1
|
Liu Y, Wang J, Huang JB, Li XF, Chen Y, Liu K, Zhao M, Huang XL, Gao XL, Luo YN, Tao W, Wu J, Xue ZL. Advances in regulating vitamin K 2 production through metabolic engineering strategies. World J Microbiol Biotechnol 2023; 40:8. [PMID: 37938463 DOI: 10.1007/s11274-023-03828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Vitamin K2 (menaquinone, VK2, MK) is an essential lipid-soluble vitamin that plays critical roles in inhibiting cell ferroptosis, improving blood clotting, and preventing osteoporosis. The increased global demand for VK2 has inspired interest in novel production strategies. In this review, various novel metabolic regulation strategies, including static and dynamic metabolic regulation, are summarized and discussed. Furthermore, the advantages and disadvantages of both strategies are analyzed in-depth to highlight the bottlenecks facing microbial VK2 production on an industrial scale. Finally, advanced metabolic engineering biotechnology for future microbial VK2 production will also be discussed. In summary, this review provides in-depth information and offers an outlook on metabolic engineering strategies for VK2 production.
Collapse
Affiliation(s)
- Yan Liu
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China.
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China.
| | - Jian Wang
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Jun-Bao Huang
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Xiang-Fei Li
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China
| | - Yu Chen
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China
| | - Kun Liu
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China
| | - Ming Zhao
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China.
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China.
| | - Xi-Lin Huang
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Xu-Li Gao
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Ya-Ni Luo
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Wei Tao
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Jing Wu
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
| | - Zheng-Lian Xue
- College of Biology and Food Engineering, Anhui Polytechnic University, 241000, Wuhu, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000, Wuhu, China
| |
Collapse
|
2
|
Yang Q, Zheng Z, Zhao G, Wang L, Wang H, Ding X, Jiang C, Li C, Ma G, Wang P. Engineering microbial consortia of Elizabethkingia meningoseptica and Escherichia coli strains for the biosynthesis of vitamin K2. Microb Cell Fact 2022; 21:37. [PMID: 35279147 PMCID: PMC8917678 DOI: 10.1186/s12934-022-01768-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study and application of microbial consortia are topics of interest in the fields of metabolic engineering and synthetic biology. In this study, we report the design and optimisation of Elizabethkingia meningoseptica and Escherichia coli co-culture, which bypass certain limitations found during the molecular modification of E. meningoseptica, such as resistance to many antibiotics and fewer available molecular tools. RESULTS The octaprenyl pyrophosphate synthase from E. meningoseptica sp. F2 (EmOPPS) was expressed, purified, and identified in the present study. Then, owing to the low vitamin K2 production by E. coli or E. meningoseptica sp. F2 monoculture, we introduced the E. meningoseptica and E. coli co-culture strategy to improve vitamin K2 biosynthesis. We achieved production titres of 32 mg/L by introducing vitamin K2 synthesis-related genes from E. meningoseptica sp. F2 into E. coli, which were approximately three-fold more than the titre achieved with E. meningoseptica sp. F2 monoculture. This study establishes a foundation for further engineering of MK-n (n = 4, 5, 6, 7, 8) in a co-cultivation system of E. meningoseptica and E. coli. Finally, we analysed the surface morphology, esterase activity, and membrane permeability of these microbial consortia using scanning electron microscopy, confocal laser scanning microscopy, and flow cytometry, respectively. The results showed that the co-cultured bacteria were closely linked and that lipase activity and membrane permeability improved, which may be conducive to the exchange of substances between bacteria. CONCLUSIONS Our results demonstrated that co-culture engineering can be a useful method in the broad field of metabolic engineering of strains with restricted molecular modifications.
Collapse
Affiliation(s)
- Qiang Yang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Zhiming Zheng
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| | - Genhai Zhao
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Li Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Han Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - XiuMin Ding
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Chunxu Jiang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Chu Li
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Normal University, Hefei, 230601, People's Republic of China
| | - Guoliang Ma
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Peng Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| |
Collapse
|
3
|
Münzker L, Petrick JK, Schleberger C, Clavel D, Cornaciu I, Wilcken R, Márquez JA, Klebe G, Marzinzik A, Jahnke W. Fragment-Based Discovery of Non-bisphosphonate Binders of Trypanosoma brucei Farnesyl Pyrophosphate Synthase. Chembiochem 2020; 21:3096-3111. [PMID: 32537808 DOI: 10.1002/cbic.202000246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/29/2020] [Indexed: 12/26/2022]
Abstract
Trypanosoma brucei is the causative agent of human African trypanosomiasis (HAT). Nitrogen-containing bisphosphonates, a current treatment for bone diseases, have been shown to block the growth of the T. brucei parasites by inhibiting farnesyl pyrophosphate synthase (FPPS); however, due to their poor pharmacokinetic properties, they are not well suited for antiparasitic therapy. Recently, an allosteric binding pocket was discovered on human FPPS, but its existence on trypanosomal FPPS was unclear. We applied NMR and X-ray fragment screening to T. brucei FPPS and report herein on four fragments bound to this previously unknown allosteric site. Surprisingly, non-bisphosphonate active-site binders were also identified. Moreover, fragment screening revealed a number of additional binding sites. In an early structure-activity relationship (SAR) study, an analogue of an active-site binder was unexpectedly shown to bind to the allosteric site. Overlaying identified fragment binders of a parallel T. cruzi FPPS fragment screen with the T. brucei FPPS structure, and medicinal chemistry optimisation based on two binders revealed another example of fragment "pocket hopping". The discovery of binders with new chemotypes sets the framework for developing advanced compounds with pharmacokinetic properties suitable for the treatment of parasitic infections by inhibition of FPPS in T. brucei parasites.
Collapse
Affiliation(s)
- Lena Münzker
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| | - Joy Kristin Petrick
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| | - Christian Schleberger
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| | - Damien Clavel
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, CEDEX 9, France
| | - Irina Cornaciu
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, CEDEX 9, France.,ALPX, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, CEDEX 9, France
| | - Rainer Wilcken
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| | - José A Márquez
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, CEDEX 9, France.,ALPX, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, CEDEX 9, France
| | - Gerhard Klebe
- Institut für Pharmazie, Philipps-Universität Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Andreas Marzinzik
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| | - Wolfgang Jahnke
- Novartis Institutes for Biomedical Research Novartis Campus, 4002, Basel, Switzerland
| |
Collapse
|
4
|
A Simple In Vitro Assay to Measure the Activity of Geranylgeranyl Diphosphate Synthase and Other Short-Chain Prenyltransferases. Methods Mol Biol 2019; 2083:27-38. [PMID: 31745910 DOI: 10.1007/978-1-4939-9952-1_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
5
|
Zhang X, Niu M, Teixeira da Silva JA, Zhang Y, Yuan Y, Jia Y, Xiao Y, Li Y, Fang L, Zeng S, Ma G. Identification and functional characterization of three new terpene synthase genes involved in chemical defense and abiotic stresses in Santalum album. BMC PLANT BIOLOGY 2019; 19:115. [PMID: 30922222 PMCID: PMC6437863 DOI: 10.1186/s12870-019-1720-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/14/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND It is well known that aromatic essential oils extracted from the heartwood of Santalum album L. have wide economic value. However, little is known about the role of terpenoids in response to various adverse environmental stresses as other plants do in the form of signals during plant-environment interactions. RESULTS In this study, trace amounts of volatiles consisting of α-santalene, epi-β-santalene, β-santalene, α-santalol, β-santalol, (E)-α-bergamotene, (E)-β-farnesene and β-bisabolene were found in the leaves of mature S. album trees. We identified more than 40 candidate terpene synthase (TPS) unigenes by mining publicly-available RNA-seq data and characterized the enzymes encoded by three cDNAs: one mono-TPS catalyzes the formation of mostly α-terpineol, and two multifunctional sesqui-TPSs, one of which produces (E)-α-bergamotene and sesquisabinene as major products and another which catalyzes the formation of (E)-β-farnesene, (E)-nerolidol and (E,E)-farnesol as main products. Metabolite signatures and gene expression studies confirmed that santalol content is closely related with santalene synthase (SaSSY) transcripts in heartwood, which is key enzyme responsible for santalol biosynthesis. However, the expression of three new SaTPS genes differed significantly from SaSSY in the essential oil-producing heartwood. Increased activities of antioxidant enzymes, superoxide dismutase, catalase, peroxidase and ascorbate peroxidase, were detected in different tissues of S. album plants after applying 1 mM methyl jasmonate (MeJA) and 1 mM salicylic acid (SA), or exposure to 4°C, 38°C and high light intensity. MeJA and SA dramatically induced the expression of SaTPS1 and SaTPS2 in leaves. SaTPS1 to 3 transcripts were differentially activated among different tissues under adverse temperature and light stresses. In contrast, almost all SaSSY transcripts decreased in response to these environmental stresses, unlike SaTPS1 to 3. CONCLUSIONS Multifunctional enzymes were biochemically characterized, including one chloroplastic mono-TPS and two cytosolic sesqui-TPSs in sandalwood. Our results suggest the ecological importance of these three new SaTPS genes in defensive response to biotic attack and abiotic stresses in S. album.
Collapse
Affiliation(s)
- Xinhua Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Meiyun Niu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | | | - Yueya Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yunfei Yuan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yongxia Jia
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yangyang Xiao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuan Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guohua Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
6
|
Jiang D, Rong Q, Chen Y, Yuan Q, Shen Y, Guo J, Yang Y, Zha L, Wu H, Huang L, Liu C. Molecular cloning and functional analysis of squalene synthase (SS) in Panax notoginseng. Int J Biol Macromol 2016; 95:658-666. [PMID: 27884675 DOI: 10.1016/j.ijbiomac.2016.11.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/17/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
Abstract
Panax notoginseng (Burk.) F. H. Chen, which is a used traditional Chinese medicine known as Sanqi or Tianqi in China, is widely studied for its ability to accumulate the triterpene saponins. Squalene synthase (SS: EC 2.5.1.21) catalyzes the first enzymatic step from the central isoprenoid pathway toward sterol and triterpenoid biosynthesis. In this study, SS from P. notoginseng was cloned and investigated followed by its recombinant expression and preliminary enzyme activity. The nucleotide sequence of the ORF contains 1 248 nucleotides and encodes 415 amino acid residues with molecular weight of 47.16kDa and pI of 6.50. Bioinformatics analysis revealed that the deduced PnSS protein had a high similarity with other plant squalene synthases. To obtain soluble recombinant enzymes, 29 hydrophobic amino acids were deleted from the carboxy terminus and expressed as GST-Tag fusion protein in Escherichia coli BL21 (DE3). Approximately 66.46kDa recombinant protein was checked on SDS-PAGE and Western Blot analysis. Preliminary activity of the resultant bacterial crude extract was analyzed by gas chromatograph-mass spectrometer (GC-MS). The identification and function of PnSS is important for further studies of the triterpene saponins biosynthesis in P. notoginseng.
