1
|
Chrispell JD, Xiong Y, Weiss ER. Grk7 but not Grk1 undergoes cAMP-dependent phosphorylation in zebrafish cone photoreceptors and mediates cone photoresponse recovery to elevated cAMP. J Biol Chem 2022; 298:102636. [PMID: 36273582 PMCID: PMC9692042 DOI: 10.1016/j.jbc.2022.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
In the vertebrate retina, phosphorylation of photoactivated visual pigments in rods and cones by G protein-coupled receptor kinases (GRKs) is essential for sustained visual function. Previous in vitro analysis demonstrated that GRK1 and GRK7 are phosphorylated by PKA, resulting in a reduced capacity to phosphorylate rhodopsin. In vivo observations revealed that GRK phosphorylation occurs in the dark and is cAMP dependent. In many vertebrates, including humans and zebrafish, GRK1 is expressed in both rods and cones while GRK7 is expressed only in cones. However, mice express only GRK1 in both rods and cones and lack GRK7. We recently generated a mutation in Grk1 that deletes the phosphorylation site, Ser21. This mutant demonstrated delayed dark adaptation in mouse rods but not in cones in vivo, suggesting GRK1 may serve a different role depending upon the photoreceptor cell type in which it is expressed. Here, zebrafish were selected to evaluate the role of cAMP-dependent GRK phosphorylation in cone photoreceptor recovery. Electroretinogram analyses of larvae treated with forskolin show that elevated intracellular cAMP significantly decreases recovery of the cone photoresponse, which is mediated by Grk7a rather than Grk1b. Using a cone-specific dominant negative PKA transgene, we show for the first time that PKA is required for Grk7a phosphorylation in vivo. Lastly, immunoblot analyses of rod grk1a-/- and cone grk1b-/- zebrafish and Nrl-/- mouse show that cone-expressed Grk1 does not undergo cAMP-dependent phosphorylation in vivo. These results provide a better understanding of the function of Grk phosphorylation relative to cone adaptation and recovery.
Collapse
|
2
|
Plana-Bonamaisó A, López-Begines S, Fernández-Justel D, Junza A, Soler-Tapia A, Andilla J, Loza-Alvarez P, Rosa JL, Miralles E, Casals I, Yanes O, de la Villa P, Buey RM, Méndez A. Post-translational regulation of retinal IMPDH1 in vivo to adjust GTP synthesis to illumination conditions. eLife 2020; 9:56418. [PMID: 32254022 PMCID: PMC7176436 DOI: 10.7554/elife.56418] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
We report the in vivo regulation of Inosine-5´-monophosphate dehydrogenase 1 (IMPDH1) in the retina. IMPDH1 catalyzes the rate-limiting step in the de novo synthesis of guanine nucleotides, impacting the cellular pools of GMP, GDP and GTP. Guanine nucleotide homeostasis is central to photoreceptor cells, where cGMP is the signal transducing molecule in the light response. Mutations in IMPDH1 lead to inherited blindness. We unveil a light-dependent phosphorylation of retinal IMPDH1 at Thr159/Ser160 in the Bateman domain that desensitizes the enzyme to allosteric inhibition by GDP/GTP. When exposed to bright light, living mice increase the rate of GTP and ATP synthesis in their retinas; concomitant with IMPDH1 aggregate formation at the outer segment layer. Inhibiting IMPDH activity in living mice delays rod mass recovery. We unveil a novel mechanism of regulation of IMPDH1 in vivo, important for understanding GTP homeostasis in the retina and the pathogenesis of adRP10 IMPDH1 mutations.
Collapse
Affiliation(s)
- Anna Plana-Bonamaisó
- Department of Physiological Sciences, School of Medicine, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain.,Institut de Neurociències, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain
| | - Santiago López-Begines
- Department of Physiological Sciences, School of Medicine, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain
| | - David Fernández-Justel
- Metabolic Engineering Group, Department of Microbiology and Genetics. University of Salamanca, Salamanca, Spain
| | - Alexandra Junza
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain.,Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Ariadna Soler-Tapia
- Department of Physiological Sciences, School of Medicine, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain
| | - Jordi Andilla
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Jose Luis Rosa
- Department of Physiological Sciences, School of Medicine, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain
| | - Esther Miralles
- Centres Cientifics i Tecnològics (CCiTUB), University of Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - Isidre Casals
- Centres Cientifics i Tecnològics (CCiTUB), University of Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - Oscar Yanes
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain.,Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Pedro de la Villa
- Physiology Unit, Dept of Systems Biology, School of Medicine, University of Alcalá, Madrid, Spain.,Visual Neurophysiology Group-IRYCIS, Madrid, Spain
| | - Ruben M Buey
- Metabolic Engineering Group, Department of Microbiology and Genetics. University of Salamanca, Salamanca, Spain
| | - Ana Méndez
- Department of Physiological Sciences, School of Medicine, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain.,Institut de Neurociències, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
|
4
|
Kwon OK, Kim SJ, Lee YM, Lee YH, Bae YS, Kim JY, Peng X, Cheng Z, Zhao Y, Lee S. Global analysis of phosphoproteome dynamics in embryonic development of zebrafish (Danio rerio). Proteomics 2015; 16:136-49. [DOI: 10.1002/pmic.201500017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 09/04/2015] [Accepted: 10/01/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Oh Kwang Kwon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - Sun Ju Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - You-Mie Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - Young-Hoon Lee
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program); Kyungpook National University; Daegu Korea
| | - Young-Seuk Bae
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus program); Kyungpook National University; Daegu Korea
| | - Jin Young Kim
- Mass Spectrometry Research Center; Korea Basic Science Institute; Ochang Chungbuk Republic of Korea
| | - Xiaojun Peng
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd; Hangzhou P. R. China
| | - Zhongyi Cheng
- Advanced Institute of Translational Medicine; Tongji University; Shanghai P. R. China
| | - Yingming Zhao
- Ben May Department for Cancer Research; University of Chicago; Chicago IL USA
| | - Sangkyu Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| |
Collapse
|
5
|
Sakurai K, Chen J, Khani SC, Kefalov VJ. Regulation of mammalian cone phototransduction by recoverin and rhodopsin kinase. J Biol Chem 2015; 290:9239-50. [PMID: 25673692 DOI: 10.1074/jbc.m115.639591] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Indexed: 11/06/2022] Open
Abstract
Cone photoreceptors function under daylight conditions and are essential for color perception and vision with high temporal and spatial resolution. A remarkable feature of cones is that, unlike rods, they remain responsive in bright light. In rods, light triggers a decline in intracellular calcium, which exerts a well studied negative feedback on phototransduction that includes calcium-dependent inhibition of rhodopsin kinase (GRK1) by recoverin. Rods and cones share the same isoforms of recoverin and GRK1, and photoactivation also triggers a calcium decline in cones. However, the molecular mechanisms by which calcium exerts negative feedback on cone phototransduction through recoverin and GRK1 are not well understood. Here, we examined this question using mice expressing various levels of GRK1 or lacking recoverin. We show that although GRK1 is required for the timely inactivation of mouse cone photoresponse, gradually increasing its expression progressively delays the cone response recovery. This surprising result is in contrast with the known effect of increasing GRK1 expression in rods. Notably, the kinetics of cone responses converge and become independent of GRK1 levels for flashes activating more than ∼1% of cone pigment. Thus, mouse cone response recovery in bright light is independent of pigment phosphorylation and likely reflects the spontaneous decay of photoactivated visual pigment. We also find that recoverin potentiates the sensitivity of cones in dim light conditions but does not contribute to their capacity to function in bright light.
