1
|
Benej M, Papandreou I, Denko NC. Hypoxic adaptation of mitochondria and its impact on tumor cell function. Semin Cancer Biol 2024; 100:28-38. [PMID: 38556040 PMCID: PMC11320707 DOI: 10.1016/j.semcancer.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Mitochondria are the major sink for oxygen in the cell, consuming it during ATP production. Therefore, when environmental oxygen levels drop in the tumor, significant adaptation is required. Mitochondrial activity is also a major producer of biosynthetic precursors and a regulator of cellular oxidative and reductive balance. Because of the complex biochemistry, mitochondrial adaptation to hypoxia occurs through multiple mechanisms and has significant impact on other cellular processes such as macromolecule synthesis and gene regulation. In tumor hypoxia, mitochondria shift their location in the cell and accelerate the fission and quality control pathways. Hypoxic mitochondria also undergo significant changes to fundamental metabolic pathways of carbon metabolism and electron transport. These metabolic changes further impact the nuclear epigenome because mitochondrial metabolites are used as enzymatic substrates for modifying chromatin. This coordinated response delivers physiological flexibility and increased tumor cell robustness during the environmental stress of low oxygen.
Collapse
Affiliation(s)
- Martin Benej
- Department of Radiation Oncology, OSU Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, USA
| | - Ioanna Papandreou
- Department of Radiation Oncology, OSU Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Nicholas C Denko
- Department of Radiation Oncology, OSU Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
2
|
Zara V, Assalve G, Ferramosca A. Insights into the malfunctioning of the mitochondrial citrate carrier: Implications for cell pathology. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166758. [PMID: 37209873 DOI: 10.1016/j.bbadis.2023.166758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
The mitochondrial citrate carrier (CIC) is a member of the mitochondrial carrier family and is responsible for the transit of tricarboxylates and dicarboxylates across the inner membrane. By modulating the flux of these molecules, it represents the molecular link between catabolic and anabolic reactions that take place in distinct cellular sub-compartments. Therefore, this transport protein represents an important element of investigation both in physiology and in pathology. In this review we critically analyze the involvement of the mitochondrial CIC in several human pathologies, which can be divided into two subgroups, one characterized by a decrease and the other by an increase in the flux of citrate across the inner mitochondrial membrane. In particular, a decrease in the activity of the mitochondrial CIC is responsible for several congenital diseases of different severity, which are also characterized by the increase in urinary levels of L-2- and D-2-hydroxyglutaric acids. On the other hand, an increase in the activity of the mitochondrial CIC is involved, in various ways, in the onset of inflammation, autoimmune diseases, and cancer. Then, understanding the role of CIC and the mechanisms driving the flux of metabolic intermediates between mitochondria and cytosol would potentially allow for manipulation and control of metabolism in pathological conditions.
Collapse
Affiliation(s)
- Vincenzo Zara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy
| | - Graziana Assalve
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy
| | - Alessandra Ferramosca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy.
| |
Collapse
|
3
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
4
|
Zara V, Assalve G, Ferramosca A. Multiple roles played by the mitochondrial citrate carrier in cellular metabolism and physiology. Cell Mol Life Sci 2022; 79:428. [PMID: 35842872 PMCID: PMC9288958 DOI: 10.1007/s00018-022-04466-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/17/2022] [Accepted: 07/03/2022] [Indexed: 11/18/2022]
Abstract
The citrate carrier (CIC) is an integral protein of the inner mitochondrial membrane which catalyzes the efflux of mitochondrial citrate (or other tricarboxylates) in exchange with a cytosolic anion represented by a tricarboxylate or a dicarboxylate or phosphoenolpyruvate. In this way, the CIC provides the cytosol with citrate which is involved in many metabolic reactions. Several studies have been carried out over the years on the structure, function and regulation of this metabolite carrier protein both in mammals and in many other organisms. A lot of data on the characteristics of this protein have therefore accumulated over time thereby leading to a complex framework of metabolic and physiological implications connected to the CIC function. In this review, we critically analyze these data starting from the multiple roles played by the mitochondrial CIC in many cellular processes and then examining the regulation of its activity in different nutritional and hormonal states. Finally, the metabolic significance of the citrate flux, mediated by the CIC, across distinct subcellular compartments is also discussed.
Collapse
Affiliation(s)
- Vincenzo Zara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - Graziana Assalve
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - Alessandra Ferramosca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy.
| |
Collapse
|
5
|
Citrate transporter inhibitors: possible new anticancer agents. Future Med Chem 2022; 14:665-679. [PMID: 35357238 DOI: 10.4155/fmc-2021-0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The culmination of 80+ years of cancer research implicates the aberrant metabolism in tumor cells as a root cause of pathogenesis. Citrate is an essential molecule in intermediary metabolism, and its amplified availability to critical pathways in cancer cells via citrate transporters confers a high rate of cancer cell growth and proliferation. Inhibiting the plasma membrane and mitochondrial citrate transporters - whether individually, in combination, or partnered with complementary metabolic targets - in order to combat cancer may prove to be a consequential chemotherapeutic strategy. This review aims to summarize the use of different classes of citrate transporter inhibitors for anticancer activity, either individually or as part of a cocktail.
Collapse
|
6
|
The Mitochondrial Citrate Carrier SLC25A1/CIC and the Fundamental Role of Citrate in Cancer, Inflammation and Beyond. Biomolecules 2021; 11:biom11020141. [PMID: 33499062 PMCID: PMC7912299 DOI: 10.3390/biom11020141] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial citrate/isocitrate carrier, CIC, has been shown to play an important role in a growing list of human diseases. CIC belongs to a large family of nuclear-encoded mitochondrial transporters that serve the fundamental function of allowing the transit of ions and metabolites through the impermeable mitochondrial membrane. Citrate is central to mitochondrial metabolism and respiration and plays fundamental activities in the cytosol, serving as a metabolic substrate, an allosteric enzymatic regulator and, as the source of Acetyl-Coenzyme A, also as an epigenetic modifier. In this review, we highlight the complexity of the mechanisms of action of this transporter, describing its involvement in human diseases and the therapeutic opportunities for targeting its activity in several pathological conditions.
Collapse
|
7
|
Gyimesi G, Hediger MA. Sequence Features of Mitochondrial Transporter Protein Families. Biomolecules 2020; 10:E1611. [PMID: 33260588 PMCID: PMC7761412 DOI: 10.3390/biom10121611] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial carriers facilitate the transfer of small molecules across the inner mitochondrial membrane (IMM) to support mitochondrial function and core cellular processes. In addition to the classical SLC25 (solute carrier family 25) mitochondrial carriers, the past decade has led to the discovery of additional protein families with numerous members that exhibit IMM localization and transporter-like properties. These include mitochondrial pyruvate carriers, sideroflexins, and mitochondrial cation/H+ exchangers. These transport proteins were linked to vital physiological functions and disease. Their structures and transport mechanisms are, however, still largely unknown and understudied. Protein sequence analysis per se can often pinpoint hotspots that are of functional or structural importance. In this review, we summarize current knowledge about the sequence features of mitochondrial transporters with a special focus on the newly included SLC54, SLC55 and SLC56 families of the SLC solute carrier superfamily. Taking a step further, we combine sequence conservation analysis with transmembrane segment and secondary structure prediction methods to extract residue positions and sequence motifs that likely play a role in substrate binding, binding site gating or structural stability. We hope that our review will help guide future experimental efforts by the scientific community to unravel the transport mechanisms and structures of these novel mitochondrial carriers.
Collapse
Affiliation(s)
- Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, and Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, CH-3010 Bern, Switzerland;
| | | |
Collapse
|
8
|
Yuzbasheva EY, Scarcia P, Yuzbashev TV, Messina E, Kosikhina IM, Palmieri L, Shutov AV, Taratynova MO, Amaro RL, Palmieri F, Sineoky SP, Agrimi G. Engineering Yarrowia lipolytica for the selective and high-level production of isocitric acid through manipulation of mitochondrial dicarboxylate-tricarboxylate carriers. Metab Eng 2020; 65:156-166. [PMID: 33161142 DOI: 10.1016/j.ymben.2020.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/14/2020] [Accepted: 11/01/2020] [Indexed: 11/18/2022]
Abstract
During cultivation under nitrogen starvation, Yarrowia lipolytica produces a mixture of citric acid and isocitric acid whose ratio is mainly determined by the carbon source used. We report that mitochondrial succinate-fumarate carrier YlSfc1 controls isocitric acid efflux from mitochondria. YlSfc1 purified and reconstituted into liposomes transports succinate, fumarate, oxaloacetate, isocitrate and α-ketoglutarate. YlSFC1 overexpression determined the inversion of isocitric acid/citric acid ratio towards isocitric acid, resulting in 33.4 ± 1.9 g/L and 43.3 ± 2.8 g/L of ICA production in test-tube cultivation with glucose and glycerol, respectively. These titers represent a 4.0 and 6.3-fold increase compared to the wild type. YlSFC1 gene expression was repressed in the wild type strain grown in glucose-based medium compared to olive oil medium explaining the reason for the preferred citric acid production during Y. lipolytica growth on carbohydrates. Coexpression of YlSFC1 and adenosine monophosphate deaminase YlAMPD genes together with inactivation of citrate mitochondrial carrier YlYHM2 gene enhanced isocitric acid accumulation up to 41.4 ± 4.1 g/L with an isocitric acid/citric acid ratio of 14.3 in a small-scale cultivation with glucose as a carbon source. During large-scale cultivation with glucose pulse-feeding, the engineered strain produced 136.7 ± 2.5 g/L of ICA with a process selectivity of 88.1%, the highest reported titer and selectivity to date. These results represent the first reported isocitric acid secretion by Y. lipolytica as a main organic acid during cultivation on carbohydrate. Moreover, we demonstrate for the first time that the replacement of one mitochondrial transport system for another can be an efficient tool for switching product accumulation.
Collapse
Affiliation(s)
- Evgeniya Y Yuzbasheva
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; NRC «Kurchatov Institute» - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhny Pr., 1, Moscow, 117545, Russia; BioMediCan Inc., 40471 Encyclopedia Circle, Fremont, 94538, CA, USA.