Collapse
Affiliation(s)
- Dan Jiang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qixian Rong
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yijun Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Jiangxi University of Traditional Chinese Medicine, Jiangxi, 330004, China
| | - Qingjun Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ye Shen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yirui Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liangping Zha
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huixiao Wu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chunsheng Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
7
|
Rong Q, Jiang D, Chen Y, Shen Y, Yuan Q, Lin H, Zha L, Zhang Y, Huang L. Molecular Cloning and Functional Analysis of Squalene Synthase 2(SQS2) in Salvia miltiorrhiza Bunge. FRONTIERS IN PLANT SCIENCE 2016; 7:1274. [PMID: 27605932 PMCID: PMC4996051 DOI: 10.3389/fpls.2016.01274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/10/2016] [Indexed: 05/05/2023]
Abstract
Salvia miltiorrhiza Bunge, which is also known as a traditional Chinese herbal medicine, is widely studied for its ability to accumulate the diterpene quinone Tanshinones. In addition to producing a variety of diterpene quinone, S. miltiorrhiza Bunge also accumulates sterol, brassinosteroid and triterpenoids. During their biosynthesis, squalene synthase (SQS, EC 2.5.1.21) converts two molecules of the hydrophilic substrate farnesyl diphosphate (FPP) into a hydrophobic product, squalene. In the present study, cloning and characterization of S. miltiorrhiza Bunge squalene synthase 2 (SmSQS2, Genbank Accession Number: KM408605) cDNA was investigated subsequently followed by its recombinant expression and preliminary enzyme activity. The full-length cDNA of SmSQS2 was 1 597 bp in length, with an open reading frame of 1 245 bp encoding 414 amino acids. The deduced amino acid sequence of SmSQS2 shared high similarity with those of SQSs from other plants. To obtain soluble recombinant enzymes, the truncated SmSQS2 in which 28 amino acids were deleted from the carboxy terminus was expressed as GST-Tag fusion protein in Escherichia coli BL21 (DE3) and confirmed by SDS-PAGE and Western Blot analysis, and the resultant bacterial crude extract was incubated with FPP and NADPH. Gas chromatograph-mass spectrometer analysis showed that squalene was detected in the in vitro reaction mixture. The gene expression level was analyzed through Quantitative real-time PCR, and was found to be higher in roots as compared to the leaves, and was up-regulated upon YE+ Ag(+) treatment. These results could serve as an important to understand the function of the SQS family. In addition, the identification of SmSQS2 is important for further studies of terpenoid and sterol biosynthesis in S. miltiorrhiza Bunge.
Collapse
Affiliation(s)
- Qixian Rong
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Dan Jiang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
- School of Chinese Pharmacy, Beijing University of Chinese MedicineBeijing, China
| | - Yijun Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
- Jiangxi University of Traditional Chinese MedicineNanchang, China
| | - Ye Shen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Qingjun Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Huixin Lin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Liangping Zha
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Yan Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
- *Correspondence: Luqi Huang,
| |
Collapse
|
8
|
Lukose V, Luo L, Kozakov D, Vajda S, Allen KN, Imperiali B. Conservation and Covariance in Small Bacterial Phosphoglycosyltransferases Identify the Functional Catalytic Core. Biochemistry 2015; 54:7326-34. [PMID: 26600273 DOI: 10.1021/acs.biochem.5b01086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphoglycosyltransferases (PGTs) catalyze the transfer of a C1'-phosphosugar from a soluble sugar nucleotide diphosphate to a polyprenol phosphate. These enzymes act at the membrane interface, forming the first membrane-associated intermediates in the biosynthesis of cell-surface glycans and glycoconjugates, including glycoproteins, glycolipids, and the peptidoglycan in bacteria. PGTs vary greatly in both their membrane topologies and their substrate preferences. PGTs, such as MraY and WecA, are polytopic, while other families of uniquely prokaryotic enzymes have only a single predicted transmembrane helix. PglC, a PGT involved in the biosynthesis of N-linked glycoproteins in the enteropathogen Campylobacter jejuni, is representative of one of the structurally most simple members of the diverse family of small bacterial PGT enzymes. Herein, we apply bioinformatics and covariance-weighted distance constraints in geometry- and homology-based model building, together with mutational analysis, to investigate monotopic PGTs. The pool of 15000 sequences that are analyzed include the PglC-like enzymes, as well as sequences from two other related PGTs that contain a "PglC-like" domain embedded in their larger structures (namely, the bifunctional PglB family, typified by PglB from Neisseria gonorrheae, and WbaP-like enzymes, typified by WbaP from Salmonella enterica). Including these two subfamilies of PGTs in the analysis highlights key residues conserved across all three families of small bacterial PGTs. Mutagenesis analysis of these conserved residues provides further information about the essentiality of many of these residues in catalysis. Construction of a structural model of the cytosolic globular domain utilizing three-dimensional distance constraints, provided by conservation covariance analysis, provides additional insight into the catalytic core of these families of small bacterial PGT enzymes.
Collapse
Affiliation(s)
- Vinita Lukose
- Departments of Chemistry and Biology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Lingqi Luo
- Department of Chemistry, Boston University , Boston, Massachusetts 02215, United States.,Department of Biomedical Engineering, Boston University , Boston, Massachusetts 02215, United States
| | - Dima Kozakov
- Department of Biomedical Engineering, Boston University , Boston, Massachusetts 02215, United States
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University , Boston, Massachusetts 02215, United States
| | - Karen N Allen
- Department of Chemistry, Boston University , Boston, Massachusetts 02215, United States
| | - Barbara Imperiali
- Departments of Chemistry and Biology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Yokoyama T, Mizuguchi M, Ostermann A, Kusaka K, Niimura N, Schrader TE, Tanaka I. Protonation State and Hydration of Bisphosphonate Bound to Farnesyl Pyrophosphate Synthase. J Med Chem 2015; 58:7549-56. [PMID: 26314394 DOI: 10.1021/acs.jmedchem.5b01147] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Farnesyl pyrophosphate synthase (FPPS) catalyzes the condensation of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate to FPP and is known to be a molecular target of osteoporosis drugs, such as risedronate (RIS), which is a nitrogen-containing bisphosphonate. The protonation states and hydration structure of RIS bound to FPPS were determined by neutron protein crystallography, which allows direct visualization of hydrogens and deuteriums. The structure analysis revealed that the phosphate groups of RIS were fully deprotonated with the abnormally decreased pKa, and that the roles of E93 and D264 consisted of canceling the extra negative charges upon the binding of ligands. Collectively, our neutron structures provided insights into the physicochemical properties during the bisphosphonate binding event.
Collapse
Affiliation(s)
- Takeshi Yokoyama
- Faculty of Pharmaceutical Sciences, University of Toyama , 2630 Sugitani, Toyama 930-0914, Japan
| | - Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama , 2630 Sugitani, Toyama 930-0914, Japan
| | - Andreas Ostermann
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München , Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Katsuhiro Kusaka
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University , 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Nobuo Niimura
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University , 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Tabias E Schrader
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Ichiro Tanaka
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University , 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan.,College of Engineering, Ibaraki University , Naka-Narusawa 4-12-1, Hitachi, Ibaraki 316-8511, Japan
| |
Collapse
|
10
|
Srivastava PL, Daramwar PP, Krithika R, Pandreka A, Shankar SS, Thulasiram HV. Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album. Sci Rep 2015; 5:10095. [PMID: 25976282 PMCID: PMC4432371 DOI: 10.1038/srep10095] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/30/2015] [Indexed: 12/29/2022] Open
Abstract
Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems.
Collapse
Affiliation(s)
- Prabhakar Lal Srivastava
- Chemical Biology Unit, Division of Organic Chemistry, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune. 411008
| | - Pankaj P Daramwar
- Chemical Biology Unit, Division of Organic Chemistry, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune. 411008
| | - Ramakrishnan Krithika
- Chemical Biology Unit, Division of Organic Chemistry, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune. 411008
| | - Avinash Pandreka
- 1] Chemical Biology Unit, Division of Organic Chemistry, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune. 411008 [2] CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi. 110007
| | - S Shiva Shankar
- Chemical Biology Unit, Division of Organic Chemistry, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune. 411008
| | - Hirekodathakallu V Thulasiram
- 1] Chemical Biology Unit, Division of Organic Chemistry, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune. 411008 [2] CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi. 110007
| |
Collapse
|
11
|
Heider SAE, Peters-Wendisch P, Beekwilder J, Wendisch VF. IdsA is the major geranylgeranyl pyrophosphate synthase involved in carotenogenesis in Corynebacterium glutamicum. FEBS J 2014; 281:4906-20. [PMID: 25181035 DOI: 10.1111/febs.13033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/16/2014] [Accepted: 08/29/2014] [Indexed: 11/27/2022]
Abstract
Corynebacterium glutamicum, a yellow-pigmented soil bacterium that synthesizes the rare cyclic C50 carotenoid decaprenoxanthin and its glucosides, has been engineered for the production of various carotenoids. CrtE was assumed to be the major geranylgeranyl pyrophosphate (GGPP) synthase in carotenogenesis; however, deletion of crtE did not abrogate carotenoid synthesis. In silico analysis of the repertoire of prenyltransferases encoded by the C. glutamicum genome revealed two candidate GGPPS genes (idsA and ispB). The absence of pigmentation of an idsA deletion mutant and complementation experiments with a double deletion mutant lacking both idsA and crtE showed that IdsA is the major GGPPS of C. glutamicum and that crtE overexpression compensated for the lack of IdsA, whereas plasmid-borne overexpression of ispB did not. Purified His-tagged CrtE was active as a homodimer, whereas the active form of IdsA was homotetrameric. Both enzymes catalyzed prenyl transfer with isopentenyl pyrophosphate (IPP), dimethylallyl pyrophosphate, geranyl pyrophosphate and farnesylphosphate (FPP) as substrates. IdsA showed the highest catalytic efficiency with dimethylallyl pyrophosphate and IPP, whereas the catalytic efficiency of CrtE was highest with geranyl pyrophosphate and IPP. Finally, application of prenyltransferase overexpression revealed that combined overexpression of idsA and the IPP isomerase gene idi in the absence of crtE led to the highest decaprenoxanthin titer reported to date.
Collapse
Affiliation(s)
- Sabine A E Heider
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Germany
| | | | | | | |
Collapse
|
12
|
Zhang YL, Li ZX. Functional analysis and molecular docking identify two active short-chain prenyltransferases in the green peach aphid, Myzus persicae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 81:63-76. [PMID: 22696503 DOI: 10.1002/arch.21032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Short-chain prenyltransferases are responsible for biosynthesis of the C(10)-C(20) precursors of a variety of isoprenoids. We previously isolated two different short-chain prenyltransferases from the green peach aphid, Myzus persicae (MpIPPS1 and MpIPPS2). In this study, the activity of the two aphid prenyltransferases was analyzed in vitro. Kinetic analysis using recombinant enzymes showed that both prenyltransferases could efficiently catalyze the formation of C(10) geranyl diphosphate (GPP) and C(15) farnesyl diphosphate (FPP) from the C(5) substrates isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), and MpIPPS2 had higher catalytic activity than MpIPPS1. Product analysis by gas chromatography-mass spectrometry demonstrated that FPP was generated as the major product, but GPP could be detected at low enzyme concentrations. Molecular docking revealed that MpIPPS2 had higher binding affinity with the substrates DMAPP, IPP, and GPP than MpIPPS1, which supported the experimentally determined kinetic parameters. Molecular docking also identified an amino acid residue (K266) critical to the catalytic activity of both MpIPPS1 and MpIPPS2. This prediction was subsequently confirmed by site-directed mutagenesis, in which a point mutation (K266I) abolished the activity of both MpIPPS1 and MpIPPS2. Our data illustrate that both aphid short-chain prenyltransferases are active forms, which is in contrast to the previously reported results.
