• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4641775)   Today's Articles (135)   Subscriber (50459)
For: Mendoza J, Lorimer G, Horowitz P. Chaperonin cpn60 from Escherichia coli protects the mitochondrial enzyme rhodanese against heat inactivation and supports folding at elevated temperatures. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)37089-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]  Open
Number Cited by Other Article(s)
1
Pan H, Song T, Wang Z, Guo Y, Zhang H, Ji T, Cao K, Zhang Z. Ectopic BH3-only protein Bim acts as a co-chaperone to positively regulate Hsp70 in yeast. J Biochem 2021;170:539-545. [PMID: 34185080 DOI: 10.1093/jb/mvab073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/08/2021] [Indexed: 11/12/2022]  Open
2
Chaperonin-assisted protein folding: a chronologue. Q Rev Biophys 2020;53:e4. [PMID: 32070442 DOI: 10.1017/s0033583519000143] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
3
Knowlton AA, Liu TT. Mitochondrial Dynamics and Heart Failure. Compr Physiol 2015;6:507-26. [PMID: 26756641 PMCID: PMC5695672 DOI: 10.1002/cphy.c150022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
4
Haslbeck M, Buchner J. Assays to characterize molecular chaperone function in vitro. Methods Mol Biol 2015;1292:39-51. [PMID: 25804746 DOI: 10.1007/978-1-4939-2522-3_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
5
Kumar V, Punetha A, Sundar D, Chaudhuri TK. In silico engineering of aggregation-prone recombinant proteins for substrate recognition by the chaperonin GroEL. BMC Genomics 2013;13 Suppl 7:S22. [PMID: 23281895 PMCID: PMC3521247 DOI: 10.1186/1471-2164-13-s7-s22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]  Open
6
KNOWLTON ANNEA. Heat-Shock Proteins, Stress, and the Heart. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.1994.tb36722.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
7
Melkani GC, Kestetter J, Sielaff R, Zardeneta G, Mendoza JA. Protection of GroEL by its methionine residues against oxidation by hydrogen peroxide. Biochem Biophys Res Commun 2006;347:534-9. [PMID: 16828704 DOI: 10.1016/j.bbrc.2006.06.136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 06/22/2006] [Indexed: 11/25/2022]
8
Khodagholi F, Yazdanparast R. Artificial chaperone-assisted refolding of GuHCl-denatured alpha-amylase at low temperature: refolding versus aggregation. Protein J 2006;24:303-13. [PMID: 16284728 DOI: 10.1007/s10930-005-6751-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
9
Haslbeck M. Recombinant expression and in vitro refolding of the yeast small heat shock protein Hsp42. Int J Biol Macromol 2006;38:107-14. [PMID: 16488470 DOI: 10.1016/j.ijbiomac.2006.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 01/23/2006] [Accepted: 01/23/2006] [Indexed: 10/25/2022]
10
Kohda J, Kawanishi H, Suehara KI, Nakano Y, Yano T. Stabilization of free and immobilized enzymes using hyperthermophilic chaperonin. J Biosci Bioeng 2006;101:131-6. [PMID: 16569608 DOI: 10.1263/jbb.101.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 10/31/2005] [Indexed: 11/17/2022]
11
Melkani GC, Zardeneta G, Mendoza JA. On the chaperonin activity of GroEL at heat-shock temperature. Int J Biochem Cell Biol 2005;37:1375-85. [PMID: 15833270 DOI: 10.1016/j.biocel.2005.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2004] [Accepted: 01/18/2005] [Indexed: 10/25/2022]
12
Haslbeck M, Ignatiou A, Saibil H, Helmich S, Frenzl E, Stromer T, Buchner J. A Domain in the N-terminal Part of Hsp26 is Essential for Chaperone Function and Oligomerization. J Mol Biol 2004;343:445-55. [PMID: 15451672 DOI: 10.1016/j.jmb.2004.08.048] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/12/2004] [Accepted: 08/13/2004] [Indexed: 11/21/2022]
13
Eggenhofer E, Haslbeck M, Scharf B. MotE serves as a new chaperone specific for the periplasmic motility protein, MotC, in Sinorhizobium meliloti. Mol Microbiol 2004;52:701-12. [PMID: 15101977 DOI: 10.1111/j.1365-2958.2004.04022.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
14
Melkani GC, McNamara C, Zardeneta G, Mendoza JA. Hydrogen peroxide induces the dissociation of GroEL into monomers that can facilitate the reactivation of oxidatively inactivated rhodanese. Int J Biochem Cell Biol 2004;36:505-18. [PMID: 14687928 DOI: 10.1016/j.biocel.2003.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