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Campus Universitario, Via Orabona 4, 70125, Bari, Italy
| | - Tigran V Yuzbashev
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Eugenia Messina
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Campus Universitario, Via Orabona 4, 70125, Bari, Italy
| | - Iuliia M Kosikhina
- NRC «Kurchatov Institute» - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhny Pr., 1, Moscow, 117545, Russia; NRC «Kurchatov Institute», 1 Kurchatov Square, Moscow, 123182, Russia
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Campus Universitario, Via Orabona 4, 70125, Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Campus Universitario, Via Orabona 4, 70125, Bari, Italy
| | - Artem V Shutov
- NRC «Kurchatov Institute» - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhny Pr., 1, Moscow, 117545, Russia; NRC «Kurchatov Institute», 1 Kurchatov Square, Moscow, 123182, Russia
| | - Maria O Taratynova
- NRC «Kurchatov Institute» - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhny Pr., 1, Moscow, 117545, Russia; NRC «Kurchatov Institute», 1 Kurchatov Square, Moscow, 123182, Russia
| | - Rodrigo Ledesma Amaro
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Campus Universitario, Via Orabona 4, 70125, Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Campus Universitario, Via Orabona 4, 70125, Bari, Italy
| | - Sergey P Sineoky
- NRC «Kurchatov Institute» - GOSNIIGENETIKA, Kurchatov Genomic Center, 1-st Dorozhny Pr., 1, Moscow, 117545, Russia; NRC «Kurchatov Institute», 1 Kurchatov Square, Moscow, 123182, Russia
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Campus Universitario, Via Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
9
|
Li W, Zhang M, Zhang L, Shi Y, Zhao L, Wu B, Li X, Zhou S. A case report of an intermediate phenotype between congenital myasthenic syndrome and D-2- and L-2-hydroxyglutaric aciduria due to novel SLC25A1 variants. BMC Neurol 2020; 20:278. [PMID: 32660532 PMCID: PMC7359281 DOI: 10.1186/s12883-020-01854-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/02/2020] [Indexed: 12/04/2022] Open
Abstract
Background Variants in the SLC25A1 gene are associated with a severe neurometabolic disease, D-2- and L-2-hydroxyglutaric aciduria (D/L-2-HGA). A report in 2014 presented the first account of congenital myasthenic syndrome (CMS) with mild intellectual disability (ID) caused by SLC25A1. To date, only two missense variants in SLC25A1 have been linked to CMS. Case presentations A Chinese boy presented fatigable muscular weakness, myasthenic crisis, epilepsy and developmental delay along with mild elevation of urinary 2-ketoglutarate (2-KG) and lactic acid levels. He showed a partial response to pyridostigmine. Genetic analysis using trio whole-exome sequencing (WES), Sanger sequencing, and cosegregation analyses revealed two novel pathogenic variants of SLC25A1 (c.628C > T, p.R210X; c.145G > A, p.V49M). Conclusions We report a boy who carries novel compound heterozygous variants of SLC25A1 and presents a phenotype intermediate between CMS and D/L-2-HGA. This case expands the range of known phenotypes and genotypes associated with SLC25A1.
Collapse
Affiliation(s)
- Wenhui Li
- Department of Neurology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Min Zhang
- Department of Neurology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Linmei Zhang
- Department of Neurology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Yiyun Shi
- Department of Neurology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Lei Zhao
- Department of Neurology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Xihua Li
- Department of Neurology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Shuizhen Zhou
- Department of Neurology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
10
|
Fernie AR, Cavalcanti JHF, Nunes-Nesi A. Metabolic Roles of Plant Mitochondrial Carriers. Biomolecules 2020; 10:E1013. [PMID: 32650612 PMCID: PMC7408384 DOI: 10.3390/biom10071013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial carriers (MC) are a large family (MCF) of inner membrane transporters displaying diverse, yet often redundant, substrate specificities, as well as differing spatio-temporal patterns of expression; there are even increasing examples of non-mitochondrial subcellular localization. The number of these six trans-membrane domain proteins in sequenced plant genomes ranges from 39 to 141, rendering the size of plant families larger than that found in Saccharomyces cerevisiae and comparable with Homo sapiens. Indeed, comparison of plant MCs with those from these better characterized species has been highly informative. Here, we review the most recent comprehensive studies of plant MCFs, incorporating the torrent of genomic data emanating from next-generation sequencing techniques. As such we present a more current prediction of the substrate specificities of these carriers as well as review the continuing quest to biochemically characterize this feature of the carriers. Taken together, these data provide an important resource to guide direct genetic studies aimed at addressing the relevance of these vital carrier proteins.
Collapse
Affiliation(s)
- Alisdair R. Fernie
- Max-Planck-Instiute of Molecular Plant Physiology, 14476 Postdam-Golm, Germany
| | - João Henrique F. Cavalcanti
- Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, Humaitá 69800-000, Amazonas, Brazil;
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| |
Collapse
|
11
|
Yang L, Linde T, Hossain AH, Lübeck M, Punt PJ, Lübeck PS. Disruption of a putative mitochondrial oxaloacetate shuttle protein in Aspergillus carbonarius results in secretion of malic acid at the expense of citric acid production. BMC Biotechnol 2019; 19:72. [PMID: 31684928 PMCID: PMC6829807 DOI: 10.1186/s12896-019-0572-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In filamentous fungi, transport of organic acids across the mitochondrial membrane is facilitated by active transport via shuttle proteins. These transporters may transfer different organic acids across the membrane while taking others the opposite direction. In Aspergillus niger, accumulation of malate in the cytosol can trigger production of citric acid via the exchange of malate and citrate across the mitochondrial membrane. Several mitochondrial organic acid transporters were recently studied in A. niger showing their effects on organic acid production. RESULTS In this work, we studied another citric acid producing fungus, Aspergillus carbonarius, and identified by genome-mining a putative mitochondrial transporter MtpA, which was not previously studied, that might be involved in production of citric acid. This gene named mtpA encoding a putative oxaloacetate transport protein was expressed constitutively in A. carbonarius based on transcription analysis. To study its role in organic acid production, we disrupted the gene and analyzed its effects on production of citric acid and other organic acids, such as malic acid. In total, 6 transformants with gene mtpA disrupted were obtained and they showed secretion of malic acid at the expense of citric acid production. CONCLUSION A putative oxaloacetate transporter gene which is potentially involved in organic acid production by A. carbonarius was identified and further investigated on its effects on production of citric acid and malic acid. The mtpA knockout strains obtained produced less citric acid and more malic acid than the wild type, in agreement with our original hypothesis. More extensive studies should be conducted in order to further reveal the mechanism of organic acid transport as mediated by the MtpA transporter.
Collapse
Affiliation(s)
- Lei Yang
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, DK-2450, Copenhagen, SV, Denmark
| | - Tore Linde
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, DK-2450, Copenhagen, SV, Denmark.,Present address: AGC Biologics, Vandtaarnsvej 83B, DK-2860, Soeborg, Copenhagen, Denmark
| | - Abeer H Hossain
- Dutch DNA Biotech BV, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Mette Lübeck
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, DK-2450, Copenhagen, SV, Denmark
| | - Peter J Punt
- Dutch DNA Biotech BV, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Peter S Lübeck
- Department of Chemistry and Bioscience, Section for Sustainable Biotechnology, Aalborg University, A.C. Meyers Vaenge 15, DK-2450, Copenhagen, SV, Denmark.
| |
Collapse
|
12
|
Congenital myasthenic syndrome with mild intellectual disability caused by a recurrent SLC25A1 variant. Eur J Hum Genet 2019; 28:373-377. [PMID: 31527857 PMCID: PMC7029005 DOI: 10.1038/s41431-019-0506-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 11/10/2022] Open
Abstract
Congenital myasthenic syndromes (CMS) are a clinically and genetically heterogeneous group of disorders caused by mutations which lead to impaired neuromuscular transmission. SLC25A1 encodes a mitochondrial citrate carrier, associated mainly with the severe neurometabolic disease combined D-2- and L-2-hydroxyglutaric aciduria (D/L-2-HGA). We previously reported a single family with a homozygous missense variant in SLC25A1 with a phenotype restricted to relatively mild CMS with intellectual disability, but to date no additional cases of this CMS subtype had been reported. Here, we performed whole exome sequencing (WES) in three additional and unrelated families presenting with CMS and mild intellectual disability to identify the underlying causative gene. The WES analysis revealed the presence of a homozygous c.740G>A; p.(Arg247Gln) missense SLC25A1 variant, the same SLC25A1 variant as identified in the original family with this phenotype. Electron microscopy of muscle from two cases revealed enlarged and accumulated mitochondria. Haplotype analysis performed in two unrelated families suggested that this variant is a result of recurrent mutation and not a founder effect. This suggests that p.(Arg247Gln) is associated with a relatively mild CMS phenotype with subtle mitochondrial abnormalities, while other variants in this gene cause more severe neurometabolic disease. In conclusion, the p.(Arg247Gln) SLC25A1 variant should be considered in patients presenting with a presynaptic CMS phenotype, particularly with accompanying intellectual disability.
Collapse
|
13
|
Kirimura K, Kobayashi K, Yoshioka I. Decrease of citric acid produced by Aspergillus niger through disruption of the gene encoding a putative mitochondrial citrate-oxoglutarate shuttle protein. Biosci Biotechnol Biochem 2019; 83:1538-1546. [DOI: 10.1080/09168451.2019.1574205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
The transporter that exports citric acid (CA) generated in mitochondria to the cytosol is an important component of the CA production machinery of Aspergillus niger. In this report, we cloned and identified the gene cocA, encoding a 33.7-kDa putative mitochondrial citrate-oxoglutarate shuttle protein of the CA hyper-producer A. niger WU-2223L. The amount of CA produced by a representative cocA disruptant (35 g/L) was significantly lower than that produced by strain WU-2223L (63 g/L) after culture for 12 days under CA production conditions, and the phenotype of the cocA disruptant differed in part from that of strain WU-2223L. A cocA disruptant complemented with cocA exhibited the same phenotypes as those of strain WU-2223L. This report is the first to show that cocA and its protein product clearly contribute to substantial CA production by A. niger, and provides a significant insight into microbial organic acid production by fermentation.
