolism, the current work provides definitive evidence for a more facile protonation of the initially formed ferric peroxo-intermediate for 17-OH PROG-bound CYP17A1, compared to the complex with 17-OH PREG. Importantly, Raman characterization also reveals an H-bonding interaction with the terminal oxygen of the peroxo fragment, rather than with the proximal oxygen, as is present for 17-OH PREG. These factors would favor a diminished lyase activity of the sample with 17-OH PROG relative to the complex with 17-OH PREG, thereby providing a convincing structural explanation for the dramatic differences in activity for these lyase substrates in humans.
Collapse
Affiliation(s)
- Piotr J Mak
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53233 , United States
| | - Ruchia Duggal
- Department of Biochemistry , University of Illinois at Urbana-Champaign , 505 S. Goodwin , Urbana , Illinois 61801 , United States
| | - Ilia G Denisov
- Department of Biochemistry , University of Illinois at Urbana-Champaign , 505 S. Goodwin , Urbana , Illinois 61801 , United States
| | - Michael C Gregory
- Department of Biochemistry , University of Illinois at Urbana-Champaign , 505 S. Goodwin , Urbana , Illinois 61801 , United States
| | - Stephen G Sligar
- Department of Biochemistry , University of Illinois at Urbana-Champaign , 505 S. Goodwin , Urbana , Illinois 61801 , United States.,Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - James R Kincaid
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53233 , United States
| |
Collapse
|
10
|
Fernández-Cancio M, Camats N, Flück CE, Zalewski A, Dick B, Frey BM, Monné R, Torán N, Audí L, Pandey AV. Mechanism of the Dual Activities of Human CYP17A1 and Binding to Anti-Prostate Cancer Drug Abiraterone Revealed by a Novel V366M Mutation Causing 17,20 Lyase Deficiency. Pharmaceuticals (Basel) 2018; 11:ph11020037. [PMID: 29710837 PMCID: PMC6027421 DOI: 10.3390/ph11020037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 01/01/2023] Open
Abstract
The CYP17A1 gene regulates sex steroid biosynthesis in humans through 17α-hydroxylase/17,20 lyase activities and is a target of anti-prostate cancer drug abiraterone. In a 46, XY patient with female external genitalia, together with a loss of function mutation S441P, we identified a novel missense mutation V366M at the catalytic center of CYP17A1 which preferentially impaired 17,20 lyase activity. Kinetic experiments with bacterially expressed proteins revealed that V366M mutant enzyme can bind and metabolize pregnenolone to 17OH-pregnenolone, but 17OH-pregnenolone binding and conversion to dehydroepiandrosterone (DHEA) was impaired, explaining the patient’s steroid profile. Abiraterone could not bind and inhibit the 17α-hydroxylase activity of the CYP17A1-V366M mutant. Molecular dynamics (MD) simulations showed that V366M creates a “one-way valve” and suggests a mechanism for dual activities of human CYP17A1 where, after the conversion of pregnenolone to 17OH-pregnenolone, the product exits the active site and re-enters for conversion to dehydroepiandrosterone. The V366M mutant also explained the effectiveness of the anti-prostate cancer drug abiraterone as a potent inhibitor of CYP17A1 by binding tightly at the active site in the WT enzyme. The V366M is the first human mutation to be described at the active site of CYP17A1 that causes isolated 17,20 lyase deficiency. Knowledge about the specificity of CYP17A1 activities is of importance for the development of treatments for polycystic ovary syndrome and inhibitors for prostate cancer therapy.
Collapse
Affiliation(s)
- Mónica Fernández-Cancio
- Growth and Development Research Unit, Vall d'Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Autonomous University of Barcelona, Barcelona 08035, Spain.
| | - Núria Camats
- Growth and Development Research Unit, Vall d'Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Autonomous University of Barcelona, Barcelona 08035, Spain.
- Pediatric Endocrinology Unit, Department of Paediatrics, University Children's Hospital Bern, Bern 3010, Switzerland.
- Department of Biomedical Research, University of Bern, Bern 3010, Switzerland.
| | - Christa E Flück
- Pediatric Endocrinology Unit, Department of Paediatrics, University Children's Hospital Bern, Bern 3010, Switzerland.
- Department of Biomedical Research, University of Bern, Bern 3010, Switzerland.
| | - Adam Zalewski
- Pediatric Endocrinology Unit, Department of Paediatrics, University Children's Hospital Bern, Bern 3010, Switzerland.
- Department of Biomedical Research, University of Bern, Bern 3010, Switzerland.
| | - Bernhard Dick
- Department of Nephrology and Hypertension, University of Bern, Bern 3010, Switzerland.
| | - Brigitte M Frey
- Department of Nephrology and Hypertension, University of Bern, Bern 3010, Switzerland.
| | - Raquel Monné
- Pediatric Service, Hospital Joan XXIII, Tarragona 43005, Spain.
| | - Núria Torán
- Pathology Department, Hospital Universitari Vall d'Hebron, CIBERER, Barcelona 08035, Spain.
| | - Laura Audí
- Growth and Development Research Unit, Vall d'Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Autonomous University of Barcelona, Barcelona 08035, Spain.
| | - Amit V Pandey
- Pediatric Endocrinology Unit, Department of Paediatrics, University Children's Hospital Bern, Bern 3010, Switzerland.
- Department of Biomedical Research, University of Bern, Bern 3010, Switzerland.
| |
Collapse
|
11
|
Abstract
Ablation of androgen production through surgery is one strategy against prostate cancer, with the current focus placed on pharmaceutical intervention to restrict androgen synthesis selectively, an endeavor that could benefit from the enhanced understanding of enzymatic mechanisms that derives from characterization of key reaction intermediates. The multifunctional cytochrome P450 17A1 (CYP17A1) first catalyzes the typical hydroxylation of its primary substrate, pregnenolone (PREG) and then also orchestrates a remarkable C17-C20 bond cleavage (lyase) reaction, converting the 17-hydroxypregnenolone initial product to dehydroepiandrosterone, a process representing the first committed step in the biosynthesis of androgens. Now, we report the capture and structural characterization of intermediates produced during this lyase step: an initial peroxo-anion intermediate, poised for nucleophilic attack on the C20 position by a substrate-associated H-bond, and the crucial ferric peroxo-hemiacetal intermediate that precedes carbon-carbon (C-C) bond cleavage. These studies provide a rare glimpse at the actual structural determinants of a chemical transformation that carries profound physiological consequences.
Collapse
|
12
|
Miller WL, Tee MK. The post-translational regulation of 17,20 lyase activity. Mol Cell Endocrinol 2015; 408:99-106. [PMID: 25224484 DOI: 10.1016/j.mce.2014.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/06/2014] [Accepted: 09/08/2014] [Indexed: 01/20/2023]
Abstract
A single enzyme, microsomal P450c17, catalyzes the 17α-hydroxylase activity needed to make cortisol and the subsequent 17,20 lyase activity needed to produce the 19-carbon precursors of sex steroids. The biochemical decision concerning whether P450c17 stops after 17α-hydroxylation or proceeds to 17,20 lyase activity is largely dependent on three post-translational factors. First, 17,20 lyase activity is especially sensitive to the molar abundance of the electron-transfer protein P450 oxidoreductase (POR). Second, cytochrome b5 strongly promotes 17,20 lyase activity, principally by acting as an allosteric factor promoting the interaction of P450c17 with POR, although a minor role as an alternative electron-transfer protein has not been wholly excluded. Third, the serine/threonine phosphorylation of P450c17 itself promotes 17,20 lyase activity, again apparently by promoting the interaction of P450c17 with POR. The principal kinase that phosphorylates P450c17 to confer 17,20 lyase activity appears to be p38α (MAPK14), which increases the maximum velocity of the 17,20 lyase reaction, while having no effect on the Michaelis constant for 17,20 lyase or any detectable effect on the 17α-hydroxylase reaction. Other kinases can also phosphorylate P450c17, but only p38α has been shown to affect its enzymology. Understanding the mechanisms regulating 17,20 lyase activity is essential for the understanding of hyperandrogenic disorders such as premature, exaggerated adrenarche and the polycystic ovary syndrome, and also for the design of selective 17,20 lyase inhibitors for use in hyperandrogenic states and in sex-steroid dependent cancers.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, University of California, San Francisco, CA 94143-0978, USA.