15
Stromer T, Fischer E, Richter K, Haslbeck M, Buchner J. Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation: the N-terminal domail is important for oligomer assembly and the binding of unfolding proteins. J Biol Chem 2004;279:11222-8. [PMID: 14722093 DOI: 10.1074/jbc.m310149200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
16
Stromer T, Ehrnsperger M, Gaestel M, Buchner J. Analysis of the interaction of small heat shock proteins with unfolding proteins. J Biol Chem 2003;278:18015-21. [PMID: 12637495 DOI: 10.1074/jbc.m301640200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
17
Zhang Z, Li ZH, Wang F, Fang M, Yin CC, Zhou ZY, Lin Q, Huang HL. Overexpression of DsbC and DsbG markedly improves soluble and functional expression of single-chain Fv antibodies in Escherichia coli. Protein Expr Purif 2002;26:218-28. [PMID: 12406675 DOI: 10.1016/s1046-5928(02)00502-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
18
Melkani GC, Zardeneta G, Mendoza JA. GroEL interacts transiently with oxidatively inactivated rhodanese facilitating its reactivation. Biochem Biophys Res Commun 2002;294:893-9. [PMID: 12061791 DOI: 10.1016/s0006-291x(02)00575-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
19
Borkan SC, Gullans SR. Molecular chaperones in the kidney. Annu Rev Physiol 2002;64:503-27. [PMID: 11826277 DOI: 10.1146/annurev.physiol.64.081501.155819] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
20
Ihara Y, Cohen-Doyle MF, Saito Y, Williams DB. Calnexin discriminates between protein conformational states and functions as a molecular chaperone in vitro. Mol Cell 1999;4:331-41. [PMID: 10518214 DOI: 10.1016/s1097-2765(00)80335-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
21
Grallert H, Buchner J. Analysis of GroE-assisted folding under nonpermissive conditions. J Biol Chem 1999;274:20171-7. [PMID: 10400632 DOI: 10.1074/jbc.274.29.20171] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
22
Dionisi HM, Alvarez CV, Viale AM. Alkali metal ions protect mitochondrial rhodanese against thermal inactivation. Arch Biochem Biophys 1999;361:202-6. [PMID: 9882447 DOI: 10.1006/abbi.1998.0944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
23
Grallert H, Rutkat K, Buchner J. GroEL traps dimeric and monomeric unfolding intermediates of citrate synthase. J Biol Chem 1998;273:33305-10. [PMID: 9837903 DOI: 10.1074/jbc.273.50.33305] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
24
Smith KE, Voziyan PA, Fisher MT. Partitioning of rhodanese onto GroEL. Chaperonin binds a reversibly oxidized form derived from the native protein. J Biol Chem 1998;273:28677-81. [PMID: 9786862 DOI: 10.1074/jbc.273.44.28677] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
25
Matsuzaki M, Kiso Y, Yamamoto I, Satoh T. Isolation of a periplasmic molecular chaperone-like protein of Rhodobacter sphaeroides f. sp. denitrificans that is homologous to the dipeptide transport protein DppA of Escherichia coli. J Bacteriol 1998;180:2718-22. [PMID: 9573158 PMCID: PMC107225 DOI: 10.1128/jb.180.10.2718-2722.1998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]  Open
26
Taguchi H, Yoshida M. Chaperonin from thermophile Thermus thermophilus. Methods Enzymol 1998;290:169-80. [PMID: 9534161 DOI: 10.1016/s0076-6879(98)90017-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
27
Buchner J, Grallert H, Jakob U. Analysis of chaperone function using citrate synthase as nonnative substrate protein. Methods Enzymol 1998;290:323-38. [PMID: 9534173 DOI: 10.1016/s0076-6879(98)90029-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
28
Coyle JE, Jaeger J, Gross M, Robinson CV, Radford SE. Structural and mechanistic consequences of polypeptide binding by GroEL. FOLDING & DESIGN 1998;2:R93-104. [PMID: 9427006 DOI: 10.1016/s1359-0278(97)00046-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
29
Fedorov AN, Baldwin TO. GroE modulates kinetic partitioning of folding intermediates between alternative states to maximize the yield of biologically active protein. J Mol Biol 1997;268:712-23. [PMID: 9175856 DOI: 10.1006/jmbi.1997.1007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
30
Fenton WA, Horwich AL. GroEL-mediated protein folding. Protein Sci 1997;6:743-60. [PMID: 9098884 PMCID: PMC2144759 DOI: 10.1002/pro.5560060401] [Citation(s) in RCA: 275] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