Abbreviations: CA: citric acid; CD medium: Czapek-Dox medium; CS: citrate synthase; CTP: citrate transport protein; HR: homologous recombination; MCF: mitochondrial carrier family; RT-PCR: reverse-transcription PCR; TCA: tricarboxylic acid
Collapse
Affiliation(s)
- Kohtaro Kirimura
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Keiichi Kobayashi
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Isato Yoshioka
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
14
|
Fichi G, Naef V, Barca A, Longo G, Fronte B, Verri T, Santorelli FM, Marchese M, Petruzzella V. Fishing in the Cell Powerhouse: Zebrafish as A Tool for Exploration of Mitochondrial Defects Affecting the Nervous System. Int J Mol Sci 2019; 20:ijms20102409. [PMID: 31096646 PMCID: PMC6567007 DOI: 10.3390/ijms20102409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022] Open
Abstract
The zebrafish (Danio rerio) is a small vertebrate ideally suited to the modeling of human diseases. Large numbers of genetic alterations have now been modeled and could be used to study organ development by means of a genetic approach. To date, limited attention has been paid to the possible use of the zebrafish toolbox in studying human mitochondrial disorders affecting the nervous system. Here, we review the pertinent scientific literature discussing the use of zebrafish in modeling gene mutations involved in mitochondria-related neurological human diseases. A critical analysis of the literature suggests that the zebrafish not only lends itself to exploration of the pathological consequences of mitochondrial energy output on the nervous system but could also serve as an attractive platform for future drugs in an as yet untreatable category of human disorders.
Collapse
Affiliation(s)
- Gianluca Fichi
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Valentina Naef
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Amilcare Barca
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Baldassare Fronte
- Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy.
| | - Tiziano Verri
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | | | - Maria Marchese
- Molecular Medicine, IRCCS Stella Maris, Via dei Giacinti 2, 56028 Pisa, Italy.
| | - Vittoria Petruzzella
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy.
| |
Collapse
|
15
|
Mitochondrial Citrate Transporters CtpA and YhmA Are Required for Extracellular Citric Acid Accumulation and Contribute to Cytosolic Acetyl Coenzyme A Generation in Aspergillus luchuensis mut. kawachii. Appl Environ Microbiol 2019; 85:AEM.03136-18. [PMID: 30737343 DOI: 10.1128/aem.03136-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/27/2019] [Indexed: 11/20/2022] Open
Abstract
Aspergillus luchuensis mut. kawachii (A. kawachii) produces a large amount of citric acid during the process of fermenting shochu, a traditional Japanese distilled spirit. In this study, we characterized A. kawachii CtpA and YhmA, which are homologous to the yeast Saccharomyces cerevisiae mitochondrial citrate transporters Ctp1 and Yhm2, respectively. CtpA and YhmA were purified from A. kawachii and reconstituted into liposomes. The proteoliposomes exhibited only counterexchange transport activity; CtpA transported citrate using countersubstrates, especially cis-aconitate and malate, whereas YhmA transported citrate using a wider variety of countersubstrates, including citrate, 2-oxoglutarate, malate, cis-aconitate, and succinate. Disruption of ctpA and yhmA caused deficient hyphal growth and conidium formation with reduced mycelial weight-normalized citrate production. Because we could not obtain a ΔctpA ΔyhmA strain, we constructed an S-tagged ctpA (ctpA-S) conditional expression strain in the ΔyhmA background using the Tet-On promoter system. Knockdown of ctpA-S in ΔyhmA resulted in a severe growth defect on minimal medium with significantly reduced acetyl coenzyme A (acetyl-CoA) and lysine levels, indicating that double disruption of ctpA and yhmA leads to synthetic lethality; however, we subsequently found that the severe growth defect was relieved by addition of acetate or lysine, which could remedy the acetyl-CoA level. Our results indicate that CtpA and YhmA are mitochondrial citrate transporters involved in citric acid production and that transport of citrate from mitochondria to the cytosol plays an important role in acetyl-CoA biogenesis in A. kawachii IMPORTANCE Citrate transport is believed to play a significant role in citrate production by filamentous fungi; however, details of the process remain unclear. This study characterized two citrate transporters from Aspergillus luchuensis mut. kawachii Biochemical and gene disruption analyses showed that CtpA and YhmA are mitochondrial citrate transporters required for normal hyphal growth, conidium formation, cytosolic acetyl-CoA synthesis, and citric acid production. The characteristics of fungal citrate transporters elucidated in this study will help expand our understanding of the citrate production mechanism and facilitate the development and optimization of industrial organic acid fermentation processes.
Collapse
|
16
|
Kory N, Wyant GA, Prakash G, Uit de Bos J, Bottanelli F, Pacold ME, Chan SH, Lewis CA, Wang T, Keys HR, Guo YE, Sabatini DM. SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism. Science 2019; 362:362/6416/eaat9528. [PMID: 30442778 DOI: 10.1126/science.aat9528] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022]
Abstract
One-carbon metabolism generates the one-carbon units required to synthesize many critical metabolites, including nucleotides. The pathway has cytosolic and mitochondrial branches, and a key step is the entry, through an unknown mechanism, of serine into mitochondria, where it is converted into glycine and formate. In a CRISPR-based genetic screen in human cells for genes of the mitochondrial pathway, we found sideroflexin 1 (SFXN1), a multipass inner mitochondrial membrane protein of unclear function. Like cells missing mitochondrial components of one-carbon metabolism, those null for SFXN1 are defective in glycine and purine synthesis. Cells lacking SFXN1 and one of its four homologs, SFXN3, have more severe defects, including being auxotrophic for glycine. Purified SFXN1 transports serine in vitro. Thus, SFXN1 functions as a mitochondrial serine transporter in one-carbon metabolism.
Collapse
Affiliation(s)
- Nora Kory
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA
| | - Gregory A Wyant
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA
| | - Gyan Prakash
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Jelmi Uit de Bos
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Francesca Bottanelli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Michael E Pacold
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA.,Department of Radiation Oncology at NYU Langone Medical Center, New York, NY 10016, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Tim Wang
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA
| | - Heather R Keys
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Yang Eric Guo
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA. .,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA
| |
Collapse
|
17
|
Porcelli V, Vozza A, Calcagnile V, Gorgoglione R, Arrigoni R, Fontanesi F, Marobbio CMT, Castegna A, Palmieri F, Palmieri L. Molecular identification and functional characterization of a novel glutamate transporter in yeast and plant mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1249-1258. [PMID: 30297026 DOI: 10.1016/j.bbabio.2018.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 11/19/2022]
Abstract
The genome of Saccharomyces cerevisiae encodes 35 members of the mitochondrial carrier family (MCF) and 58 MCF members are coded by the genome of Arabidopsis thaliana, most of which have been functionally characterized. Here two members of this family, Ymc2p from S. cerevisiae and BOU from Arabidopsis, have been thoroughly characterized. These proteins were overproduced in bacteria and reconstituted into liposomes. Their transport properties and kinetic parameters demonstrate that Ymc2p and BOU transport glutamate, and to a much lesser extent L-homocysteinesulfinate, but not other amino acids and many other tested metabolites. Transport catalyzed by both carriers was saturable, inhibited by mercuric chloride and dependent on the proton gradient across the proteoliposomal membrane. The growth phenotype of S. cerevisiae cells lacking the genes ymc2 and agc1, which encodes the only other S. cerevisiae carrier capable to transport glutamate besides aspartate, was fully complemented by expressing Ymc2p, Agc1p or BOU. Mitochondrial extracts derived from ymc2Δagc1Δ cells, reconstituted into liposomes, exhibited no glutamate transport at variance with wild-type, ymc2Δ and agc1Δ cells, showing that S. cerevisiae cells grown in the presence of acetate do not contain additional mitochondrial transporters for glutamate besides Ymc2p and Agc1p. Furthermore, mitochondria isolated from wild-type, ymc2Δ and agc1Δ strains, but not from the double mutant ymc2Δagc1Δ strain, swell in isosmotic ammonium glutamate showing that glutamate is transported by Ymc2p and Agc1p together with a H+. It is proposed that the function of Ymc2p and BOU is to transport glutamate across the mitochondrial inner membrane and thereby play a role in intermediary metabolism, C1 metabolism and mitochondrial protein synthesis.
Collapse
Affiliation(s)
- Vito Porcelli
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Angelo Vozza
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Valeria Calcagnile
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Ruggiero Gorgoglione
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carlo M T Marobbio
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Alessandra Castegna
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Ferdinando Palmieri
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Luigi Palmieri
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy.
| |
Collapse
|
18
|
Pop A, Williams M, Struys EA, Monné M, Jansen EEW, De Grassi A, Kanhai WA, Scarcia P, Ojeda MRF, Porcelli V, van Dooren SJM, Lennertz P, Nota B, Abdenur JE, Coman D, Das AM, El-Gharbawy A, Nuoffer JM, Polic B, Santer R, Weinhold N, Zuccarelli B, Palmieri F, Palmieri L, Salomons GS. An overview of combined D-2- and L-2-hydroxyglutaric aciduria: functional analysis of CIC variants. J Inherit Metab Dis 2018; 41:169-180. [PMID: 29238895 PMCID: PMC5830478 DOI: 10.1007/s10545-017-0106-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/15/2017] [Accepted: 10/18/2017] [Indexed: 11/13/2022]
Abstract
Combined D-2- and L-2-hydroxyglutaric aciduria (D/L-2-HGA) is a devastating neurometabolic disorder, usually lethal in the first years of life. Autosomal recessive mutations in the SLC25A1 gene, which encodes the mitochondrial citrate carrier (CIC), were previously detected in patients affected with combined D/L-2-HGA. We showed that transfection of deficient fibroblasts with wild-type SLC25A1 restored citrate efflux and decreased intracellular 2-hydroxyglutarate levels, confirming that deficient CIC is the cause of D/L-2-HGA. We developed and implemented a functional assay and applied it to all 17 missense variants detected in a total of 26 CIC-deficient patients, including eight novel cases, showing reduced activities of varying degrees. In addition, we analyzed the importance of residues affected by these missense variants using our existing scoring system. This allowed not only a clinical and biochemical overview of the D/L-2-HGA patients but also phenotype-genotype correlation studies.