| | - Meng Kian Tee
- Department of Pediatrics, University of California, San Francisco, CA 94143-0978, USA
| |
Collapse
|
13
|
Niwa T, Murayama N, Imagawa Y, Yamazaki H. Regioselective hydroxylation of steroid hormones by human cytochromes P450. Drug Metab Rev 2015; 47:89-110. [PMID: 25678418 DOI: 10.3109/03602532.2015.1011658] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This article reviews in vitro metabolic activities [including Michaelis constants (Km), maximal velocities (Vmax) and Vmax/Km] and drug-steroid interactions [such as induction and cooperativity (activation)] of cytochromes P450 (P450 or CYP) in human tissues, including liver and adrenal gland, for 14 kinds of endogenous steroid compounds, including allopregnanolone, cholesterol, cortisol, cortisone, dehydroepiandrosterone, estradiol, estrone, pregnenolone, progesterone, testosterone and bile acids (cholic acid). First, we considered the drug-metabolizing P450s. 6β-Hydroxylation of many steroids, including cortisol, cortisone, progesterone and testosterone, was catalyzed primarily by CYP3A4. CYP1A2 and CYP3A4, respectively, are likely the major hepatic enzymes responsible for 2-/4-hydroxylation and 16α-hydroxylation of estradiol and estrone, steroids that can contribute to breast cancer risk. In contrast, CYP1A1 and CYP1B1 predominantly metabolized estrone and estradiol to 2- and 4-catechol estrogens, which are endogenous ultimate carcinogens if formed in the breast. Some metabolic activities of CYP3A4, including dehydroepiandrosterone 7β-/16α-hydroxylation, estrone 2-hydroxylation and testosterone 6β-hydroxylation, were higher than those for polymorphically expressed CYP3A5. Next, we considered typical steroidogenic P450s. CYP17A1, CYP19A1 and CYP27A1 catalyzed steroid synthesis, including hydroxylation at 17α, 19 and 27 positions, respectively. However, it was difficult to predict which hepatic drug-metabolizing P450 or steroidogenic P450 will be mainly responsible for metabolizing each steroid hormone in vivo based on these results. Further research is required on the metabolism of steroid hormones by various P450s and on prediction of their relative contributions to in vivo metabolism. The findings collected here provide fundamental and useful information on the metabolism of steroid compounds.
Collapse
Affiliation(s)
- Toshiro Niwa
- School of Pharmacy, Shujitsu University , Okayama , Japan and
| | | | | | | |
Collapse
|
14
|
Hayashi K, Tomozoe Y, Nagai K, Hiraishi Y, Kamiya N. Development of a Peroxidase-Fused Protein Reagent by Brevibacillus choshinensis Heterologous Expression System. KAGAKU KOGAKU RONBUN 2015. [DOI: 10.1252/kakoronbunshu.41.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kounosuke Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
- Hitachi Aloka Medical, Ltd
| | | | | | | | - Noriho Kamiya
- Center for Future Chemistry, Kyushu University
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| |
Collapse
|
15
|
Turcu A, Smith JM, Auchus R, Rainey WE. Adrenal androgens and androgen precursors-definition, synthesis, regulation and physiologic actions. Compr Physiol 2014; 4:1369-81. [PMID: 25428847 PMCID: PMC4437668 DOI: 10.1002/cphy.c140006] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The human adrenal produces more 19 carbon (C19) steroids, by mass, than either glucocorticoids or mineralocorticoids. However, the mechanisms regulating adrenal C19 steroid biosynthesis continue to represent one of the most intriguing mysteries of endocrine physiology. This review will discuss the C19 steroids synthesized by the human adrenal and the features within the adrenal that allow production of these steroids. Finally, we consider the effects of these steroids in normal physiology and disorders of adrenal C19 steroid excess.
Collapse
Affiliation(s)
- Adina Turcu
- Department of Internal Medicine, Division of Metabolism Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan; Department of Pediatrics, Division of Pediatric Endocrinology, University of Texas Southwestern Medical Center, Texas; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | | | | | | |
Collapse
|
16
|
Neunzig J, Sánchez-Guijo A, Mosa A, Hartmann MF, Geyer J, Wudy SA, Bernhardt R. A steroidogenic pathway for sulfonated steroids: the metabolism of pregnenolone sulfate. J Steroid Biochem Mol Biol 2014; 144 Pt B:324-33. [PMID: 25038322 DOI: 10.1016/j.jsbmb.2014.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
In many tissues sulfonated steroids exceed the concentration of free steroids and recently they were also shown to fulfill important physiological functions. While it was previously demonstrated that cholesterol sulfate (CS) is converted by CYP11A1 to pregnenolone sulfate (PregS), further conversion of PregS has not been studied in detail. To investigate whether a steroidogenic pathway for sulfonated steroids exists similar to the one described for free steroids, we examined the interaction of PregS with CYP17A1 in a reconstituted in-vitro system. Difference spectroscopy revealed a Kd-value of 74.8±4.2μM for the CYP17A1-PregS complex, which is 2.5-fold higher compared to the CYP17A1-pregnenolone (Preg) complex. Mass spectrometry experiments proved for the first time that PregS is hydroxylated by CYP17A1 at position C17, identically to pregnenolone. A higher Km- and a lower kcat-value for CYP17A1 using PregS compared with Preg were observed, indicating a 40% reduced catalytic efficiency when using the sulfonated steroid. Furthermore, we analyzed whether the presence of cytochrome b5 (b5) has an influence on the CYP17A1 dependent conversion of PregS, as was demonstrated for Preg. Interestingly, with 17OH-PregS no scission of the 17,20-carbon-carbon bond occurs, when b5 is added to the reconstituted in-vitro system, while b5 promotes the formation of DHEA from 17OH-Preg. When using human SOAT-HEK293 cells expressing CYP17A1 and CPR, we could confirm that PregS is metabolized to 17OH-PregS, strengthening the potential physiological meaning of a pathway for sulfonated steroids.
Collapse
Affiliation(s)
- J Neunzig
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, 66123 Saarbrücken, Germany
| | - A Sánchez-Guijo
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, 35392 Giessen, Germany
| | - A Mosa
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, 66123 Saarbrücken, Germany
| | - M F Hartmann
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, 35392 Giessen, Germany
| | - J Geyer
- Institute of Pharmacology and Toxicology, Justus-Liebig University of Giessen, 35392 Giessen, Germany
| | - S A Wudy
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, 35392 Giessen, Germany
| | - R Bernhardt
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
17
|
Liu S, Zhang G, Li X, Zhang J. Microbial production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 2014; 98:7349-57. [DOI: 10.1007/s00253-014-5925-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 10/25/2022]
|
18
|
Brash AR, Niraula NP, Boeglin WE, Mashhadi Z. An ancient relative of cyclooxygenase in cyanobacteria is a linoleate 10S-dioxygenase that works in tandem with a catalase-related protein with specific 10S-hydroperoxide lyase activity. J Biol Chem 2014; 289:13101-11. [PMID: 24659780 DOI: 10.1074/jbc.m114.555904] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the course of exploring the scope of catalase-related hemoprotein reactivity toward fatty acid hydroperoxides, we detected a novel candidate in the cyanobacterium Nostoc punctiforme PCC 73102. The immediate neighboring upstream gene, annotated as "cyclooxygenase-2," appeared to be a potential fatty acid heme dioxygenase. We cloned both genes and expressed the cDNAs in Escherichia coli, confirming their hemoprotein character. Oxygen electrode recordings demonstrated a rapid (>100 turnovers/s) reaction of the heme dioxygenase with oleic and linoleic acids. HPLC, including chiral column analysis, UV, and GC-MS of the oxygenated products, identified a novel 10S-dioxygenase activity. The catalase-related hemoprotein reacted rapidly and specifically with linoleate 10S-hydroperoxide (>2,500 turnovers/s) with a hydroperoxide lyase activity specific for the 10S-hydroperoxy enantiomer. The products were identified by NMR as (8E)10-oxo-decenoic acid and the C8 fragments, 1-octen-3-ol and 2Z-octen-1-ol, in ∼3:1 ratio. Chiral HPLC analysis established strict enzymatic control in formation of the 3R alcohol configuration (99% enantiomeric excess) and contrasted with racemic 1-octen-3-ol formed in reaction of linoleate 10S-hydroperoxide with hematin or ferrous ions. The Nostoc linoleate 10S-dioxygenase, the sequence of which contains the signature catalytic sequence of cyclooxygenases and fungal linoleate dioxygenases (YRWH), appears to be a heme dioxygenase ancestor. The novel activity of the lyase expands the known reactions of catalase-related proteins and functions in Nostoc in specific transformation of the 10S-hydroperoxylinoleate.