31
Riso LD, de Alteriis E, Alfani F, Parascandola P. Rhodanese-BSA polymers entrapped in insolubilized gelatin gels: Properties and behavior in continuous systems. Enzyme Microb Technol 1996. [DOI: 10.1016/0141-0229(95)00177-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
32
Guagliardi A, Cerchia L, Rossi M. Prevention of in vitro protein thermal aggregation by the Sulfolobus solfataricus chaperonin. Evidence for nonequivalent binding surfaces on the chaperonin molecule. J Biol Chem 1995;270:28126-32. [PMID: 7499301 DOI: 10.1074/jbc.270.47.28126] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]  Open
33
Song JL, Wang CC. Chaperone-like activity of protein disulfide-isomerase in the refolding of rhodanese. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995;231:312-6. [PMID: 7635143 DOI: 10.1111/j.1432-1033.1995.tb20702.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
34
Jakob U, Lilie H, Meyer I, Buchner J. Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo. J Biol Chem 1995;270:7288-94. [PMID: 7706269 DOI: 10.1074/jbc.270.13.7288] [Citation(s) in RCA: 256] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]  Open
35
Heat shock-induced phosphorylation of GroEL alters its binding and dissociation from unfolded proteins. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31719-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]  Open
36
Mendoza JA, Horowitz PM. Bound substrate polypeptides can generally stabilize the tetradecameric structure of Cpn60 and induce its reassembly from monomers. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47143-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]  Open
37
Kawata Y, Nosaka K, Hongo K, Mizobata T, Nagai J. Chaperonin GroE and ADP facilitate the folding of various proteins and protect against heat inactivation. FEBS Lett 1994;345:229-32. [PMID: 7911090 DOI: 10.1016/0014-5793(94)00456-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
38
Rao P, Horwitz J, Zigler J. Chaperone-like activity of alpha-crystallin. The effect of NADPH on its interaction with zeta-crystallin. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36828-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]  Open
39
Becker J, Craig EA. Heat-shock proteins as molecular chaperones. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994;219:11-23. [PMID: 8306977 DOI: 10.1007/978-3-642-79502-2_2] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
40
Panova AA, Mozhaev VV. Correlation of high-temperature stability of alpha-chymotrypsin with 'salting-in' properties of solution. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994;219:231-6. [PMID: 8306990 DOI: 10.1111/j.1432-1033.1994.tb19934.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
41
BECKER J, CRAIG EA. Heat-shock proteins as molecular chaperones. ACTA ACUST UNITED AC 1994. [DOI: 10.1111/j.1432-1033.1994.tb19910.x] [Citation(s) in RCA: 368] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
42
Mosser DD, Massie B. Genetically engineering mammalian cell lines for increased viability and productivity. Biotechnol Adv 1994;12:253-77. [PMID: 14545894 DOI: 10.1016/0734-9750(94)90013-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
43
Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74409-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]  Open
44
Kubo T, Mizobata T, Kawata Y. Refolding of yeast enolase in the presence of the chaperonin GroE. The nucleotide specificity of GroE and the role of GroES. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36520-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]  Open
45
Dungan JM, Horowitz PM. Thermally perturbed rhodanese can be protected from inactivation by self-association. JOURNAL OF PROTEIN CHEMISTRY 1993;12:311-21. [PMID: 8397789 DOI: 10.1007/bf01028193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
46
Escher A, Szalay AA. GroE-mediated folding of bacterial luciferases in vivo. MOLECULAR & GENERAL GENETICS : MGG 1993;238:65-73. [PMID: 8097558 DOI: 10.1007/bf00279532] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
47
Horowitz P, Butler M. Interactive intermediates are formed during the urea unfolding of rhodanese. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53804-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA