1
|
Goyzueta-Mamani LD, Barazorda-Ccahuana HL, Candia-Puma MA, Galdino AS, Machado-de-Avila RA, Giunchetti RC, Medina-Franco JL, Florin-Christensen M, Ferraz Coelho EA, Chávez-Fumagalli MA. Targeting Leishmania infantum Mannosyl-oligosaccharide glucosidase with natural products: potential pH-dependent inhibition explored through computer-aided drug design. Front Pharmacol 2024; 15:1403203. [PMID: 38873424 PMCID: PMC11169604 DOI: 10.3389/fphar.2024.1403203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024] Open
Abstract
Visceral Leishmaniasis (VL) is a serious public health issue, documented in more than ninety countries, where an estimated 500,000 new cases emerge each year. Regardless of novel methodologies, advancements, and experimental interventions, therapeutic limitations, and drug resistance are still challenging. For this reason, based on previous research, we screened natural products (NP) from Nuclei of Bioassays, Ecophysiology, and Biosynthesis of Natural Products Database (NuBBEDB), Mexican Compound Database of Natural Products (BIOFACQUIM), and Peruvian Natural Products Database (PeruNPDB) databases, in addition to structural analogs of Miglitol and Acarbose, which have been suggested as treatments for VL and have shown encouraging action against parasite's N-glycan biosynthesis. Using computer-aided drug design (CADD) approaches, the potential inhibitory effect of these NP candidates was evaluated by inhibiting the Mannosyl-oligosaccharide Glucosidase Protein (MOGS) from Leishmania infantum, an enzyme essential for the protein glycosylation process, at various pH to mimic the parasite's changing environment. Also, computational analysis was used to evaluate the Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) profile, while molecular dynamic simulations were used to gather information on the interactions between these ligands and the protein target. Our findings indicated that Ocotillone and Subsessiline have potential antileishmanial effects at pH 5 and 7, respectively, due to their high binding affinity to MOGS and interactions in the active center. Furthermore, these compounds were non-toxic and had the potential to be administered orally. This research indicates the promising anti-leishmanial activity of Ocotillone and Subsessiline, suggesting further validation through in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Luis Daniel Goyzueta-Mamani
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, Peru
| | - Haruna Luz Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, Peru
| | - Mayron Antonio Candia-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa, Peru
| | | | | | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador, Brazil
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mónica Florin-Christensen
- Instituto de Patobiología Veterinaria, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Patologia Clínica, Colégio Técnico da Universidade Federal de Minas Gerais (COLTEC), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, Peru
| |
Collapse
|
2
|
Devender M, Sebastian P, Maurya VK, Kumar K, Anand A, Namdeo M, Maurya R. Immunogenicity and protective efficacy of tuzin protein as a vaccine candidate in Leishmania donovani-infected BALB/c mice. Front Immunol 2024; 14:1294397. [PMID: 38274802 PMCID: PMC10808571 DOI: 10.3389/fimmu.2023.1294397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Visceral leishmaniasis (VL) is referred to as the most severe and fatal type of leishmaniasis basically caused by Leishmania donovani and L. infantum. The most effective method for preventing the spread of the disease is vaccination. Till today, there is no promising licensed vaccination for human VL. Hence, investigation for vaccines is necessary to enrich the therapeutic repertoire against leishmaniasis. Tuzin is a rare trans-membrane protein that has been reported in Trypanosoma cruzi with unknown function. However, tuzin is not characterized in Leishmania parasites. In this study, we for the first time demonstrated that tuzin protein was expressed in both stages (promastigote and amastigote) of L. donovani parasites. In-silico studies revealed that tuzin has potent antigenic properties. Therefore, we analyzed the immunogenicity of tuzin protein and immune response in BALB/c mice challenged with the L. donovani parasite. We observed that tuzin-vaccinated mice have significantly reduced parasite burden in the spleen and liver compared with the control. The number of granulomas in the liver was also significantly decreased compared with the control groups. We further measured the IgG2a antibody level, a marker of Th1 immune response in VL, which was significantly higher in the serum of immunized mice when compared with the control. Splenocytes stimulated with soluble Leishmania antigen (SLA) displayed a significant increase in NO and ROS levels compared with the control groups. Tuzin-immunized and parasite-challenged mice exhibit a notable rise in the IFN-γ/IL-10 ratio by significantly suppressing IL-10 expression level, an immunosuppressive cytokine that inhibits leishmanicidal immune function and encourages disease progression. In conclusion, tuzin immunizations substantially increase the protective immune response in L. donovani-challenged mice groups compared with control.
Collapse
|
3
|
Peña MS, Tang FHF, Franco FADL, Rodrigues AT, Carrara GMP, Araujo TLS, Giordano RJ, Palmisano G, de Camargo MM, Uliana SRB, Stolf BS. Leishmania (L.) amazonensis LaLRR17 increases parasite entry in macrophage by a mechanism dependent on GRP78. Parasitology 2023; 150:922-933. [PMID: 37553284 PMCID: PMC10577668 DOI: 10.1017/s0031182023000720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Leishmaniases affect 12 million people worldwide. They are caused by Leishmania spp., protozoan parasites transmitted to mammals by female phlebotomine flies. During the life cycle, promastigote forms of the parasite live in the gut of infected sandflies and convert into amastigotes inside the vertebrate macrophages. The parasite evades macrophage's microbicidal responses due to virulence factors that affect parasite phagocytosis, survival and/or proliferation. The interaction between Leishmania and macrophage molecules is essential to phagocytosis and parasite survival. Proteins containing leucine-rich repeats (LRRs) are common in several organisms, and these motifs are usually involved in protein–protein interactions. We have identified the LRR17 gene, which encodes a protein with 6 LRR domains, in the genomes of several Leishmania species. We show here that promastigotes of Leishmania (L.) amazonensis overexpressing LaLRR17 are more infective in vitro. We produced recombinant LaLRR17 protein and identified macrophage 78 kDa glucose-regulated protein (GRP78) as a ligand for LaLRR17 employing affinity chromatography followed by mass spectrometry. We showed that GRP78 binds to LaLRR17 and that its blocking precludes the increase of infection conferred by LaLRR17. Our results are the first to report LRR17 gene and protein, and we hope they stimulate further studies on how this protein increases phagocytosis of Leishmania.
Collapse
Affiliation(s)
- Mauricio S. Peña
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fenny Hui Fen Tang
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Ricardo José Giordano
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Beatriz Simonsen Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Kaushal RS, Naik N, Prajapati M, Rane S, Raulji H, Afu NF, Upadhyay TK, Saeed M. Leishmania species: A narrative review on surface proteins with structural aspects involved in host-pathogen interaction. Chem Biol Drug Des 2023; 102:332-356. [PMID: 36872849 DOI: 10.1111/cbdd.14227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
In tropical and subtropical regions of the world, leishmaniasis is endemic and causes a range of clinical symptoms in people, from severe tegumentary forms (such as cutaneous, mucocutaneous, and diffuse leishmaniasis) to lethal visceral forms. The protozoan parasite of the genus Leishmania causes leishmaniasis, which is still a significant public health issue, according to the World Health Organization 2022. The public's worry about the neglected tropical disease is growing as new foci of the illness arise, which are exacerbated by alterations in behavior, changes in the environment, and an enlarged range of sand fly vectors. Leishmania research has advanced significantly during the past three decades in a few different avenues. Despite several studies on Leishmania, many issues, such as illness control, parasite resistance, parasite clearance, etc., remain unresolved. The key virulence variables that play a role in the pathogenicity-host-pathogen relationship of the parasite are comprehensively discussed in this paper. The important Leishmania virulence factors, such as Kinetoplastid Membrane Protein-11 (KMP-11), Leishmanolysin (GP63), Proteophosphoglycan (PPG), Lipophosphoglycan (LPG), Glycosylinositol Phospholipids (GIPL), and others, have an impact on the pathophysiology of the disease and enable the parasite to spread the infection. Leishmania infection may arise from virulence factors; they are treatable with medications or vaccinations more promptly and might greatly shorten the duration of treatment. Additionally, our research sought to present a modeled structure of a few putative virulence factors that might aid in the development of new chemotherapeutic approaches for the treatment of leishmaniasis. The predicted virulence protein's structure is utilized to design novel drugs, therapeutic targets, and immunizations for considerable advantage from a higher understanding of the host immune response.