Collapse
Affiliation(s)
- Yong-Lei Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | | |
Collapse
|
13
|
Gupta N, Sharma P, Santosh Kumar RJ, Vishwakarma RK, Khan BM. Functional characterization and differential expression studies of squalene synthase from Withania somnifera. Mol Biol Rep 2012; 39:8803-12. [PMID: 22718506 DOI: 10.1007/s11033-012-1743-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
Squalene synthase (SQS: EC 2.5.1.21) is a potential branch point regulatory enzyme and represents the first committed step to diverge the carbon flux from the main isoprenoid pathway towards sterol biosynthesis. In the present study, cloning and characterization of Withania somnifera squalene synthase (WsSQS) cDNA was investigated subsequently followed by its heterologous expression and preliminary enzyme activity. Two different types of WsSQS cDNA clones (WsSQS1and WsSQS2) were identified that contained an open reading frames of 1,236 and 1,242 bp encoding polypeptides of 412 and 414 amino acids respectively. Both WsSQS isoforms share 99 % similarity and identity with each other. WsSQS deduced amino acids sequences, when compared with SQS of other plant species, showed maximum similarity and identity with Capsicum annuum followed by Solanum tuberosum and Nicotiana tabacum. To obtain soluble recombinant enzymes, 24 hydrophobic amino acids were deleted from the carboxy terminus and expressed as 6X His-Tag fusion protein in Escherichia coli. Approximately 43 kDa recombinant protein was purified using Ni-NTA affinity chromatography and checked on SDS-PAGE. Preliminary activity of the purified enzymes was determined and the products were analyzed by gas chromatograph-mass spectrometer (GC-MS). Quantitative real-time PCR (qRT-PCR) analysis showed that WsSQS expresses more in young leaves than mature leaves, stem and root.
Collapse
Affiliation(s)
- Neha Gupta
- Plant Tissue Culture Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | | | | | | | | |
Collapse
|
14
|
Chang KM, Chen SH, Kuo CJ, Chang CK, Guo RT, Yang JM, Liang PH. Roles of amino acids in the Escherichia coli octaprenyl diphosphate synthase active site probed by structure-guided site-directed mutagenesis. Biochemistry 2012; 51:3412-9. [PMID: 22471615 DOI: 10.1021/bi300069j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Octaprenyl diphosphate synthase (OPPS) catalyzes consecutive condensation reactions of farnesyl diphosphate (FPP) with five molecules of isopentenyl diphosphates (IPP) to generate C(40) octaprenyl diphosphate, which constitutes the side chain of ubiquinone or menaquinone. To understand the roles of active site amino acids in substrate binding and catalysis, we conducted site-directed mutagenesis studies with Escherichia coli OPPS. In conclusion, D85 is the most important residue in the first DDXXD motif for both FPP and IPP binding through an H-bond network involving R93 and R94, respectively, whereas R94, K45, R48, and H77 are responsible for IPP binding by providing H-bonds and ionic interactions. K170 and T171 may stabilize the farnesyl carbocation intermediate to facilitate the reaction, whereas R93 and K225 may stabilize the catalytic base (MgPP(i)) for H(R) proton abstraction after IPP condensation. K225 and K235 in a flexible loop may interact with FPP when the enzyme becomes a closed conformation, which is therefore crucial for catalysis. Q208 is near the hydrophobic part of IPP and is important for IPP binding and catalysis.
Collapse
Affiliation(s)
- Keng-Ming Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | | | |
Collapse
|
15
|
Sasaki D, Fujihashi M, Okuyama N, Kobayashi Y, Noike M, Koyama T, Miki K. Crystal structure of heterodimeric hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 reveals that the small subunit is directly involved in the product chain length regulation. J Biol Chem 2010; 286:3729-40. [PMID: 21068379 DOI: 10.1074/jbc.m110.147991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 (Ml-HexPPs) is a heterooligomeric type trans-prenyltransferase catalyzing consecutive head-to-tail condensations of three molecules of isopentenyl diphosphates (C(5)) on a farnesyl diphosphate (FPP; C(15)) to form an (all-E) hexaprenyl diphosphate (HexPP; C(30)). Ml-HexPPs is known to function as a heterodimer of two different subunits, small and large subunits called HexA and HexB, respectively. Compared with homooligomeric trans-prenyltransferases, the molecular mechanism of heterooligomeric trans-prenyltransferases is not yet clearly understood, particularly with respect to the role of the small subunits lacking the catalytic motifs conserved in most known trans-prenyltransferases. We have determined the crystal structure of Ml-HexPPs both in the substrate-free form and in complex with 7,11-dimethyl-2,6,10-dodecatrien-1-yl diphosphate ammonium salt (3-DesMe-FPP), an analog of FPP. The structure of HexB is composed of mostly antiparallel α-helices joined by connecting loops. Two aspartate-rich motifs (designated the first and second aspartate-rich motifs) and the other characteristic motifs in HexB are located around the diphosphate part of 3-DesMe-FPP. Despite the very low amino acid sequence identity and the distinct polypeptide chain lengths between HexA and HexB, the structure of HexA is quite similar to that of HexB. The aliphatic tail of 3-DesMe-FPP is accommodated in a large hydrophobic cleft starting from HexB and penetrating to the inside of HexA. These structural features suggest that HexB catalyzes the condensation reactions and that HexA is directly involved in the product chain length control in cooperation with HexB.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Schmidt A, Wächtler B, Temp U, Krekling T, Séguin A, Gershenzon J. A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. PLANT PHYSIOLOGY 2010; 152:639-55. [PMID: 19939949 PMCID: PMC2815902 DOI: 10.1104/pp.109.144691] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 11/19/2009] [Indexed: 05/19/2023]
Abstract
The conifer Picea abies (Norway spruce) defends itself against herbivores and pathogens with a terpenoid-based oleoresin composed chiefly of monoterpenes (C(10)) and diterpenes (C(20)). An important group of enzymes in oleoresin biosynthesis are the short-chain isoprenyl diphosphate synthases that produce geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)), and geranylgeranyl diphosphate (C(20)) as precursors of different terpenoid classes. We isolated a gene from P. abies via a homology-based polymerase chain reaction approach that encodes a short-chain isoprenyl diphosphate synthase making an unusual mixture of two products, geranyl diphosphate (C(10)) and geranylgeranyl diphosphate (C(20)). This bifunctionality was confirmed by expression in both prokaryotic (Escherichia coli) and eukaryotic (P. abies embryogenic tissue) hosts. Thus, this isoprenyl diphosphate synthase, designated PaIDS1, could contribute to the biosynthesis of both major terpene types in P. abies oleoresin. In saplings, PaIDS1 transcript was restricted to wood and bark, and transcript level increased dramatically after methyl jasmonate treatment, which induces the formation of new (traumatic) resin ducts. Polyclonal antibodies localized the PaIDS1 protein to the epithelial cells surrounding the traumatic resin ducts. PaIDS1 has a close phylogenetic relationship to single-product conifer geranyl diphosphate and geranylgeranyl diphosphate synthases. Its catalytic properties and reaction mechanism resemble those of conifer geranylgeranyl diphosphate synthases, except that significant quantities of the intermediate geranyl diphosphate are released. Using site-directed mutagenesis and chimeras of PaIDS1 with single-product geranyl diphosphate and geranylgeranyl diphosphate synthases, specific amino acid residues were identified that alter the relative composition of geranyl to geranylgeranyl diphosphate.
Collapse
|
17
|
Functional characterization of LePGT1, a membrane-bound prenyltransferase involved in the geranylation of p-hydroxybenzoic acid. Biochem J 2009; 421:231-41. [PMID: 19392660 DOI: 10.1042/bj20081968] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The AS-PT (aromatic substrate prenyltransferase) family plays a critical role in the biosynthesis of important quinone compounds such as ubiquinone and plastoquinone, although biochemical characterizations of AS-PTs have rarely been carried out because most members are membrane-bound enzymes with multiple transmembrane alpha-helices. PPTs [PHB (p-hydroxybenzoic acid) prenyltransferases] are a large subfamily of AS-PTs involved in ubiquinone and naphthoquinone biosynthesis. LePGT1 [Lithospermum erythrorhizon PHB geranyltransferase] is the regulatory enzyme for the biosynthesis of shikonin, a naphthoquinone pigment, and was utilized in the present study as a representative of membrane-type AS-PTs to clarify the function of this enzyme family at the molecular level. Site-directed mutagenesis of LePGT1 with a yeast expression system indicated three out of six conserved aspartate residues to be critical to the enzymatic activity. A detailed kinetic analysis of mutant enzymes revealed the amino acid residues responsible for substrate binding were also identified. Contrary to ubiquinone biosynthetic PPTs, such as UBIA in Escherichia coli which accepts many prenyl substrates of different chain lengths, LePGT1 can utilize only geranyl diphosphate as its prenyl substrate. Thus the substrate specificity was analysed using chimeric enzymes derived from LePGT1 and UBIA. In vitro and in vivo analyses of the chimeras suggested that the determinant region for this specificity was within 130 amino acids of the N-terminal. A 3D (three-dimensional) molecular model of the substrate-binding site consistent with these biochemical findings was generated.
Collapse
|
18
|
Ranzer LK, Brück TB, Brück WM, Lopez JV, Kerr RG. A new prokaryotic farnesyldiphosphate synthase from the octocoral Eunicea fusca: differential display, inverse PCR, cloning, and characterization. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:62-73. [PMID: 18626710 DOI: 10.1007/s10126-008-9120-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 06/03/2008] [Indexed: 05/26/2023]
Abstract
We recently reported that the biosynthesis of fuscol, a diterpene from the octocoral Eunicea fusca, is inducible by the application of plant signaling factors such as salicylic acid to the coral's algal symbiont. In this study, an mRNA differential display approach has been employed with the dinoflagellate symbiont of this octocoral which has led to the isolation of a farnesyldiphosphate synthase (FPPS) that was transcriptionally activated under conditions that led to an induction of fuscol biosynthesis. Using a degenerate primer based on the aspartate-rich motifs found in prenylsynthases and a cassette ligation strategy, we report the cloning of the complete FPPS associated with the E. fusca dinoflagellate symbiont Symbiodinium sp. The protein exhibited the enzymatic properties associated with FPPS, namely, the synthesis of farnesyl diphosphate from geranyldiphosphate and isopentenyl diphosphate. The amino acid sequence of this FPPS has a high sequence similarity (82%) to known archaeal isoprenyl diphosphate synthases. This is the first description of a prokaryotic FPPS derived from a marine source.