Collapse
Affiliation(s)
- Ana Pop
- Metabolic Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU Medical Center Metabolic Unit PK 1X009, Postbus 7057, 1007 MB, Amsterdam, The Netherlands
| | - Monique Williams
- Metabolic Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU Medical Center Metabolic Unit PK 1X009, Postbus 7057, 1007 MB, Amsterdam, The Netherlands
| | - Eduard A Struys
- Metabolic Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU Medical Center Metabolic Unit PK 1X009, Postbus 7057, 1007 MB, Amsterdam, The Netherlands
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Erwin E W Jansen
- Metabolic Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU Medical Center Metabolic Unit PK 1X009, Postbus 7057, 1007 MB, Amsterdam, The Netherlands
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Warsha A Kanhai
- Metabolic Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU Medical Center Metabolic Unit PK 1X009, Postbus 7057, 1007 MB, Amsterdam, The Netherlands
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Matilde R Fernandez Ojeda
- Metabolic Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU Medical Center Metabolic Unit PK 1X009, Postbus 7057, 1007 MB, Amsterdam, The Netherlands
| | - Vito Porcelli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Silvy J M van Dooren
- Metabolic Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU Medical Center Metabolic Unit PK 1X009, Postbus 7057, 1007 MB, Amsterdam, The Netherlands
| | - Pascal Lennertz
- Metabolic Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU Medical Center Metabolic Unit PK 1X009, Postbus 7057, 1007 MB, Amsterdam, The Netherlands
| | - Benjamin Nota
- Metabolic Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU Medical Center Metabolic Unit PK 1X009, Postbus 7057, 1007 MB, Amsterdam, The Netherlands
| | - Jose E Abdenur
- Division of Metabolic Disorders, CHOC Children's, Orange, CA, USA
- Department of Pediatrics, University of California at Irvine, Irvine, CA, USA
| | - David Coman
- Department of Metabolic Medicine, Lady Cilento Children's Hospital, Brisbane, Australia
- School of Medicine, University of Queensland Brisbane, Griffith University Gold Coast, Gold Coast, Australia
| | - Anibh Martin Das
- Clinic for Pediatric Kidney-, Liver- and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Areeg El-Gharbawy
- Department of Pediatrics and Division of Medical Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jean-Marc Nuoffer
- Division of Pediatric Endocrinology, Diabetology and Metabolism and University Institute of Clinical Chemistry, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Branka Polic
- Department of Pediatrics, PICU, University Hospital Centre, Split, Croatia
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Natalie Weinhold
- Sozialpädiatrisches Zentrum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Consiglio Nazionale delle Ricerche, Bari, Italy.
| | - Gajja S Salomons
- Metabolic Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU Medical Center Metabolic Unit PK 1X009, Postbus 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Cohen I, Staretz-Chacham O, Wormser O, Perez Y, Saada A, Kadir R, Birk OS. A novel homozygous SLC25A1 mutation with impaired mitochondrial complex V: Possible phenotypic expansion. Am J Med Genet A 2017; 176:330-336. [PMID: 29226520 DOI: 10.1002/ajmg.a.38574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 11/08/2022]
Abstract
SLC25A1 mutations are associated with combined D,L-2-hydroxyglutaric aciduria (DL- 2HGA; OMIM #615182), characterized by muscular hypotonia, severe neurodevelopmental dysfunction and intractable seizures. SLC25A1 encodes the mitochondrial citrate carrier (CIC), which mediates efflux of the mitochondrial tricarboxylic acid (TCA) cycle intermediates citrate and isocitrate in exchange for cytosolic malate. Only a single family with an SLC25A1 mutation has been described in which mitochondrial respiratory chain dysfunction was documented, specifically in complex IV. Five infants of two consanguineous Bedouin families of the same tribe presented with small head circumference and neonatal-onset encephalopathy with severe muscular weakness, intractable seizures, respiratory distress, and lack of psychomotor development culminating in early death. Ventricular septal defects (VSD) were demonstrated in three patients. Blood and CSF lactate were elevated with normal levels of plasma amino acids and free carnitine and increased 2-OH-glutaric acid urinary exertion. EEG was compatible with white matter disorder. Brain MRI revealed ventriculomegaly, thin corpus callosum with increased lactate peak on spectroscopy. Mitochondrial complex V deficiency was demonstrated in skeletal muscle biopsy of one infant. Homozygosity mapping and sequencing ruled out homozygosity of affected individuals in all known complex V-associated genes. Whole exome sequencing identified a novel homozygous SLC25A1 c.713A>G (p.Asn238Ser) mutation, segregating as expected in the affected kindred and not found in 220 control alleles. Thus, SLC25A1 mutations might be associated with mitochondrial complex V deficiency and should be considered in the differential diagnosis of mitochondrial respiratory chain defects.
Collapse
Affiliation(s)
- Idan Cohen
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Orna Staretz-Chacham
- Metabolic unit, Division of Pediatrics, Soroka Medical Center, Ben Gurion University, Beer Sheva, Israel
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Yonatan Perez
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Ann Saada
- Monique and Jacques Roboh Department of Genetic Research and The Department of Genetic Metabolic Diseases, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Rotem Kadir
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel.,Genetics Institute, Soroka Medical Center, Beer-Sheva, Israel
| |
Collapse
|
20
|
Al-Khallaf H. Isocitrate dehydrogenases in physiology and cancer: biochemical and molecular insight. Cell Biosci 2017; 7:37. [PMID: 28785398 PMCID: PMC5543436 DOI: 10.1186/s13578-017-0165-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/01/2017] [Indexed: 01/31/2023] Open
Abstract
Isocitrate dehydrogenases play important roles in cellular metabolism and cancer. This review will discuss how the roles of isoforms 1 and 2 in normal cell and cancer metabolism are distinct from those of isoform 3. It will also explain why, unlike 1 and 2, mutations in isoform 3 in tumor are not likely to be driver ones. A model explaining two important features of isocitrate dehydrogenases 1 and 2 mutations, their dominant negative effect and their mutual exclusivity, will be provided. The importance of targeting these mutations and the possibility of augmenting such therapy by targeting other cancer-related pathways will also be discussed.
Collapse
Affiliation(s)
- Hamoud Al-Khallaf
- Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital, 6830 Ammar Bin Thabit St, Al Muraikabat, Dammam, 32253 Saudi Arabia
| |
Collapse
|
21
|
Iacobazzi V, Infantino V, Castegna A, Menga A, Palmieri EM, Convertini P, Palmieri F. Mitochondrial carriers in inflammation induced by bacterial endotoxin and cytokines. Biol Chem 2017; 398:303-317. [PMID: 27727142 DOI: 10.1515/hsz-2016-0260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/02/2016] [Indexed: 12/18/2022]
Abstract
Significant metabolic changes occur in the shift from resting to activated cellular status in inflammation. Thus, changes in expression of a large number of genes and extensive metabolic reprogramming gives rise to acquisition of new functions (e.g. production of cytokines, intermediates for biosynthesis, lipid mediators, PGE, ROS and NO). In this context, mitochondrial carriers, which catalyse the transport of solute across mitochondrial membrane, change their expression to transport mitochondrially produced molecules, among which citrate and succinate, to be used as intracellular signalling molecules in inflammation. This review summarises the mitochondrial carriers studied so far that are, directly or indirectly, involved in inflammation.
Collapse
|
22
|
Heinz RE, Rudolph MC, Ramanathan P, Spoelstra NS, Butterfield KT, Webb PG, Babbs BL, Gao H, Chen S, Gordon MA, Anderson SM, Neville MC, Gu H, Richer JK. Constitutive expression of microRNA-150 in mammary epithelium suppresses secretory activation and impairs de novo lipogenesis. Development 2016; 143:4236-4248. [PMID: 27729410 DOI: 10.1242/dev.139642] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/29/2016] [Indexed: 11/20/2022]
Abstract
Profiling of RNA from mouse mammary epithelial cells (MECs) isolated on pregnancy day (P)14 and lactation day (L)2 revealed that the majority of differentially expressed microRNA declined precipitously between late pregnancy and lactation. The decline in miR-150, which exhibited the greatest fold-decrease, was verified quantitatively and qualitatively. To test the hypothesis that the decline in miR-150 is crucial for lactation, MEC-specific constitutive miR-150 was achieved by crossing ROSA26-lox-STOP-lox-miR-150 mice with WAP-driven Cre recombinase mice. Both biological and foster pups nursed by bitransgenic dams exhibited a dramatic decrease in survival compared with offspring nursed by littermate control dams. Protein products of predicted miR-150 targets Fasn, Olah, Acaca, and Stat5B were significantly suppressed in MECs of bitransgenic mice with constitutive miR-150 expression as compared with control mice at L2. Lipid profiling revealed a significant reduction in fatty acids synthesized by the de novo pathway in L2 MECs of bitransgenic versus control mice. Collectively, these data support the hypothesis that a synchronized decrease in miRNAs, such as miR-150, at late pregnancy serves to allow translation of targets crucial for lactation.
Collapse
Affiliation(s)
- Richard E Heinz
- Cancer Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael C Rudolph
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Palani Ramanathan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nicole S Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kiel T Butterfield
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Patricia G Webb
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Beatrice L Babbs
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hongwei Gao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Shang Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Michael A Gordon
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Steve M Anderson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Margaret C Neville
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Haihua Gu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China .,Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
23
|
Kirimura K, Kobayashi K, Ueda Y, Hattori T. Phenotypes of gene disruptants in relation to a putative mitochondrial malate–citrate shuttle protein in citric acid-producing Aspergillus niger. Biosci Biotechnol Biochem 2016; 80:1737-46. [DOI: 10.1080/09168451.2016.1164583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
The mitochondrial citrate transport protein (CTP) functions as a malate–citrate shuttle catalyzing the exchange of citrate plus a proton for malate between mitochondria and cytosol across the inner mitochondrial membrane in higher eukaryotic organisms. In this study, for functional analysis, we cloned the gene encoding putative CTP (ctpA) of citric acid-producing Aspergillus niger WU-2223L. The gene ctpA encodes a polypeptide consisting 296 amino acids conserved active residues required for citrate transport function. Only in early-log phase, the ctpA disruptant DCTPA-1 showed growth delay, and the amount of citric acid produced by strain DCTPA-1 was smaller than that by parental strain WU-2223L. These results indicate that the CTPA affects growth and thereby citric acid metabolism of A. niger changes, especially in early-log phase, but not citric acid-producing period. This is the first report showing that disruption of ctpA causes changes of phenotypes in relation to citric acid production in A. niger.