Collapse
Affiliation(s)
- Radhey Shyam Kaushal
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, 391760, Gujarat, India
| | - Nidhi Naik
- Department of Microbiology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Maitri Prajapati
- Department of Microbiology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Shruti Rane
- Department of Microbiology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Himali Raulji
- Department of Microbiology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Ngo Festus Afu
- Department of Biochemistry, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, 391760, Gujarat, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Ha'il, P.O. Box 2440, Hail, 81411, Saudi Arabia
| |
Collapse
|
5
|
Liew CY, Luo HS, Yang TY, Hung AT, Magoling BJA, Lai CPK, Ni CK. Identification of the High Mannose N-Glycan Isomers Undescribed by Conventional Multicellular Eukaryotic Biosynthetic Pathways. Anal Chem 2023. [PMID: 37235553 DOI: 10.1021/acs.analchem.2c05599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
N-linked glycosylation is one of the most important post-translational modifications of proteins. Current knowledge of multicellular eukaryote N-glycan biosynthesis suggests high mannose N-glycans are generated in the endoplasmic reticulum and Golgi apparatus through conserved biosynthetic pathways. According to conventional biosynthetic pathways, four Man7GlcNAc2 isomers, three Man6GlcNAc2 isomers, and one Man5GlcNAc2 isomer are generated during this process. In this study, we applied our latest mass spectrometry method, logically derived sequence tandem mass spectrometry (LODES/MSn), to re-examine high mannose N-glycans extracted from various multicellular eukaryotes which are not glycosylation mutants. LODES/MSn identified many high mannose N-glycan isomers previously unreported in plantae, animalia, cancer cells, and fungi. A database consisting of retention time and CID MSn mass spectra was constructed for all possible MannGlcNAc2 (n = 5, 6, 7) isomers that include the isomers by removing arbitrary numbers and positions of mannose from canonical N-glycan, Man9GlcNAc2. Many N-glycans in this database are not found in current N-glycan mass spectrum libraries. The database is useful for rapid high mannose N-glycan isomeric identification.
Collapse
Affiliation(s)
- Chia Yen Liew
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- Molecular Science and Technology (MST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 10617, Taiwan
| | - Hong-Sheng Luo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ting-Yi Yang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - An-Ti Hung
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bryan John Abel Magoling
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
| | - Charles Pin-Kuang Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Molecular Science and Technology (MST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
6
|
Polanco G, Scott NE, Lye LF, Beverley SM. Expanded Proteomic Survey of the Human Parasite Leishmania major Focusing on Changes in Null Mutants of the Golgi GDP-Mannose/Fucose/Arabinopyranose Transporter LPG2 and of the Mitochondrial Fucosyltransferase FUT1. Microbiol Spectr 2022; 10:e0305222. [PMID: 36394313 PMCID: PMC9769760 DOI: 10.1128/spectrum.03052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
The trypanosomatid protozoan parasite Leishmania has a significant impact on human health globally. Understanding the pathways associated with virulence within this significant pathogen is critical for identifying novel vaccination and chemotherapy targets. Within this study we leverage an ultradeep proteomic approach to improve our understanding of two virulence-associated genes in Leishmania, encoding the Golgi mannose/arabinopyranose/fucose nucleotide-sugar transporter (LPG2) and the mitochondrial fucosyltransferase (FUT1). Using deep peptide fractionation followed by complementary fragmentation approaches with higher-energy collisional dissociation (HCD) and electron transfer dissociation (ETD) allowed the identification of over 6,500 proteins, nearly doubling the experimentally known Leishmania major proteome. This deep proteomic analysis revealed significant quantitative differences in both Δlpg2- and Δfut1s mutants with FUT1-dependent changes linked to marked alterations within mitochondrion-associated proteins, while LPG2-dependent changes impacted many pathways, including the secretory pathway. While the FUT1 enzyme has been shown to fucosylate peptides in vitro, no evidence for protein fucosylation was identified within our ultradeep analysis, nor did we observe fucosylated glycans within Leishmania glycopeptides isolated using hydrophilic interaction liquid chromatography (HILIC) enrichment. This work provides a critical resource for the community on the observable Leishmania proteome as well as highlighting phenotypic changes associated with LPG2 or FUT1, ablation of which may guide the development of future therapeutics. IMPORTANCE Leishmania is a widespread trypanosomatid protozoan parasite of humans, with ~12 million cases currently, ranging from mild to fatal, and hundreds of millions asymptomatically infected. This work advances knowledge of the experimental proteome by nearly 2-fold, to more than 6,500 proteins and thus provides a great resource to investigators seeking to decode how this parasite is transmitted and causes disease and to identify new targets for therapeutic intervention. The ultradeep proteomics approach identified potential proteins underlying the "persistence-without-pathology" phenotype of mutants with deletion of the Golgi nucleotide transporter LPG2, showing many alterations and several candidates. Studies of a rare mutant with deletion of the mitochondrial fucosyltransferase FUT1 revealed changes underlying its strong mitochondrial dysfunction but did not reveal examples of fucosylation of either peptides or N-glycans. This suggests that this vital protein's elusive target(s) may be more complex than the methods used could detect or that this target may not be a protein but perhaps another glycoconjugate or glycolipid.
Collapse
Affiliation(s)
- Gloria Polanco
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lon F. Lye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Mule SN, Saad JS, Fernandes LR, Stolf BS, Cortez M, Palmisano G. Protein glycosylation inLeishmaniaspp. Mol Omics 2020; 16:407-424. [DOI: 10.1039/d0mo00043d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein glycosylation is a co- and post-translational modification that, inLeishmaniaparasites, plays key roles in vector–parasite–vertebrate host interaction.
Collapse
Affiliation(s)
- Simon Ngao Mule
- GlycoProteomics Laboratory
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo - 05508-000
| | - Joyce Silva Saad
- GlycoProteomics Laboratory
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo - 05508-000
| | - Livia Rosa Fernandes
- GlycoProteomics Laboratory
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo - 05508-000
| | - Beatriz S. Stolf
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo
- Brazil
| | - Mauro Cortez
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo
- Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo - 05508-000
| |
Collapse
|
8
|
Obregón A, Flores MS, Rangel R, Arévalo K, Maldonado G, Quintero I, Galán L. Characterization of N-glycosylations in Entamoeba histolytica ubiquitin. Exp Parasitol 2019; 196:38-47. [DOI: 10.1016/j.exppara.2018.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 12/30/2022]
|
9
|
Warfield KL, Plummer E, Alonzi DS, Wolfe GW, Sampath A, Nguyen T, Butters TD, Enterlein SG, Stavale EJ, Shresta S, Ramstedt U. A Novel Iminosugar UV-12 with Activity against the Diverse Viruses Influenza and Dengue (Novel Iminosugar Antiviral for Influenza and Dengue). Viruses 2015; 7:2404-27. [PMID: 25984714 PMCID: PMC4452912 DOI: 10.3390/v7052404] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/07/2015] [Indexed: 12/30/2022] Open
Abstract
Iminosugars are capable of targeting the life cycles of multiple viruses by blocking host endoplasmic reticulum α-glucosidase enzymes that are required for competent replication of a variety of enveloped, glycosylated viruses. Iminosugars as a class are approved for use in humans with diseases such as diabetes and Gaucher’s disease, providing evidence for safety of this class of compounds. The in vitro antiviral activity of iminosugars has been described in several publications with a subset of these demonstrating in vivo activity against flaviviruses, herpesviruses, retroviruses and filoviruses. Although there is compelling non-clinical in vivo evidence of antiviral efficacy, the efficacy of iminosugars as antivirals has yet to be demonstrated in humans. In the current study, we report a novel iminosugar, UV-12, which has efficacy against dengue and influenza in mouse models. UV-12 exhibits drug-like properties including oral bioavailability and good safety profile in mice and guinea pigs. UV-12 is an example of an iminosugar with activity against multiple virus families that should be investigated in further safety and efficacy studies and demonstrates potential value of this drug class as antiviral therapeutics.
Collapse
Affiliation(s)
| | - Emily Plummer
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | | | - Tam Nguyen
- Tam Nguyen LLC, Gaithersburg, MD 20879, USA.
| | | | | | - Eric J Stavale
- Integrated Biotherapeutics, Gaithersburg, MD 20878, USA.
| | - Sujan Shresta
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | |
Collapse
|
10
|
Alonzi DS, Kukushkin NV, Allman SA, Hakki Z, Williams SJ, Pierce L, Dwek RA, Butters TD. Glycoprotein misfolding in the endoplasmic reticulum: identification of released oligosaccharides reveals a second ER-associated degradation pathway for Golgi-retrieved proteins. Cell Mol Life Sci 2013; 70:2799-814. [PMID: 23503623 PMCID: PMC11113499 DOI: 10.1007/s00018-013-1304-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/31/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a key cellular process whereby misfolded proteins are removed from the endoplasmic reticulum (ER) for subsequent degradation by the ubiquitin/proteasome system. In the present work, analysis of the released, free oligosaccharides (FOS) derived from all glycoproteins undergoing ERAD, has allowed a global estimation of the mechanisms of this pathway rather than following model proteins through degradative routes. Examining the FOS produced in endomannosidase-compromised cells following α-glucosidase inhibition has revealed a mechanism for clearing Golgi-retrieved glycoproteins that have failed to enter the ER quality control cycle. The Glc3Man7GlcNAc2 FOS species has been shown to be produced in the ER lumen by a mechanism involving a peptide: N-glycanase-like activity, and its production was sensitive to disruption of Golgi-ER trafficking. The detection of this oligosaccharide was unaffected by the overexpression of EDEM1 or cytosolic mannosidase, both of which increased the production of previously characterised cytosolically localised FOS. The lumenal FOS identified are therefore distinct in their production and regulation compared to FOS produced by the conventional route of misfolded glycoproteins directly removed from the ER. The production of such lumenal FOS is indicative of a novel degradative route for cellular glycoproteins that may exist under certain conditions.
Collapse
Affiliation(s)
- Dominic S. Alonzi
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Nikolay V. Kukushkin
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Sarah A. Allman
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Zalihe Hakki
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010 Australia
| | - Spencer J. Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010 Australia
| | - Lorna Pierce
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Raymond A. Dwek
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Terry D. Butters
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
11
|
Novozhilova NM, Bovin NV. Structure, functions, and biosynthesis of glycoconjugates of Leishmania spp. cell surface. BIOCHEMISTRY (MOSCOW) 2010; 75:686-94. [DOI: 10.1134/s0006297910060027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Cuervo P, Santos ALS, Alves CR, Menezes GC, Silva BA, Britto C, Fernandes O, Cupolillo E, Batista De Jesus J. Cellular localization and expression of gp63 homologous metalloproteases in Leishmania (Viannia) braziliensis strains. Acta Trop 2008; 106:143-8. [PMID: 18423419 DOI: 10.1016/j.actatropica.2008.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 02/12/2008] [Accepted: 03/03/2008] [Indexed: 11/19/2022]
Abstract
Leishmania (Viannia) braziliensis is the major causative agent of American tegumentary leishmaniasis, a disease that encompasses a broad spectrum of clinical manifestations. In a previous study, we showed that Brazilian and Colombian L. braziliensis strains, isolated from patients with distinct clinical manifestations, display different pattern of metalloprotease activities. Following these results, we investigated the cellular localization of these molecules and their relation to the major surface protease (gp63) of Leishmania. Comparative analyses of metalloprotease expression among different clinical isolates as well as an evaluation of the effect of long-term in vitro passage on the expression pattern of these metalloproteases were also performed. Western blot analysis, using an anti-gp63 antibody, revealed polypeptide patterns with a similar profile to that observed in zymographic analysis. Flow cytometry and fluorescence microscopy analyses corroborated the presence of metalloproteases with homologous domains to gp63 in the parasites and revealed differences in the expression level of such molecules among the isolates. The cellular distribution of metalloproteases, assessed by confocal analysis, showed the existence of intracellular metalloproteases with homologous domains to gp63, predominantly located near the flagellar pocket. Finally, it was observed that differential zymographic profiles of metalloproteases exhibited by L. (V.) braziliensis isolates remain unaltered during prolonged in vitro culture, suggesting that the proteolytic activity pattern is a stable phenotypic characteristic of these parasites.
Collapse
Affiliation(s)
- Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Manthri S, Güther MLS, Izquierdo L, Acosta-Serrano A, Ferguson MAJ. Deletion of the TbALG3 gene demonstrates site-specific N-glycosylation and N-glycan processing in Trypanosoma brucei. Glycobiology 2008; 18:367-83. [PMID: 18263655 DOI: 10.1093/glycob/cwn014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We recently suggested a novel site-specific N-glycosylation mechanism in Trypanosoma brucei whereby some protein N-glycosylation sites selectively receive Man9GlcNAc2 from Man9GlcNAc2-PP-Dol while others receive Man5GlcNA(2 from Man5GlcNAc2-PP-Dol. In this paper, we test this model by creating procyclic and bloodstream form null mutants of TbALG3, the gene that encodes the alpha-mannosyltransferase that converts Man5GlcNAc2-PP-Dol to Man6GlcNAc2-PP-Dol. The procyclic and bloodstream form TbALG3 null mutants grow with normal kinetics, remain infectious to mice and tsetse flies, respectively, and have normal morphology. However, both forms display aberrant N-glycosylation of their major surface glycoproteins, procylcin, and variant surface glycoprotein, respectively. Specifically, procyclin and variant surface glycoprotein N-glycosylation sites that are modified with Man9GlcNAc2 and processed no further than Man5GlcNAc2 in the wild type are glycosylated less efficiently but processed to complex structures in the mutant. These data confirm our model and refine it by demonstrating that the biantennary glycan transferred from Man5GlcNAc2-PP-Dol is the only route to complex N-glycans in T. brucei and that Man9GlcNAc2-PP-Dol is strictly a precursor for oligomannose structures. The origins of site-specific Man5GlcNAc2 or Man9GlcNAc2 transfer are discussed and an updated model of N-glycosylation in T. brucei is presented.
Collapse
Affiliation(s)
- Sujatha Manthri
- The Division of Biological Chemistry and Drug Discovery, The Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | |
Collapse
|
14
|
Alonzi DS, Neville DCA, Lachmann RH, Dwek RA, Butters TD. Glucosylated free oligosaccharides are biomarkers of endoplasmic- reticulum α-glucosidase inhibition. Biochem J 2007; 409:571-80. [PMID: 17868040 DOI: 10.1042/bj20070748] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inhibition of ER (endoplasmic reticulum) α-glucosidases I and II by imino sugars, including NB-DNJ (N-butyl-deoxynojirimycin), causes the retention of glucose residues on N-linked oligosaccharides. Therefore, normal glycoprotein trafficking and processing through the glycosylation pathway is abrogated and glycoproteins are directed to undergo ERAD (ER-associated degradation), a consequence of which is the production of cytosolic FOS (free oligosaccharides). Following treatment with NB-DNJ, FOS were extracted from cells, murine tissues and human plasma and urine. Improved protocols for analysis were developed using ion-exchange chromatography followed by fluorescent labelling with 2-AA (2-aminobenzoic acid) and purification by lectin-affinity chromatography. Separation of 2-AA-labelled FOS by HPLC provided a rapid and sensitive method that enabled the detection of all FOS species resulting from the degradation of glycoproteins exported from the ER. The generation of oligosaccharides derived from glucosylated protein degradation was rapid, reversible, and time- and inhibitor concentration-dependent in cultured cells and in vivo. Long-term inhibition in cultured cells and in vivo indicated a slow rate of clearance of glucosylated FOS. In mouse and human urine, glucosylated FOS were detected as a result of transrenal excretion and provide unique and quantifiable biomarkers of ER-glucosidase inhibition.
Collapse
Affiliation(s)
- Dominic S Alonzi
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | |
Collapse
|
15
|
Hsiao CHC, Yao C, Storlie P, Donelson JE, Wilson ME. The major surface protease (MSP or GP63) in the intracellular amastigote stage of Leishmania chagasi. Mol Biochem Parasitol 2007; 157:148-59. [PMID: 18067978 DOI: 10.1016/j.molbiopara.2007.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 10/16/2007] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
Abstract
The Leishmania spp. protozoa have an abundant surface metalloprotease called MSP (major surface protease), which in Leishmania chagasi is encoded by three distinct gene classes (MSPS, MSPL, MSPC). Although MSP has been characterized primarily in extracellular promastigotes, it also facilitates survival of intracellular amastigotes. Promastigotes express MSPS, MSPL, and two forms of MSPC RNAs, whereas amastigotes express only MSPL RNA and one MSPC transcript. We confirmed the presence of MSPC protein in both promastigotes and amastigotes by liquid chromatography-tandem mass spectrometry (LC-MS/MS). More than 10 MSP isoforms were visualized in both amastigotes and promastigotes using two-dimensional immunoblots, but amastigote MSPs migrated at a more acidic pI. Promastigote MSPs were N-glycosylated, whereas most amastigote MSPs were not. Immuno-electron microscopy showed that two-thirds of the promastigote MSP is distributed along the cell surface. In contrast, most amastigote MSP localized at the flagellar pocket, the major site of leishmania endocytosis/exocytosis. Biochemical analyses indicated that most amastigote MSP is soluble in the cytosol, vesicles or organelles, whereas most promastigote MSP is membrane-associated and GPI anchored. Activity gels and immunoblots confirmed the presence of a novel proteolytically active amastigote MSP of higher Mr than the promastigote MSPs. Furthermore, promastigote MSP is shed extracellularly whereas MSP is not shed from axenic amastigotes. We conclude that amastigotes and promastigotes both express multiple MSP isoforms, but these MSPs differ biochemically and localize differently in the two parasite stages. We hypothesize that MSP plays different roles in the extracellular versus intracellular forms of Leishmania spp.
Collapse
|
16
|
Capul AA, Hickerson S, Barron T, Turco SJ, Beverley SM. Comparisons of mutants lacking the Golgi UDP-galactose or GDP-mannose transporters establish that phosphoglycans are important for promastigote but not amastigote virulence in Leishmania major. Infect Immun 2007; 75:4629-37. [PMID: 17606605 PMCID: PMC1951182 DOI: 10.1128/iai.00735-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abundant surface Leishmania phosphoglycans (PGs) containing [Gal(beta1,4)Man(alpha1-PO(4))]-derived repeating units are important at several points in the infectious cycle of this protozoan parasite. PG synthesis requires transport of activated nucleotide-sugar precursors from the cytoplasm to the Golgi apparatus. Correspondingly, null mutants of the L. major GDP-mannose transporter LPG2 lack PGs and are severely compromised in macrophage survival and induction of acute pathology in susceptible mice, yet they are able to persist indefinitely and induce protective immunity. However, lpg2(-) L. mexicana amastigotes similarly lacking PGs but otherwise normal in known glycoconjugates remain able to induce acute pathology. To explore this further, we tested the infectivity of a new PG-null L. major mutant, which is inactivated in the two UDP-galactose transporter genes LPG5A and LPG5B. Surprisingly this mutant did not recapitulate the phenotype of L. major lpg2(-), instead resembling the L. major lipophosphoglycan-deficient lpg1(-) mutant. Metacyclic lpg5A(-)/lpg5B(-) promastigotes showed strong defects in the initial steps of macrophage infection and survival. However, after a modest delay, the lpg5A(-)/lpg5B(-) mutant induced lesion pathology in infected mice, which thereafter progressed normally. Amastigotes recovered from these lesions were fully infective in mice and in macrophages despite the continued absence of PGs. This suggests that another LPG2-dependent metabolite is responsible for the L. major amastigote virulence defect, although further studies ruled out cytoplasmic mannans. These data thus resolve the distinct phenotypes seen among lpg2(-) Leishmania species by emphasizing the role of glycoconjugates other than PGs in amastigote virulence, while providing further support for the role of PGs in metacyclic promastigote virulence.
Collapse
Affiliation(s)
- Althea A Capul
- Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
17
|
Turnock DC, Ferguson MAJ. Sugar nucleotide pools of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. EUKARYOTIC CELL 2007; 6:1450-63. [PMID: 17557881 PMCID: PMC1951125 DOI: 10.1128/ec.00175-07] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The cell surface glycoconjugates of trypanosomatid parasites are intimately involved in parasite survival, infectivity, and virulence in their insect vectors and mammalian hosts. Although there is a considerable body of work describing their structure, biosynthesis, and function, little is known about the sugar nucleotide pools that fuel their biosynthesis. In order to identify and quantify parasite sugar nucleotides, we developed an analytical method based on liquid chromatography-electrospray ionization-tandem mass spectrometry using multiple reaction monitoring. This method was applied to the bloodstream and procyclic forms of Trypanosoma brucei, the epimastigote form of T. cruzi, and the promastigote form of Leishmania major. Five sugar nucleotides, GDP-alpha-d-mannose, UDP-alpha-d-N-acetylglucosamine, UDP-alpha-d-glucose, UDP-alpha-galactopyranose, and GDP-beta-l-fucose, were common to all three species; one, UDP-alpha-d-galactofuranose, was common to T. cruzi and L. major; three, UDP-beta-l-rhamnopyranose, UDP-alpha-d-xylose, and UDP-alpha-d-glucuronic acid, were found only in T. cruzi; and one, GDP-alpha-d-arabinopyranose, was found only in L. major. The estimated demands for each monosaccharide suggest that sugar nucleotide pools are turned over at very different rates, from seconds to hours. The sugar nucleotide survey, together with a review of the literature, was used to define the routes to these important metabolites and to annotate relevant genes in the trypanosomatid genomes.
Collapse
Affiliation(s)
- Daniel C Turnock
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, Scotland, United Kingdom
| | | |
Collapse
|
18
|
Mellor H, Neville D, Harvey D, Platt F, Dwek R, Butters T. Cellular effects of deoxynojirimycin analogues: inhibition of N-linked oligosaccharide processing and generation of free glucosylated oligosaccharides. Biochem J 2004; 381:867-75. [PMID: 15128289 PMCID: PMC1133898 DOI: 10.1042/bj20031824] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Revised: 04/21/2004] [Accepted: 05/06/2004] [Indexed: 11/17/2022]
Abstract
In the accompanying paper [Mellor, Neville, Harvey, Platt, Dwek and Butters (2004) Biochem. J. 381, 861-866] we treated HL60 cells with N-alk(en)yl-deoxynojirimycin (DNJ) compounds to inhibit glucosphingolipid (GSL) biosynthesis and identified a number of non-GSL-derived, small, free oligosaccharides (FOS) most likely produced due to inhibition of the oligosaccharide-processing enzymes a-glucosidases I and II. When HL60 cells were treated with concentrations of N-alk(en)ylated DNJ analogues that inhibited GSL biosynthesis completely, N-butyl- and N-nonyl-DNJ inhibited endoplasmic reticulum (ER) glucosidases I and II, but octadecyl-DNJ did not, probably due to the lack of ER lumen access for this novel, long-chain derivative. Glucosidase inhibition resulted in the appearance of free Glc1-3Man structures, which is evidence of Golgi glycoprotein endomannosidase processing of oligosaccharides with retained glucose residues. Additional large FOS was also detected in cells following a 16 h treatment with N-butyl- and N-nonyl-DNJ. When these FOS structures (>30, including >20 species not present in control cells) were characterized by enzyme digests and MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS, all were found to be polymannose-type oligosaccharides, of which the majority were glucosylated and had only one reducing terminal GlcNAc (N-acetylglucosamine) residue (FOS-GlcNAc1), demonstrating a cytosolic location. These results support the proposal that the increase in glucosylated FOS results from enzyme-mediated cytosolic cleavage of oligosaccharides from glycoproteins exported from the ER because of misfolding or excessive retention. Importantly, the present study characterizes the cellular properties of DNJs further and demonstrates that side-chain modifications allow selective inhibition of protein and lipid glycosylation pathways. This represents the most detailed characterization of the FOS structures arising from ER a-glucosidase inhibition to date.