Collapse
Affiliation(s)
- Llanie K Ranzer
- Center of Excellence in Biomedical and Marine Biotechnology, Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA
| | | | | | | | | |
Collapse
|
19
|
McAlpine JB, Banskota AH, Charan RD, Schlingmann G, Zazopoulos E, Piraee M, Janso J, Bernan VS, Aouidate M, Farnet CM, Feng X, Zhao Z, Carter GT. Biosynthesis of diazepinomicin/ECO-4601, a Micromonospora secondary metabolite with a novel ring system. JOURNAL OF NATURAL PRODUCTS 2008; 71:1585-1590. [PMID: 18722414 DOI: 10.1021/np800376n] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The novel microbial metabolite diazepinomicin/ECO-4601 (1) has a unique tricyclic dibenzodiazepinone core, which was unprecedented among microbial metabolites. Labeled feeding experiments indicated that the carbocyclic ring and the ring nitrogen of tryptophan could be incorporated via degradation to the 3-hydroxyanthranilic acid, forming ring A and the nonamide nitrogen of 1. Genomic analysis of the biosynthetic locus indicated that the farnesyl side chain was mevalonate derived, the 3-hydroxyanthranilic acid moiety could be formed directly from chorismate, and the third ring was constructed via 3-amino-5-hydroxybenzoic acid. Successful incorporation of 4,6-D2-3-hydroxyanthranilic acid into ring A of 1 via feeding experiments supports the genetic analysis and the allocation of the locus to this biosynthesis. These studies highlight the enzymatic complexity needed to produce this structural type, which is rare in nature.
Collapse
Affiliation(s)
- James B McAlpine
- Thallion Pharmaceuticals Inc., 7150 Alexander-Fleming, Montréal, Québec, H4S 2C8, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Al-Dabbagh B, Henry X, El Ghachi M, Auger G, Blanot D, Parquet C, Mengin-Lecreulx D, Bouhss A. Active site mapping of MraY, a member of the polyprenyl-phosphate N-acetylhexosamine 1-phosphate transferase superfamily, catalyzing the first membrane step of peptidoglycan biosynthesis. Biochemistry 2008; 47:8919-28. [PMID: 18672909 DOI: 10.1021/bi8006274] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The MraY transferase is an integral membrane protein that catalyzes an essential step of peptidoglycan biosynthesis, namely the transfer of the phospho-N-acetylmuramoyl-pentapeptide motif onto the undecaprenyl phosphate carrier lipid. It belongs to a large superfamily of eukaryotic and prokaryotic prenyl sugar transferases. No 3D structure has been reported for any member of this superfamily, and to date MraY is the only protein that has been successfully purified to homogeneity. Nineteen polar residues located in the five cytoplasmic segments of MraY appeared as invariants in the sequences of MraY orthologues. A certain number of these invariant residues were found to be conserved in the whole superfamily. To assess the importance of these residues in the catalytic process, site-directed mutagenesis was performed using the Bacillus subtilis MraY as a model. Fourteen residues were shown to be essential for MraY activity by an in vivo functional complementation assay using a constructed conditional mraY mutant strain. The corresponding mutant proteins were purified and biochemically characterized. None of these mutations did significantly affect the binding of the nucleotidic and lipidic substrates, but the k cat was dramatically reduced in almost all cases. The important residues for activity therefore appeared to be distributed in all the cytoplasmic segments, indicating that these five regions contribute to the structure of the catalytic site. Our data show that the D98 residue that is invariant in the whole superfamily should be involved in the deprotonation of the lipid substrate during the catalytic process.
Collapse
Affiliation(s)
- Bayan Al-Dabbagh
- Univ Paris-Sud, UMR 8619, Institut de Biochimie et de Biophysique Moleculaire et Cellulaire, Bat. 430, Orsay, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lewis MJ, Prosser IM, Mohib A, Field LM. Cloning and characterisation of a prenyltransferase from the aphid Myzus persicae with potential involvement in alarm pheromone biosynthesis. INSECT MOLECULAR BIOLOGY 2008; 17:437-443. [PMID: 18651925 DOI: 10.1111/j.1365-2583.2008.00815.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The majority of aphid species release an alarm pheromone with the most common component being the sesquiterpene (E)-beta-farnesene, sometimes accompanied by other sesquiterpenes or monoterpenes. The genes/enzymes involved in the production of these compounds have not been identified in aphids although some components of isoprenoid biosynthesis have been identified in other insect species. Here we report the cloning, expression and characterisation of a prenyltransferase from the aphid Myzus persicae which can act as a farnesyl pyrophosphate synthase or a geranyl pyrophosphate synthase to produce both sesquiterpenes and monoterpenes and hence could be responsible for the biosynthesis of the observed components of the alarm pheromones. In addition, the enzyme can utilise geranyl pyrophosphate to produce farnesyl pyrophosphate showing that the synthesis of the latter involves the sequential condensation of isoprenyl pyrophosphate units.
Collapse
Affiliation(s)
- M J Lewis
- Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | | | | | | |
Collapse
|
22
|
Molecular cloning, characterization, and differential expression of a farnesyl-diphosphate synthase gene from the basidiomycetous fungus Ganoderma lucidum. Biosci Biotechnol Biochem 2008; 72:1571-9. [PMID: 18540102 DOI: 10.1271/bbb.80067] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A farnesyl-diphosphate synthase gene, designated GlFPS, was isolated from a triterpene-producing basidiomycetous fungus, Ganoderma lucidum. The GlFPS cDNA was found to contain an open reading frame of 1,083 bp, encoding a protein of 360 amino acids with a calculated molecular mass of 41.27 kDa. The deduced amino acid sequence of the GlFPS cDNA exhibited a high homology with other fungal FPS genes, and contained four conserved domains. Phylogenetic analysis showed that GlFPS belonged to the basidiomycete FPS group. Competitive PCR revealed that GlFPS was constitutively expressed in the mycelium growth stage, whereas the transcripts of GlFPS accumulated to high levels rapidly during the process of mushroom primordia. Treatment of mycelia with exogenous methyl jasmonate also caused a large accumulation of GlFPS mRNA. Subsequently, promoter analysis indicated that the 5' upstream region of GlFPS possessed various potential regulatory elements associated with physiological and environmental factors. Functional complementation of GlFPS in an ERG20-disrupted yeast strain indicated that the cloned cDNA encoded a farnesyl-diphosphate synthase.
Collapse
|
23
|
Saikia S, Nicholson MJ, Young C, Parker EJ, Scott B. The genetic basis for indole-diterpene chemical diversity in filamentous fungi. ACTA ACUST UNITED AC 2008; 112:184-99. [DOI: 10.1016/j.mycres.2007.06.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/24/2007] [Accepted: 06/19/2007] [Indexed: 10/23/2022]
|
24
|
Lehrer J, Vigeant KA, Tatar LD, Valvano MA. Functional characterization and membrane topology of Escherichia coli WecA, a sugar-phosphate transferase initiating the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide. J Bacteriol 2007; 189:2618-28. [PMID: 17237164 PMCID: PMC1855806 DOI: 10.1128/jb.01905-06] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 01/15/2007] [Indexed: 11/20/2022] Open
Abstract
WecA is an integral membrane protein that initiates the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide (LPS) by catalyzing the transfer of N-acetylglucosamine (GlcNAc)-1-phosphate onto undecaprenyl phosphate (Und-P) to form Und-P-P-GlcNAc. WecA belongs to a large family of eukaryotic and prokaryotic prenyl sugar transferases. Conserved aspartic acids in putative cytoplasmic loops 2 (Asp90 and Asp91) and 3 (Asp156 and Asp159) were targeted for replacement mutagenesis with either glutamic acid or asparagine. We examined the ability of each mutant protein to complement O-antigen LPS synthesis in a wecA-deficient strain and also determined the steady-state kinetic parameters of the mutant proteins in an in vitro transfer assay. Apparent K(m) and V(max) values for UDP-GlcNAc, Mg(2+), and Mn(2+) suggest that Asp156 is required for catalysis, while Asp91 appears to interact preferentially with Mg(2+), possibly playing a role in orienting the substrates. Topological analysis using the substituted cysteine accessibility method demonstrated the cytosolic location of Asp90, Asp91, and Asp156 and provided a more refined overall topological map of WecA. Also, we show that cells expressing a WecA derivative C terminally fused with the green fluorescent protein exhibited a punctate distribution of fluorescence on the bacterial surface, suggesting that WecA localizes to discrete regions in the bacterial plasma membrane.
Collapse
Affiliation(s)
- Jason Lehrer
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | | | | | | |
Collapse
|
25
|
Green S, Friel EN, Matich A, Beuning LL, Cooney JM, Rowan DD, MacRae E. Unusual features of a recombinant apple alpha-farnesene synthase. PHYTOCHEMISTRY 2007; 68:176-88. [PMID: 17140613 DOI: 10.1016/j.phytochem.2006.10.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/18/2006] [Accepted: 10/19/2006] [Indexed: 05/06/2023]
Abstract
A recombinant alpha-farnesene synthase from apple (Malus x domestica), expressed in Escherichia coli, showed features not previously reported. Activity was enhanced 5-fold by K(+) and all four isomers of alpha-farnesene, as well as beta-farnesene, were produced from an isomeric mixture of farnesyl diphosphate (FDP). Monoterpenes, linalool, (Z)- and (E)-beta-ocimene and beta-myrcene, were synthesised from geranyl diphosphate (GDP), but at 18% of the optimised rate for alpha-farnesene synthesis from FDP. Addition of K(+) reduced monoterpene synthase activity. The enzyme also produced alpha-farnesene by a reaction involving coupling of GDP and isoprenyl diphosphate but at <1% of the rate with FDP. Mutagenesis of active site aspartate residues removed sesquiterpene, monoterpene and prenyltransferase activities suggesting catalysis through the same active site. Phylogenetic analysis clusters this enzyme with isoprene synthases rather than with other sesquiterpene synthases, suggesting that it has evolved differently from other plant sesquiterpene synthases. This is the first demonstration of a sesquiterpene synthase possessing prenyltransferase activity.
Collapse
Affiliation(s)
- Sol Green
- HortResearch, Mt Albert Research Centre, Horticultural and Food Research Institute of New Zealand, Private Bag 92169, Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
26
|
Poznański J, Szkopinska A. Precise bacterial polyprenol length control fails inSaccharomyces cerevisiae. Biopolymers 2007; 86:155-64. [PMID: 17345630 DOI: 10.1002/bip.20715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A comparison of amino acid sequences of yeast Rer2p and Srt1p Z-prenyltransferases shows that the spatial organization of their substrate tunnels agrees with that determined by X-ray for the E. coli undecaprenyl diphosphate synthase (UPPs). The observed trend in the maxima of product length distribution shifted from C(55) in UPPs to C(80) in Rer2p and to C(110) in Srt1p. This suggests a significant increase in the size of the enzyme hydrophobic tunnel from approximately 1000 A(3) of E. coli UPPs to approximately 1300 A(3) required to accommodate C(80) in Rer2p and to 1700 A(3) for C(110) in Srt1p. Moreover, Srt1p products reaching C(290) indicate the failure of a strict bacterial-like chain length control. On the basis of E. coli UPPs crystallographic structure the yeast Rer2p model was constructed. In the model three amino acid residues inserted into the sequence corresponding to the "floor" region of the tunnel extends the bottom loop what results in the required increase of the tunnel volume. Moreover, thermal fluctuations of this loop occasionally create a hole in the tunnel floor, making escape of polyprenol omega end out of the tunnel possible what switches off the control mechanism of product length thereby allowing a practically unlimited elongation process leading to an exponential distribution of longer chain polyprenols.
Collapse
Affiliation(s)
- Jarosław Poznański
- Institute of Biochemistry and Biophysics PAS, ul. Pawinskiego 5a, 02-106 Warszawa, Poland
| | | |
Collapse
|
27
|
Tonhosolo R, D'Alexandri F, Genta F, Wunderlich G, Gozzo F, Eberlin M, Peres V, Kimura E, Katzin A. Identification, molecular cloning and functional characterization of an octaprenyl pyrophosphate synthase in intra-erythrocytic stages of Plasmodium falciparum. Biochem J 2006; 392:117-26. [PMID: 15984931 PMCID: PMC1317670 DOI: 10.1042/bj20050441] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Isoprenoids play important roles in all living organisms as components of structural cholesterol, steroid hormones in mammals, carotenoids in plants, and ubiquinones. Significant differences occur in the length of the isoprenic side chains of ubiquinone between different organisms, suggesting that different enzymes are involved in the synthesis of these side chains. Whereas in Plasmodium falciparum the isoprenic side chains of ubiquinone contain 7-9 isoprenic units, 10-unit side chains are found in humans. In a search for the P. falciparum enzyme responsible for the biosynthesis of isoprenic side chains attached to the benzoquinone ring of ubiquinones, we cloned and expressed a putative polyprenyl synthase. Polyclonal antibodies raised against the corresponding recombinant protein confirmed the presence of the native protein in trophozoite and schizont stages of P. falciparum. The recombinant protein, as well as P. falciparum extracts, showed an octaprenyl pyrophosphate synthase activity, with the formation of a polyisoprenoid with eight isoprenic units, as detected by reverse-phase HPLC and reverse-phase TLC, and confirmed by electrospray ionization and tandem MS analysis. The recombinant and native versions of the enzyme had similar Michaelis constants with the substrates isopentenyl pyrophosphate and farnesyl pyrophosphate. The recombinant enzyme could be competitively inhibited in the presence of the terpene nerolidol. This is the first report that directly demonstrates an octaprenyl pyrophosphate synthase activity in parasitic protozoa. Given the rather low similarity of the P. falciparum enzyme to its human counterpart, decaprenyl pyrophosphate synthase, we suggest that the identified enzyme and its recombinant version could be exploited in the screening of novel drugs.
Collapse
Affiliation(s)
- Renata Tonhosolo
- *Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Fabio L. D'Alexandri
- *Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Fernando A. Genta
- †Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Gerhard Wunderlich
- *Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Fabio C. Gozzo
- ‡Thomson Mass Spectrometry Laboratory, Institute of Chemistry, State University of Campinas, 13083-970 Campinas, Brazil
| | - Marcos N. Eberlin
- ‡Thomson Mass Spectrometry Laboratory, Institute of Chemistry, State University of Campinas, 13083-970 Campinas, Brazil
| | - Valnice J. Peres
- *Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Emilia A. Kimura
- *Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Alejandro M. Katzin
- *Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
- To whom correspondence should be addressed (email )
| |
Collapse
|
28
|
Malonek S, Rojas MC, Hedden P, Hopkins P, Tudzynski B. Restoration of gibberellin production in Fusarium proliferatum by functional complementation of enzymatic blocks. Appl Environ Microbiol 2005; 71:6014-25. [PMID: 16204516 PMCID: PMC1265966 DOI: 10.1128/aem.71.10.6014-6025.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nine biological species, or mating populations (MPs), denoted by letters A to I, and at least 29 anamorphic Fusarium species have been identified within the Gibberella fujikuroi species complex. Members of this species complex are the only species of the genus Fusarium that contain the gibberellin (GA) biosynthetic gene cluster or at least parts of it. However, the ability of fusaria to produce GAs is so far restricted to Fusarium fujikuroi, although at least six other MPs contain all the genes of the GA biosynthetic gene cluster. Members of Fusarium proliferatum, the closest related species, have lost the ability to produce GAs as a result of the accumulation of several mutations in the coding and 5' noncoding regions of genes P450-4 and P450-1, both encoding cytochrome P450 monooxygenases, resulting in metabolic blocks at the early stages of GA biosynthesis. In this study, we have determined additional enzymatic blocks at the first specific steps in the GA biosynthesis pathway of F. proliferatum: the synthesis of geranylgeranyl diphosphate and the synthesis of ent-kaurene. Complementation of these enzymatic blocks by transferring the corresponding genes from GA-producing F. fujikuroi to F. proliferatum resulted in the restoration of GA production. We discuss the reasons for Fusarium species outside the G. fujikuroi species complex having no GA biosynthetic genes, whereas species distantly related to Fusarium, e.g., Sphaceloma spp. and Phaeosphaeria spp., produce GAs.
Collapse
Affiliation(s)
- S Malonek
- Westfälische Wilhelms Universität Münster, Institut für Botanik, Schlossgarten 3, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
29
|
Köllner TG, O'Maille PE, Gatto N, Boland W, Gershenzon J, Degenhardt J. Two pockets in the active site of maize sesquiterpene synthase TPS4 carry out sequential parts of the reaction scheme resulting in multiple products. Arch Biochem Biophys 2005; 448:83-92. [PMID: 16297849 DOI: 10.1016/j.abb.2005.10.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 10/12/2005] [Accepted: 10/13/2005] [Indexed: 11/19/2022]
Abstract
One of the most interesting features of terpene synthases is their ability to form multiple products with different carbon skeletons from a single prenyl diphosphate substrate. The maize sesquiterpene synthase TPS4, for example, produces a mixture of 14 different olefinic sesquiterpenes. To understand the complex TPS4 reaction mechanism, we modeled the active site cavity and conducted docking simulations with the substrate farnesyl diphosphate, several predicted carbocation intermediates, and the final reaction products. The model suggests that discrete steps of the reaction sequence are controlled by two different active site pockets, with the conformational change of the bisabolyl cation intermediate causing a shift from one pocket to the other. Site-directed mutagenesis and measurements of mutant activity in the presence of (E,E)- and (Z,E)-farnesyl diphosphate as substrates were employed to test this model. Amino acid alterations in pocket I indicated that early steps of the catalytic process up to the formation of the monocyclic bisabolyl cation are probably localized in this compartment. Mutations in pocket II primarily inhibited the formation of bicylic compounds, suggesting that secondary cyclizations of the bisabolyl cation are catalyzed in pocket II.
Collapse
Affiliation(s)
- Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, D-07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Guo RT, Kuo CJ, Ko TP, Chou CC, Liang PH, Wang AHJ. A molecular ruler for chain elongation catalyzed by octaprenyl pyrophosphate synthase and its structure-based engineering to produce unprecedented long chain trans-prenyl products. Biochemistry 2004; 43:7678-86. [PMID: 15196010 DOI: 10.1021/bi036336d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Octaprenyl pyrophosphate synthase (OPPs) catalyzes consecutive condensation reactions of farnesyl pyrophosphate (FPP) with five molecules of isopentenyl pyrophosphate (IPP) to generate C(40) octaprenyl pyrophosphate (OPP) which constitutes the side chain of menaquinone. We have previously reported the X-ray structure of OPPs from Thermotoga maritima, which is composed entirely of alpha-helices joined by connecting loops and is arranged with nine core helices around a large central cavity [Guo, R. T., Kuo, C. J., Ko, T. P., Chou, C. C., Shr, R. L., Liang, P. H., and Wang, A. H.-J. (2004) J. Biol. Chem. 279, 4903-4912]. A76 and S77 are located on top of the active site close to where FPP is bound. A76Y and A76Y/S77F OPPs mutants produce C(20), indicating that the substituted larger residues interfere with the substrate chain elongation. Surprisingly, the A76Y/S77F mutant synthesizes a larger amount of C(20) than the A76Y mutant. In the crystal structure of the A76Y/S77F mutant, F77 is pushed away by Y76, thereby creating more space between those two large amino acids to accommodate the C(20) product. A large F132 residue at the bottom of the tunnel-shaped active site serves as the "floor" and determines the final product chain length. The substitution of F132 with a small Ala, thereby removing the blockade, led to the synthesis of a C(50) product larger than that produced by the wild-type enzyme. On the basis of the structure, we have sequentially mutated the large amino acids, including F132, L128, I123, and D62, to Ala underneath the tunnel. The products of the F132A/L128A/I123A/D62A mutant reach C(95), beyond the largest chain length generated by all known trans-prenyltransferases. Further modifications of the enzyme reaction conditions, including new IPP derivatives, may allow the preparation of high-molecular weight polyprenyl products resembling the rubber molecule.
Collapse
Affiliation(s)
- Rey-Ting Guo
- Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | |
Collapse
|
31
|
Felicetti B, Cane DE. Aristolochene Synthase: Mechanistic Analysis of Active Site Residues by Site-Directed Mutagenesis. J Am Chem Soc 2004; 126:7212-21. [PMID: 15186158 DOI: 10.1021/ja0499593] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Incubation of farnesyl diphosphate (1) with Penicillium roqueforti aristolochene synthase yielded (+)-aristolochene (4), accompanied by minor quantities of the proposed intermediate (S)-(-)germacrene A (2) and the side-product (-)-valencene (5) in a 94:4:2 ratio. By contrast, the closely related aristolochene synthase from Aspergillus terreus cyclized farnesyl diphosphate only to (+)-aristolochene (4). Site-directed mutagenesis of amino acid residues in two highly conserved Mg(2+)-binding domains led in most cases to reductions in both k(cat) and k(cat)/K(m) as well as increases in the proportion of (S)-(-)germacrene A (2), with the E252Q mutant of the P. roqueforti aristolochene synthase producing only (-)-2. The P. roqueforti D115N, N244L, and S248A/E252D mutants were inactive, as was the A. terreus mutant E227Q. The P. roqueforti mutant Y92F displayed a 100-fold reduction in k(cat) that was offset by a 50-fold decrease in K(m), resulting in a relatively minor 2-fold decrease in catalytic efficiency, k(cat)/K(m). The finding that Y92F produced (+)-aristolochene (4) as 81% of the product, accompanied by 7% 5 and 12% 2, rules out Tyr-92 as the active site Lewis acid that is responsible for protonation of the germacrene A intermediate in the formation of aristolochene (4).