Collapse
Affiliation(s)
- Kohtaro Kirimura
- Faculty of Science and Engineering, Department of Applied Chemistry, Waseda University, Tokyo, Japan
| | - Keiichi Kobayashi
- Faculty of Science and Engineering, Department of Applied Chemistry, Waseda University, Tokyo, Japan
| | - Yuka Ueda
- Faculty of Science and Engineering, Department of Applied Chemistry, Waseda University, Tokyo, Japan
| | - Takasumi Hattori
- Faculty of Science and Engineering, Department of Applied Chemistry, Waseda University, Tokyo, Japan
| |
Collapse
|
24
|
Ohno K, Ohkawara B, Ito M. Recent advances in congenital myasthenic syndromes. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/cen3.12316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Bisei Ohkawara
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Mikako Ito
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
25
|
Palmieri F, Monné M. Discoveries, metabolic roles and diseases of mitochondrial carriers: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2362-78. [PMID: 26968366 DOI: 10.1016/j.bbamcr.2016.03.007] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/25/2022]
Abstract
Mitochondrial carriers (MCs) are a superfamily of nuclear-encoded proteins that are mostly localized in the inner mitochondrial membrane and transport numerous metabolites, nucleotides, cofactors and inorganic anions. Their unique sequence features, i.e., a tripartite structure, six transmembrane α-helices and a three-fold repeated signature motif, allow MCs to be easily recognized. This review describes how the functions of MCs from Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana (listed in the first table) were discovered after the genome sequence of S. cerevisiae was determined in 1996. In the genomic era, more than 50 previously unknown MCs from these organisms have been identified and characterized biochemically using a method consisting of gene expression, purification of the recombinant proteins, their reconstitution into liposomes and transport assays (EPRA). Information derived from studies with intact mitochondria, genetic and metabolic evidence, sequence similarity, phylogenetic analysis and complementation of knockout phenotypes have guided the choice of substrates that were tested in the transport assays. In addition, the diseases associated to defects of human MCs have been briefly reviewed. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy.
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; Department of Sciences, University of Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
26
|
Iacobazzi V, Infantino V. Citrate--new functions for an old metabolite. Biol Chem 2015; 395:387-99. [PMID: 24445237 DOI: 10.1515/hsz-2013-0271] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/16/2014] [Indexed: 01/22/2023]
Abstract
Citrate is an important substrate in cellular energy metabolism. It is produced in the mitochondria and used in the Krebs cycle or released into cytoplasm through a specific mitochondrial carrier, CIC. In the cytosol, citrate and its derivatives, acetyl-CoA and oxaloacetate, are used in normal and pathological processes. Beyond the classical role as metabolic regulator, recent studies have highlighted that citrate is involved in inflammation, cancer, insulin secretion, histone acetylation, neurological disorders, and non-alcoholic fatty liver disease. Monitoring changes in the citrate levels could therefore potentially be used as diagnostic tool. This review highlights these new aspects of citrate functions.
Collapse
|
27
|
Tomasetti M, Nocchi L, Staffolani S, Manzella N, Amati M, Goodwin J, Kluckova K, Nguyen M, Strafella E, Bajzikova M, Peterka M, Lettlova S, Truksa J, Lee W, Dong LF, Santarelli L, Neuzil J. MicroRNA-126 suppresses mesothelioma malignancy by targeting IRS1 and interfering with the mitochondrial function. Antioxid Redox Signal 2014; 21:2109-25. [PMID: 24444362 PMCID: PMC4215384 DOI: 10.1089/ars.2013.5215] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS MiR126 was found to be frequently lost in many types of cancer, including malignant mesothelioma (MM), which represents one of the most challenging neoplastic diseases. In this study, we investigated the potential tumor suppressor function of MiR126 in MM cells. The effect of MiR126 was examined in response to oxidative stress, aberrant mitochondrial function induced by inhibition of complex I, mitochondrial DNA (mtDNA) depletion, and hypoxia. RESULTS MiR126 was up-regulated by oxidative stress in nonmalignant mesothelial (Met5A) and MM (H28) cell lines. In Met5A cells, rotenone inhibited MiR126 expression, but mtDNA depletion and hypoxia up-regulated MiR126. However, these various stimuli suppressed the levels of MiR126 in H28 cells. MiR126 affected mitochondrial energy metabolism, reduced mitochondrial respiration, and promoted glycolysis in H28 cells. This metabolic shift, associated with insulin receptor substrate-1 (IRS1)-modulated ATP-citrate lyase deregulation, resulted in higher ATP and citrate production. These changes were linked to the down-regulation of IRS1 by ectopic MiR126, reducing Akt signaling and inhibiting cytosolic sequestration of Forkhead box O1 (FoxO1), which promoted the expression of genes involved in gluconeogenesis and oxidative stress defense. These metabolic changes induced hypoxia-inducible factor-1α (HIF1α) stabilization. Consequently, MiR126 suppressed the malignancy of MM cells in vitro, a notion corroborated by the failure of H28(MiR126) cells to form tumors in nude mice. INNOVATION AND CONCLUSION MiR126 affects mitochondrial energy metabolism, resulting in MM tumor suppression. Since MM is a fatal neoplastic disease with a few therapeutic options, this finding is of potential translational importance.
Collapse
Affiliation(s)
- Marco Tomasetti
- 1 Department of Clinical and Molecular Science, Polytechnic University of Marche , Ancona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
de Castro Brás LE, Cates CA, DeLeon-Pennell KY, Ma Y, Iyer RP, Halade GV, Yabluchanskiy A, Fields GB, Weintraub ST, Lindsey ML. Citrate synthase is a novel in vivo matrix metalloproteinase-9 substrate that regulates mitochondrial function in the postmyocardial infarction left ventricle. Antioxid Redox Signal 2014; 21:1974-85. [PMID: 24382150 PMCID: PMC4208600 DOI: 10.1089/ars.2013.5411] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM To evaluate the role of matrix metalloproteinase (MMP)-9 deletion on citrate synthase (CS) activity postmyocardial infarction (MI). RESULTS We fractionated left ventricle (LV) samples using a differential solubility-based approach. The insoluble protein fraction was analyzed by mass spectrometry, and we identified CS as a potential intracellular substrate of MMP-9 in the MI setting. CS protein levels increased in the insoluble fraction at day 1 post-MI in both genotypes (p<0.05) but not in the noninfarcted remote region. The CS activity decreased in the infarcted tissue of wild-type (WT) mice at day 1 post-MI (p<0.05), but this was not observed in the MMP-9 null mice, suggesting that MMP-9 deletion helps to maintain the mitochondrial activity post-MI. Additionally, inflammatory gene transcription was increased post-MI in the WT mice and attenuated in the MMP-9 null mice. MMP-9 cleaved CS in vitro, generating an ∼20 kDa fragment. INNOVATION By applying a sample fractionation and proteomics approach, we were able to identify a novel MMP-9-related altered mitochondrial metabolic activity early post-MI. CONCLUSION Our data suggest that MMP-9 deletion improves mitochondrial function post-MI.
Collapse
|
29
|
Dolce V, Cappello AR, Capobianco L. Mitochondrial tricarboxylate and dicarboxylate-tricarboxylate carriers: from animals to plants. IUBMB Life 2014; 66:462-71. [PMID: 25045044 DOI: 10.1002/iub.1290] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 06/22/2014] [Indexed: 12/26/2022]
Abstract
The citrate carrier (CiC), characteristic of animals, and the dicarboxylate-tricarboxylate carrier (DTC), characteristic of plants and protozoa, belong to the mitochondrial carrier protein family whose members are responsible for the exchange of metabolites, cofactors, and nucleotides between the cytoplasm and the mitochondrial matrix. Most of the functional data on these transporters are obtained from the studies performed with the protein purified from rat, eel yeast, and maize mitochondria or recombinant proteins from different sources incorporated into phospholipid vesicles (liposomes). The functional data indicate that CiC is responsible for the efflux of acetyl-CoA from the mitochondria to the cytosol in the form of citrate, the primer for fatty acid, cholesterol synthesis, and histone acetylation. Like the CiC, the citrate exported by DTC from the mitochondria to the cytosol in exchange for oxaloacetate can be cleaved by citrate lyase to acetyl-CoA and oxaloacetate and used for fatty acid elongation and isoprenoid synthesis. In addition to its role in fatty acid synthesis, CiC is involved in other processes such as gluconeogenesis, insulin secretion, inflammation, and cancer progression, whereas DTC is involved in the production of glycerate, nitrogen assimilation, ripening of fruits, ATP synthesis, and sustaining of respiratory flux in fruit cells. This review provides an assessment of the current understanding of CiC and DTC structural and biochemical characteristics, underlying the structure-function relationship of these carriers. Furthermore, a phylogenetic relationship between CiC and DTC is proposed.