Collapse
Affiliation(s)
- Howard R. Mellor
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - David C. A. Neville
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - David J. Harvey
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Frances M. Platt
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Raymond A. Dwek
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Terry D. Butters
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- To whom correspondence should be addressed (e-mail )
| |
Collapse
|
19
|
Yao C, Luo J, Storlie P, Donelson JE, Wilson ME. Multiple products of the Leishmania chagasi major surface protease (MSP or GP63) gene family. Mol Biochem Parasitol 2004; 135:171-83. [PMID: 15110459 DOI: 10.1016/j.molbiopara.2004.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 11/14/2003] [Accepted: 11/17/2003] [Indexed: 10/26/2022]
Abstract
The major surface protease (MSP or GP63) of the Leishmania spp. protozoa facilitates parasite evasion of complement-mediated killing, phagocytosis by macrophages, and intracellular survival in macrophage phagolysosomes. Immunoblots of several Leishmania species have shown there are distinct MSP isoforms, but the biochemical bases for these differences are unknown. Northern blots show that transcripts of the three tandem gene classes encoding Leishmania chagasi MSP (MSPS, MSPL, MSPC) are differentially expressed during parasite growth in vitro. Cell-associated MSPs increase in abundance during growth, correlating directly with parasite virulence. We examined whether distinct products of these >18 MSP genes are either differentially expressed or differentially processed during parasite growth. Two-dimensional gel electrophoresis and immunoblots delineated more than 10 MSP isoforms in stationary phase L. chagasi, distributed between pIs of 5.2-6.1 and masses of 58-63 kDa. Post-translational modifications including N-glycosylation, GPI anchor addition and phosphorylation did not account for all differences among the isoforms. MALDI-TOF mass spectrometry demonstrated that at least some L. chagasi MSPs were the products of different MSP genes. One isoform was not available for surface biotinylation, suggesting it could be located internally. Parasites in logarithmic growth expressed only four MSP isoforms, and an attenuated strain of L. chagasi (L5) did not express one of the MSP classes (MSPS). These data demonstrate that the products of individual MSP genes are differentially expressed during Leishmania development. We hypothesize they may play different roles during parasite migration through its two hosts.
Collapse
Affiliation(s)
- Chaoqun Yao
- Department of Internal Medicine, University of Iowa, 300L, EMRB, Newton Road, Iowa City, IA 52242, USA. Chaoqun -
| | | | | | | | | |
Collapse
|
20
|
Crispin MDM, Ritchie GE, Critchley AJ, Morgan BP, Wilson IA, Dwek RA, Sim RB, Rudd PM. Monoglucosylated glycans in the secreted human complement component C3: implications for protein biosynthesis and structure. FEBS Lett 2004; 566:270-4. [PMID: 15147907 DOI: 10.1016/j.febslet.2004.04.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 03/31/2004] [Accepted: 04/13/2004] [Indexed: 01/01/2023]
Abstract
The monoglucosylated oligomannose N-linked oligosaccharide (Glc(1)Man(9)GlcNAc(2)) is a retention signal for the calnexin-calreticulin quality control pathway in the endoplasmic reticulum. We report here the presence of such monoglucosylated N-glycans on the human complement serum glycoprotein C3. This finding represents the first report of monoglucosylated glycans on a human serum glycoprotein from non-diseased individuals. The presence of the glucose moiety in 5% of the human C3 glycoprotein suggests that this glycosylation site is sequestered within the protein and is consistent with previous studies identifying a cryptic conglutinin binding site on C3 that becomes exposed upon its conversion to iC3b.
Collapse
Affiliation(s)
- M D Max Crispin
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Genomics and other high-throughput approaches, such as proteomics, are changing the way we study complex biological systems. In the past few years, these approaches have contributed markedly to improving our understanding of phagocytosis. Indeed, the ability to study biological systems by monitoring hundreds of proteins provides a level of resolution that is not attainable by the usual 'one protein at a time' approach. In this article, I discuss how proteomic approaches have revealed surprising findings that enable us to revisit established concepts, such as the origin of the phagosome membrane, and to propose new models of cell organization and the link between innate and adaptive immunity.
Collapse
Affiliation(s)
- Michel Desjardins
- Département de pathologie et biologie cellulaire, Université de Montréal and Caprion Pharmaceuticals, Montreal, Canada.
| |
Collapse
|
22
|
Gagnon E, Duclos S, Rondeau C, Chevet E, Cameron PH, Steele-Mortimer O, Paiement J, Bergeron JJM, Desjardins M. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 2002; 110:119-31. [PMID: 12151002 DOI: 10.1016/s0092-8674(02)00797-3] [Citation(s) in RCA: 502] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phagocytosis is a key aspect of our innate ability to fight infectious diseases. In this study, we have found that fusion of the endoplasmic reticulum (ER) with the macrophage plasmalemma, underneath phagocytic cups, is a source of membrane for phagosome formation in macrophages. Successive waves of ER become associated with maturing phagosomes during phagolysosome biogenesis. Thus, the ER appears to possess unexpectedly pluripotent fusion properties. ER-mediated phagocytosis is regulated in part by phosphatidylinositol 3-kinase and used for the internalization of inert particles and intracellular pathogens, regardless of their final trafficking in the host. In neutrophils, where pathogens are rapidly killed, the ER is not used as a major source of membrane for phagocytosis. We propose that intracellular pathogens have evolved to adapt and exploit ER-mediated phagocytosis to avoid destruction in host cells.
Collapse
Affiliation(s)
- Etienne Gagnon
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
McConville MJ, Mullin KA, Ilgoutz SC, Teasdale RD. Secretory pathway of trypanosomatid parasites. Microbiol Mol Biol Rev 2002; 66:122-54; table of contents. [PMID: 11875130 PMCID: PMC120783 DOI: 10.1128/mmbr.66.1.122-154.2002] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Trypanosomatidae comprise a large group of parasitic protozoa, some of which cause important diseases in humans. These include Trypanosoma brucei (the causative agent of African sleeping sickness and nagana in cattle), Trypanosoma cruzi (the causative agent of Chagas' disease in Central and South America), and Leishmania spp. (the causative agent of visceral and [muco]cutaneous leishmaniasis throughout the tropics and subtropics). The cell surfaces of these parasites are covered in complex protein- or carbohydrate-rich coats that are required for parasite survival and infectivity in their respective insect vectors and mammalian hosts. These molecules are assembled in the secretory pathway. Recent advances in the genetic manipulation of these parasites as well as progress with the parasite genome projects has greatly advanced our understanding of processes that underlie secretory transport in trypanosomatids. This article provides an overview of the organization of the trypanosomatid secretory pathway and connections that exist with endocytic organelles and multiple lytic and storage vacuoles. A number of the molecular components that are required for vesicular transport have been identified, as have some of the sorting signals that direct proteins to the cell surface or organelles in the endosome-vacuole system. Finally, the subcellular organization of the major glycosylation pathways in these parasites is reviewed. Studies on these highly divergent eukaryotes provide important insights into the molecular processes underlying secretory transport that arose very early in eukaryotic evolution. They also reveal unusual or novel aspects of secretory transport and protein glycosylation that may be exploited in developing new antiparasite drugs.
Collapse
Affiliation(s)
- Malcolm J McConville
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
24
|
Abrami L, Velluz MC, Hong Y, Ohishi K, Mehlert A, Ferguson M, Kinoshita T, Gisou van der Goot F. The glycan core of GPI-anchored proteins modulates aerolysin binding but is not sufficient: the polypeptide moiety is required for the toxin-receptor interaction. FEBS Lett 2002; 512:249-54. [PMID: 11852090 DOI: 10.1016/s0014-5793(02)02274-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sensitivity of mammalian cells to the bacterial toxin aerolysin is due to the presence at their surface of glycosylphosphatidyl inositol (GPI)-anchored proteins which act as receptors. Using a panel of mutants that are affected in the GPI biosynthetic pathway and Trypanosoma brucei variant surface glycoproteins, we show that addition of an ethanolamine phosphate residue on the first mannose of the glycan core does not affect binding. In contrast, the addition of a side chain of up to four galactose residues at position 3 of this same mannose leads to an increase in binding. However, protein free GPIs, which accumulate in mutant cells deficient in the transamidase that transfers the protein to the pre-formed GPI-anchor, were unable to bind the toxin indicating a requirement for the polypeptide moiety, the nature and size of which seem of little importance although two exceptions have been identified.
Collapse
Affiliation(s)
- Laurence Abrami
- Department of Genetics and Microbiology, University of Geneva, 1 rue Michel Servet, 1211 4, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Glycoconjugates are abundant and ubiquitious on the surface of many protozoan parasites. Their tremendous diversity has implicated their critical importance in the life cycle of these organisms. This review highlights our current knowledge of the major glycoconjugates, with particular emphasis on their structures, of representative protozoan parasites, including Leishmania, Trypanosoma, Giardia, Plasmodia, and others.