Collapse
Affiliation(s)
- Keisuke Sakurai
- From the Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jeannie Chen
- the Zilkha Neurogenetic Institute, Department of Cell and Neurobiology & Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, and
| | - Shahrokh C Khani
- the Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Vladimir J Kefalov
- From the Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110,
| |
Collapse
|
6
|
|
7
|
Pearlman SM, Serber Z, Ferrell JE. A mechanism for the evolution of phosphorylation sites. Cell 2011; 147:934-46. [PMID: 22078888 PMCID: PMC3220604 DOI: 10.1016/j.cell.2011.08.052] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/28/2011] [Accepted: 08/19/2011] [Indexed: 12/22/2022]
Abstract
Protein phosphorylation provides a mechanism for the rapid, reversible control of protein function. Phosphorylation adds negative charge to amino acid side chains, and negatively charged amino acids (Asp/Glu) can sometimes mimic the phosphorylated state of a protein. Using a comparative genomics approach, we show that nature also employs this trick in reverse by evolving serine, threonine, and tyrosine phosphorylation sites from Asp/Glu residues. Structures of three proteins where phosphosites evolved from acidic residues (DNA topoisomerase II, enolase, and C-Raf) show that the relevant acidic residues are present in salt bridges with conserved basic residues, and that phosphorylation has the potential to conditionally restore the salt bridges. The evolution of phosphorylation sites from glutamate and aspartate provides a rationale for why phosphorylation sometimes activates proteins, and helps explain the origins of this important and complex process.
Collapse
Affiliation(s)
- Samuel M. Pearlman
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford CA 94305-5174, USA
- Biomedical Informatics Program, Stanford University School of Medicine, Stanford CA 94305-5479, USA
| | - Zach Serber
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford CA 94305-5174, USA
| | - James E. Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford CA 94305-5174, USA
| |
Collapse
|
8
|
Gurevich EV, Tesmer JJG, Mushegian A, Gurevich VV. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 2011; 133:40-69. [PMID: 21903131 DOI: 10.1016/j.pharmthera.2011.08.001] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) are best known for their role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors and promote high affinity binding of arrestins, which precludes G protein coupling. GRKs have a multidomain structure, with the kinase domain inserted into a loop of a regulator of G protein signaling homology domain. Unlike many other kinases, GRKs do not need to be phosphorylated in their activation loop to achieve an activated state. Instead, they are directly activated by docking with active GPCRs. In this manner they are able to selectively phosphorylate Ser/Thr residues on only the activated form of the receptor, unlike related kinases such as protein kinase A. GRKs also phosphorylate a variety of non-GPCR substrates and regulate several signaling pathways via direct interactions with other proteins in a phosphorylation-independent manner. Multiple GRK subtypes are present in virtually every animal cell, with the highest expression levels found in neurons, with their extensive and complex signal regulation. Insufficient or excessive GRK activity was implicated in a variety of human disorders, ranging from heart failure to depression to Parkinson's disease. As key regulators of GPCR-dependent and -independent signaling pathways, GRKs are emerging drug targets and promising molecular tools for therapy. Targeted modulation of expression and/or of activity of several GRK isoforms for therapeutic purposes was recently validated in cardiac disorders and Parkinson's disease.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Preston Research Building, Rm. 454, Nashville, TN 37232, United States.
| | | | | | | |
Collapse
|
9
|
Osawa S, Jo R, Xiong Y, Reidel B, Tserentsoodol N, Arshavsky VY, Iuvone PM, Weiss ER. Phosphorylation of G protein-coupled receptor kinase 1 (GRK1) is regulated by light but independent of phototransduction in rod photoreceptors. J Biol Chem 2011; 286:20923-9. [PMID: 21504899 PMCID: PMC3121460 DOI: 10.1074/jbc.m111.230904] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/13/2011] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of rhodopsin by G protein-coupled receptor kinase 1 (GRK1, or rhodopsin kinase) is critical for the deactivation of the phototransduction cascade in vertebrate photoreceptors. Based on our previous studies in vitro, we predicted that Ser(21) in GRK1 would be phosphorylated by cAMP-dependent protein kinase (PKA) in vivo. Here, we report that dark-adapted, wild-type mice demonstrate significantly elevated levels of phosphorylated GRK1 compared with light-adapted animals. Based on comparatively slow half-times for phosphorylation and dephosphorylation, phosphorylation of GRK1 by PKA is likely to be involved in light and dark adaptation. In mice missing the gene for adenylyl cyclase type 1, levels of phosphorylated GRK1 were low in retinas from both dark- and light-adapted animals. These data are consistent with reports that cAMP levels are high in the dark and low in the light and also indicate that cAMP generated by adenylyl cyclase type 1 is required for phosphorylation of GRK1 on Ser(21). Surprisingly, dephosphorylation was induced by light in mice missing the rod transducin α-subunit. This result indicates that phototransduction does not play a direct role in the light-dependent dephosphorylation of GRK1.
Collapse
Affiliation(s)
- Shoji Osawa
- From the Department of Cell and Developmental Biology and
| | - Rebecca Jo
- From the Department of Cell and Developmental Biology and
| | - Yubin Xiong
- From the Department of Cell and Developmental Biology and
| | - Boris Reidel
- the Albert Eye Research Institute, Duke University, Durham, North Carolina 27710, and
| | | | - Vadim Y. Arshavsky
- the Albert Eye Research Institute, Duke University, Durham, North Carolina 27710, and
| | - P. Michael Iuvone
- the Departments of Pharmacology and Ophthalmology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Ellen R. Weiss
- From the Department of Cell and Developmental Biology and
- the Lineberger Comprehensive Cancer Center, the University of North Carolina, Chapel Hill, North Carolina 27599-7090
| |
Collapse
|
10
|
Singh P, Wang B, Maeda T, Palczewski K, Tesmer JJG. Structures of rhodopsin kinase in different ligand states reveal key elements involved in G protein-coupled receptor kinase activation. J Biol Chem 2008; 283:14053-62. [PMID: 18339619 PMCID: PMC2376226 DOI: 10.1074/jbc.m708974200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 02/04/2008] [Indexed: 12/27/2022] Open
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate activated heptahelical receptors, leading to their uncoupling from G proteins. Here we report six crystal structures of rhodopsin kinase (GRK1), revealing not only three distinct nucleotide-binding states of a GRK but also two key structural elements believed to be involved in the recognition of activated GPCRs. The first is the C-terminal extension of the kinase domain, which was observed in all nucleotide-bound GRK1 structures. The second is residues 5-30 of the N terminus, observed in one of the GRK1.(Mg2+)2.ATP structures. The N terminus was also clearly phosphorylated, leading to the identification of two novel phosphorylation sites by mass spectral analysis. Co-localization of the N terminus and the C-terminal extension near the hinge of the kinase domain suggests that activated GPCRs stimulate kinase activity by binding to this region to facilitate full closure of the kinase domain.