Collapse
Affiliation(s)
- Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende Cosenza, Italy
| | | | | |
Collapse
|
30
|
Steele SL, Prykhozhij SV, Berman JN. Zebrafish as a model system for mitochondrial biology and diseases. Transl Res 2014; 163:79-98. [PMID: 24055494 DOI: 10.1016/j.trsl.2013.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/21/2013] [Accepted: 08/25/2013] [Indexed: 12/19/2022]
Abstract
Animal models for studying human disease are essential to the continuing evolution of medicine. Rodent models are attractive for the obvious similarities in development and genetic makeup compared with humans, but have cost and technical limitations. The zebrafish (Danio rerio) represents an ideal alternative vertebrate model of human disease because of its high conservation of genetic information and physiological processes, inexpensive maintenance, and optical clarity facilitating direct observation. This review highlights recent advances in understanding genetic disease states associated with the dynamic organelle, the mitochondrion, using the zebrafish. Mitochondrial diseases that have been replicated in the zebrafish include those affecting the nervous and cardiovascular systems, as well as red blood cell function. Gene silencing techniques, including morpholino knockdown and transcription activator-like (TAL)-effector endonucleases, have been exploited to demonstrate how loss of function can induce human disease-like states in zebrafish. Moreover, modeling mitochondrial diseases has been facilitated greatly by the creation of transgenic fish with fluorescently labeled mitochondria for in vivo visualization of these structures. In addition, behavioral assays have been developed to examine changes in motor activity and sensory responses, particularly in larval stages. Zebrafish are poised to advance our understanding of the pathogenesis of human mitochondrial diseases beyond the current state of knowledge and provide a key tool in the development of novel therapeutic approaches to treat these conditions.
Collapse
Affiliation(s)
- Shelby L Steele
- Department of Pediatrics, Dalhousie University, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Sergey V Prykhozhij
- Department of Pediatrics, Dalhousie University, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Jason N Berman
- Department of Pediatrics, Dalhousie University, IWK Health Centre, Halifax, Nova Scotia, Canada.
| |
Collapse
|
31
|
Abstract
The mitochondrion relies on compartmentalization of certain enzymes, ions and metabolites for the sake of efficient metabolism. In order to fulfil its activities, a myriad of carriers are properly expressed, targeted and folded in the inner mitochondrial membrane. Among these carriers, the six-transmembrane-helix mitochondrial SLC25 (solute carrier family 25) proteins facilitate transport of solutes with disparate chemical identities across the inner mitochondrial membrane. Although their proper function replenishes building blocks needed for metabolic reactions, dysfunctional SLC25 proteins are involved in pathological states. It is the purpose of the present review to cover the current knowledge on the role of SLC25 transporters in health and disease.
Collapse
|
32
|
Gunawan A, Sahadevan S, Cinar MU, Neuhoff C, Große-Brinkhaus C, Frieden L, Tesfaye D, Tholen E, Looft C, Wondim DS, Hölker M, Schellander K, Uddin MJ. Identification of the novel candidate genes and variants in boar liver tissues with divergent skatole levels using RNA deep sequencing. PLoS One 2013; 8:e72298. [PMID: 23991084 PMCID: PMC3753299 DOI: 10.1371/journal.pone.0072298] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/09/2013] [Indexed: 02/02/2023] Open
Abstract
Boar taint is the unpleasant odour of meat derived from non-castrated male pigs, caused by the accumulation of androstenone and skatole in fat. Skatole is a tryptophan metabolite produced by intestinal bacteria in gut and catabolised in liver. Since boar taint affects consumer's preference, the aim of this study was to perform transcriptome profiling in liver of boars with divergent skatole levels in backfat by using RNA-Seq. The total number of reads produced for each liver sample ranged from 11.8 to 39.0 million. Approximately 448 genes were differentially regulated (p-adjusted <0.05). Among them, 383 genes were up-regulated in higher skatole group and 65 were down-regulated (p<0.01, FC>1.5). Differentially regulated genes in the high skatole liver samples were enriched in metabolic processes such as small molecule biochemistry, protein synthesis, lipid and amino acid metabolism. Pathway analysis identified the remodeling of epithelial adherens junction and TCA cycle as the most dominant pathways which may play important roles in skatole metabolism. Differential gene expression analysis identified candidate genes in ATP synthesis, cytochrome P450, keratin, phosphoglucomutase, isocitrate dehydrogenase and solute carrier family. Additionally, polymorphism and association analysis revealed that mutations in ATP5B, KRT8, PGM1, SLC22A7 and IDH1 genes could be potential markers for skatole levels in boars. Furthermore, expression analysis of exon usage of three genes (ATP5B, KRT8 and PGM1) revealed significant differential expression of exons of these genes in different skatole levels. These polymorphisms and exon expression differences may have impacts on the gene activity ultimately leading to skatole variation and could be used as genetic marker for boar taint related traits. However, further validation is required to confirm the effect of these genetic markers in other pig populations in order to be used in genomic selection against boar taint in pig breeding programs.
Collapse
Affiliation(s)
- Asep Gunawan
- Institute of Animal Science, Faculty of Agriculture, University of Bonn, Bonn, Germany
- Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor, Indonesia
| | - Sudeep Sahadevan
- Institute of Animal Science, Faculty of Agriculture, University of Bonn, Bonn, Germany
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, Germany
| | - Mehmet Ulas Cinar
- Institute of Animal Science, Faculty of Agriculture, University of Bonn, Bonn, Germany
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri, Turkey
| | - Christiane Neuhoff
- Institute of Animal Science, Faculty of Agriculture, University of Bonn, Bonn, Germany
| | | | - Luc Frieden
- Institute of Animal Science, Faculty of Agriculture, University of Bonn, Bonn, Germany
| | - Dawit Tesfaye
- Institute of Animal Science, Faculty of Agriculture, University of Bonn, Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Science, Faculty of Agriculture, University of Bonn, Bonn, Germany
| | - Christian Looft
- Institute of Animal Science, Faculty of Agriculture, University of Bonn, Bonn, Germany
| | - Dessie Salilew Wondim
- Institute of Animal Science, Faculty of Agriculture, University of Bonn, Bonn, Germany
| | - Michael Hölker
- Institute of Animal Science, Faculty of Agriculture, University of Bonn, Bonn, Germany
| | - Karl Schellander
- Institute of Animal Science, Faculty of Agriculture, University of Bonn, Bonn, Germany
| | - Muhammad Jasim Uddin
- Institute of Animal Science, Faculty of Agriculture, University of Bonn, Bonn, Germany
| |
Collapse
|
33
|
Cánovas A, Rincón G, Islas-Trejo A, Jimenez-Flores R, Laubscher A, Medrano JF. RNA sequencing to study gene expression and single nucleotide polymorphism variation associated with citrate content in cow milk. J Dairy Sci 2013; 96:2637-2648. [PMID: 23403202 DOI: 10.3168/jds.2012-6213] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022]
Abstract
The technological properties of milk have significant importance for the dairy industry. Citrate, a normal constituent of milk, forms one of the main buffer systems that regulate the equilibrium between Ca(2+) and H(+) ions. Higher-than-normal citrate content is associated with poor coagulation properties of milk. To identify the genes responsible for the variation of citrate content in milk in dairy cattle, the metabolic steps involved in citrate and fatty acid synthesis pathways in ruminant mammary tissue using RNA sequencing were studied. Genetic markers that could influence milk citrate content in Holstein cows were used in a marker-trait association study to establish the relationship between 74 single nucleotide polymorphisms (SNP) in 20 candidate genes and citrate content in 250 Holstein cows. This analysis revealed 6 SNP in key metabolic pathway genes [isocitrate dehydrogenase 1 (NADP+), soluble (IDH1); pyruvate dehydrogenase (lipoamide) β (PDHB); pyruvate kinase (PKM2); and solute carrier family 25 (mitochondrial carrier; citrate transporter), member 1 (SLC25A1)] significantly associated with increased milk citrate content. The amount of the phenotypic variation explained by the 6 SNP ranged from 10.1 to 13.7%. Also, genotype-combination analysis revealed the highest phenotypic variation was explained combining IDH1_23211, PDHB_5562, and SLC25A1_4446 genotypes. This specific genotype combination explained 21.3% of the phenotypic variation. The largest citrate associated effect was in the 3' untranslated region of the SLC25A1 gene, which is responsible for the transport of citrate across the mitochondrial inner membrane. This study provides an approach using RNA sequencing, metabolic pathway analysis, and association studies to identify genetic variation in functional target genes determining complex trait phenotypes.
Collapse
Affiliation(s)
- A Cánovas
- Department of Animal Science, University of California-Davis, One Shields Ave., Davis 95616
| | - G Rincón
- Department of Animal Science, University of California-Davis, One Shields Ave., Davis 95616
| | - A Islas-Trejo
- Department of Animal Science, University of California-Davis, One Shields Ave., Davis 95616
| | - R Jimenez-Flores
- Dairy Products Technology Center, Department of Agriculture, California Polytechnic State University, San Luis Obispo 93407
| | - A Laubscher
- Dairy Products Technology Center, Department of Agriculture, California Polytechnic State University, San Luis Obispo 93407
| | - J F Medrano
- Department of Animal Science, University of California-Davis, One Shields Ave., Davis 95616.
| |
Collapse
|
34
|
Transcriptional Regulation of the Mitochondrial Citrate and Carnitine/Acylcarnitine Transporters: Two Genes Involved in Fatty Acid Biosynthesis and β-oxidation. BIOLOGY 2013; 2:284-303. [PMID: 24832661 PMCID: PMC4009865 DOI: 10.3390/biology2010284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 12/17/2022]
Abstract
Transcriptional regulation of genes involved in fatty acid metabolism is considered the major long-term regulatory mechanism controlling lipid homeostasis. By means of this mechanism, transcription factors, nutrients, hormones and epigenetics control not only fatty acid metabolism, but also many metabolic pathways and cellular functions at the molecular level. The regulation of the expression of many genes at the level of their transcription has already been analyzed. This review focuses on the transcriptional control of two genes involved in fatty acid biosynthesis and oxidation: the citrate carrier (CIC) and the carnitine/ acylcarnitine/carrier (CAC), which are members of the mitochondrial carrier gene family, SLC25. The contribution of tissue-specific and less tissue-specific transcription factors in activating or repressing CIC and CAC gene expression is discussed. The interaction with drugs of some transcription factors, such as PPAR and FOXA1, and how this interaction can be an attractive therapeutic approach, has also been evaluated. Moreover, the mechanism by which the expression of the CIC and CAC genes is modulated by coordinated responses to hormonal and nutritional changes and to epigenetics is highlighted.