Collapse
Affiliation(s)
- A Guha-Niyogi
- Department of Molecular and Cellular Biochemistry, University of Kentucky Medical Center, Lexington KY 40536, USA
| | | | | |
Collapse
|
26
|
Abstract
Leishmania are digenetic protozoa which inhabit two highly specific hosts, the sandfly, where they grow as motile flagellated promastigotes in the gut, and the mammalian macrophage, where they survive and grow intracellularly as non-flagellated amastigotes in the phagolysosome. Leishmaniasis is the outcome of an evolutionary 'arms race' between the host's immune system and the parasite's evasion mechanisms, which ensure survival and transmission in the population. The diverse spectrum of patterns and severity of disease reflect the varying contributions of parasite virulence factors and host responses, some of which act in a host protective manner while others exacerbate disease. This chapter describes the interaction of the Leishmania with their hosts, with emphasis on the molecules and mechanisms evolved by the parasites to avoid, subvert or exploit the environments in the sandfly and the macrophage, and to move from one to the other.
Collapse
Affiliation(s)
- E Handman
- Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Victoria, Australia
| |
Collapse
|
27
|
Abstract
Proteolytic enzymes seem to play important roles in the life cycles of all medically important protozoan parasites, including the organisms that cause malaria, trypanosomiasis, leishmaniasis, amebiasis, toxoplasmosis, giardiasis, cryptosporidiosis and trichomoniasis. Proteases from all four major proteolytic classes are utilized by protozoans for diverse functions, including the invasion of host cells and tissues, the degradation of mediators of the immune response and the hydrolysis of host proteins for nutritional purposes. The biochemical and molecular characterization of protozoan proteases is providing tools to improve our understanding of the functions of these enzymes. In addition, studies in multiple systems suggest that inhibitors of protozoan proteases have potent antiparasitic effects. This review will discuss recent advances in the identification and characterization of protozoan proteases, in the determination of the function of these enzymes, and in the evaluation of protease inhibitors as potential antiprotozoan drugs.
Collapse
Affiliation(s)
- P J Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California 94143-0811, USA
| |
Collapse
|
28
|
Zal F, Küster B, Green BN, Harvey DJ, Lallier FH. Partially glucose-capped oligosaccharides are found on the hemoglobins of the deep-sea tube worm Riftia pachyptila. Glycobiology 1998; 8:663-73. [PMID: 9621107 DOI: 10.1093/glycob/8.7.663] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report here the structural determination of N-linked oligosaccharides found on extracellular hemoglobins of the hydrothermal vent tube worm Riftia pachyptila. Structures were elucidated by a combination of electrospray ionization tandem mass spectrometry, matrix-assisted laser desorption/ionization mass spectrometry, normal-phase high performance liquid chromatography, and exoglycosidase digestion. The sugar chains were found to consist mainly of high-mannose-type glycans with some structures partially capped by one or two terminal glucose residues. The present study represents the first report of the occurrence of glucose capping of N-linked carbohydrates in a secreted glycoprotein of a metazoan. Previously, glucose capping has only been described for a membrane-bound surface glycoprotein from the unicellular parasite Leishmania mexicana amazonensis.
Collapse
Affiliation(s)
- F Zal
- Equipe Ecophysiologie, UPMC-CNRS-INSU, Station Biologique, BP 74, 29682 Roscoff Cedex, France
| | | | | | | | | |
Collapse
|
29
|
Petrescu SM, Petrescu AJ, Titu HN, Dwek RA, Platt FM. Inhibition of N-glycan processing in B16 melanoma cells results in inactivation of tyrosinase but does not prevent its transport to the melanosome. J Biol Chem 1997; 272:15796-803. [PMID: 9188477 DOI: 10.1074/jbc.272.25.15796] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Tyrosinase is the key enzyme in melanin biosynthesis, catalyzing multiple steps in this pathway. The mature glycoprotein is transported from the Golgi to the melanosome where melanin biosynthesis occurs. In this study, we have investigated the effects of inhibitors of N-glycan processing on the synthesis, transport, and catalytic activity of tyrosinase. When B16 mouse melanoma cells were cultured in the presence of N-butyldeoxynojirimycin, an inhibitor of the endoplasmic reticulum-processing enzymes alpha-glucosidases I and II, the enzyme was synthesized and transported to the melanosome but almost completely lacked catalytic activity. The cells contained only 2% of the melanin found in untreated cells. Structural analysis of the N-glycans from N-butyldeoxynojirimycin-treated B16 cells demonstrated that three oligosaccharide structures (Glc3Man7-9) predominated. Removal of the glucose residues with alpha-glucosidases I and II failed to restore enzymatic activity, suggesting that the glucosylated N-glycans do not sterically interfere with the enzyme's active sites. The mannosidase inhibitor deoxymannojirimycin had no effect on catalytic activity suggesting that the retention of glucosylated N-glycans results in the inactivation of this enzyme. The retention of glucosylated N-glycans does not therefore result in misfolding and degradation of the glycoprotein, as the enzyme is transported to the melanosome, but may cause conformational changes in its catalytic domains.
Collapse
Affiliation(s)
- S M Petrescu
- Glycobiology Institute, University of Oxford, South Parks Road, OX1 3QU Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- L S Schlesinger
- Department of Internal Medicine, The University of Iowa, Department of Veterans Affairs Medical Center, Iowa City 52242, USA
| |
Collapse
|
31
|
Chapter 2b Glycoproteins of parasites. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0167-7306(08)60281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
32
|
Schlagenhauf E, Etges R, Metcalf P. Crystallization and preliminary X-ray diffraction studies of leishmanolysin, the major surface metalloproteinase from Leishmania major. Proteins 1995; 22:58-66. [PMID: 7675788 DOI: 10.1002/prot.340220109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The membrane-bound GPI-anchored zinc metalloproteinase leishmanolysin purified from Leishmania major promastigotes has been crystallized in its mature form. Two crystal forms of leishmanolysin have been grown by the vapor diffusion method using 2-methyl-2,4-pentanediol as the precipitant. Macroseeding techniques were employed to produce large single crystals. Protein microheterogeneity in molecular size and charge was incorporated into both crystal forms. The tetragonal crystal form belongs to the space group P4(1)2(1)2 or the enantiomorph P4(3)2(1)2, has unit cell parameters of a = b = 63.6 A, c = 251.4 A, and contains one molecule per asymmetric unit. The second crystal form is monoclinic, space group C2, with unit cell dimensions a = 107.2 A, b = 90.6 A, c = 70.6 A, beta = 110.6 degrees, and also contains one molecule per asymmetric unit. Both crystal forms diffract X-rays beyond 2.6 A resolution and are suitable for X-ray analysis. Native diffraction data sets have been collected and the structure determination of leishmanolysin using a combination of the isomorphous replacement and the molecular replacement methods is in progress.
Collapse
Affiliation(s)
- E Schlagenhauf
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
33
|
O- and N-glycosylation of the Leishmania mexicana-secreted acid phosphatase. Characterization of a new class of phosphoserine-linked glycans. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51049-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Green PJ, Feizi T, Stoll MS, Thiel S, Prescott A, McConville MJ. Recognition of the major cell surface glycoconjugates of Leishmania parasites by the human serum mannan-binding protein. Mol Biochem Parasitol 1994; 66:319-28. [PMID: 7808481 DOI: 10.1016/0166-6851(94)90158-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Activation of complement on the surface of parasitic protozoa of the genus Leishmania appears to be important for parasite infectivity in the mammalian host, as it allows these parasites to attach to and invade macrophages via their surface complement receptors. Serum mannan-binding protein (MBP) is a known activator of complement. Therefore, in the present study, we have investigated whether serum MBP binds to live Leishmania parasites, and to mannose-containing saccharides derived from the parasite cell surface. We have observed by fluorescence microscopy that biotinylated MBP binds to the surface of L. major and L. mexicana promastigotes. At this developmental stage the parasites are coated by a mannose-containing lipophosphoglycan (LPG). We have observed that radioiodinated MBP binds in a mannose-inhibitable manner to purified LPG which has been immobilized in plastic microwells, as well as to purified mannose-terminating di-, tri- and tetrasaccharide fragments ('cap' structures) which have been released by mild acid hydrolysis from the outer chains of the LPG, converted into neoglycolipids and resolved by thin-layer chromatography. 125I-MBP also binds in the chromatogram-binding assay to the mannose-containing glycoinositol-phospholipids that are expressed in high copy number on both the promastigote and the intracellular amastigote stages of most Leishmania species. These data suggest that MBP has the potential to opsonize the major developmental stages of Leishmania parasites, and provide a possible mechanism for the antibody-independent activation of complement on their surface.
Collapse
Affiliation(s)
- P J Green
- Glycoconjugates Section, MRC Clinical Research Centre, Harrow, Middlesex, UK
| | | | | | | | | | | |
Collapse
|
35
|
Funk VA, Jardim A, Olafson RW. An investigation into the significance of the N-linked oligosaccharides of Leishmania gp63. Mol Biochem Parasitol 1994; 63:23-35. [PMID: 8183321 DOI: 10.1016/0166-6851(94)90005-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Leishmania major promastigotes, when grown in the presence of tunicamycin (TM), produced a plasma membrane-bound, proteolytically active gp63 with a lower molecular weight than the native glycoprotein. However, this lower molecular weight form of gp63 continued to be recognized by concanavalin A (Con A), suggesting that inhibition of N-linked glycosylation was not complete. Metabolic labeling of gp63, using [35S]methionine, demonstrated that in the range of 5-10 micrograms ml-1 TM, only the lower molecular weight form was synthesized, suggesting that inhibition was complete and that lectin binding was likely due to the GPI anchored sugars. Removal of the oligosaccharides from L. major and L. mexicana amazonensis promastigotes using endoglycosidase F, caused the gp63 molecular weight to decrease to the same value observed in the presence of TM, once again without affecting the proteolytic activity. However, this deglycosylated enzyme continued to bind Con A until subsequently treated with periodate. The latter oxidation reaction resulted in complete loss of Con A binding without inhibiting the protease activity or the substrate specificity of gp63. Further investigations revealed that both glycosylated and deglycosylated gp63 were resistant to proteolytic digestion by either autolysis or cathepsin D. These findings indicate that the N-linked oligosaccharides of gp63 are not essential for folding, transport, maintenance of enzyme activity or resistance to proteolysis.
Collapse
Affiliation(s)
- V A Funk
- Department of Biochemistry and Microbiology, University of Victoria, Canada
| | | | | |
Collapse
|
36
|
Button LL, Wilson G, Astell CR, McMaster WR. Recombinant Leishmania surface glycoprotein GP63 is secreted in the baculovirus expression system as a latent metalloproteinase. Gene 1993; 134:75-81. [PMID: 8244034 DOI: 10.1016/0378-1119(93)90176-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A gene encoding the Leishmania surface metalloproteinase, GP63, was modified using the polymerase chain reaction to obtain effective secretion of recombinant GP63 (reGP63) in the baculovirus insect cell expression system. The coding region for the N-terminal signal peptide (SP) of GP63 was modified to resemble the SP for the GP67 envelope protein from the budded virus form of Autographa californica nuclear polyhedrosis virus. To prevent processing at the C-terminus with a glycosyl phosphatidylinositol anchor and the subsequent membrane anchoring of reGP63 in insect cells, the coding region for a putative SP at the C-terminus of GP63 was deleted. The reGP63 protein was glycosylated and secreted as a latent metalloproteinase in the baculovirus expression system. The reGP63 protein was purified from serum-free medium using concanavalin A lectin affinity chromatography, with a yield of 1 mg/l. The purified Leishmania reGP63 was secreted as a latent proteinase. Treatment of reGP63 with HgCl2 resulted in activation of full proteinase activity and a concomitant decrease in M(r). The mechanism of the activation of Leishmania reGP63 is consistent with that of other members of the family of matrix-degrading metalloproteinases.
Collapse
Affiliation(s)
- L L Button
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
37
|
Handman E, Barnett LD, Osborn AH, Goding JW, Murray PJ. Identification, characterisation and genomic cloning of a O-linked N-acetylglucosamine-containing cytoplasmic Leishmania glycoprotein. Mol Biochem Parasitol 1993; 62:61-72. [PMID: 8114827 DOI: 10.1016/0166-6851(93)90178-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Antibodies against Leishmania major wheat germ agglutinin-binding glycoproteins were used to select from a genomic lambda gt11 expression library a clone coding for a L. major glycoprotein. The partial DNA sequence indicated the presence of a mosaic of repetitive sequences. Southern blot hybridisation on genomic DNA using the cloned gene as a probe at high stringency suggested a single gene, which was localised to chromosome band 18. Northern blot analysis of L. major mRNA detected a major transcript of 7.5 kb and a minor 4.0-kb transcript. Antibodies affinity-purified on the fusion protein identified a complex of two water-soluble cytoplasmic polypeptides of approximately 96 kDa and 92 kDa in L. major promastigotes and amastigotes. They also recognised polypeptides in other Leishmania species, in Crithidia lucilliae and very weakly in Leptomonas. The apparent molecular weight of these polypeptides, while conserved within each species, varied between species. A peptide map of the two polypeptides from L. major generated an identical pattern suggesting a close relatedness at the protein level. This protein complex was not hydrolysed by N-glycanase and was not affected by tunicamycin, but treatment with anhydrous hydrogen fluoride suggested that it is O-glycosylated. The glycan moiety appears to be N-acetylglucosamine, and N-acetylglucosamine beta-1,4-galactosyltransferase was capable of adding [3H]galactose to it. This was susceptible to beta elimination and beta-galactosidase treatment. Taken together, the data indicates that gp96/92 belongs to the newly described class of cytoplasmic and nuclear glycoproteins containing O-linked N-acetylglucosamine.
Collapse
Affiliation(s)
- E Handman
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia
| | | | | | | | | |
Collapse
|
38
|
Parodi AJ. Biosynthesis of protein-linked oligosaccharides in trypanosomatid flagellates. ACTA ACUST UNITED AC 1993; 9:373-7. [PMID: 15463672 DOI: 10.1016/0169-4758(93)90086-u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, Armando Parodi presents a summary of the knowledge of the structure and biosynthesis of mammalian Asn-linked (N-linked) oligosacchorides and compares this with what is known in trypanosomatids.
Collapse
Affiliation(s)
- A J Parodi
- Instituto de Investigociones Bioquímicas Fundación Campomar, Antonio Machado 151, 1405 Buenos Aires, Argentina
| |
Collapse
|
39
|
Amatayakul-Chantler S, Dwek RA, Tennent GA, Pepys MB, Rademacher TW. Molecular characterization of Limulus polyphemus C-reactive protein. II. Asparagine-linked oligosaccharides. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 214:99-110. [PMID: 8508812 DOI: 10.1111/j.1432-1033.1993.tb17901.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The N-linked oligosaccharides of C-reactive protein (CRP) from the arachnid Limulus polyphemus, the horseshoe crab, were characterized after their release by hydrazinolysis, re-N-acetylation, and reduction with NaB3H4. High-voltage paper electrophoresis of the reduced oligosaccharides revealed only neutral species. Gel-permeation chromatography on Bio-Gel P4 yielded five fractions. The oligosaccharide fractions were further fractionated using high-voltage borate paper electrophoresis and Dionex BioLC ion-exchange chromatography. The oligosaccharides were structurally characterized by sequential exoglycosidase digestion, fragmentation by acetolysis and methylation analysis. Three major structures were found, of which two were the biantennary oligomannose type with compositions Man5GlcNAc2 (B-1), Man4GlcNAc2 (C-3) and one was the monoantennary structure Man3GlcNAc2 (D-1). The biantennary oligomannose structures B-1 and C-3 contained the structural unit Man alpha 6Man alpha 6R. This unusual arrangement of mannose linkages suggests a biosynthetic pathway in Limulus which differs from that reported in mammals, plants and the parasitic protozoa.
Collapse
|
40
|
Field M, Medina-Acosta E, Cross G. Inhibition of glycosylphosphatidylinositol biosynthesis in Leishmania mexicana by mannosamine. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)98389-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
41
|
Abstract
The surface coat of the protozoan parasite Leishmania affords remarkable protection in the harsh environments encountered within the insect vectors and vertebrate hosts. It also provides specificity for the interaction of these parasites with the cells in the sandfly gut and with the human macrophage. Surprisingly few molecules have been identified on the Leishmania surface. The major surface molecules of both promastigotes and amastigotes are the glycoconjugates lipophosphoglycan and a glycoprotein of approximately 63 kDa. These major surface molecules vary structurally between Leishmania species and throughout the life-cycle of the parasite. In addition to these major glycoconjugates, Leishmania produce a number of less abundant surface molecules, including a family of glycosyl-inositol phospholipids, the Promastigote Surface Antigen-2 complex of glycoproteins and a glycoprotein of M(r) 46,000. These molecules share the common feature of attachment to the plasma membrane via glycosylphosphatidylinositol lipid anchors. Leishmania also release molecules from their surface in a species specific manner. In this review we will examine the molecular variation of these molecules and their biological importance. We will also discuss the potential of these molecules as targets for chemotherapy and as candidate vaccines.