Collapse
Affiliation(s)
- Puja Singh
- Life Sciences Institute, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | | | | | | | |
Collapse
|
11
|
Imanishi Y, Hisatomi O, Yamamoto S, Satoh T, Kotaka S, Kobayashi Y, Tokunaga F. A third photoreceptor-specific GRK found in the retina of Oryzias latipes (Japanese killifish). Zoolog Sci 2008; 24:87-93. [PMID: 17409721 DOI: 10.2108/zsj.24.87] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We previously reported that the teleost fish medaka (Oryzias latipes, Japanese killifish), possesses two kinds of G protein-coupled receptor kinases (GRKs) in the retina with different localizations: GRK7 (OlGRK-C) in cones and GRK1 (OlGRK-R1) in rods. To further clarify the diversity of teleost photoreceptor GRKs, we sought other medaka GRKs. We found an additional cDNA that encodes a second retina-specific GRK1 (OlGRK-R2). In situ hybridization experiments demonstrated that OlGRK-R2 mRNA is selectively expressed in rods. Sequence analysis of the Fugu rubripes genomic database unveiled a larger diversity of GRKs than previously expected. We also describe the light-dependent regulation of GRK1, a phenomenon that has not been found in other species. Immunocytochemical analysis indicated that OlGRK-R2 is localized in rod outer segments, independent of light condition. OlGRK-R1 is localized in the rod inner segments and synaptic termini of dark-adapted eyes, and moves to rod outer segments after light adaptation. Our studies suggest that the two medaka GRKs are not functionally redundant, and demonstrate a complicated light-dependent regulation of GRK1 in vivo.
Collapse
Affiliation(s)
- Yoshikazu Imanishi
- Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Higgins MK, Oprian DD, Schertler GFX. Recoverin binds exclusively to an amphipathic peptide at the N terminus of rhodopsin kinase, inhibiting rhodopsin phosphorylation without affecting catalytic activity of the kinase. J Biol Chem 2006; 281:19426-32. [PMID: 16675451 DOI: 10.1074/jbc.m602203200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recoverin is a calcium-dependent inhibitor of rhodopsin kinase. It prevents premature phosphorylation of rhodopsin until the opening of cGMP-gated ion channels causes a decrease in intracellular calcium levels, signaling completion of the light response. This calcium depletion causes release of recoverin from rhodopsin kinase, freeing the kinase to phosphorylate rhodopsin and to terminate the light response. Previous studies have shown that recoverin is able to bind to a region at the N terminus of rhodopsin kinase. In this study we map this interaction interface, showing that residues 1-15 of the kinase form the interaction site for recoverin binding. Mutation of hydrophobic residues in this region have the greatest effect on the interaction. The periodic nature of these residues suggests that they lie along one face of an amphipathic helix. We show that this region is essential for recoverin binding, as a catalytically active kinase lacking these residues is unable to bind recoverin. In addition, we show that neither the N-terminal deletion nor the presence of recoverin inhibits the overall catalytic activity of the kinase, as measured by light-independent autophosphorylation. Finally, we observe that a kinase mutant lacking the N-terminal recoverin binding site is unable to phosphorylate light-activated rhodopsin. Taken together, these data support a model in which recoverin prevents rhodopsin phosphorylation by sterically blocking a region of kinase essential for its interaction with rhodopsin, thereby preventing recognition of rhodopsin as a kinase substrate.
Collapse
Affiliation(s)
- Matthew K Higgins
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | |
Collapse
|
13
|
Lodowski DT, Tesmer VM, Benovic JL, Tesmer JJG. The structure of G protein-coupled receptor kinase (GRK)-6 defines a second lineage of GRKs. J Biol Chem 2006; 281:16785-93. [PMID: 16613860 DOI: 10.1074/jbc.m601327200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe the 2.6-A crystal structure of human G protein-coupled receptor kinase (GRK)-6, a key regulator of dopaminergic signaling and lymphocyte chemotaxis. GRK6 is a member of the GRK4 subfamily of GRKs, which is represented in most, if not all, metazoans. Comparison of GRK6 with GRK2 confirms that the catalytic core of all GRKs consists of intimately associated kinase and regulator of G protein signaling (RGS) homology domains. Despite being in complex with an ATP analog, the kinase domain of GRK6 remains in an open, presumably inactive conformation, suggesting that G protein-coupled receptors activate GRKs by inducing kinase domain closure. The structure reveals a putative phospholipid-binding site near the N terminus of GRK6 and structural elements within the kinase substrate channel that likely influence G protein-coupled receptor access and specificity. The crystalline GRK6 RGS homology domain forms an extensive dimer interface using conserved hydrophobic residues distinct from those in GRK2 that bind Galpha(q), although dimerization does not appear to occur in solution and is not required for receptor phosphorylation.
Collapse
Affiliation(s)
- David T Lodowski
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712-0165, USA
| | | | | | | |
Collapse
|
14
|
Horner TJ, Osawa S, Schaller MD, Weiss ER. Phosphorylation of GRK1 and GRK7 by cAMP-dependent protein kinase attenuates their enzymatic activities. J Biol Chem 2005; 280:28241-50. [PMID: 15946941 DOI: 10.1074/jbc.m505117200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Phosphorylation of G protein-coupled receptors is a critical step in the rapid termination of G protein signaling. In rod cells of the vertebrate retina, phosphorylation of rhodopsin is mediated by GRK1. In cone cells, either GRK1, GRK7, or both, depending on the species, are speculated to initiate signal termination by phosphorylating the cone opsins. To compare the biochemical properties of GRK1 and GRK7, we measured the K(m) and V(max) of these kinases for ATP and rhodopsin, a model substrate. The results demonstrated that these kinases share similar kinetic properties. We also determined that cAMP-dependent protein kinase (PKA) phosphorylates GRK1 at Ser(21) and GRK7 at Ser(23) and Ser(36) in vitro. These sites are also phosphorylated when FLAG-tagged GRK1 and GRK7 are expressed in HEK-293 cells treated with forskolin to stimulate the endogenous production of cAMP and activation of PKA. Rod outer segments isolated from bovine retina phosphorylated the FLAG-tagged GRKs in the presence of dibutyryl-cAMP, suggesting that GRK1 and GRK7 are physiologically relevant substrates. Although both GRKs also contain putative phosphorylation sites for PKC and Ca(2+)/calmodulin-dependent protein kinase II, neither kinase phosphorylated GRK1 or GRK7. Phosphorylation of GRK1 and GRK7 by PKA reduces the ability of GRK1 and GRK7 to phosphorylate rhodopsin in vitro. Since exposure to light causes a decrease in cAMP levels in rod cells, we propose that phosphorylation of GRK1 and GRK7 by PKA occurs in the dark, when cAMP levels in photoreceptor cells are elevated, and represents a novel mechanism for regulating the activities of these kinases.
Collapse
Affiliation(s)
- Thierry J Horner
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Carolina 27599-7090, USA
| | | | | | | |
Collapse
|
15
|
Senin II, Koch KW, Akhtar M, Philippov PP. Ca2+-dependent control of rhodopsin phosphorylation: recoverin and rhodopsin kinase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:69-99. [PMID: 12596916 DOI: 10.1007/978-1-4615-0121-3_5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Over many years until the middle of the 1980s, the main problem in vision research had been the mechanism of transducing the visual signal from photobleached rhodopsin to the cationic channels in the plasma membrane of a photoreceptor to trigger the electrophysiological response of the cell. After cGMP was proven to be the secondary messenger, the main intriguing question has become the mechanisms of negative feedback in photoreceptors to modulate their response to varying conditions of illumination. Although the mechanisms of light-adaptation are not completely understood, it is obvious that Ca2+ plays a crucial role in these mechanisms and that the effects of Ca2+ can be mediated by several Ca2+-binding proteins. One of them is recoverin. The leading candidate for the role of an intracellular target for recoverin is believed to be rhodopsin kinase, a member of a family of G-protein-coupled receptor kinases. The present review considers recoverin, rhodopsin kinase and their interrelationships in the in vitro as well as in vivo contexts.