Collapse
|
35
|
Bonofiglio D, Santoro A, Martello E, Vizza D, Rovito D, Cappello AR, Barone I, Giordano C, Panza S, Catalano S, Iacobazzi V, Dolce V, Andò S. Mechanisms of divergent effects of activated peroxisome proliferator-activated receptor-γ on mitochondrial citrate carrier expression in 3T3-L1 fibroblasts and mature adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1027-36. [PMID: 23370576 DOI: 10.1016/j.bbalip.2013.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 12/14/2022]
Abstract
The citrate carrier (CIC), a nuclear-encoded protein located in the mitochondrial inner membrane, plays an important metabolic role in the transport of acetyl-CoA from the mitochondrion to the cytosol in the form of citrate for fatty acid and cholesterol synthesis. Citrate has been reported to be essential for fibroblast differentiation into fat cells. Because peroxisome proliferator-activated receptor-gamma (PPARγ) is known to be one of the master regulators of adipogenesis, we aimed to study the regulation of CIC by the PPARγ ligand rosiglitazone (BRL) in 3T3-L1 fibroblasts and in adipocytes. We demonstrated that BRL up-regulated CIC mRNA and protein levels in fibroblasts, while it did not elicit any effects in mature adipocytes. The enhancement of CIC levels upon BRL treatment was reversed using the PPARγ antagonist GW9662, addressing how this effect was mediated by PPARγ. Functional experiments using a reporter gene containing rat CIC promoter showed that BRL enhanced CIC promoter activity. Mutagenesis studies, electrophoretic-mobility-shift assay and chromatin-immunoprecipitation analysis revealed that upon BRL treatment, PPARγ and Sp1 are recruited on the Sp1-containing region within the CIC promoter, leading to an increase in CIC expression. In addition, mithramycin, a specific inhibitor for Sp1-DNA binding activity, abolished the PPARγ-mediated up-regulation of CIC in fibroblasts. The stimulatory effects of BRL disappeared in mature adipocytes in which PPARγ/Sp1 complex recruited SMRT corepressor to the Sp1 site of the CIC promoter. Taken together, our results contribute to clarify the molecular mechanisms by which PPARγ regulates CIC expression during the differentiation stages of fibroblasts into mature adipocytes.
Collapse
Affiliation(s)
- Daniela Bonofiglio
- Dept. Pharmacy, Health Sciences and Nutritional, University of Calabria, Cosenza, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ferramosca A, Zara V. Biogenesis of mitochondrial carrier proteins: molecular mechanisms of import into mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012. [PMID: 23201437 DOI: 10.1016/j.bbamcr.2012.11.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mitochondrial metabolite carriers are hydrophobic proteins which catalyze the flux of several charged or hydrophilic substrates across the inner membrane of mitochondria. These proteins, like most mitochondrial proteins, are nuclear encoded and after their synthesis in the cytosol are transported into the inner mitochondrial membrane. Most metabolite carriers, differently from other nuclear encoded mitochondrial proteins, are synthesized without a cleavable presequence and contain several, poorly characterized, internal targeting signals. However, an interesting aspect is the presence of a positively charged N-terminal presequence in a limited number of mitochondrial metabolite carriers. Over the last few years the molecular mechanisms of import of metabolite carrier proteins into mitochondria have been thoroughly investigated. This review summarizes the present knowledge and discusses recent advances on the import and sorting of mitochondrial metabolite carriers.
Collapse
Affiliation(s)
- Alessandra Ferramosca
- Department of Environmental and Biological Sciences and Technologies, University of Salento, Lecce, Italy
| | | |
Collapse
|
37
|
|
38
|
Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell 2011; 146:607-20. [PMID: 21854985 DOI: 10.1016/j.cell.2011.06.050] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/06/2010] [Accepted: 06/23/2011] [Indexed: 01/10/2023]
Abstract
Previous experiments suggest a connection between the N-alpha-acetylation of proteins and sensitivity of cells to apoptotic signals. Here, we describe a biochemical assay to detect the acetylation status of proteins and demonstrate that protein N-alpha-acetylation is regulated by the availability of acetyl-CoA. Because the antiapoptotic protein Bcl-xL is known to influence mitochondrial metabolism, we reasoned that Bcl-xL may provide a link between protein N-alpha-acetylation and apoptosis. Indeed, Bcl-xL overexpression leads to a reduction in levels of acetyl-CoA and N-alpha-acetylated proteins in the cell. This effect is independent of Bax and Bak, the known binding partners of Bcl-xL. Increasing cellular levels of acetyl-CoA by addition of acetate or citrate restores protein N-alpha-acetylation in Bcl-xL-expressing cells and confers sensitivity to apoptotic stimuli. We propose that acetyl-CoA serves as a signaling molecule that couples apoptotic sensitivity to metabolism by regulating protein N-alpha-acetylation.
Collapse
|
39
|
Abstract
The mitochondrial CIC (citrate carrier) catalyses the efflux of citrate from the mitochondrial matrix in exchange for cytosolic malate. In the present paper we show that CIC mRNA and protein markedly increase in lipopolysaccharide-activated immune cells. Moreover, CIC gene silencing and CIC activity inhibition significantly reduce production of NO, reactive oxygen species and prostaglandins. These results demonstrate for the first time that CIC has a critical role in inflammation.
Collapse
|
40
|
Palmieri F, Pierri CL, De Grassi A, Nunes-Nesi A, Fernie AR. Evolution, structure and function of mitochondrial carriers: a review with new insights. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:161-81. [PMID: 21443630 DOI: 10.1111/j.1365-313x.2011.04516.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The mitochondrial carriers (MC) constitute a large family (MCF) of inner membrane transporters displaying different substrate specificities, patterns of gene expression and even non-mitochondrial organelle localization. In Arabidopsis thaliana 58 genes encode these six trans-membrane domain proteins. The number in other sequenced plant genomes varies from 37 to 125, thus being larger than that of Saccharomyces cerevisiae and comparable with that of Homo sapiens. In addition to displaying highly similar secondary structures, the proteins of the MCF can be subdivided into subfamilies on the basis of substrate specificity and the presence of specific symmetry-related amino acid triplets. We assessed the predictive power of these triplets by comparing predictions with experimentally determined data for Arabidopsis MCs, and applied these predictions to the not yet functionally characterized mitochondrial carriers of the grass, Brachypodium distachyon, and the alga, Ostreococcus lucimarinus. We additionally studied evolutionary aspects of the plant MCF by comparing sequence data of the Arabidopsis MCF with those of Saccharomyces cerevisiae and Homo sapiens, then with those of Brachypodium distachyon and Ostreococcus lucimarinus, employing intra- and inter-genome comparisons. Finally, we discussed the importance of the approaches of global gene expression analysis and in vivo characterizations in order to address the relevance of these vital carrier proteins.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Laboratory of Biochemistry and Molecular Biology, Department of Pharmaco-Biology, University of Bari, Via Orabona 4, 70125 Bari, Italy.
| | | | | | | | | |
Collapse
|
41
|
Buchakjian MR, Kornbluth S. The engine driving the ship: metabolic steering of cell proliferation and death. Nat Rev Mol Cell Biol 2010; 11:715-27. [PMID: 20861880 DOI: 10.1038/nrm2972] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolic activity is a crucial determinant of a cell's decision to proliferate or die. Although it is not fully understood how metabolic pathways such as glycolysis and the pentose phosphate pathway communicate to cell cycle and apoptotic effectors, it is clear that a complex network of signalling molecules is required to integrate metabolic inputs. D-type cyclins, cyclin-dependent kinases, the anaphase-promoting complex, p53, caspase 2 and B cell lymphoma 2 proteins, among others, have been shown to be regulated by metabolic crosstalk. Elucidating these pathways is of great importance, as metabolic aberrations and their downstream effects are known to contribute to the aetiology of cancer and degenerative disorders.
Collapse
Affiliation(s)
- Marisa R Buchakjian
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
42
|
Aluvila S, Kotaria R, Sun J, Mayor JA, Walters DE, Harrison DHT, Kaplan RS. The yeast mitochondrial citrate transport protein: molecular determinants of its substrate specificity. J Biol Chem 2010; 285:27314-27326. [PMID: 20551333 PMCID: PMC2930730 DOI: 10.1074/jbc.m110.137364] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/30/2010] [Indexed: 11/06/2022] Open
Abstract
The objective of this study was to identify the role of individual amino acid residues in determining the substrate specificity of the yeast mitochondrial citrate transport protein (CTP). Previously, we showed that the CTP contains at least two substrate-binding sites. In this study, utilizing the overexpressed, single-Cys CTP-binding site variants that were functionally reconstituted in liposomes, we examined CTP specificity from both its external and internal surfaces. Upon mutation of residues comprising the more external site, the CTP becomes less selective for citrate with numerous external anions able to effectively inhibit [(14)C]citrate/citrate exchange. Thus, the site 1 variants assume the binding characteristics of a nonspecific anion carrier. Comparison of [(14)C]citrate uptake in the presence of various internal anions versus water revealed that, with the exception of the R189C mutant, the other site 1 variants showed substantial uniport activity relative to exchange. Upon mutation of residues comprising site 2, we observed two types of effects. The K37C mutant displayed a markedly enhanced selectivity for external citrate. In contrast, the other site 2 mutants displayed varying degrees of relaxed selectivity for external citrate. Examination of internal substrates revealed that, in contrast to the control transporter, the R181C variant exclusively functioned as a uniporter. This study provides the first functional information on the role of specific binding site residues in determining mitochondrial transporter substrate selectivity. We interpret our findings in the context of our homology-modeled CTP as it cycles between the outward-facing, occluded, and inward-facing states.