Collapse
Affiliation(s)
- Brunella Felicetti
- Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108, USA
| | | |
Collapse
|
32
|
Lloyd AJ, Brandish PE, Gilbey AM, Bugg TDH. Phospho-N-acetyl-muramyl-pentapeptide translocase from Escherichia coli: catalytic role of conserved aspartic acid residues. J Bacteriol 2004; 186:1747-57. [PMID: 14996806 PMCID: PMC355978 DOI: 10.1128/jb.186.6.1747-1757.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospho-N-acetyl-muramyl-pentapeptide translocase (translocase 1) catalyzes the first of a sequence of lipid-linked steps that ultimately assemble the peptidoglycan layer of the bacterial cell wall. This essential enzyme is the target of several natural product antibiotics and has recently been the focus of antimicrobial drug discovery programs. The catalytic mechanism of translocase 1 is believed to proceed via a covalent intermediate formed between phospho-N-acetyl-muramyl-pentapeptide and a nucleophilic amino acid residue. Amino acid sequence alignments of the translocase 1 family and members of the related transmembrane phosphosugar transferase superfamily revealed only three conserved residues that possess nucleophilic side chains: the aspartic acid residues D115, D116, and D267. Here we report the expression and partial purification of Escherichia coli translocase 1 as a C-terminal hexahistidine (C-His6) fusion protein. Three enzymes with the site-directed mutations D115N, D116N, and D267N were constructed, expressed, and purified as C-His6 fusions. Enzymatic analysis established that all three mutations eliminated translocase 1 activity, and this finding verified the essential role of these residues. By analogy with the structural environment of the double aspartate motif found in prenyl transferases, we propose a model whereby D115 and D116 chelate a magnesium ion that coordinates with the pyrophosphate bridge of the UDP-N-acetyl-muramyl-pentapeptide substrate and in which D267 therefore fulfills the role of the translocase 1 active-site nucleophile.
Collapse
Affiliation(s)
- Adrian J Lloyd
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | | | | | | |
Collapse
|
33
|
Dhiman RK, Schulbach MC, Mahapatra S, Baulard AR, Vissa V, Brennan PJ, Crick DC. Identification of a novel class of omega,E,E-farnesyl diphosphate synthase from Mycobacterium tuberculosis. J Lipid Res 2004; 45:1140-7. [PMID: 15060088 DOI: 10.1194/jlr.m400047-jlr200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified an omega,E,E-farnesyl diphosphate (omega,E,E-FPP) synthase, encoded by the open reading frame Rv3398c, from Mycobacterium tuberculosis that is unique among reported FPP synthases in that it does not contain the type I (eukaryotic) or the type II (eubacterial) omega,E,E-FPP synthase signature motif. Instead, it has a structural motif similar to that of the type I geranylgeranyl diphosphate synthase found in Archaea. Thus, the enzyme represents a novel class of omega,E,E-FPP synthase. Rv3398c was cloned from the M. tuberculosis H37Rv genome and expressed in Mycobacterium smegmatis using a new mycobacterial expression vector (pVV2) that encodes an in-frame N-terminal affinity tag fusion with the protein of interest. The fusion protein was well expressed and could be purified to near homogeneity, allowing facile kinetic analysis of recombinant Rv3398c. Of the potential allylic substrates tested, including dimethylallyl diphosphate, only geranyl diphosphate served as an acceptor for isopentenyl diphosphate. The enzyme has an absolute requirement for divalent cation and has a K(m) of 43 microM for isopentenyl diphosphate and 9.8 microM for geranyl diphosphate and is reported to be essential for the viability of M. tuberculosis.
Collapse
Affiliation(s)
- Rakesh K Dhiman
- Department of Microbiology, Colorado State University, Fort Collins, CO 80523-1677, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Burke C, Klettke K, Croteau R. Heteromeric geranyl diphosphate synthase from mint: construction of a functional fusion protein and inhibition by bisphosphonate substrate analogs. Arch Biochem Biophys 2004; 422:52-60. [PMID: 14725857 DOI: 10.1016/j.abb.2003.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Geranyl diphosphate synthase catalyzes the condensation of dimethylallyl diphosphate (C(5)) with isopentenyl diphosphate (C(5)) to produce geranyl diphosphate (C(10)), the essential precursor of monoterpenes. The enzyme from peppermint and spearmint (Menthaxpiperita and Mentha spicata, respectively) functions as a heterodimer or heterotetramer consisting of a 40kDa subunit and 33kDa subunit. The DNAs encoding each subunit were joined with different sized linkers and in both possible orders, and expressed in Escherichia coli to yield the corresponding fused protein. The properties of the recombinant fused version, in which the small subunit was followed by the large subunit with a 10 amino acid linker, resembled those of the native heteromeric enzyme in kinetics, product chain-length specificity, and architecture, and this form thus provided a suitable single gene transcript for biotechnological purposes. Bisphosphonate substrate analogs of the type that inhibit farnesyl diphosphate synthase (C(15)) and geranylgeranyl diphosphate synthase (C(20)) also inhibited the fused geranyl diphosphate synthase, apparently by interacting at both the allylic and homoallylic co-substrate binding sites. The results of inhibition studies, along with the previously established role of the small subunit and related mutagenesis experiments, suggest that geranyl diphosphate synthase employs a different mechanism for chain-length determination than do other short-chain prenyltransferases.
Collapse
Affiliation(s)
- Charles Burke
- Institute of Biological Chemistry, Graduate Program in Plant Physiology, Washington State University, Pullman, WA 99164-6340, USA
| | | | | |
Collapse
|
35
|
Guo RT, Kuo CJ, Chou CC, Ko TP, Shr HL, Liang PH, Wang AHJ. Crystal Structure of Octaprenyl Pyrophosphate Synthase from Hyperthermophilic Thermotoga maritima and Mechanism of Product Chain Length Determination. J Biol Chem 2004; 279:4903-12. [PMID: 14617622 DOI: 10.1074/jbc.m310161200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Octaprenyl pyrophosphate synthase (OPPs) catalyzes consecutive condensation reactions of farnesyl pyrophosphate (FPP) with isopentenyl pyrophosphate (IPP) to generate C40 octaprenyl pyrophosphate (OPP), which constitutes the side chain of bacterial ubiquinone or menaquinone. In this study, the first structure of long chain C40-OPPs from Thermotoga maritima has been determined to 2.28-A resolution. OPPs is composed entirely of alpha-helices joined by connecting loops and is arranged with nine core helices around a large central cavity. An elongated hydrophobic tunnel between D and F alpha-helices contains two DDXXD motifs on the top for substrate binding and is occupied at the bottom with two large residues Phe-52 and Phe-132. The products of the mutant F132A OPPs are predominantly C50, longer than the C40 synthesized by the wild-type and F52A mutant OPPs, suggesting that Phe-132 is the key residue for determining the product chain length. Ala-76 and Ser-77 located close to the FPP binding site and Val-73 positioned further down the tunnel were individually mutated to larger amino acids. A76Y and S77F mainly produce C20 indicating that the mutated large residues in the vicinity of the FPP site limit the substrate chain elongation. Ala-76 is the fifth amino acid upstream from the first DDXXD motif on helix D of OPPs, and its corresponding amino acid in FPPs is Tyr. In contrast, V73Y mutation led to additional accumulation of C30 intermediate. The new structure of the trans-type OPPs, together with the recently determined cis-type UPPs, significantly extends our understanding on the biosynthesis of long chain polyprenyl molecules.
Collapse
Affiliation(s)
- Rey-Ting Guo
- Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|
36
|
Fujikura K, Zhang YW, Fujihashi M, Miki K, Koyama T. Mutational analysis of allylic substrate binding site of Micrococcus luteus B-P 26 undecaprenyl diphosphate synthase. Biochemistry 2003; 42:4035-41. [PMID: 12680756 DOI: 10.1021/bi027236v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Undecaprenyl diphosphate (UPP) synthase catalyzes the sequential cis-condensation of isopentenyl diphosphate (IPP) onto (E,E)-farnesyl diphosphate (FPP). In our previous reports on the Micrococcus luteus B-P 26 UPP synthase, we have shown that the conserved residues in the disordered region from Ser-74 to Val-85 is crucial for the binding of FPP and the catalytic function [Fujikura, K., et al. (2000) J. Biochem. (Tokyo) 128, 917-922] and the existence of a structural P-loop motif for the FPP binding site [Fujihashi, M., et al. (2001) Proc. Natl. Acad. Sci. U.S.A., 98, 4337-4342]. To elucidate the allylic substrate binding site in more detail, we prepared eight mutant enzymes and examined their kinetic behavior. The mutant with respect to the two complementarily conserved Arg residues among the structural P-loop motif, G32R-R42G, retained the activity and showed product distribution pattern exactly similar to that of the wild-type, indicating that the complementarily conserved Arg is important for maintaining the catalytic function. Substitutions of Asp-29, Arg-33, or Arg-80 with Ala resulted in a large loss of enzyme activity, suggesting that these residues are essential for catalytic function. However, the K(m) values of these mutant enzymes for Z-GGPP, which is the first intermediate during the enzymatic cis-condensations of IPP onto FPP, were only moderately different or little changed from those of the wild type. These results suggest that the binding site for the intermediate Z-GGPP having a cis double bond is different to that for the intrinsic allylic substrate, FPP, whose diphosphate moiety is recognized by the structural P-loop.
Collapse
Affiliation(s)
- Keitaro Fujikura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | | | |
Collapse
|
37
|
Schnee C, Köllner TG, Gershenzon J, Degenhardt J. The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-beta-farnesene, (E)-nerolidol, and (E,E)-farnesol after herbivore damage. PLANT PHYSIOLOGY 2002; 130:2049-60. [PMID: 12481088 PMCID: PMC166716 DOI: 10.1104/pp.008326] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2002] [Revised: 05/31/2002] [Accepted: 08/05/2002] [Indexed: 05/18/2023]
Abstract
Maize (Zea mays) emits a mixture of volatile compounds upon attack by the Egyptian cotton leafworm (Spodoptera littoralis). These substances, primarily mono- and sesquiterpenes, are used by parasitic wasps to locate the lepidopteran larvae, which are their natural hosts. This interaction among plant, lepidopteran larvae, and hymenopteran parasitoids benefits the plant and has been termed indirect defense. The committed step in the biosynthesis of the different skeletal types of mono- and sesquiterpenes is catalyzed by terpene synthases, a class of enzymes that forms a large variety of mono- and sesquiterpene products from prenyl diphosphate precursors. We isolated a terpene synthase gene, terpene synthase 1 (tps1), from maize that exhibits only a low degree of sequence identity to previously identified terpene synthases. Upon expression in a bacterial system, the encoded enzyme produced the acyclic sesquiterpenes, (E)-beta-farnesene, (E,E)-farnesol, and (3R)-(E)-nerolidol, the last an intermediate in the formation of (3E)-4,8-dimethyl-1,3,7-nonatriene. Both (E)-beta-farnesene and (3E)-4,8-dimethyl-1,3,7-nonatriene are prominent compounds of the maize volatile blend that is emitted after herbivore damage. The biochemical characteristics of the encoded enzyme are similar to those of terpene synthases from both gymnosperms and dicotyledonous angiosperms, suggesting that catalysis involves a similar electrophilic reaction mechanism. The transcript level of tps1 in the maize cv B73 was elevated after herbivory, mechanical damage, and treatment with elicitors. In contrast, the increase in the transcript level of the tps1 gene or gene homolog in the maize cv Delprim after herbivory was less pronounced, suggesting that the regulation of terpene synthase expression may vary among maize varieties.
Collapse
MESH Headings
- Alkyl and Aryl Transferases/genetics
- Alkyl and Aryl Transferases/metabolism
- Amino Acid Sequence
- Animals
- Catalysis/drug effects
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Farnesol/chemistry
- Farnesol/metabolism
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Immunity, Innate/genetics
- Metals/pharmacology
- Molecular Sequence Data
- Oils, Volatile/chemistry
- Oils, Volatile/metabolism
- Plant Diseases/genetics
- Plant Diseases/parasitology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Pyrophosphatases/genetics
- Pyrophosphatases/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sesquiterpenes/chemistry
- Sesquiterpenes/metabolism
- Spodoptera/growth & development
- Stress, Mechanical
- Transcription Factors/genetics
- Transcription Factors/physiology
- Zea mays/genetics
- Zea mays/parasitology
Collapse
Affiliation(s)
- Christiane Schnee
- Max-Planck-Institute for Chemical Ecology, Winzerlaer Strasse 10, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
38
|
Burke C, Croteau R. Geranyl diphosphate synthase from Abies grandis: cDNA isolation, functional expression, and characterization. Arch Biochem Biophys 2002; 405:130-6. [PMID: 12176066 DOI: 10.1016/s0003-9861(02)00335-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Geranyl diphosphate synthase catalyzes the condensation of dimethylallyl diphosphate and isopentenyl diphosphate to generate geranyl diphosphate, the essential precursor of monoterpene biosynthesis. Using geranylgeranyl diphosphate synthase from Taxus canadensis as a hybridization probe, four full length cDNA clones, sharing high sequence identity to each other (>69%) and to the Taxus geranylgeranyl diphosphate synthase (>66%), were isolated from a grand fir (Abies grandis) cDNA library. When expressed in Escherichia coli, three of the recombinant enzymes produced geranyl diphosphate and one produced geranylgeranyl diphosphate as the dominant product when supplied with isopentenyl diphosphate and dimethylallyl diphosphate as cosubstrates. One enzyme (AgGPPS2) was confirmed as a specific geranyl diphosphate synthase, in that it accepted only dimethylallyl diphosphate as the allylic cosubstrate and it produced exclusively geranyl diphosphate as product, with a k(cat) of 1.8s(-1). Gel filtration experiments performed on the recombinant geranyl diphosphate synthases, in which the plastidial targeting sequences had been deleted, revealed that these enzymes are homodimers similar to other short-chain prenyltransferases but different from the heterotetrameric geranyl diphosphate synthase of mint.
Collapse
Affiliation(s)
- Charles Burke
- Institute of Biological Chemistry and Program in Plant Physiology, Washington State University, Pullman, Washington 99164-6340, USA
| | | |
Collapse
|
39
|
Seemann M, Zhai G, de Kraker JW, Paschall CM, Christianson DW, Cane DE. Pentalenene synthase. Analysis of active site residues by site-directed mutagenesis. J Am Chem Soc 2002; 124:7681-9. [PMID: 12083921 DOI: 10.1021/ja026058q] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Incubation of farnesyl diphosphate (1) with the W308F or W308F/H309F mutants of pentalenene synthase, an enzyme from Streptomyces UC5319, yielded pentalenene (2), accompanied by varying proportions of (+)-germacrene A (7) with relatively minor changes in k(cat) and k(cat)/K(m). By contrast, single H309 mutants gave rise to both (+)-germacrene A (7) and protoilludene (8) in addition to pentalenene (2). Mutation to glutamate of each of the three aspartate residues in the Mg(2+)-binding aspartate-rich domain, (80)DDLFD, resulted in reduction in the k(cat)/K(m) for farnesyl diphosphate and formation of varying proportions of pentalenene and (+)-germacrene A (7). Formation of (+)-germacrene A (7) by the various pentalenene synthase mutants is the result of a derailment of the natural anti-Markovnikov cyclization reaction, and not simply the consequence of trapping of a normally cryptic, carbocationic intermediate. Both the N219A and N219L mutants of pentalenene synthase were completely inactive, while the corresponding N219D mutant had a k(cat)/K(m) which was 3300-fold lower than that of the wild-type synthase, and produced a mixture of pentalenene (2) (91%) and the aberrant cyclization product beta-caryophyllene (9) (9%). Finally, the F77Y mutant had a k(cat)/K(m) which was reduced by 20-fold compared to that of the wild-type synthase.
Collapse
Affiliation(s)
- Myriam Seemann
- Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108, USA
| | | | | | | | | | | |
Collapse
|
40
|
Liang PH, Ko TP, Wang AHJ. Structure, mechanism and function of prenyltransferases. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3339-54. [PMID: 12135472 DOI: 10.1046/j.1432-1033.2002.03014.x] [Citation(s) in RCA: 319] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this review, we summarize recent progress in studying three main classes of prenyltransferases: (a) isoprenyl pyrophosphate synthases (IPPSs), which catalyze chain elongation of allylic pyrophosphate substrates via consecutive condensation reactions with isopentenyl pyrophosphate (IPP) to generate linear polymers with defined chain lengths; (b) protein prenyltransferases, which catalyze the transfer of an isoprenyl pyrophosphate (e.g. farnesyl pyrophosphate) to a protein or a peptide; (c) prenyltransferases, which catalyze the cyclization of isoprenyl pyrophosphates. The prenyltransferase products are widely distributed in nature and serve a variety of important biological functions. The catalytic mechanism deduced from the 3D structure and other biochemical studies of these prenyltransferases as well as how the protein functions are related to their reaction mechanism and structure are discussed. In the IPPS reaction, we focus on the mechanism that controls product chain length and the reaction kinetics of IPP condensation in the cis-type and trans-type enzymes. For protein prenyltransferases, the structures of Ras farnesyltransferase and Rab geranylgeranyltransferase are used to elucidate the reaction mechanism of this group of enzymes. For the enzymes involved in cyclic terpene biosynthesis, the structures and mechanisms of squalene cyclase, 5-epi-aristolochene synthase, pentalenene synthase, and trichodiene synthase are summarized.
Collapse
Affiliation(s)
- Po-Huang Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| | | | | |
Collapse
|
41
|
Little DB, Croteau RB. Alteration of product formation by directed mutagenesis and truncation of the multiple-product sesquiterpene synthases delta-selinene synthase and gamma-humulene synthase. Arch Biochem Biophys 2002; 402:120-35. [PMID: 12051690 DOI: 10.1016/s0003-9861(02)00068-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two recombinant sesquiterpene synthases from grand fir, delta-selinene synthase and gamma-humulene synthase, each produce more than 30 sesquiterpene olefins from the acyclic precursor farnesyl diphosphate. These enzymes contain a pair of DDxxD motifs, on opposite lips of the presumptive active site, which are thought to be involved in substrate binding and could promote multiple orientations of the substrate alkyl chain from which multiple families of cyclic olefins could derive. Mutagenesis of the first aspartate of either DDxxD motif resulted in depressed k(cat), with lesser effect on K(m), for delta-selinene synthase and afforded a much simpler product spectrum composed largely of monocyclic olefins. Identical alterations in gamma-humulene synthase produced similar kinetic effects with a simplified product spectrum of mostly acyclic and monocyclic olefins. Although impaired in product diversity, none of the mutant synthases lost entirely the capacity to generate complex structures. These results confirm the catalytic significance of the DDxxD motifs and imply that they also influence permitted modes of cyclization. Deletion of an N-terminal arginine pair in delta-selinene synthase (an element potentially involved in substrate isomerization) altered kinetics without substantially altering product outcome. Finally, mutation of an active-site tyrosine residue thought to play a role in proton exchange had little influence; however, substitution of a nearby active site aspartate dramatically altered kinetics and product outcome.
Collapse
Affiliation(s)
- Dawn B Little
- Institute of Biological Chemistry,Washington State University, Pullman, WA 99164-6340, USA
| | | |
Collapse
|
42
|
Savidge B, Weiss JD, Wong YHH, Lassner MW, Mitsky TA, Shewmaker CK, Post-Beittenmiller D, Valentin HE. Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. PLANT PHYSIOLOGY 2002; 129:321-32. [PMID: 12011362 PMCID: PMC155895 DOI: 10.1104/pp.010747] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2001] [Revised: 11/07/2001] [Accepted: 01/24/2002] [Indexed: 05/18/2023]
Abstract
Tocopherols, synthesized by photosynthetic organisms, are micronutrients with antioxidant properties that play important roles in animal and human nutrition. Because of these health benefits, there is considerable interest in identifying the genes involved in tocopherol biosynthesis to allow transgenic alteration of both tocopherol levels and composition in agricultural crops. Tocopherols are generated from the condensation of phytyldiphosphate and homogentisic acid (HGA), followed by cyclization and methylation reactions. Homogentisate phytyltransferase (HPT) performs the first committed step in this pathway, the phytylation of HGA. In this study, bioinformatics techniques were used to identify candidate genes, slr1736 and HPT1, that encode HPT from Synechocystis sp. PCC 6803 and Arabidopsis, respectively. These two genes encode putative membrane-bound proteins, and contain amino acid residues highly conserved with other prenyltransferases of the aromatic type. A Synechocystis sp. PCC 6803 slr1736 null mutant obtained by insertional inactivation did not accumulate tocopherols, and was rescued by the Arabidopsis HPT1 ortholog. The membrane fraction of wild-type Synechocystis sp. PCC 6803 was capable of catalyzing the phytylation of HGA, whereas the membrane fraction from the slr1736 null mutant was not. The microsomal membrane fraction of baculovirus-infected insect cells expressing the Synechocystis sp. PCC 6803 slr1736 were also able to perform the phytylation reaction, verifying HPT activity of the protein encoded by this gene. In addition, evidence that antisense expression of HPT1 in Arabidopsis resulted in reduced seed tocopherol levels, whereas seed-specific sense expression resulted in increased seed tocopherol levels, is presented.
Collapse
Affiliation(s)
- Beth Savidge
- Monsanto Company, Calgene Campus, 1920 Fifth Street, Davis, California 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Maruyama T, Saeki D, Ito M, Honda G. Molecular cloning, functional expression and characterization of d-limonene synthase from Agastache rugosa. Biol Pharm Bull 2002; 25:661-5. [PMID: 12033511 DOI: 10.1248/bpb.25.661] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned the gene of d-limonene synthase (ArLMS) from Agastache rugosa (Labiatae). The function of ArLMS was elucidated by the preparation of recombinant protein and subsequent enzyme assay. ArLMS consisted of 2077 nucleotides including 1839 bp of coding sequence that encodes a protein of 613 amino acids. This protein has a 60 kDa molecular weight, which is identical to that of d-limonene synthase from Schizonepeta tenuifolia (Labiatae). The deduced amino acid sequence of ArLMS shows high homology with the known d- and l-limonene synthases from Labiatae plants. Here, we discussed the amino acid residues responsible for the stereochemical regulation in limonene biosynthesis.