Collapse
Affiliation(s)
- Ivan I Senin
- Department of Cell Signalling, A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Izabela Sokal
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
17
|
Annan RS, Huddleston MJ, Verma R, Deshaies RJ, Carr SA. A multidimensional electrospray MS-based approach to phosphopeptide mapping. Anal Chem 2001; 73:393-404. [PMID: 11217738 DOI: 10.1021/ac001130t] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new, multidimensional electrospray MS-based strategy for phosphopeptide mapping is described which eliminates the need to radiolabel protein with 32P or 33P. The approach utilizes two orthogonal MS scanning techniques, both of which are based on the production of phosphopeptide-specific marker ions at m/z 63 and/or 79 in the negative ion mode. These scan methods are combined with liquid chromatography-electrospray mass spectrometry and nanoelectrospray MS/MS to selectively detect and identify phosphopeptides in complex proteolytic digests. Low-abundance, low-stoichiometry phosphorylation sites can be selectively determined in the presence of an excess of nonphosphorylated peptides, even in cases where the signal from the phosphopeptide is indistinguishable from background in the conventional MS scan. The strategy, which has been developed and refined in our laboratory over the past few years, is particularly well suited to phosphoproteins that are phosphorylated to varying degrees of stoichiometry on multiple sites. Sensitivity and selectivity of the method are demonstrated here using model peptides and a commercially available phosphoprotein standard. In addition, the strategy is illustrated by the complete in vitro and in vivo phosphopeptide mapping of Sic1p, a regulator of the G1/S transition in budding yeast.
Collapse
Affiliation(s)
- R S Annan
- Department of Physical and Structural Chemistry, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA.
| | | | | | | | | |
Collapse
|
18
|
Abstract
The data collected with the techniques discussed in this chapter suggest significant differences between the active conformation(s) of the opsin/atr complex, which are reversibly formed in the dark, and the active conformation (R*) of the meta-II photoproduct. First, there is good evidence for noncovalent opsin/atr complexes with considerable activity (although covalent binding of atr is found in mutant opsins. Even more intriguing, all-trans-retinal in an amount that saturates the activity of the opsin/atr complex toward Gt does not measurably inhibit the access of 11-cis-retinal to the light-sensitive binding site during regeneration (Fig. 2C). On the other hand, forced protonation at or near Glu-134 appears to be an integral mechanism for both the meta-II and the opsin-like activities (Fig. 4). Thus, it is not inconceivable that these two activities of the receptor arise from two fundamentally different conformations, one meta-II-like and one opsin-like. They would be similar with respect to the Gt (or RK) protein-protein interaction but different in their mode of retinal-protein interaction.
Collapse
Affiliation(s)
- K Sachs
- Institut für Medizinische Physik und Biophysik, Universitätsklinikum Charité, Humboldt Universität zu Berlin, Germany
| | | | | |
Collapse
|
19
|
Sadagopan N, Malone M, Watson JT. Effect of charge derivatization in the determination of phosphorylation sites in peptides by electrospray ionization collision-activated dissociation tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 1999; 34:1279-1282. [PMID: 10587620 DOI: 10.1002/(sici)1096-9888(199912)34:12<1279::aid-jms899>3.0.co;2-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- N Sadagopan
- Department of Chemistry, Michigan State University East Lansing, Michigan 48864, USA
| | | | | |
Collapse
|
20
|
Yu QM, Cheng ZJ, Gan XQ, Bao GB, Li L, Pei G. The amino terminus with a conserved glutamic acid of G protein-coupled receptor kinases is indispensable for their ability to phosphorylate photoactivated rhodopsin. J Neurochem 1999; 73:1222-7. [PMID: 10461915 DOI: 10.1046/j.1471-4159.1999.0731222.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To investigate functions of the consensus amino terminus of G protein-coupled receptor kinases (GRKs), two amino terminus-truncated mutants (delta30 or delta15) and two single-amino-acid mutants of conserved acidic residues (D2A or E7A) of human GRK1 were constructed and expressed in human embryonic kidney 293 cells. It was shown that truncated mutations and one single-point mutation (E7A) greatly decreased GRK1's activity to phosphorylate photoactivated rhodopsin (Rho*), whereas the abilities of these mutants to phosphorylate a synthetic peptide substrate and to translocate from cytosol to rod outer segments on light activation were unaffected. Further experiments demonstrated that the same truncated mutations (delta30 or delta15) of GRK2, representative of another GRK subfamily, also abolished the kinase's activity toward Rho*. The similar single-point mutation (E5A) of GRK2 heavily impaired its phosphorylation of Rho* but did not alter its ability to phosphorylate the peptide, and the G329-rhodopsin-augmented peptide phosphorylation by GRK2 (E5A) remained unchanged. Our data, taken together, suggest that the amino terminus as well as a conserved glutamic acid in the region of GRKs appears essential for their ability to functionally interact with G protein-coupled receptors.
Collapse
Affiliation(s)
- Q M Yu
- Shanghai Institute of Cell Biology, Chinese Academy of Sciences, China
| | | | | | | | | | | |
Collapse
|
21
|
Neubauer G, Mann M. Mapping of phosphorylation sites of gel-isolated proteins by nanoelectrospray tandem mass spectrometry: potentials and limitations. Anal Chem 1999; 71:235-42. [PMID: 9921130 DOI: 10.1021/ac9804902] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Precursor ion scans have proven to be extremely useful for the characterization of unseparated peptide mixtures. In conjunction with the nanoelectrospray source, precursor ion scans provide a sensitive tool for the detection of posttranslationally modified peptides and have been used to determine phosphorylation sites of proteins digested in solution. In this report, we extend our previous work to the determination of protein phosphorylation sites of gel-isolated proteins. The in-gel digestion procedure developed in our laboratory for protein microsequencing was found to be suitable for phosphorylation mapping as well. The risk of losing hydrophilic peptides in the desalting step was decreased by using column packing material designed for the purification of oligonucleotides and by adjusting the pH conditions to the needs of phosphopeptide analysis. With this method, the tryptic phosphopeptides of beta-casein were detected after in-gel digestion at a sensitivity of 250 fmol of protein applied to the gel. The phosphorylation sites of two other proteins, Src-delta U and Op18, have similarly been mapped. Subpicomole to low-picomole amounts of protein starting material are needed in general, although we and others have reported attomole sensitivity for the detection of model phosphopeptides using precursor ion scans. This indicates that the success in determining phosphorylation sites depends crucially on the digestion, extraction, and detection efficiency for individual phosphopeptides.
Collapse
Affiliation(s)
- G Neubauer
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
22
|
Abstract
G protein-coupled receptor kinases (GRKs) constitute a family of six mammalian serine/threonine protein kinases that phosphorylate agonist-bound, or activated, G protein-coupled receptors (GPCRs) as their primary substrates. GRK-mediated receptor phosphorylation rapidly initiates profound impairment of receptor signaling, or desensitization. This review focuses on the regulation of GRK activity by a variety of allosteric and other factors: agonist-stimulated GPCRs, beta gamma subunits of heterotrimeric GTP-binding proteins, phospholipid cofactors, the calcium-binding proteins calmodulin and recoverin, posttranslational isoprenylation and palmitoylation, autophosphorylation, and protein kinase C-mediated GRK phosphorylation. Studies employing recombinant, purified proteins, cell culture, and transgenic animal models attest to the general importance of GRKs in regulating a vast array of GPCRs both in vitro and in vivo.