Collapse
Affiliation(s)
- S F Moody
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| |
Collapse
|
42
|
Medina-Acosta E, Karess RE, Russell DG. Structurally distinct genes for the surface protease of Leishmania mexicana are developmentally regulated. Mol Biochem Parasitol 1993; 57:31-45. [PMID: 8426614 DOI: 10.1016/0166-6851(93)90241-o] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
gp63 is a highly abundant glycosylphosphatidylinositol (GPI)-anchored membrane protein expressed in both the promastigote and the amastigote forms of Leishmania species. In Leishmania mexicana, gp63 exists as a heterogeneous family of proteins that are differentially processed and localized during the 2 developmental stages. In this study we determined the molecular organization of the L. mexicana gp63 gene family, demonstrating that the gp63 genes fall into 3 linked families of tandemly repeated, but structurally distinct, entities designated as C1, C2 and C3. The C1 and C2 gene clusters contain 4-5 copies each, while the C3 gene may be single copy. Whilst promastigotes contain transcripts from all 3 gene classes, the intracellular amastigote only expresses detectable transcript from the C1 gene class. Moreover, the sequence of the C1 genes predicts a unique carboxy terminus substantially different from the GPI anchor addition signal sequence found in other Leishmania spp. and which has characteristics incompatible with substitution with a GPI anchor. These findings have significance for both the diversity of gp63 and for the regulation of tightly clustered, tandem gene arrays.
Collapse
Affiliation(s)
- E Medina-Acosta
- Department of Pathology, New York University Medical Center, NY
| | | | | |
Collapse
|
43
|
Karlsson G, Butters T, Dwek R, Platt F. Effects of the imino sugar N-butyldeoxynojirimycin on the N-glycosylation of recombinant gp120. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54189-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Dieckmann-Schuppert A, Bender S, Odenthal-Schnittler M, Bause E, Schwarz RT. Apparent lack of N-glycosylation in the asexual intraerythrocytic stage of Plasmodium falciparum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 205:815-25. [PMID: 1374032 DOI: 10.1111/j.1432-1033.1992.tb16846.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study investigates protein glycosylation in the asexual intraerythrocytic stage of the malaria parasite, Plasmodium falciparum, and the presence in the infected erythrocyte of the respective precursors. In in vitro cultures, P. falciparum can be metabolically labeled with radioactive sugars, and its multiplication can be affected by glycosylation inhibitors, suggesting the capability of the parasite to perform protein-glycosylation reactions. Gel-filtration analysis of sugar-labeled malarial proteins before and after specific cleavage of N-glycans or O-glycans, respectively, revealed the majority of the protein-bound sugar label to be incorporated into O-glycans, but only little (7-12% of the glucosamine label) or no N-glycans were found. Analysis of the nucleotide sugar and sugar-phosphate fraction showed that radioactive galactose, glucosamine, fucose and ethanolamine were converted to their activated derivatives required for incorporation into protein. Mannose was mainly recovered as a bisphosphate, whereas the level of radiolabeled GDP-mannose was below the detection limit. The analysis of organic-solvent extracts of sugar-labeled cultures showed no evidence for the formation by the parasite of dolichol cycle intermediates, the dedicated precursors in protein N-glycosylation. Consistently, the amount of UDP-N-acetylglucosamine formed did not seem to be affected by the presence of tunicamycin in the culture. Oligosaccharyl-transferase activity was not detectable in a lysate of P. falciparum, using exogenous glycosyl donors and acceptors. Our studies show that O-glycosylation is the major form of protein glycosylation in intraerythrocytic P. falciparum, whereas there is little or no protein N-glycosylation. A part of these studies has been published in abstract form [Dieckmann-Schuppert, A., Hensel, J. and Schwarz, R. T. (1991) Biol. Chem. Hoppe-Seyler 372, 645].
Collapse
Affiliation(s)
- A Dieckmann-Schuppert
- Zentrum für Hygiene und Medizinische Mikrobiologie, University of Marburg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
45
|
Parekh RB, Dwek RA, Rademacher TW, Opdenakker G, Van Damme J. Glycosylation of interleukin-6 purified from normal human blood mononuclear cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 203:135-41. [PMID: 1730219 DOI: 10.1111/j.1432-1033.1992.tb19838.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Interleukin 6 (IL-6) is a glycosylated cytokine which is important in exerting cell-specific growth-inducing, growth-inhibiting and differentiation-inducing effects. IL-6 produced in mammalian cell lines is heterogeneous, reflecting specific cell-type-dependent post-translational modifications. Native IL-6 was purified from human blood mononuclear cells and the oligosaccharides released, radiolabelled and sequenced by a combination of sequential exoglycosidase digestion using Bio-Gel P-4 high-resolution gel chromatography and acetolysis. N- and O-linked glycans were found. The N-linked glycans were sialylated di- and tri-antennary complex-type and oligomannose-type structures. However, the most predominant N-linked oligosaccharide was a small tetrasaccharide with the sequence Man alpha 6Man beta 4GlcNAc beta 4GlcNAc. This is the first report of this structure on a circulating glycoprotein. This structure has only previously been reported to be present on the syncytiotrophoblast of human placenta. The presence of the oligomannose structures and the mannose-terminating tetrasaccharide on IL-6 may be important in maintaining a high local concentration of the cytokine while limiting its systemic serum level via interaction with soluble mannose-binding serum lectins.
Collapse
Affiliation(s)
- R B Parekh
- Department of Biochemistry, Oxford, England
| | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- P Schneider
- Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | | |
Collapse
|
47
|
Alexander J, Russell DG. The interaction of Leishmania species with macrophages. ADVANCES IN PARASITOLOGY 1992; 31:175-254. [PMID: 1496927 DOI: 10.1016/s0065-308x(08)60022-6] [Citation(s) in RCA: 222] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- J Alexander
- Department of Immunology, University of Strathclyde, Glasgow, UK
| | | |
Collapse
|
48
|
Abstract
Over the last few years enormous interest has been shown in the structures of the glycan moieties of various parasite surface glycoconjugates. Structures have been determined for the glyco-components of glycosylphosphatidylinositol (GPI) protein membrane anchors, for asparagine-linked oligosaccharides, and for the glycans of complex glycolipids. The following attempts to illustrate a few of the most salient observations with regard to the structures and possible functions of parasite surface glycans.
Collapse
Affiliation(s)
- S Zamze
- Department of Biochemistry, University of Oxford, UK
| |
Collapse
|
49
|
Murray P, Spithill T. Variants of a Leishmania surface antigen derived from a multigenic family. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54253-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Arkwright PD, Redman CW, Williams PJ, Dwek RA, Rademacher TW. Syncytiotrophoblast membrane protein glycosylation patterns in normal human pregnancy and changes with gestational age and parturition. Placenta 1991; 12:637-51. [PMID: 1805204 DOI: 10.1016/0143-4004(91)90498-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The fetally derived syncytiotrophoblast in the placenta form the major interface with the maternal circulation. Cell surface N-linked oligosaccharides are known to influence cell-cell interactions in a variety of ways. The N-linked oligosaccharide component of the human syncytiotrophoblast membrane has been purified from term placentae, and its biochemical structure analysed. Ninety-five per cent of structures were complex N-linked oligosaccharides, with the remaining 5 per cent being of the oligomannose type. Seventy-two per cent of oligosaccharides were sialylated; 50 per cent having two or more sialic acid residues. Such a population of N-linked oligosaccharides would be expected to provide a surface which inhibits interactions between trophoblast and maternal leukocytes. The temporal changes in syncytiotrophoblast N-linked oligosaccharides from the end of the second, and through the third trimester (25-41 weeks) were analysed, as were the changes which occur during parturition. There was no change in the degree of sialylation of these structures. The only significant change was a 37 per cent decrease in core fucosylation of complex N-linked sugars during gestation (P less than 0.005). Women delivered by caesarean section at term, had significantly higher levels of fucosylation (equivalent to women with a gestational age of 31-36 weeks), than those who laboured at term. Present knowledge of core fucosylation of N-linked oligosaccharides is discussed in relation to trophoblast functioning.
Collapse
Affiliation(s)
- P D Arkwright
- Nuffield Department of Obstetrics, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | |
Collapse
|