Collapse
Affiliation(s)
- Alan R Brash
- From the Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232
| | | | | | | |
Collapse
|
19
|
Mak PJ, Gregory MC, Sligar SG, Kincaid JR. Resonance Raman spectroscopy reveals that substrate structure selectively impacts the heme-bound diatomic ligands of CYP17. Biochemistry 2014; 53:90-100. [PMID: 24328388 PMCID: PMC3922198 DOI: 10.1021/bi4014424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An important function of steroidogenic cytochromes P450 is the transformation of cholesterol to produce androgens, estrogens, and the corticosteroids. The activities of cytochrome P450c17 (CYP17) are essential in sex hormone biosynthesis, with severe developmental defects being a consequence of deficiency or mutations. The first reaction catalyzed by this multifunctional P450 is the 17α-hydroxylation of pregnenolone (PREG) to 17α-hydroxypregnenolone (17-OH PREG) and progesterone (PROG) to 17α-hydroxyprogesterone (17-OH PROG). The hydroxylated products then either are used for production of corticoids or undergo a second CYP17 catalyzed transformation, representing the first committed step of androgen formation. While the hydroxylation reactions are catalyzed by the well-known Compound I intermediate, the lyase reaction is believed to involve nucleophilic attack of the earlier peroxo- intermediate on the C20-carbonyl. Herein, resonance Raman (rR) spectroscopy reveals that substrate structure does not impact heme structure for this set of physiologically important substrates. On the other hand, rR spectra obtained here for the ferrous CO adducts with these four substrates show that substrates do interact differently with the Fe-C-O fragment, with large differences between the spectra obtained for the samples containing 17-OH PROG and 17-OH PREG, the latter providing evidence for the presence of two Fe-C-O conformers. Collectively, these results demonstrate that individual substrates can differentially impact the disposition of a heme-bound ligand, including dioxygen, altering the reactivity patterns in such a way as to promote preferred chemical conversions, thereby avoiding the profound functional consequences of unwanted side reactions.
Collapse
Affiliation(s)
- Piotr J. Mak
- Department of Chemistry, Marquette University, Milwaukee, WI 53233
| | | | - Stephen G. Sligar
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801
- Department of Chemistry, University of Illinois, Urbana, IL, 61801
- College of Medicine, University of Illinois, Urbana, IL, 61801
| | - James R. Kincaid
- Department of Chemistry, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
20
|
Khatri Y, Gregory MC, Grinkova YV, Denisov IG, Sligar SG. Active site proton delivery and the lyase activity of human CYP17A1. Biochem Biophys Res Commun 2013; 443:179-84. [PMID: 24299954 DOI: 10.1016/j.bbrc.2013.11.094] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/18/2013] [Indexed: 11/27/2022]
Abstract
Cytochrome P450 CYP17A1 catalyzes a series of reactions that lie at the intersection of corticoid and androgen biosynthesis and thus occupies an essential role in steroid hormone metabolism. This multifunctional enzyme catalyzes the 17α-hydroxylation of Δ4- and Δ5-steroids progesterone and pregnenolone to form the corresponding 17α-hydroxy products through its hydroxylase activity, and a subsequent 17,20-carbon-carbon scission of pregnene-side chain produce the androgens androstenedione (AD) and dehydroepiandrosterone (DHEA). While the former hydroxylation reaction is believed to proceed through a conventional "Compound I" rebound mechanism, it has been suggested that the latter carbon cleavage is initiated by an iron-peroxy intermediate. We report on the role of Thr306 in CYP17 catalysis. Thr306 is a member of the conserved acid/alcohol pair thought to be essential for the efficient delivery of protons required for hydroperoxoanion heterolysis and formation of Compound I in the cytochromes P450. Wild type and T306A CYP17A1 self-assembled in Nanodiscs were used to quantitate turnover and coupling efficiencies of CYP17's physiological Δ4- and Δ5-substrates. We observed that T306A co-incorporated in Nanodiscs with its redox partner cytochrome P450 oxidoreductase, coupled NADPH only by 0.9% and 0.7% compared to the wild type (97% and 22%) during the conversion of pregnenolone and progesterone, respectively, to the corresponding 17-OH products. Despite increased oxidation of pyridine nucleotide, hydroxylase activity was drastically diminished in the T306A mutant, suggesting a high degree of uncoupling in which reducing equivalents and protons are funneled into non-productive pathways. This is similar to previous work with other P450 catalyzed hydroxylation. However, catalysis of carbon-carbon bond scission by the T306A mutant was largely unimpeded by disruption of the CYP17A1 acid-alcohol pair. The unique response of CYP17A1 lyase activity to mutation of Thr306 is consistent with a reactive intermediate formed independently of proton delivery in the active site, and supports involvement of a nucleophilic peroxo-anion rather than the traditional Compound I in catalysis.
Collapse
Affiliation(s)
- Yogan Khatri
- Department of Biochemistry, University of Illinois at Urbana Champaign, 116 Morrill Hall, 505 S. Goodwin Avenue, Urbana, IL 61801, United States
| | - Michael C Gregory
- Department of Biochemistry, University of Illinois at Urbana Champaign, 116 Morrill Hall, 505 S. Goodwin Avenue, Urbana, IL 61801, United States
| | - Yelena V Grinkova
- Department of Biochemistry, University of Illinois at Urbana Champaign, 116 Morrill Hall, 505 S. Goodwin Avenue, Urbana, IL 61801, United States
| | - Ilia G Denisov
- Department of Biochemistry, University of Illinois at Urbana Champaign, 116 Morrill Hall, 505 S. Goodwin Avenue, Urbana, IL 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois at Urbana Champaign, 116 Morrill Hall, 505 S. Goodwin Avenue, Urbana, IL 61801, United States.
| |
Collapse
|
21
|
Gregory MC, Denisov IG, Grinkova YV, Khatri Y, Sligar SG. Kinetic solvent isotope effect in human P450 CYP17A1-mediated androgen formation: evidence for a reactive peroxoanion intermediate. J Am Chem Soc 2013; 135:16245-7. [PMID: 24160919 DOI: 10.1021/ja4086403] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human steroid hormone biosynthesis is the result of a complex series of chemical transformations operating on cholesterol, with key steps mediated by members of the cytochrome P450 superfamily. In the formation of the male hormone dehydroepiandrosterone, pregnenolone is first hydroxylated by P450 CYP17A1 at the 17-carbon, followed a second round of catalysis by the same enzyme that cleaves the C17-C20 bond, releasing acetic acid and the 17-keto product. In order to explore the mechanism of this C-C "lyase" activity, we investigated the kinetic isotope effect on the steady-state turnover of Nanodisc-incorporated CYP17A1. Our experiments revealed the expected small positive (~1.3) isotope effect for the hydroxylase chemistry. However, a surprising result was the large inverse isotope effect (~0.39) observed for the C-C bond cleavage activity. These results strongly suggest that the P450 reactive intermediate involved in this latter step is an iron-bound ferric peroxoanion.
Collapse
Affiliation(s)
- Michael C Gregory
- Department of Biochemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | | | |
Collapse
|
22
|
Sushko TA, Gilep AA, Yantsevich AV, Usanov SA. Role of microsomal steroid hydroxylases in Δ7-steroid biosynthesis. BIOCHEMISTRY (MOSCOW) 2013; 78:282-9. [PMID: 23586722 DOI: 10.1134/s0006297913030103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
CYP17 (steroid 17α-hydroxylase/17,20-lyase) is a key enzyme in steroid hormone biosynthesis. It catalyzes two independent reactions at the same active center and has a unique ability to differentiate Δ(4)-steroids and Δ(5)-steroids in the 17,20-lyase reaction. The present work presents a complex experimental analysis of the role of CYP17 in the metabolism of 7-dehydrosteroids. The data indicate the existence of a possible alternative pathway of steroid hormone biosynthesis using 7-dehydrosteroids. The major reaction products of CYP17 catalyzed hydroxylation of 7-dehydropregnenolone have been identified. Catalytic activity of CYP17 from different species with 7-dehydropregnenolone has been estimated. It is shown that CYP21 cannot use Δ(5)-Δ(7) steroids as a substrate.
Collapse
Affiliation(s)
- T A Sushko
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus.
| | | | | | | |
Collapse
|
23
|
Tee MK, Miller WL. Phosphorylation of human cytochrome P450c17 by p38α selectively increases 17,20 lyase activity and androgen biosynthesis. J Biol Chem 2013; 288:23903-13. [PMID: 23836902 DOI: 10.1074/jbc.m113.460048] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cytochrome P450c17, a steroidogenic enzyme encoded by the CYP17A1 gene, catalyzes the steroid 17α-hydroxylation needed for glucocorticoid synthesis, which may or may not be followed by 17,20 lyase activity needed for sex steroid synthesis. Whether or not P450c17 catalyzes 17,20 lyase activity is determined by three post-translational mechanisms influencing availability of reducing equivalents donated by P450 oxidoreductase (POR). These are increased amounts of POR, the allosteric action of cytochrome b5 to promote POR-P450c17 interaction, and Ser/Thr phosphorylation of P450c17, which also appears to promote POR-P450c17 interaction. The kinase(s) that phosphorylates P450c17 is unknown. In a series of kinase inhibition experiments, the pyridinyl imidazole drugs SB202190 and SB203580 inhibited 17,20 lyase but not 17α-hydroxylase activity in human adrenocortical HCI-H295A cells, suggesting an action on p38α or p38β. Co-transfection of non-steroidogenic COS-1 cells with P450c17 and p38 expression vectors showed that p38α, but not p38β, conferred 17,20 lyase activity on P450c17. Antiserum to P450c17 co-immunoprecipitated P450c17 and both p38 isoforms; however, knockdown of p38α, but not knockdown of p38β, inhibited 17,20 lyase activity in NCI-H295A cells. Bacterially expressed human P450c17 was phosphorylated by p38α in vitro at a non-canonical site, conferring increased 17,20 lyase activity. This phosphorylation increased the maximum velocity, but not the Michaelis constant, of the 17,20 lyase reaction. p38α phosphorylates P450c17 in a fashion that confers increased 17,20 lyase activity, implying that the production of adrenal androgens (adrenarche) is a regulated event.
Collapse
Affiliation(s)
- Meng Kian Tee
- Department of Pediatrics, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
24
|
Gregory M, Mak PJ, Sligar SG, Kincaid JR. Differential Hydrogen Bonding in Human CYP17 Dictates Hydroxylation versus Lyase Chemistry. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300760] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Gregory M, Mak PJ, Sligar SG, Kincaid JR. Differential hydrogen bonding in human CYP17 dictates hydroxylation versus lyase chemistry. Angew Chem Int Ed Engl 2013; 52:5342-5. [PMID: 23576395 DOI: 10.1002/anie.201300760] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Michael Gregory
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
26
|
Hobler A, Kagawa N, Hutter MC, Hartmann MF, Wudy SA, Hannemann F, Bernhardt R. Human aldosterone synthase: recombinant expression in E. coli and purification enables a detailed biochemical analysis of the protein on the molecular level. J Steroid Biochem Mol Biol 2012; 132:57-65. [PMID: 22446688 DOI: 10.1016/j.jsbmb.2012.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/06/2012] [Accepted: 03/07/2012] [Indexed: 10/28/2022]
Abstract
Aldosterone, the most important human mineralocorticoid, is involved in the regulation of the blood pressure and has been reported to play a key role in the formation of arterial hypertension, heart failure and myocardial fibrosis. Aldosterone synthase (CYP11B2) catalyzes the biosynthesis of aldosterone by successive 11β- and 18-hydroxylation followed by an 18-oxidation of 11-deoxycorticosterone and thus comprises an important drug target. For more than 20 years, all attempts to purify recombinant human CYP11B2 in significant amounts for detailed analysis failed due to its hydrophobic nature as a membrane protein. Here, we present the successful expression of the protein in E. coli yielding approx. 90 nmol/l culture, its purification and detailed enzymatic characterization. Biochemical analyses have been performed using in vitro conversion assays which revelead a V(max) of 238±8 nmol products/nmol hCYP11B2/min and a K(m) of 103±8 μM 11-deoxycorticosterone. Furthermore, binding analyses indicated a very loose binding of the first intermediate of the reaction, corticosterone with a K(d) value of 115±6 μM whereas for 11-deoxycorticosterone a K(d) of 1.34±0.13 μM was estimated. Upon substrate conversion of 11-deoxycorticosterone, new intermediates have been identified as 19- and 18-hydroxylated products not described before for the human enzyme. To understand the differences in substrate conversion, we constructed a new homology model based on the 3D structure of CYP11A1, performed docking studies and calculated the activation energy for hydrogen abstraction of the different ligands. The data demonstrated that the 11β-hydroxylation requires much less abstraction energy than hydroxylation at C18 and C19. However, the C18 and C19 hydroxylated products might be of clinical importance. Finally, purified CYP11B2 represents a suitable tool for the investigation of potential inhibitors of this protein for the development of novel drugs against hypertension and heart failure as was shown using ketoconazole.
Collapse
Affiliation(s)
- Anna Hobler
- Department of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Adrenarche is an endocrine developmental process whereby humans and select nonhuman primates increase adrenal output of a series of steroids, especially DHEA and DHEAS. The timing of adrenarche varies among primates, but in humans serum levels of DHEAS are seen to increase at around 6 years of age. This phenomenon corresponds with the development and expansion of the zona reticularis of the adrenal gland. The physiological phenomena that trigger the onset of adrenarche are still unknown; however, the biochemical pathways leading to this event have been elucidated in detail. There are numerous reviews examining the process of adrenarche, most of which have focused on the changes within the adrenal as well as the phenotypic results of adrenarche. This article reviews the recent and past studies that show the breadth of changes in the circulating steroid metabolome that occur during the process of adrenarche.
Collapse
Affiliation(s)
- Juilee Rege
- Department of Physiology, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | |
Collapse
|
28
|
Yamaoka M, Hara T, Hitaka T, Kaku T, Takeuchi T, Takahashi J, Asahi S, Miki H, Tasaka A, Kusaka M. Orteronel (TAK-700), a novel non-steroidal 17,20-lyase inhibitor: effects on steroid synthesis in human and monkey adrenal cells and serum steroid levels in cynomolgus monkeys. J Steroid Biochem Mol Biol 2012; 129:115-28. [PMID: 22249003 DOI: 10.1016/j.jsbmb.2012.01.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/26/2011] [Accepted: 01/02/2012] [Indexed: 11/25/2022]
Abstract
Surgical or pharmacologic methods to control gonadal androgen biosynthesis are effective approaches in the treatment of a variety of non-neoplastic and neoplastic diseases. For example, androgen ablation and its consequent reduction in circulating levels of testosterone is an effective therapy for advanced prostate cancers. Unfortunately, the therapeutic effectiveness of this approach is often temporary because of disease progression to the 'castration resistant' (CRPC) state, a situation for which there are limited treatment options. One mechanism thought to be responsible for the development of CRPC is extra-gonadal androgen synthesis and the resulting impact of these residual extra-gonadal androgens on prostate tumor cell proliferation. An important enzyme responsible for the synthesis of extra-gonadal androgens is CYP17A1 which possesses both 17,20-lyase and 17-hydroxylase catalytic activities with the 17,20-lyase activity being key in the androgen biosynthetic process. Orteronel (TAK-700), a novel, selective, and potent inhibitor of 17,20-lyase is under development as a drug to inhibit androgen synthesis. In this study, we quantified the inhibitory activity and specificity of orteronel for testicular and adrenal androgen production by evaluating its effects on CYP17A1 enzymatic activity, steroid production in monkey adrenal cells and human adrenal tumor cells, and serum levels of dehydroepiandrosterone (DHEA), cortisol, and testosterone after oral dosing in castrated and intact male cynomolgus monkeys. We report that orteronel potently suppresses androgen production in monkey adrenal cells but only weakly suppresses corticosterone and aldosterone production; the IC(50) value of orteronel for cortisol was ~3-fold higher than that for DHEA. After single oral dosing, serum levels of DHEA, cortisol, and testosterone were rapidly suppressed in intact cynomolgus monkeys. In castrated monkeys treated twice daily with orteronel, suppression of DHEA and testosterone persisted throughout the treatment period. In both in vivo models and in agreement with our in vitro data, suppression of serum cortisol levels following oral dosing was less than that seen for DHEA. In terms of human CYP17A1 and human adrenal tumor cells, orteronel inhibited 17,20-lyase activity 5.4 times more potently than 17-hydroxylase activity in cell-free enzyme assays and DHEA production 27 times more potently than cortisol production in human adrenal tumor cells, suggesting greater specificity of inhibition between 17,20-lyase and 17-hydroxylase activities in humans vs monkeys. In summary, orteronel potently inhibited the 17,20-lyase activity of monkey and human CYP17A1 and reduced serum androgen levels in vivo in monkeys. These findings suggest that orteronel may be an effective therapeutic option for diseases where androgen suppression is critical, such as androgen sensitive and CRPC.
Collapse
Affiliation(s)
- Masuo Yamaoka
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001. Nature 2012; 482:116-9. [PMID: 22266943 PMCID: PMC3271139 DOI: 10.1038/nature10743] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 11/30/2011] [Indexed: 12/03/2022]
Abstract
Cytochrome P450 17A1 (P450c17) catalyzes the biosynthesis of androgens in humans1. Since prostate cancer cells proliferate in response to androgen steroids2,3, CYP17A1 inhibition is a new strategy to prevent androgen synthesis and treat lethal metastatic castration-resistant prostate cancer4, but drug development has been hampered by the lack of a CYP17A1 structure. Here we report the only known structures of CYP17A1, which contain either abiraterone, a first-in-class steroidal inhibitor recently approved by the FDA for late-stage prostate cancer5, or TOK-001, another inhibitor in clinical trials4,6. Both bind the heme iron forming a 60° angle above the heme plane, packing against the central I helix with the 3β-OH interacting with N202 in the F helix. Importantly, this binding mode differs substantially from those predicted by homology models or from steroids in other cytochrome P450 enzymes with known structures, with some features more similar to steroid receptors. While the overall CYP17A1 structure provides a rationale for understanding many mutations found in patients with steroidogenic diseases, the active site reveals multiple steric and hydrogen bonding features that will facilitate better understanding of the enzyme’s dual hydroxylase and lyase catalytic capabilities and assist in rational drug design. Specifically, structure-based design is expected to aid development of inhibitors that bind only CYP17A1 and solely inhibit its androgen-generating lyase activity to improve treatment of prostate and other hormone-responsive cancers.
Collapse
|
30
|
Niwa T, Minami K, Katagiri M. Effect of histidine-tag and R457H and E580Q mutations on catalytic activity of recombinant human cytochrome P450 oxidoreductase. Drug Metab Pharmacokinet 2011; 27:150-4. [PMID: 22123124 DOI: 10.2133/dmpk.dmpk-11-nt-102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome P450 oxidoreductase (POR) transfers electrons from NADPH to several oxygenase enzymes including cytochrome P450 (CYP). Genetic mutations in the POR gene have recently been identified and associated with an autosomal recessive genetic disease. In this study, Vmax, Km, and Vmax/Km values of cytochrome c reduction and NADPH oxidation activities for R457H variant, histidine-tagged wild-type, and histidine-tagged E580Q were compared with those for wild-type. Vmax/Km values of cytochrome c reduction for the R457H variant and histidine-tagged wild-type were 8% and 26%, respectively, of wild-type, whereas Vmax/Km values of NADPH oxidation for the R457H variant and histidine-tagged wild-type were similar to those for wild-type. The kinetic parameters of the histidine-tagged E580Q variant were similar to those for histidine-tagged wild-type, suggesting that E580Q mutation may be of minor importance in interindividual variation in drug response. These results suggest that R457H but not E580Q is essential for the deficiency of POR activities and that the histidine-tagged system would be inappropriate for POR function.
Collapse
Affiliation(s)
- Toshiro Niwa
- Division of Natural Science, Osaka Kyoiku University, Kashiwara, Japan
| | | | | |
Collapse
|
31
|
Mizrachi D, Wang Z, Sharma KK, Gupta MK, Xu K, Dwyer CR, Auchus RJ. Why human cytochrome P450c21 is a progesterone 21-hydroxylase. Biochemistry 2011; 50:3968-74. [PMID: 21446712 DOI: 10.1021/bi102078e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human cytochrome P450c21 (steroid 21-hydroxylase, CYP21A2) catalyzes the 21-hydroxylation of progesterone (P4) and its preferred substrate 17α-hydroxyprogestrone (17OHP4). CYP21A2 activities, which are required for cortisol and aldosterone biosynthesis, involve the formation of energetically disfavored primary carbon radicals. Therefore, we hypothesized that the binding of P4 and 17OHP4 to CYP21A2 restricts access of the reactive heme-oxygen complex to the C-21 hydrogen atoms, suppressing oxygenation at kinetically more favorable sites such as C-17 and C-16, which are both hydroxylated by cytochrome P450c17 (CYP17A1). We reasoned that expansion of the CYP21A2 substrate-binding pocket would increase substrate mobility and might yield additional hydroxylation activities. We built a computer model of CYP21A2 based principally on the crystal structure of CYP2C5, which also 21-hydroxylates P4. Molecular dynamics simulations indicate that binding of the steroid nucleus perpendicular to the plane of the CYP21A2 heme ring limits access of the heme oxygen to the C-21 hydrogen atoms. Residues L107, L109, V470, I471, and V359 were found to contribute to the CYP21A2 substate-binding pocket. Mutation of V470 and I471 to alanine or glycine preserved P4 21-hydroxylase activity, and mutations of L107 or L109 were inactive. Mutations V359A and V359G, in contrast, acquired 16α-hydroxylase activity, accounting for 40% and 90% of the P4 metabolites, respectively. We conclude that P4 binds to CYP21A2 in a fundamentally different orientation than to CYP17A1 and that expansion of the CYP21A2 substrate-binding pocket allows additional substrate trajectories and metabolic switching.
Collapse
Affiliation(s)
- Dario Mizrachi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8857, United States
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhou X, Li M, Sheng C, Qiu X. NADPH-cytochrome P450 oxidoreductase from the chicken (Gallus gallus): sequence characterization, functional expression and kinetic study. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:53-9. [PMID: 20728568 DOI: 10.1016/j.cbpc.2010.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 12/16/2022]
Abstract
Cytochrome P450 monooxygenases have been well known to be responsible for the synthesis of endogenous compounds and the metabolism of exogenous compounds in almost all living organisms, which require NADPH-cytochrome P450 oxidoreductase (POR) as an electron donor to function. In this study, a 2031 bp open reading frame of POR gene was cloned from 35-day-old Roman hen liver, encoding an enzyme of 676 amino acids. Sequence analysis showed that chicken POR shares high homology with other vertebrates PORs and possesses the conserved binding domains of FAD, FMN, and NADPH. The genomic sequences of POR genes from chicken and other four vertebrates have highly conserved exon/intron organization structure. By fusion with bacterial signal peptide, chicken POR gene was functionally expressed in E. coli membrane and showed activities in reduction of cytochrome c and oxidation of NADPH. The Km values for cytochrome c and NADPH were 21.9 ± 2.3 μM and 2.4 ± 0.3 μM respectively. A Ping-Pong mechanism was proposed for chicken POR.
Collapse
Affiliation(s)
- Xiaojie Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
33
|
Kempná P, Hirsch A, Hofer G, Mullis PE, Flück CE. Impact of differential P450c17 phosphorylation by cAMP stimulation and by starvation conditions on enzyme activities and androgen production in NCI-H295R cells. Endocrinology 2010; 151:3686-96. [PMID: 20534731 DOI: 10.1210/en.2010-0093] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CYP17A1 plays a pivotal role in the biosynthesis of androgens in the adrenals and the gonads. Although this enzyme catalyzes two different reactions on one single active site, its specific activities are regulated independently. Although the 17alpha-hydroxylase activity is rather constant and regulated by gene expression, the 17,20-lyase activity varies significantly with the amount of cofactors or by protein phosphorylation. cAMP increases CYP17A1 expression, P450c17 phosphorylation, and androgen production. However, the exact mechanism(s) and the specific regulators of CYP17A1 remain unknown. Therefore, we studied the regulation of adrenal androgen biosynthesis in human adrenal H295R cells focusing on CYP17A1. We analyzed androgen production and P450c17 activities in H295R cells grown under normal and serum-free conditions and/or after stimulation with 8-bromoadenosine-cAMP. H295R cells grown in starvation medium produced more androgens and had decreased HSD3B2 expression and activity but increased P450c17-17,20-lyase activity and serine phosphorylation. Although starvation increased serine phosphorylation of P450c17 specifically, cAMP stimulation enhanced threonine phosphorylation exclusively. Time-course experiments revealed that a short cAMP stimulation augmented threonine phosphorylation of P450c17 but did not increase 17,20-lyase activity. By contrast, long cAMP stimulation increased androgen production through increased P450c17 activities by enhancing CYP17A1 gene expression. We conclude that serum withdrawal shifts steroidogenesis of H295R cells towards androgen production, providing a suitable model for detailed studies of androgen regulation. In addition, our study shows that starvation and cAMP stimulation regulate P450c17 phosphorylation differentially and that an increase in P450c17 phosphorylation does not necessarily lead to enhanced enzyme activity and androgen production.
Collapse
Affiliation(s)
- Petra Kempná
- Department of Pediatrics, Division of Pediatric Endocrinology, Diabetology and Metabolism, University of Bern, 3010 Bern, Switzerland
| | | | | | | | | |
Collapse
|
34
|
At the crossroads of steroid hormone biosynthesis: the role, substrate specificity and evolutionary development of CYP17. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:200-9. [PMID: 20619364 DOI: 10.1016/j.bbapap.2010.06.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/28/2010] [Accepted: 06/26/2010] [Indexed: 11/22/2022]
Abstract
Cytochrome P450s play critical roles in the metabolism of various bioactive compounds. One of the crucial functions of cytochrome P450s in Chordata is in the biosynthesis of steroid hormones. Steroid 17alpha-hydroxylase/17,20-lyase (CYP17) is localized in endoplasmic reticulum membranes of steroidogenic cells. CYP17 catalyzes the 17alpha-hydroxylation reaction of delta4-C₂₁ steroids (progesterone derivatives) and delta5-C₂₁ steroids (pregnenolone derivatives) as well as the 17,20-lyase reaction producing C₁₉-steroids, a key branch point in steroid hormone biosynthesis. Depending on CYP17 activity, the steroid hormone biosynthesis pathway is directed to either the formation of mineralocorticoids and glucocorticoids or sex hormones. In the present review, the current information on CYP17 is analyzed and discussed.