Collapse
Affiliation(s)
- J A Pitcher
- Howard Hughes Medical Institute, Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
23
|
Levay K, Satpaev DK, Pronin AN, Benovic JL, Slepak VZ. Localization of the sites for Ca2+-binding proteins on G protein-coupled receptor kinases. Biochemistry 1998; 37:13650-9. [PMID: 9753452 DOI: 10.1021/bi980998z] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibition of G protein-coupled receptor kinases (GRKs) by Ca2+-binding proteins has recently emerged as a general mechanism of GRK regulation. While GRK1 (rhodopsin kinase) is inhibited by the photoreceptor-specific Ca2+-binding protein recoverin, other GRKs can be inhibited by Ca2+-calmodulin. To dissect the mechanism of this inhibition at the molecular level, we localized the GRK domains involved in Ca2+-binding protein interaction using a series of GST-GRK fusion proteins. GRK1, GRK2, and GRK5, which represent the three known GRK subclasses, were each found to possess two distinct calmodulin-binding sites. These sites were localized to the N- and C-terminal regulatory regions within domains rich in positively charged and hydrophobic residues. In contrast, the unique N-terminally localized GRK1 site for recoverin had no clearly defined structural characteristics. Interestingly, while the recoverin and calmodulin-binding sites in GRK1 do not overlap, recoverin-GRK1 interaction is inhibited by calmodulin, most likely via an allosteric mechanism. Further analysis of the individual calmodulin sites in GRK5 suggests that the C-terminal site plays the major role in GRK5-calmodulin interaction. While specific mutation within the N-terminal site had no effect on calmodulin-mediated inhibition of GRK5 activity, deletion of the C-terminal site attenuated the effect of calmodulin on GRK5, and the simultaneous mutation of both sites rendered the enzyme calmodulin-insensitive. These studies provide new insight into the mechanism of Ca2+-dependent regulation of GRKs.
Collapse
Affiliation(s)
- K Levay
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Florida 33136, USA
| | | | | | | | | |
Collapse
|
24
|
Yan JX, Packer NH, Gooley AA, Williams KL. Protein phosphorylation: technologies for the identification of phosphoamino acids. J Chromatogr A 1998; 808:23-41. [PMID: 9652109 DOI: 10.1016/s0021-9673(98)00115-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein phosphorylation plays a central role in many biological and biomedical phenomena. In this review, while a brief overview of the occurrence and function of protein phosphorylation is given, the primary focus is on studies related to the detection and analysis of phosphorylation both in vivo and in vitro. We focus on phosphorylation of serine, threonine and tyrosine, the most commonly phosphorylated amino acids in eukaryotes. Technologies such as radiolabelling, antibody recognition, chromatographic methods (HPLC, TLC), electrophoresis, Edman sequencing and mass spectrometry are reviewed. We consider the speed, simplicity and sensitivity of tools for detection and identification of protein phosphorylation, as well as quantitation and site characterisation. The limitations of currently available methods are summarised.
Collapse
Affiliation(s)
- J X Yan
- Macquarie University Centre for Analytical Biotechnology, School of Biological Sciences, Macquarie University, Sydney NSW, Australia
| | | | | | | |
Collapse
|
25
|
Abstract
Light-stimulated phosphorylation of rhodopsin was first described 25 years ago. This paper reviews the progress that has been made towards (i) understanding the nature of the enzymes that phosphorylate and dephosphorylate rhodopsin (ii) identifying the sites of phosphorylation on rhodopsin and (iii) understanding the physiological importance of rhodopsin phosphorylation. Many important questions related to rhodopsin phosphorylation remain unanswered and new strategies and methods are needed to address issues such as the roles of Ca2+ and recoverin. We present one such method that uses mass spectrometry to quantitate rhodopsin phosphorylation in intact mouse retinas.
Collapse
Affiliation(s)
- J B Hurley
- Department of Biochemistry, University of Washington, Seattle 98195, USA.
| | | | | |
Collapse
|
26
|
Hisatomi O, Matsuda S, Satoh T, Kotaka S, Imanishi Y, Tokunaga F. A novel subtype of G-protein-coupled receptor kinase, GRK7, in teleost cone photoreceptors. FEBS Lett 1998; 424:159-64. [PMID: 9539142 DOI: 10.1016/s0014-5793(98)00162-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two kinds of retinal cDNA fragments (OIGRK-R and -C) encoding the putative G-protein-coupled receptor kinases (GRKs) were isolated from medaka, Oryzias latipes. OIGRK-R appears to be closely related to the rhodopsin kinase (RK) found in the outer segments of mammalian photoreceptors, but the deduced amino acid sequence of OIGRK-C shows less than 50% identity to those of GRKs known to date, suggesting that OIGRK-C is a novel GRK subtype (GRK7). The mRNA of OIGRK-R is detectable in rods, and that of OIGRK-C is found in all four types of cone photoreceptor. The C-terminal of OIGRK-R has a consensus sequence for farnesylation, whereas, surprisingly, OIGRK-C has a consensus sequence for geranylgeranylation. Our result are consistent with the concept that lower vertebrates have rod- and cone-specific opsin kinases.
Collapse
Affiliation(s)
- O Hisatomi
- Department of Earth and Space Science, Graduate School of Science, Osaka University, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Palczewski K. GTP-binding-protein-coupled receptor kinases--two mechanistic models. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:261-9. [PMID: 9346277 DOI: 10.1111/j.1432-1033.1997.00261.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Six vertebrate protein kinases (G-protein-coupled receptor kinases; GRKs) that regulate the function of G-protein-coupled receptors (GPCRs) were recently cloned; several distinct properties set them apart from conventional second-messenger regulated protein kinases. It appears that GRKs bind GPCR* through two separate sites: a high-affinity site, which involves intracellular loops of the activated receptor, and the lower-affinity site, encompassing the phosphorylation region. The high-affinity interaction may involve complementary structural elements of GRKs and GPCRs* rather than precise amino acid alignment, thus allowing broad and overlapping specificities of these kinases, in spite of differences in the sequences of GPCRs. In addition, GRK structures are modified by several posttranslational modifications, including phosphorylation, autophosphorylation, prenylation, carboxymethylation, and palmitoylation, probably affecting properties of these enzymes. While GRKs phosphorylate and inactivate receptor molecules which are engaged in G-protein activation, controversy surrounds whether GRKs might be activated and phosphorylate unstimulated GPCRs, leading to a desensitization of a larger population of the receptors. In this review, mechanistic aspects of GPCR* phosphorylation related to the distinct properties, regulation and modes of action of GRKs are described.