Collapse
Affiliation(s)
- Takuro Maruyama
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Japan
| | | | | | | |
Collapse
|
44
|
Burke C, Croteau R. Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate. J Biol Chem 2002; 277:3141-9. [PMID: 11733504 DOI: 10.1074/jbc.m105900200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Geranyl diphosphate synthase belongs to a subgroup of prenyltransferases, including farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, that catalyzes the specific formation, from C(5) units, of the respective C(10), C(15), and C(20) precursors of monoterpenes, sesquiterpenes, and diterpenes. Unlike farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, which are homodimers, geranyl diphosphate synthase from Mentha is a heterotetramer in which the large subunit shares functional motifs and a high level of amino acid sequence identity (56-75%) with geranylgeranyl diphosphate synthases of plant origin. The small subunit, however, shares little sequence identity with other isoprenyl diphosphate synthases; yet it is absolutely required for geranyl diphosphate synthase catalysis. Coexpression in Escherichia coli of the Mentha geranyl diphosphate synthase small subunit with the phylogenetically distant geranylgeranyl diphosphate synthases from Taxus canadensis and Abies grandis yielded a functional hybrid heterodimer that generated geranyl diphosphate as product in each case. These results indicate that the geranyl diphosphate synthase small subunit is capable of modifying the chain length specificity of geranylgeranyl diphosphate synthase (but not, apparently, farnesyl diphosphate synthase) to favor the production of C(10) chains. Comparison of the kinetic behavior of the parent prenyltransferases with that of the hybrid enzyme revealed that the hybrid possesses characteristics of both geranyl diphosphate synthase and geranylgeranyl diphosphate synthase.
Collapse
Affiliation(s)
- Charles Burke
- Institute of Biological Chemistry, Program in Plant Physiology, Washington State University, Pullman, Washington 99164-6340, USA
| | | |
Collapse
|
45
|
Lefèbvre L, Vanderplasschen A, Ciminale V, Heremans H, Dangoisse O, Jauniaux JC, Toussaint JF, Zelnik V, Burny A, Kettmann R, Willems L. Oncoviral bovine leukemia virus G4 and human T-cell leukemia virus type 1 p13(II) accessory proteins interact with farnesyl pyrophosphate synthetase. J Virol 2002; 76:1400-14. [PMID: 11773414 PMCID: PMC135811 DOI: 10.1128/jvi.76.3.1400-1414.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
G4 and p13(II) are accessory proteins encoded by the X region of bovine leukemia virus and human T-cell leukemia virus type 1 (HTLV-1), respectively. Disruption of the G4 and p13(II) open reading frames interferes with viral spread in animal model systems, indicating that the corresponding proteins play a key role in viral replication. In addition, G4 is oncogenic in primary cell cultures and is absolutely required for efficient onset of leukemogenesis in sheep. To gain insight into the function of these proteins, we utilized the yeast two-hybrid system to identify protein partners of G4. Results revealed that G4 interacts with farnesyl pyrophosphate synthetase (FPPS), a protein involved in the mevalonate/squalene pathway and in synthesis of FPP, a substrate required for prenylation of Ras. The specificity of the interaction was verified by glutathione S-transferase (GST) pull-down assays and by coimmunoprecipitation experiments. Furthermore, confocal microscopy showed that the subcellular localization of G4 was profoundly affected by FPPS. The G4 protein itself was not prenylated, at least in rabbit reticulocyte lysate-based assays. The domain of G4 required for binding to FPPS was restricted to an amphipathic alpha-helix rich in arginine residues. Subtle mutation of this alpha-helix abrogated G4 oncogenic potential in vitro, providing a biological relevance for FPPS-G4 complex formation in cells. Finally, HTLV-1 p13(II) was also found to specifically interact with FPPS (in yeast as well as in GST pull-down assays) and to colocalize with G4 in mitochondria, suggesting a functional analogy between these oncoviral accessory proteins. Identification of FPPS as a molecular partner for p13(II) and G4 accessory proteins opens new prospects for treatment of retrovirus-induced leukemia.
Collapse
|
46
|
Pan JJ, Kuo TH, Chen YK, Yang LW, Liang PH. Insight into the activation mechanism of Escherichia coli octaprenyl pyrophosphate synthase derived from pre-steady-state kinetic analysis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1594:64-73. [PMID: 11825609 DOI: 10.1016/s0167-4838(01)00283-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Octaprenyl pyrophosphate synthase (OPPs) catalyzes the sequential condensation of five molecules of isopentenyl pyrophosphate with farnesyl pyrophosphate to generate all-trans C40-octaprenyl pyrophosphate, which constitutes the side chain of ubiquinone. Due to the slow product release, a long-chain polyprenyl pyrophosphate synthase often requires detergent or another factor for optimal activity. Our previous studies in examining the activity enhancement of Escherichia coli undecaprenyl pyrophosphate synthase have demonstrated a switch of the rate-determining step from product release to isopentenyl pyrophosphate (IPP) condensation reaction in the presence of Triton [12]. In order to understand the mechanism of enzyme activation for E. coli OPPs, a single-turnover reaction was performed and the measured IPP condensation rate (2 s(-1)) was 100 times larger than the steady-state rate (0.02 s(-1)). The high molecular weight fractions and Triton could accelerate the steady-state rate by 3-fold (0.06 s(-1)) but insufficient to cause full activation (100-fold). A burst product formation was observed in enzyme multiple turnovers indicating a slow product release.
Collapse
Affiliation(s)
- Jian-Jung Pan
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|
47
|
Bacon Schneider K, Palmer TM, Grossman AD. Characterization of comQ and comX, two genes required for production of ComX pheromone in Bacillus subtilis. J Bacteriol 2002; 184:410-9. [PMID: 11751817 PMCID: PMC139578 DOI: 10.1128/jb.184.2.410-419.2002] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many microbes use secreted peptide-signaling molecules to stimulate changes in gene expression in response to high population density, a process called quorum sensing. ComX pheromone is a modified 10-amino-acid peptide used by Bacillus subtilis to modulate changes in gene expression in response to crowding. comQ and comX are required for production of ComX pheromone. We found that accumulation of ComX pheromone in culture supernatant paralleled cell growth, indicating that there was no autoinduction of production of ComX pheromone. We overexpressed comQ and comX separately and together and found that overexpression of comX alone was sufficient to cause an increase in production of ComX pheromone and early induction of a quorum-responsive promoter. These results indicate that the extracellular concentration of ComX pheromone plays a major role in determining the timing of the quorum response and that expression of comX is limiting for production of ComX pheromone. We made alanine substitutions in the residues that comprise the peptide backbone of ComX pheromone. Analysis of these mutants highlighted the importance of the modification for ComX pheromone function and identified three residues (T50, G54, and D55) that are unlikely to interact with proteins involved in production of or response to ComX pheromone. We have also identified and mutated a putative isoprenoid binding domain of ComQ. Mutations in this domain eliminated production of ComX pheromone, consistent with the hypothesis that ComQ is involved in modifying ComX pheromone and that the modification is likely to be an isoprenoid.
Collapse
|
48
|
Maruyama T, Ito M, Honda G. Molecular cloning, functional expression and characterization of (E)-beta farnesene synthase from Citrus junos. Biol Pharm Bull 2001; 24:1171-5. [PMID: 11642326 DOI: 10.1248/bpb.24.1171] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned the gene of the acyclic sesquiterpene synthase, (E)-beta-farnesene synthase (CJFS) from Yuzu (Citrus junos, Rutaceae). The function of CJFS was elucidated by the preparation of recombinant protein and subsequent enzyme assay. CJFS consisted of 1867 nucleotides including 1680 bp of coding sequence encoding a protein of 560 amino acids with a molecular weight of 62 kDa. The deduced amino acid sequence possessed characteristic amino acid residues, such as the DDxxD motif, which are highly conserved among terpene synthases. This is the first report of the cloning of a terpene synthase from a Rutaceous plant. A possible reaction mechanism for terpene biosynthesis is also discussed on the basis of sequence comparison of CJFS with known sesquiterpene synthase genes.
Collapse
Affiliation(s)
- T Maruyama
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | |
Collapse
|
49
|
Kharel Y, Zhang YW, Fujihashi M, Miki K, Koyama T. Identification of Significant residues for homoallylic substrate binding of Micrococcus luteus B-P 26 undecaprenyl diphosphate synthase. J Biol Chem 2001; 276:28459-64. [PMID: 11346651 DOI: 10.1074/jbc.m102057200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The primary structure of cis-prenyltransferase is totally different from those of trans-prenyltransferases (Shimizu, N., Koyama, T., and Ogura, K. (1998) J. Biol. Chem. 272, 19476-19481). To better understand the molecular mechanism of enzymatic cis-prenyl chain elongation, we selected seven charged residues in the conserved Region V and two of Phe-Ser motif in Region III of undecaprenyl diphosphate synthase of Micrococcus luteus B-P 26 for substitutions by site-directed mutagenesis and examined their effects on substrate binding and catalysis. Kinetic studies indicated that replacements of Arg-197 or Arg-203 with Ser, and Glu-216 with Gln resulted in 7-11-fold increases of Km values for isopentenyl diphosphate and 18-1200-fold decreases of kcat values compared with those of the wild-type enzyme. In addition, two mutants with respect to the Phe-Ser motif in Region III, F73A and S74A, showed 16-32-fold larger Km values for isopentenyl diphosphate and 12-16-fold lower kcat values than those of the wild-type. Furthermore, product analysis indicated that three mutants, F73A, S74A, and E216Q, yielded shorter chain prenyl diphosphates as their main products. These facts together with the protein structural analysis recently carried out (Fujihashi, M., Zhang, Y.-W., Higuchi, Y., Li, X.-Y., Koyama, T., and Miki, K. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 4337-4342) indicated that the diphosphate moiety of homoallylic substrate is electrostatically recognized by the three charged amino acids, Arg-197, Arg-203, and Glu-216, in Region V and the Phe-Ser motif in Region III, also indispensable for homoallylic substrate binding as well as catalytic function. It was suggested that the undecaprenyl diphosphate synthase takes a different mode for the binding of isopentenyl diphosphate from that of trans-prenyl chain elongating enzymes.
Collapse
Affiliation(s)
- Y Kharel
- Institute of Multidisciplinary Research for Advanced Materials (formerly the Institute for Chemical Reaction Science), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | | | |
Collapse
|
50
|
Soderberg T, Poulter CD. Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: site-directed mutagenesis of highly conserved residues. Biochemistry 2001; 40:1734-40. [PMID: 11327834 DOI: 10.1021/bi002149t] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dimethylallyl diphosphate:tRNA dimethylallyltransferase (DMAPP-tRNA transferase) catalyzes alkylation of the exocyclic amine of adenosine at position 37 in some tRNAs by the hydrocarbon moiety of dimethylallyl diphosphate (DMAPP). A multiple-sequence alignment of 28 gene sequences encoding DMAPP-tRNA transferases from various organisms revealed considerable homology, including 11 charged, 12 polar, and four aromatic amino acids that are highly conserved or conservatively substituted. Site-directed mutants were constructed for all of these amino acids, and a tripeptide Glu-Glu-Phe alpha-tubulin epitope was appended to the C-terminus of the protein to facilitate separation by immunoaffinity chromatography of overproduced mutant enzymes from coexpressed chromosomally encoded wild-type DMAPP-tRNA transferase. Steady-state kinetic constants were measured for wild-type DMAPP-tRNA transferase and the site-directed mutants using DMAPP and a 17-base RNA oligoribonucleotide corresponding to the stem-loop region of tRNA(Phe) as substrates. Substantial changes in k(cat), K(m)(DMAPP), and/or K(m)(RNA) were seen for several of the mutants, suggesting possible roles for these residues in substrate binding and catalysis.
Collapse
Affiliation(s)
- T Soderberg
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|