Collapse
|
35
|
Haider SM, Patel JS, Poojari CS, Neidle S. Molecular modeling on inhibitor complexes and active-site dynamics of cytochrome P450 C17, a target for prostate cancer therapy. J Mol Biol 2010; 400:1078-98. [PMID: 20595043 DOI: 10.1016/j.jmb.2010.05.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 05/21/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
A molecular model for the P450 enzyme cytochrome P450 C17 (CYP17) is presented based on sequence alignments of multiple template structures and homology modeling. This enzyme plays a central role in the biosynthesis of testosterone and is emerging as a major target in prostate cancer, with the recently developed inhibitor abiraterone currently in advanced clinical trials. The model is described in detail, together with its validation, by providing structural explanations to available site-directed mutagenesis data. The CYP17 molecule in this model is in the form of a triangular prism, with an edge of approximately 55 A and a thickness of approximately 37 A. It is predominantly helical, comprising 13 alpha helices interspersed by six 3(10) helices and 11 beta-sheets. Multinanosecond molecular dynamics simulations in explicit solvent have been carried out, and principal components analysis has been used to reveal the details of dynamics around the active site. Coarse-grained methods have also been used to verify low-frequency motions, which have been correlated with active-site gating. The work also describes the results of docking synthetic inhibitors, including the drug abiraterone and the natural substrate pregnenolone, in the CYP17 active site together with molecular dynamics simulations on the complexes.
Collapse
Affiliation(s)
- Shozeb M Haider
- CRUK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | | | | |
Collapse
|
36
|
Wang YH, Tee MK, Miller WL. Human cytochrome p450c17: single step purification and phosphorylation of serine 258 by protein kinase a. Endocrinology 2010; 151:1677-84. [PMID: 20160131 PMCID: PMC2850244 DOI: 10.1210/en.2009-1247] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytochrome P450c17 (P450c17) is the single microsomal enzyme that catalyzes steroid 17alpha-hydroxylase and 17,20 lyase activities. The ratio of lyase to hydroxylase activity of human P450c17 determines whether steroidogenesis leads to the synthesis of cortisol or sex steroids. This ratio is regulated posttranslationally by factors that influence the efficiency of electron transfer from P450 oxidoreductase to P450c17. One factor favoring more efficient electron transfer and 17,20 lyase activity is cAMP-dependent serine/threonine phosphorylation of P450c17. Identifying the responsible kinase(s) and the P450c17 residues that undergo phosphorylation has been challenging, partly because of difficulties in preparing biochemically useful amounts of pure, catalytically active P450c17. We describe a modified strategy for preparing P450c17 in which the traditional carboxy-terminal 4xHis tag is replaced by 3xGly6xHis. This construct permits more rotational freedom of the protein when bound to the nickel affinity column, reducing steric associations between the protein and the column, and permitting a single-step chromatographic purification to apparent homogeneity. Using this vector, we explored P450c17 phosphorylation by mutagenesis of Ser and/or Thr residues to Asp or Glu to mimic the approximate size and charge of phospho-Ser or phospho-Thr. This strategy did not identify Ser and/or Thr site(s) that increase the ratio of lyase to hydroxylase activity, suggesting that the regulatory phosphorylation strategy of human P450c17 is very complicated. Although previous work has excluded protein kinase A (PKA) as the responsible kinase, the cAMP-inducible nature of the phosphorylation-associated increase in lyase activity suggests that PKA may play a role, possibly as a priming kinase. Using our novel vector and a series of mutations, we identified the P450c17 site phosphorylated by PKA as Ser258.
Collapse
Affiliation(s)
- Yue-Hao Wang
- Professor of Pediatrics and Chief of Endocrinology, HSE 1427, University of California, San Francisco, San Francisco, California 94143-0978, USA
| | | | | |
Collapse
|
37
|
Gao B, Boeglin WE, Zheng Y, Schneider C, Brash AR. Evidence for an ionic intermediate in the transformation of fatty acid hydroperoxide by a catalase-related allene oxide synthase from the Cyanobacterium Acaryochloris marina. J Biol Chem 2009; 284:22087-22098. [PMID: 19531485 DOI: 10.1074/jbc.m109.013151] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Allene oxides are reactive epoxides biosynthesized from fatty acid hydroperoxides by specialized cytochrome P450s or by catalase-related hemoproteins. Here we cloned, expressed, and characterized a gene encoding a lipoxygenase-catalase/peroxidase fusion protein from Acaryochloris marina. We identified novel allene oxide synthase (AOS) activity and a by-product that provides evidence of the reaction mechanism. The fatty acids 18.4omega3 and 18.3omega3 are oxygenated to the 12R-hydroperoxide by the lipoxygenase domain and converted to the corresponding 12R,13-epoxy allene oxide by the catalase-related domain. Linoleic acid is oxygenated to its 9R-hydroperoxide and then, surprisingly, converted approximately 70% to an epoxyalcohol identified spectroscopically and by chemical synthesis as 9R,10S-epoxy-13S-hydroxyoctadeca-11E-enoic acid and only approximately 30% to the 9R,10-epoxy allene oxide. Experiments using oxygen-18-labeled 9R-hydroperoxide substrate and enzyme incubations conducted in H2(18)O indicated that approximately 72% of the oxygen in the epoxyalcohol 13S-hydroxyl arises from water, a finding that points to an ionic intermediate (epoxy allylic carbocation) during catalysis. AOS and epoxyalcohol synthase activities are mechanistically related, with a reacting intermediate undergoing a net hydrogen abstraction or hydroxylation, respectively. The existence of epoxy allylic carbocations in fatty acid transformations is widely implicated although for AOS reactions, without direct experimental support. Our findings place together in strong association the reactions of allene oxide synthesis and an ionic reaction intermediate in the AOS-catalyzed transformation.
Collapse
Affiliation(s)
- Benlian Gao
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - William E Boeglin
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Yuxiang Zheng
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Claus Schneider
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Alan R Brash
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
38
|
Shet MS, Fisher CW, Tremblay Y, Belanger A, Conley AJ, Mason JI, Estabrook RW. Comparison of the 17α-Hydroxylase/C17,20-Lyase Activities of Porcine, Guinea Pig and Bovine P450c17 Using Purified Recombinant Fusion Proteins Containing P450c17 Linked to NADPH-P450 Reductase. Drug Metab Rev 2008; 39:289-307. [PMID: 17786622 DOI: 10.1080/03602530701468391] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The cDNAs for cytochrome P450c17 (P450c17) of three species, pig, guinea pig, and cow, representing three families of mammals (suidae, procaviidae, and bovidae, respectively) were each engineered into an expression plasmid (pCWori+). The P450c17 domain of the coding sequence was connected to a truncated form of rat NADPH-P450 reductase by a linker sequence encoding two amino acids (SerThr). These fusion proteins were expressed in E. coli and purified for use in enzymatic assays to determine similarities and differences in 17 alpha-hydroxylase and lyase activities. The fusion proteins were found to catalyze both the 17 alpha-hydroxylation of progesterone (P4) and pregnenolone (P5) to 17 alpha-hydroxylated P4 and P5 (17 alpha-OH P4 and 17 alpha-OH P5) followed by the C17,20-lyase reaction for the conversion of these C(21)-17 alpha-hydroxylated steroids to C(19)-steroids (the C17,20-lyase reaction). These in vitro studies show that (a) porcine P450c17 possesses cytochrome b(5) (b(5))-stimulated C17,20-lyase activity that converts 17 alpha OH-P4 to androstenedione (AD) but also converts 17 alpha-OHP5 to dehydroepiandrosterone (DHEA); (b) guinea pig P450c17 possesses a b(5)-stimulated C17,20-lyase activity that converts 17 alpha-OH P4 to AD but does not convert 17 alpha-OH P5 to DHEA., and (c) bovine P450c17 possesses a b(5)-stimulated C17,20-lyase activity that converts 17 alpha-OH P5 to DHEA but does not convert 17 alpha-OH P4 to AD. Thus, the P450c17 of each species differs in its ability to catalyze in vitro the conversion of C(21)-steroids to C(19)-steroids. In addition, each P450c17 is capable of catalyzing additional hydroxylation reactions leading to low levels of 2 alpha-, 6 beta-, 16- and 21-hydroxy-metabolites. Porcine P450c17 also catalyzes the b(5)-dependent synthesis of andien-beta (androsta-5,16-dien-3beta-ol) from P5. When the amino acid sequences of the three P450c17s were aligned there was an approximate 50% variation in the alignment identity (227 differences in the sequences of 509 amino acids). Alignment did not permit the assignment of specific amino acids or domains to the observed differences in enzymatic activities.
Collapse
Affiliation(s)
- Manjunath S Shet
- Purdue Pharma LP, Department of Pharmocokinetics and Drug Metabolism, Stamford, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Drăgan CA, Hartmann RW, Bureik M. A fission yeast-based test system for the determination of IC50values of anti-prostate tumor drugs acting on CYP21. J Enzyme Inhib Med Chem 2008; 21:547-56. [PMID: 17194026 DOI: 10.1080/14756360600774637] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Human steroid 21-hydroxylase (CYP21) and steroid 17alpha-hydroxylase/17,20-lyase (CYP17) are two closely related cytochrome P450 enzymes involved in the steroidogenesis of glucocorticoids, mineralocorticoids, and sex hormones, respectively. Compounds that inhibit CYP17 activity are of pharmacological interest as they could be used for the treatment of prostate cancer. However, in many cases little is known about a possible co-inhibition of CYP21 activity by CYP17 inhibitors, which would greatly reduce their pharmacological value. We have previously shown that fission yeast strains expressing mammalian cytochrome P450 steroid hydroxylases are suitable systems for whole-cell conversion of steroids and may be used for biotechnological applications or for screening of inhibitors. In this study, we developed a very simple and fast method for the determination of enzyme inhibition using Schizosaccharomyces pombe strains that functionally express either human CYP17 or CYP21. Using this system we tested several compounds of different structural classes with known CYP17 inhibitory potency (i.e. Sa 40, YZ5ay, BW33, and ketoconazole) and determined IC50 values that were about one order of magnitude higher in comparison to data previously reported using human testes microsomes. One compound, YZ5ay, was found to be a moderate CYP21 inhibitor with an IC50 value of 15 microM, which is about eight-fold higher than the value determined for CYP17 inhibition (1.8 microM) in fission yeast. We conclude that, in principle, co-inhibition of CYP21 by CYP17 inhibitors cannot be ruled out.
Collapse
Affiliation(s)
- Călin-Aurel Drăgan
- Department of Biochemistry, Saarland University D-66041 Saarbrücken, Germany.
| | | | | |
Collapse
|
40
|
Gao B, Boeglin WE, Brash AR. Role of the conserved distal heme asparagine of coral allene oxide synthase (Asn137) and human catalase (Asn148): mutations affect the rate but not the essential chemistry of the enzymatic transformations. Arch Biochem Biophys 2008; 477:285-90. [PMID: 18652800 DOI: 10.1016/j.abb.2008.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/10/2008] [Accepted: 07/11/2008] [Indexed: 11/17/2022]
Abstract
A catalase-related allene oxide synthase (cAOS) and true catalases that metabolize hydrogen peroxide have similar structure around the heme. One of the distal heme residues considered to help control catalysis is a highly conserved asparagine. Here we addressed the role of this residue in metabolism of the natural substrate 8R-hydroperoxyeicosatetraenoic acid by cAOS and in H(2)O(2) breakdown by catalase. In cAOS, the mutations N137A, N137Q, N137S, N137D, and N137H drastically reduced the rate of reaction (to 0.8-4% of wild-type), yet the mutants all formed the allene oxide as product. This is remarkable because there are many potential heme-catalyzed transformations of fatty acid hydroperoxides and special enzymatic control must be required. In human catalase, the N148A, N148S, or N148D mutations only reduced rates to approximately 20% of wild-type. The distal heme Asn is not essential in either catalase or cAOS. Its conservation throughout evolution may relate to a role in optimizing catalysis.
Collapse
Affiliation(s)
- Benlian Gao
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University, 23rd Avenue at Pierce, Nashville, TN 37232-6602, USA
| | | | | |
Collapse
|
41
|
Chen YC, Cochrum RK, Tseng MT, Ghooray DT, Moore JP, Winters SJ, Clark BJ. Effects of CDB-4022 on Leydig Cell Function in Adult Male Rats1. Biol Reprod 2007; 77:1017-26. [PMID: 17715432 DOI: 10.1095/biolreprod.106.059204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
CDB-4022, an indenopryridine, suppresses spermatogenesis and decreases inhibin secretion in adult male rats. In the present study, we investigated the effects of CDB-4022 on Leydig cell function. A single oral dose of CDB-4022 (2.5 mg/kg) resulted in a 2-fold decrease in serum testosterone levels after 7 days that was paralleled by a decrease in Cyp17a1 mRNA and protein levels and 17alpha hydroxylase enzymatic activity compared with vehicle-treated rats. Consistent with the lower serum testosterone levels, pituitary Lhb and Fshb mRNA levels were increased 3.2- and 2.3-fold, respectively, by CDB-4022 treatment. Ultrastructural analysis of pituitary gonadotrophs showed distended endoplasmic reticulum (ER) and fewer secretory granules in CDB-4022-treated rats, characteristic of enhanced secretory activity. Conversely, CDB-4022 increased serum progesterone levels, testicular Star mRNA and protein expression, and the number of Leydig cells per testis. Serum inhibin B levels were undetectable in CDB-4022-treated rats, while serum activin A levels were similar to controls, indicating that the CDB-4022-treated rats have an elevated activin A:inhibin B ratio. In the presence of hCG stimulation, activin A directly suppressed testosterone secretion but enhanced progesterone secretion from rat Leydig cell primary cultures. Likewise, treatment of MA-10 cells with activin A was found to enhance cAMP-stimulated progesterone secretion and STAR expression. Together, our data indicate that CDB-4022 treatment inhibits CYP17A1 and stimulates STAR expression, thereby decreasing testosterone but increasing progesterone production. We propose that unopposed actions of activin A most likely contribute to the steroid profile in rats after CDB-4022 treatment. Our findings establish CDB-4022 as a new model to examine intratesticular control mechanisms that modulate Leydig cell gene expression and function.
Collapse
Affiliation(s)
- Yu-Chyu Chen
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Kolar NW, Swart AC, Mason JI, Swart P. Functional expression and characterisation of human cytochrome P45017α in Pichia pastoris. J Biotechnol 2007; 129:635-44. [PMID: 17386955 DOI: 10.1016/j.jbiotec.2007.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 12/19/2006] [Accepted: 02/05/2007] [Indexed: 11/19/2022]
Abstract
Human cytochrome P45017alpha (CYP17), present in mammalian adrenal and gonadal tissues, catalyses both steroid 17-hydroxylation and C17,20 lyase reactions, producing intermediates for the glucocorticoid and androgenic pathways, respectively. The characterisation of this complex enzyme was initially hampered due to low level in vivo expression of CYP17. Heterologous expression systems have contributed greatly to our current knowledge of CYP17's dual catalytic activity. However, due to the hydrophobic nature of this membrane-bound protein, primarily truncated and modified forms of CYP17 are currently being expressed heterologously. Although the N-terminally modified enzyme has been well characterised, protein structure and function studies still necessitate the expression of unmodified, wild-type CYP17. We report here the expression of a catalytically active, unmodified human CYP17 in the industrial methylotrophic yeast, Pichia pastoris. A typical P450 carbon monoxide difference spectrum, with an absorption maximum at 448nm and a substrate-induced type I spectrum were recorded using a detergent-solubilised cellular fraction containing CYP17. The expressed enzyme catalysed the conversion of progesterone to 17-hydroxyprogesterone as well as 16-hydroxyprogesterone, a product unique to human and chimpanzee CYP17. This is the first report showing the heterologous expression of a fully functional human steroidogenic cytochrome P450 enzyme in P. pastoris.
Collapse
Affiliation(s)
- Norbert W Kolar
- Department of Biochemistry, University of Stellenbosch, Matieland, South Africa
| | | | | | | |
Collapse
|
43
|
Waterman MR. Heterologous expression of mammalian P450 enzymes. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 68:37-66. [PMID: 8154325 DOI: 10.1002/9780470123140.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- M R Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
44
|
Arase M, Waterman MR, Kagawa N. Purification and characterization of bovine steroid 21-hydroxylase (P450c21) efficiently expressed in Escherichia coli. Biochem Biophys Res Commun 2006; 344:400-5. [PMID: 16597434 DOI: 10.1016/j.bbrc.2006.03.067] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 03/10/2006] [Indexed: 11/22/2022]
Abstract
Steroid 21-hydroxylase, P450c21, is responsible for the conversion of progesterone and 17alpha-hydroxyprogesterone to their 21-hydroxylated derivatives. P450c21 has been poorly investigated because of difficulty in obtaining sufficient quantities of purified protein. To solve the problem, we have attempted to express the bovine P450c21 in Escherichia coli as a stable form. The N-terminal membrane anchor and basic regions of P450c21 were replaced by the basic region of CYP2C3. The engineered P450c21 was expressed at a level higher than 1.2micromol/L culture (>60mg/L) when coexpressed with molecular chaperones GroES/GroEL. Utilizing three steps of column chromatography, the protein was highly purified to the specific content 16.6nmol/mg (91.2% purity). The purified protein is a monomer in the presence of 1% sodium cholate as determined by gel filtration analysis, suggesting that this membrane anchor-truncated form of P450c21 is more soluble than the native form. The purified enzyme showed typical substrate-binding difference spectra and 21-hydroxylase activities for both progesterone and 17alpha-hydroxyprogesterone. Truncation of the membrane anchor increases solubility of P450c21 facilitating expression of this protein in E. coli yielding sufficient quantities for both biochemical and biophysical studies.