Collapse
Affiliation(s)
- K Palczewski
- Department of Ophthalmology, University of Washington, School of Medicine, Seattle 98195-6485, USA.
| |
Collapse
|
28
|
Stoffel RH, Pitcher JA, Lefkowitz RJ. Targeting G protein-coupled receptor kinases to their receptor substrates. J Membr Biol 1997; 157:1-8. [PMID: 9141353 DOI: 10.1007/s002329900210] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- R H Stoffel
- Howard Hughes Medical Institute, Department of Medicine, Box 3821, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
29
|
Zhao X, Haeseleer F, Fariss RN, Huang J, Baehr W, Milam AH, Palczewski K. Molecular cloning and localization of rhodopsin kinase in the mammalian pineal. Vis Neurosci 1997; 14:225-32. [PMID: 9147475 DOI: 10.1017/s0952523800011366] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Several retinal photoreceptor proteins involved in phototransduction have also been found in the mammalian pineal. This study demonstrates that rat and human pineals express protein kinases that are identical to the corresponding rod photoreceptor rhodopsin kinases. The deduced amino acid sequence of rat and human rhodopsin kinases have 84% sequence similarity to the earlier reported sequence of the bovine retinal enzyme, with complete conservation of the topological regions containing the position of the catalytic domain and sites of posttranslational modifications. Rat pineal also expresses rod opsin and putative blue cone opsin. Using immunocytochemistry, rod opsin and rhodopsin kinase were found to be co-localized in pinealocytes in the human tissue. These data demonstrate that the mammalian pineal contains light-sensitive opsins and a kinase involved in their inactivation. These findings correlate with an earlier report that neonatal rats show extraretinal light sensitivity, and suggest that a functional photoreceptive system may be present in the adult mammalian pineal.
Collapse
Affiliation(s)
- X Zhao
- Department of Ophthalmology, University of Washington, Seattle 98195-6485, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Annan RS, Carr SA. Phosphopeptide analysis by matrix-assisted laser desorption time-of-flight mass spectrometry. Anal Chem 1996; 68:3413-21. [PMID: 8843139 DOI: 10.1021/ac960221g] [Citation(s) in RCA: 250] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this paper we present methods for identifying and sequencing phosphopeptides in simple mixtures, such as HPLC fractions, at the subpicomole level by (+) ion matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-MS). Data are presented which indicate that when a reflectron time-of-flight mass spectrometer is used, MALDI can distinguish tyrosine phosphorylation from serine and threonine phosphorylation for peptides containing a single phosphate group. Phosphopeptides are identified in the (+) ion MALDI reflector spectrum by the presence of [MH-H3PO4]+ and [MH-HPO3]+ fragment ions formed by metastable decomposition. An abundant [MH-H3PO4]+ ion, accompanied by a weaker [MH-HPO3]+ ion indicates that the peptide is most likely phosphorylated on serine or threonine. In contrast, phosphotyrosine-containing peptides generally exhibit [MH-HPO3]+ fragment ions and little, if any [MH-H3PO4]+. Ambiguities do arise, most often with phosphopeptides that contain residues which readily lose water (such as unmodified serine), but these can often be resolved by recording a complete metastable fragment ion (postsource decay) spectrum. Postsource decay is shown here to be a viable technique for sequencing phosphopeptides. It can be used to distinguish between serine/ threonine and tyrosine phosphorylation and in many cases can be used to determine the exact site of phosphorylation in a peptide sequence. Nearly complete sequence coverage and phosphorylation site mapping is generally possible using approximately 300 fmol of peptide.
Collapse
Affiliation(s)
- R S Annan
- Department of Physical and Structural Chemistry, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA.
| | | |
Collapse
|
31
|
Dean KR, Akhtar M. Novel mechanism for the activation of rhodopsin kinase: implications for other G protein-coupled receptor kinases (GRK's). Biochemistry 1996; 35:6164-72. [PMID: 8634260 DOI: 10.1021/bi952480q] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
ATP, its nonhydrolyzable analogue, AMP-PNP, and albumin were found to promote the dissociation of rhodopsin kinase from rod outer segments (ROS) containing photoactivated-rhodopsin (Rho*). These features were embodied in a protocol for the recovery of rhodopsin kinase from incubations containing ROS which had been subjected to a wide range of treatments. It was found that the supernatants recovered from mixtures containing ATP, rhodopsin kinase, and photolyzed ROS membranes catalyzed a Rho*-independent peptide phosphorylation as well as dark-phosphorylation of rhodopsin. The activities of this activated kinase in the two aforementioned assays were 7-8% of the maximum intrinsic activity found in appropriate standard assays (i.e., light-stimulated phosphorylation of rhodopsin and Rho*-dependent peptide phosphorylation). The activated kinase reverted to its inactive resting-state in a time dependent fashion, giving a tau 1/2 of decay of approximately 2 min. The intrinsic activity of kinase as measured by the standard assay, however, remained constant during this decay period. No positive evidence was found to suggest that the interconversion activated kinase <--> inactive kinase occurred by a phosphorylation event. Cumulatively, the results show that the interaction of rhodopsin kinase.ATP complex with Rho* leads to the formation, presumably due to the reorganization of the protein structure, of a soluble active kinase species which reverts to the inactive resting state in a time-dependent fashion.
Collapse
Affiliation(s)
- K R Dean
- Department of Biochemistry, University of Southampton, U.K
| | | |
Collapse
|
32
|
Premont RT, Macrae AD, Stoffel RH, Chung N, Pitcher JA, Ambrose C, Inglese J, MacDonald ME, Lefkowitz RJ. Characterization of the G protein-coupled receptor kinase GRK4. Identification of four splice variants. J Biol Chem 1996; 271:6403-10. [PMID: 8626439 DOI: 10.1074/jbc.271.11.6403] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A novel human G protein-coupled receptor kinase was recently identified by positional cloning in the search for the Huntington's disease locus (Ambrose, C., James, M., Barnes, G., Lin, C., Bates, G., Altherr, M., Duyao, M., Groot, N., Church, D., Wasmuth, J. J., Lehrach, H., Housman, D., Buckler, A., Gusella, J. F., and MacDonald, M. E. (1993) Hum. Mol. Genet. 1, 697-703). Comparison of the deduced amino acid sequence of GRK4 with those of the closely related GRK5 and GRK6 suggested the apparent loss of 32 codons in the amino-terminal domain and 46 codons in the carboxyl-terminal domain of GRK4. These two regions undergo alternative splicing in the GRK4 mRNA, resulting from the presence or absence of exons filling one or both of these apparent gaps. Each inserted sequence maintains the open reading frame, and the deduced amino acid sequences are similar to corresponding regions of GRK5 and GRK6. Thus, the GRK4 mRNA and the GRK4 protein can exist as four distinct variant forms. The human GRK4 gene is composed of 16 exons extending over 75 kilobase pairs of DNA. The two alternatively spliced exons correspond to exons II and XV. The genomic organization of the GRK4 gene is completely distinct from that of the human GRK2 gene, highlighting the evolutionary distance since the divergence of these two genes. Human GRK4 mRNA is expressed highly only in testis, and both alternative exons are abundant in testis mRNA. The four GRK4 proteins have been expressed, and all incorporate [3H]palmitate. GRK4 is capable of augmenting the desensitization of the rat luteinizing hormone/chorionic gonadotropin receptor upon coexpression in HEK293 cells and of phosphorylating the agonist-occupied, purified beta2-adrenergic receptor, indicating that GRK4 is a functional protein kinase.
Collapse
Affiliation(s)
- R T Premont
- Department of Medicine (Cardiology), Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ohguro H, Rudnicka-Nawrot M, Buczyłko J, Zhao X, Taylor JA, Walsh KA, Palczewski K. Structural and enzymatic aspects of rhodopsin phosphorylation. J Biol Chem 1996; 271:5215-24. [PMID: 8617805 DOI: 10.1074/jbc.271.9.5215] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Photoactivated rhodopsin (Rho*) is phosphorylated near the C terminus at multiple sites, predominantly at Ser334, Ser338, and Ser343. We systematically examined the sites of phosphorylation upon flash activation of Rho in rod outer segment (ROS) homogenates. Addition of an inhibitory antibody against rhodopsin kinase (RK) lowered phosphorylation at Ser334, Ser338, and Ser343, without changing the ratio between phosphorylation sites. In contrast, no effect of protein kinase C was detected after stimulation (by a phorbol ester), inhibition (with H7), or reconstitution of protein kinase C with purified ROS membranes. The stoichiometry and the ratio between different phosphorylation sites in purified Rho were also reproduced using RK, purified to apparent homogeneity from ROS or from an insect cell expression system. Thus, we conclude that light-dependent phosphorylation of Rho is mediated primarily by RK. Depalmitoylation of Rho at Cys322 and Cys323 altered the conformation of the C terminus of Rho, as observed by phosphorylation by casein kinase I, but did not affect phosphorylation by RK. The sites of phosphorylation were influenced, however, by the presence of four conserved amino acids at the C terminus of Rho. The accumulation of phosphorylated Ser334 observed in vivo could result from slower dephosphorylation of this site as compared with dephosphorylation of Ser338 and Ser343. These data provide a molecular mechanism for the site-specific phosphorylation of Rho observed in vivo.
Collapse
Affiliation(s)
- H Ohguro
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, 98195, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Busman M, Schey KL, Oatis JE, Knapp DR. Identification of phosphorylation sites in phosphopeptides by positive and negative mode electrospray ionization-tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 1996; 7:243-249. [PMID: 24203295 DOI: 10.1016/1044-0305(95)00675-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/1995] [Revised: 10/03/1995] [Accepted: 10/04/1995] [Indexed: 06/02/2023]
Abstract
A series of synthetic mono- and diphosphorylated peptides has been analyzed by positive and negative mode electrospray ionization-tandem mass spectrometry. The synthetic peptides are serine- and threonine-phosphorylated analogs of proteolytic fragments from the C-terminal region of rhodopsin. Use of positive and negative modes of electrospray ionization to produce ions for tandem mass spectrometry via low energy collision-induced dissociation was explored. For some of the peptides, the complementary use of experimental results allowed determination of the phosphorylation sites when either mode alone gave incomplete information. Other peptides, however, gave negative ion spectra not interpretable in terms of backbone cleavages. However, use of positive ion tandem mass spectrometry of different charge state precursor ions gave sufficient information in most cases to assign sites of phosphorylation. These results illustrate the utility of obtaining complementary information by tandem mass spectrometry by using precursor ions of different charge polarity or number.
Collapse
Affiliation(s)
- M Busman
- Department of Pharmacology, Medical University of South Carolina, 29425-2251, Charleston, SC
| | | | | | | |
Collapse
|
35
|
Peter Hofmann K, Heck M. Light-induced protein-protein interactions on the rod photoreceptor disc membrane. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1874-5342(07)80006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
36
|
Calvert PD, Klenchin VA, Bownds MD. Rhodopsin kinase inhibition by recoverin. Function of recoverin myristoylation. J Biol Chem 1995; 270:24127-9. [PMID: 7592614 DOI: 10.1074/jbc.270.41.24127] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recoverin is a Ca(2+)-binding protein that may play a role in vertebrate photoreceptor light adaptation by imparting Ca2+ sensitivity to rhodopsin kinase. It is heterogeneously acylated (mostly myristoylated) at its amino-terminal glycine. Recent studies have shown that recoverin myristolyation is necessary for its Ca(2+)-dependent membrane association and cooperative Ca2+ binding. We have addressed several issues concerning the role of recoverin myristoylation with respect to inhibition of rhodopsin kinase. We find that 1) myristoylation of recoverin is not necessary for inhibition of rhodopsin kinase, 2) myristoylation of recoverin induces a cooperative Ca(2+)-dependence for rhodopsin kinase inhibition, and 3) each Ca(2+)-binding site on the nonmyristoylated recoverin partially inhibits rhodopsin kinase. The available data suggest that the functions of recoverin myristoylation in the living rod are to induce a sharp Ca2+ dependence of rhodopsin kinase inhibition and to bring this dependence into the rod's physiological Ca2+ concentration range.
Collapse
Affiliation(s)
- P D Calvert
- R. M. Bock Laboratories, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
37
|
Abstract
A key reaction in the inactivation of rhodopsin is its phosphorylation by rhodopsin kinase. In recent years, extensive studies related to rhodopsin kinase function and enzymatic properties were carried out. Rhodopsin kinase is a Ser/Thr protein kinase and a member of the G protein-coupled receptor kinases sub-family (GRKs) which consists of six recently identified members. Photolyzed rhodopsin is phosphorylated by rhodopsin kinase sequentially, with the first phosphate transferred preferentially to Ser-338, and subsequent phosphates transferred to Ser-343 and Thr-336. The binding of arrestin to the receptor, and reduction of the photolyzed chromophore all-trans-retinal to all-trans-retinol limits physiologically significant phosphorylation at no more than three sites (H. Ohguro, R.S. Johnson, L.H. Ericsson, K.A. Walsh and K. Palczewski, Biochemistry, 33 (1994) 1023). A similar phosphorylation reaction is implicated in most, if not all, G protein-coupled receptors during their desensitization.
Collapse
Affiliation(s)
- X Zhao
- Department of Ophthalmology, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
38
|
Klenchin VA, Calvert PD, Bownds MD. Inhibition of rhodopsin kinase by recoverin. Further evidence for a negative feedback system in phototransduction. J Biol Chem 1995; 270:16147-52. [PMID: 7608179 DOI: 10.1074/jbc.270.27.16147] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recoverin is a 23-kDa Ca(2+)-binding protein found predominantly in vertebrate photoreceptor cells. Recent electrophysiological and biochemical studies suggest that recoverin may regulate the photoresponse by inhibiting rhodopsin phosphorylation. We find in both cell homogenates and reconstituted systems that the inhibition of rhodopsin phosphorylation by recoverin occurs over a significantly higher free Ca2+ range than previously reported. Half-maximal inhibition occurs at 1.5-3 microM free Ca2+ and is cooperative with a Hill coefficient of approximately 2. Measurements of transducin activation demonstrate that this inhibition prolongs the lifetime of catalytically active rhodopsin. Ca(2+)-recoverin directly inhibits rhodopsin kinase activity, and Ca(2+)-dependent binding of recoverin to rod outer segment membranes is not required for its action. Extrapolation of the in vitro data to in vivo conditions based on simple mass action calculations places the Ca(2+)-recoverin regulation within the physiological free Ca2+ range in intact rod outer segment. The data are consistent with a model in which the fall in free Ca2+ that accompanies rod excitation exerts negative feedback by relieving inhibition of rhodopsin phosphorylation.