Collapse
Affiliation(s)
- Miharu Arase
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|
45
|
Burguière A, Hitchen PG, Dover LG, Dell A, Besra GS. Altered expression profile of mycobacterial surface glycopeptidolipids following treatment with the antifungal azole inhibitors econazole and clotrimazole. MICROBIOLOGY-SGM 2005; 151:2087-2095. [PMID: 15942015 DOI: 10.1099/mic.0.27938-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The azole antifungal drugs econazole and clotrimazole are known cytochrome P450 enzyme inhibitors. This study shows that these drugs are potent inhibitors of mycobacterial growth and are more effective against Mycobacterium smegmatis than isoniazid and ethionamide, two established anti-mycobacterial drugs. Several non-tuberculous mycobacteria, including the pathogenic members of the Mycobacterium avium-intracellulare complex (MAC) and the fast-growing saprophytic organism M. smegmatis, produce an array of serovar-specific (ss) and non-serovar-specific (ns) glycopeptidolipids (GPLs). GPL biosynthesis has been investigated for several years but has still not been fully elucidated. The authors demonstrate here that econazole and clotrimazole inhibit GPL biosynthesis in M. smegmatis. In particular, clotrimazole inhibits all four types of nsGPLs found in M. smegmatis, suggesting an early and common target within their biosynthetic pathway. Altogether, the data suggest that an azole-specific target, most likely a cytochrome P450, may be involved in the hydroxylation of the N-acyl chain in GPL biosynthesis. Azole antifungal drugs and potential derivatives could represent an interesting new range of anti-mycobacterial drugs, especially against opportunistic human pathogens including MAC, M. scrofulaceum, M. peregrinum, M. chelonae and M. abscessus.
Collapse
Affiliation(s)
- Adeline Burguière
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Paul G Hitchen
- Department of Biological Sciences, Imperial College, London, SW7 2AZ, UK
| | - Lynn G Dover
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Anne Dell
- Department of Biological Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
46
|
Matsunaga N, Kaku T, Ojida A, Tanaka T, Hara T, Yamaoka M, Kusaka M, Tasaka A. C(17,20)-lyase inhibitors. Part 2: design, synthesis and structure-activity relationships of (2-naphthylmethyl)-1H-imidazoles as novel C(17,20)-lyase inhibitors. Bioorg Med Chem 2005; 12:4313-36. [PMID: 15265485 DOI: 10.1016/j.bmc.2004.06.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 06/12/2004] [Accepted: 06/12/2004] [Indexed: 10/26/2022]
Abstract
A series of 1- and 4-(2-naphthylmethyl)-1H-imidazoles (3 and 4) has been synthesized and evaluated as C(17,20)-lyase inhibitors. Several 6-methoxynaphthyl derivatives showed potent C(17,20)-lyase inhibition, suppression of testosterone biosynthesis in rats and reduction in the weight of prostate and seminal vesicles in rats, whereas most of these compounds increased the liver weight after consecutive administrations. The effect on the liver weight was removed by incorporation of a hydroxy group and an isopropyl group at the methylene bridge, as seen in (S)-28d and (S)-42. Selectivity for C(17,20)-lyase over 11beta-hydroxylase is also discussed, and (S)-42 was found to be a more than 260-fold selective inhibitor. Furthermore, (S)-42 showed a potent suppression of testosterone biosynthesis after a single oral administration in monkeys. These data suggest that (S)-42 may be a promising agent for the treatment of androgen-dependent prostate cancer.
Collapse
Affiliation(s)
- Nobuyuki Matsunaga
- Medicinal Chemistry Research Laboratories, Pharmaceutical Research Division: Takeda Chemical Industries Ltd, 17-85, Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Pandey AV, Miller WL. Regulation of 17,20 lyase activity by cytochrome b5 and by serine phosphorylation of P450c17. J Biol Chem 2005; 280:13265-71. [PMID: 15687493 DOI: 10.1074/jbc.m414673200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450c17 catalyzes the 17alpha-hydroxylase activity required for glucocorticoid synthesis and the 17,20 lyase activity required for sex steroid synthesis. Most P450 enzymes have fixed ratios of their various activities, but the ratio of these two activities of P450c17 is regulated post-translationally. We have shown that serine phosphorylation of P450c17 and the allosteric action of cytochrome b5 increase 17,20 lyase activity, but it has not been apparent whether these two post-translational mechanisms interact. Using purified enzyme systems, we now show that the actions of cytochrome b5 are independent of the state of P450c17 phosphorylation. Suppressing cytochrome b5 expression in human adrenal NCI-H295A cells by >85% with RNA interference had no effect on 17alpha-hydroxylase activity but reduced 17,20 lyase activity by 30%. Increasing P450c17 phosphorylation could compensate for this reduced activity. When expressed in bacteria, human P450c17 required either cytochrome b5 or phosphorylation for 17,20 lyase activity. The combination of cytochrome b5 and phosphorylation was not additive. Cytochrome b5 and phosphorylation enhance 17,20 lyase activity independently of each other, probably by increasing the interaction between P450c17 and NADPH-cytochrome P450 oxidoreductase.
Collapse
Affiliation(s)
- Amit V Pandey
- Department of Pediatrics and The Metabolic Research Unit, University of California San Francisco, San Francisco, California 94143-0978, USA
| | | |
Collapse
|
48
|
Matsunaga N, Kaku T, Itoh F, Tanaka T, Hara T, Miki H, Iwasaki M, Aono T, Yamaoka M, Kusaka M, Tasaka A. C17,20-lyase inhibitors I. Structure-based de novo design and SAR study of C17,20-lyase inhibitors. Bioorg Med Chem 2004; 12:2251-73. [PMID: 15080924 DOI: 10.1016/j.bmc.2004.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 02/06/2004] [Accepted: 02/08/2004] [Indexed: 11/17/2022]
Abstract
Novel nonsteroidal C(17,20)-lyase inhibitors were synthesized using de novo design based on its substrate, 17 alpha-hydroxypregnenolone, and several compounds exhibited potent C(17,20)-lyase inhibition. However, in vivo activities were found to be short-lasting, and in order to improve the duration of action, a series of benzothiophene derivatives were evaluated. As a result, compounds 9h, (S)-9i, and 9k with nanomolar enzyme inhibition (IC(50)=4-9 nM) and 9e (IC(50)=27 nM) were identified to have powerful in vivo efficacy with extended duration of action. The key structural determinants for the in vivo efficacy were demonstrated to be the 5-fluoro group on the benzothiophene ring and the 4-imidazolyl moiety. Superimposition of 9k and 17 alpha-hydroxypregnenolone demonstrated their structural similarity and enabled rationalization of the pharmacological results. In addition, selected compounds were also identified to be potent inhibitors of human enzyme with IC(50) values of 20-30 nM.
Collapse
Affiliation(s)
- Nobuyuki Matsunaga
- Medicinal Chemistry Research Laboratories, Pharmaceutical Research Division: Takeda Chemical Industries, Ltd, 17-85, Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Martin RM, Lin CJ, Costa EMF, de Oliveira ML, Carrilho A, Villar H, Longui CA, Mendonca BB. P450c17 deficiency in Brazilian patients: biochemical diagnosis through progesterone levels confirmed by CYP17 genotyping. J Clin Endocrinol Metab 2003; 88:5739-46. [PMID: 14671162 DOI: 10.1210/jc.2003-030988] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
P450c17 deficiency is an autosomal recessive disorder and a rare cause of congenital adrenal hyperplasia characterized by hypertension, hypokalemia, and impaired production of sex hormones. We performed a clinical, hormonal, and molecular study of 11 patients from 6 Brazilian families with the combined 17alpha-hydroxylase/17,20-lyase deficiency phenotype. All patients had elevated basal serum levels of progesterone (1.8-38 ng/ml; 0.57-12 pmol/liter) and suppressed plasma renin activity. CYP17 genotyping identified 5 missense mutations. The compound heterozygous mutation R362C/W406R was found in 1 family, whereas the homozygous mutations R96W, Y329D, and P428L were seen in the other 5 families. The R96W mutation has been described as the cause of p450c17 deficiency in Caucasian patients. The other mutations were not found in 50 normal subjects screened by allele-specific oligonucleotide hybridization (Y329D, R362C, and W406R) or digestion with HphI (P428L) and were recently found in other Brazilian patients. Therefore, we elucidated the genotype of 11 individuals with p450c17 deficiency and concluded that basal progesterone measurement is a useful marker of p450c17 deficiency and that its use should reduce the misdiagnosis of this deficiency in patients presenting with male pseudohermaphroditism, primary or secondary amenorrhea, and mineralocorticoid excess syndrome.
Collapse
Affiliation(s)
- Regina M Martin
- Unidade de Endocrinologia do Desenvolvimento, Divisão de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hussain HA, Ward JM. Ferredoxin reductase enhances heterologously expressed cytochrome CYP105D1 in Escherichia coli and Streptomyces lividans. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00047-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|