Collapse
Affiliation(s)
- V A Klenchin
- Laboratory of Molecular Biology, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
39
|
Sanada K, Kokame K, Yoshizawa T, Takao T, Shimonishi Y, Fukada Y. Role of heterogeneous N-terminal acylation of recoverin in rhodopsin phosphorylation. J Biol Chem 1995; 270:15459-62. [PMID: 7797536 DOI: 10.1074/jbc.270.26.15459] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recoverin, a new member of the EF-hand superfamily, plays a critical role in the light/dark adaptation of retinal rods by regulating rhodopsin phosphorylation in a Ca(2+)-dependent manner. Recoverin is composed of four isoforms, each of which is modified at its N terminus by myristate (C14:0) or its structurally related fatty acid (C12:0, C14:2, or C14:1). Although the N-fatty acylation is implicated in protein-membrane and protein-protein interactions, the functional difference among the recoverin isoforms and the significance of the heterogeneous acylation have not been defined. Here we separated the heterogeneous recoverin into three fractions, C14:0-recoverin, C14:1-recoverin, and a mixture of C14:2- and C12:0- (C14:2/C12:0-) recoverin to evaluate the individual properties. Recoverin in every fraction bound Ca2+ as assessed by fluorescence spectroscopy and inhibited the light-dependent rhodopsin phosphorylation in the same range of free Ca2+ concentration (0.3-0.8 microM). However, the magnitude of the inhibition at higher Ca2+ concentration was different among the isoforms and ranked in the same order of the hydrophobicity of the N-fatty acyl groups: C14:0 > C14:1 > C14:2/C12:0. These results indicate that the diverged hydrophobicity of the recoverin N terminus plays an important role in the interaction with the membranes and/or its target protein but not with Ca2+.
Collapse
Affiliation(s)
- K Sanada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Palczewski K, Ohguro H, Premont RT, Inglese J. Rhodopsin kinase autophosphorylation. Characterization of site-specific mutations. J Biol Chem 1995; 270:15294-8. [PMID: 7797516 DOI: 10.1074/jbc.270.25.15294] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Upon illumination, rhodopsin kinase (RK) phosphorylates the visual pigment rhodopsin, which is thought to partially terminate the biochemical events that follow photon absorption. RK enzymology was explored by mutagenesis of the residues Ser488, Thr489 (major autophosphorylation sites), and Lys491 (a distal residue). We found the following to be true. (i) Double mutations at residues Ser488 and Thr489 to Ala or Asp decrease autophosphorylation to substoichiometrical levels, while single mutations at either residue independently reduce autophosphorylation by half. (ii) Phosphorylation of residue Ser488 influences the affinity of RK for heparin-Sepharose only moderately, whereas Thr489 and Lys491 are important for this interaction. RK K491A does not phosphorylate acidic peptides, suggesting that this residue participates in substrate binding. (iii) Mutations in the autophosphorylation region affect the Km for ATP, suggesting that this region is involved in binding of ATP to the catalytic site. (iv) RK mutants S488A or S488D and RK S488A and T489A have an increased ability to phosphorylate Rho in the dark. (v) Mutations at the autophosphorylation region change the initial site of phosphorylation on photolyzed rhodopsin (Rho*), implying that this region may regulate selectivity of the site of phosphorylation.
Collapse
Affiliation(s)
- K Palczewski
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
41
|
Dass C, Mahalakshmi P. Amino acid sequence determination of phosphoenkephalins using liquid secondary ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 1995; 9:1148-1154. [PMID: 7579627 DOI: 10.1002/rcm.1290091213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Liquid secondary ionization mass spectrometry (LSIMS) operating in the positive- and negative-ion modes was used to study fragmentation profiles and to obtain the amino acid sequences of a set of seven phosphoenkephalin peptides. The use of glycerol as the liquid matrix led to increase in fragmentation of phosphopeptides. The prominent amino acid sequence-determining ions in the positive-ion mode are y-type C-terminal ions; the N-terminal sequence-specific ions are observed sporadically. The most dominant ions in those mass spectra, however, are the immonium ions and a few low-mass side-chain cleavage products. The mass spectra in the negative-ion mode are more information-rich, and provide data complementary to that from the positive-ion mode. The phosphate group marker ions, m/z 79 (PO-3) and 97 (H2PO-4), are prominent and both N- and C-termini sequence ions are formed with equal facility in this mode of analysis. Both positive- and negative-ion mass spectral data are useful in determining the amino acid sequence of all the seven phosphoenkephalins. Thus, LSIMS alone can be a viable option to the tandem mass spectrometry approach when sufficient quantities (> 50 nmol) of phosphopeptides are available.
Collapse
Affiliation(s)
- C Dass
- Department of Chemistry, University of Memphis, TN 38152, USA
| | | |
Collapse
|
42
|
Amankwa LN, Harder K, Jirik F, Aebersold R. High-sensitivity determination of tyrosine-phosphorylated peptides by on-line enzyme reactor and electrospray ionization mass spectrometry. Protein Sci 1995; 4:113-25. [PMID: 7539661 PMCID: PMC2142971 DOI: 10.1002/pro.5560040114] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We describe a simple, fast, sensitive, and nonisotopic bioanalytical technique for the detection of tyrosine-phosphorylated peptides and the determination of sites of protein tyrosine phosphorylation. The technique employs a protein tyrosine phosphatase micro enzyme reactor coupled on-line to either capillary electrophoresis or liquid chromatography and electrospray ionization mass spectrometry instruments. The micro enzyme reactor was constructed by immobilizing genetically engineered, metabolically biotinylated human protein tyrosine phosphatase beta onto the inner surface of a small piece of a 50-microns inner diameter, 360-microns outer diameter fused silica capillary or by immobilization of the phosphatase onto 40-90-microns avidin-activated resins. By coupling these reactors directly to either a capillary electrophoresis column or a liquid chromatography column, we were able to rapidly perform enzymatic dephosphorylation and separation of the reaction products. Detection and identification of the components of the reaction mixture exiting these reactors were done by mass analysis with an on-line electrospray ionization mass spectrometer. Tyrosine-phosphorylated peptides, even if present in a complex peptide mixture, were identified by subtractive analysis of peptide patterns generated with or without phosphatase treatment. Two criteria, namely a phosphatase-induced change in hydropathy and charge, respectively, and a change in molecular mass by 80 Da, were used jointly to identify phosphopeptides. We demonstrate that, with this technique, low picomole amounts of a tyrosine-phosphorylated peptide can be detected in a complex peptide mixture generated by proteolysis of a protein and that even higher sensitivities can be realized if more sensitive detection systems are applied.
Collapse
Affiliation(s)
- L N Amankwa
- Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
43
|
Sterne-Marr R, Benovic JL. Regulation of G protein-coupled receptors by receptor kinases and arrestins. VITAMINS AND HORMONES 1995; 51:193-234. [PMID: 7483322 DOI: 10.1016/s0083-6729(08)61039-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R Sterne-Marr
- Department of Pharmacology, Jefferson Cancer Cancer, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
44
|
Loudon R, Benovic J. Expression, purification, and characterization of the G protein-coupled receptor kinase GRK6. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31701-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Penn R, Benovic J. Structure of the human gene encoding the beta-adrenergic receptor kinase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36554-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Phospholipid-stimulated autophosphorylation activates the G protein-coupled receptor kinase GRK5. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34046-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
47
|
Premont R, Koch W, Inglese J, Lefkowitz R. Identification, purification, and characterization of GRK5, a member of the family of G protein-coupled receptor kinases. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37451-3] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
48
|
Selective Detection of Thr-, Ser-, and Tyr-Phosphopeptides in Complex Digests by Electrospray LC-MS. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/b978-0-12-194710-1.50019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
49
|
Lohse MJ. Molecular mechanisms of membrane receptor desensitization. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1179:171-88. [PMID: 7692969 DOI: 10.1016/0167-4889(93)90139-g] [Citation(s) in RCA: 311] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- M J Lohse
- Laboratorium für Molekulare Biologie, Universität München, Max-Planck-Institut für Biochemie, Martinsried, Germany
| |
Collapse
|
50
|
Inglese J, Freedman N, Koch W, Lefkowitz R. Structure and mechanism of the G protein-coupled receptor kinases. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80439-6] [Citation(s) in RCA: 212] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|