Collapse
Affiliation(s)
- Sreevidya Aluvila
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Rusudan Kotaria
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Jiakang Sun
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - June A Mayor
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - D Eric Walters
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - David H T Harrison
- Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Ronald S Kaplan
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064.
| |
Collapse
|
43
|
Castegna A, Scarcia P, Agrimi G, Palmieri L, Rottensteiner H, Spera I, Germinario L, Palmieri F. Identification and functional characterization of a novel mitochondrial carrier for citrate and oxoglutarate in Saccharomyces cerevisiae. J Biol Chem 2010; 285:17359-70. [PMID: 20371607 PMCID: PMC2878499 DOI: 10.1074/jbc.m109.097188] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 03/18/2010] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial carriers are a family of transport proteins that shuttle metabolites, nucleotides, and coenzymes across the mitochondrial membrane. The function of only a few of the 35 Saccharomyces cerevisiae mitochondrial carriers still remains to be uncovered. In this study, we have functionally defined and characterized the S. cerevisiae mitochondrial carrier Yhm2p. The YHM2 gene was overexpressed in S. cerevisiae, and its product was purified and reconstituted into liposomes. Its transport properties, kinetic parameters, and targeting to mitochondria show that Yhm2p is a mitochondrial transporter for citrate and oxoglutarate. Reconstituted Yhm2p also transported oxaloacetate, succinate, and fumarate to a lesser extent, but virtually not malate and isocitrate. Yhm2p catalyzed only a counter-exchange transport that was saturable and inhibited by sulfhydryl-blocking reagents but not by 1,2,3-benzenetricarboxylate (a powerful inhibitor of the citrate/malate carrier). The physiological role of Yhm2p is to increase the NADPH reducing power in the cytosol (required for biosynthetic and antioxidant reactions) and probably to act as a key component of the citrate-oxoglutarate NADPH redox shuttle between mitochondria and cytosol. This protein function is based on observations documenting a decrease in the NADPH/NADP(+) and GSH/GSSG ratios in the cytosol of DeltaYHM2 cells as well as an increase in the NADPH/NADP(+) ratio in their mitochondria compared with wild-type cells. Our proposal is also supported by the growth defect displayed by the DeltaYHM2 strain and more so by the DeltaYHM2DeltaZWF1 strain upon H(2)O(2) exposure, implying that Yhm2p has an antioxidant function.
Collapse
Affiliation(s)
- Alessandra Castegna
- From the Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, 70125 Bari, Italy
| | - Pasquale Scarcia
- From the Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, 70125 Bari, Italy
| | - Gennaro Agrimi
- From the Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, 70125 Bari, Italy
| | - Luigi Palmieri
- From the Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, 70125 Bari, Italy
- the Consiglio Nazionale delle Ricerche Institute of Biomembranes and Bioenergetics, 70125 Bari, Italy
| | - Hanspeter Rottensteiner
- the Institut für Physiologische Chemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, 44780 Bochum, Germany, and
| | - Iolanda Spera
- From the Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, 70125 Bari, Italy
| | - Lucrezia Germinario
- From the Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, 70125 Bari, Italy
| | - Ferdinando Palmieri
- From the Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, 70125 Bari, Italy
- the Consiglio Nazionale delle Ricerche Institute of Biomembranes and Bioenergetics, 70125 Bari, Italy
| |
Collapse
|
44
|
Mayor JA, Sun J, Kotaria R, Walters DE, Oh KJ, Kaplan RS. Probing the effect of transport inhibitors on the conformation of the mitochondrial citrate transport protein via a site-directed spin labeling approach. J Bioenerg Biomembr 2010; 42:99-109. [PMID: 20354774 PMCID: PMC2867622 DOI: 10.1007/s10863-010-9280-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
Abstract
The present investigation utilized the site-directed spin labeling method of electron paramagnetic resonance (EPR) spectroscopy to identify the effect of citrate, the natural ligand, and transport inhibitors on the conformation of the yeast mitochondrial citrate transport protein (CTP) reconstituted in liposomal vesicles. Spin label was placed at six different locations within the CTP in order to monitor conformational changes that occurred near each of the transporter's two substrate binding sites, as well as at more distant domains within the CTP architecture. We observed that citrate caused little change in the EPR spectra. In contrast the transport inhibitors 1,2,3-benzenetricarboxylate (BTC), pyridoxal 5'-phosphate (PLP), and compound 792949 resulted in spectral changes that indicated a decrease in the flexibility of the attached spin label at each of the six locations tested. The rank order of the immobilizing effect was compound 792949 > PLP > BTC. The four spin-label locations that report on the CTP substrate binding sites displayed the greatest changes in the EPR spectra upon addition of inhibitor. Furthermore, we found that when compound 792949 was added vectorially (i.e., extra- and/or intra-liposomally), the immobilizing effect was mediated nearly exclusively by external reagent. In contrast, upon addition of PLP vectorially, the effect was mediated to a similar extent from both the external and the internal compartments. In combination our data indicate that: i) citrate binding to the CTP substrate binding sites does not alter side-chain and/or backbone mobility in a global manner and is consistent with our expectation that both in the absence and presence of substrate the CTP displays the flexibility required of a membrane transporter; and ii) binding of each of the transport inhibitors tested locked multiple CTP domains into more rigid conformations, thereby exhibiting long-range inter-domain conformational communication. The differential vectorial effects of compound 792949 and PLP are discussed in the context of the CTP homology-modeled structure and potential mechanistic molecular explanations are given.
Collapse
Affiliation(s)
- June A. Mayor
- Department of Biochemistry & Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Jiakang Sun
- Department of Biochemistry & Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Rusudan Kotaria
- Department of Biochemistry & Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - D. Eric Walters
- Department of Biochemistry & Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Kyoung Joon Oh
- Department of Biochemistry & Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA,
| | - Ronald S. Kaplan
- Department of Biochemistry & Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA,
| |
Collapse
|
45
|
Gnoni GV, Priore P, Geelen MJH, Siculella L. The mitochondrial citrate carrier: metabolic role and regulation of its activity and expression. IUBMB Life 2009; 61:987-94. [PMID: 19787704 DOI: 10.1002/iub.249] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The citrate carrier (CiC), a nuclear-encoded protein located in the mitochondrial inner membrane, is a member of the mitochondrial carrier family. CiC plays an important role in hepatic lipogenesis, which is responsible for the efflux of acetyl-CoA from the mitochondria to the cytosol in the form of citrate, the primer for fatty acid and cholesterol synthesis. In addition, CiC is a key component of the isocitrate-oxoglutarate and the citrate-malate shuttles. CiC has been purified from various species and its reconstituted function characterized as well as its cDNA isolated and sequenced. CiC mRNA and/or CiC protein levels are high in liver, pancreas, and kidney, but are low or absent in brain, heart, skeletal muscle, placenta, and lungs. A reduction of CiC activity was found in diabetic, hypothyroid, starved rats, and in rats fed on a polyunsaturated fatty acid (PUFA)-enriched diet. Molecular analysis suggested that the regulation of CiC activity occurs mainly through transcriptional and post-transcriptional mechanisms. This review begins with an assessment of the current understanding of CiC structural and biochemical characteristics, underlying the structure-function relationship. Emphasis will be placed on the molecular basis of the regulation of CiC activity in coordination with fatty acid synthesis.
Collapse
Affiliation(s)
- Gabriele V Gnoni
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Science and Technologies, University of Salento, 73100 Lecce, Italy.
| | | | | | | |
Collapse
|
46
|
Aliverdieva DA, Mamaev DV. Molecular characteristics of transporters of C4-dicarboxylates and mechanism of translocation. J EVOL BIOCHEM PHYS+ 2009. [DOI: 10.1134/s0022093009030016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Wadey AL, Muyderman H, Kwek PT, Sims NR. Mitochondrial glutathione uptake: characterization in isolated brain mitochondria and astrocytes in culture. J Neurochem 2009; 109 Suppl 1:101-8. [PMID: 19393015 DOI: 10.1111/j.1471-4159.2009.05936.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Glutathione in the mitochondria is an important determinant of cellular responses to oxidative stress. Mitochondrial glutathione is maintained by uptake from the cytosol, a process that has been little studied in brain cells. In the present study, measurements using isolated rat brain mitochondria showed a rapid uptake of [3H]-glutathione that was strongly influenced by the mitochondrial glutathione content. [3H]-glutathione incorporated into the mitochondria was not rapidly released. Uptake was inhibited by substrates and inhibitors for several known mitochondrial anion transporters. Citrate, isocitrate and benzene-1,2,3-tricarboxylate were particularly effective inhibitors, suggesting a possible role for a tricarboxylate carrier in the glutathione transport. The properties of uptake differed greatly from those reported previously for mitochondria from kidney and liver. In astrocytes in primary culture, diethylmaleate or hydrogen peroxide treatment resulted in depletion of cytosolic and mitochondrial glutathione. The pattern of restoration of glutathione content in the presence of glutathione precursors following treatment with diethylmaleate was consistent with uptake into mitochondria being controlled primarily by the glutathione gradient between the cytosol and mitochondria. However, following hydrogen peroxide treatment, recovery of glutathione in the mitochondria initially preceded comparable proportional restoration in the cytosol, suggesting the possibility of additional controls on glutathione uptake in some conditions.
Collapse
Affiliation(s)
- Alison L Wadey
- Centre for Neuroscience and Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
48
|
Mycielska ME, Patel A, Rizaner N, Mazurek MP, Keun H, Patel A, Ganapathy V, Djamgoz MBA. Citrate transport and metabolism in mammalian cells. Bioessays 2009; 31:10-20. [DOI: 10.1002/bies.080137] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Remani S, Sun J, Kotaria R, Mayor JA, Brownlee JM, Harrison DHT, Walters DE, Kaplan RS. The yeast mitochondrial citrate transport protein: identification of the Lysine residues responsible for inhibition mediated by Pyridoxal 5'-phosphate. J Bioenerg Biomembr 2008; 40:577-85. [PMID: 19002576 PMCID: PMC2775541 DOI: 10.1007/s10863-008-9187-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022]
Abstract
The present investigation identifies the molecular basis for the well-documented inhibition of the mitochondrial inner membrane citrate transport protein (CTP) function by the lysine-selective reagent pyridoxal 5'-phosphate. Kinetic analysis indicates that PLP is a linear mixed inhibitor of the Cys-less CTP, with a predominantly competitive component. We have previously concluded that the CTP contains at least two substrate binding sites which are located at increasing depths within the substrate translocation pathway and which contain key lysine residues. In the present investigation, the roles of Lys-83 in substrate binding site one, Lys-37 and Lys-239 in substrate binding site two, and four other off-pathway lysines in conferring PLP-inhibition of transport was determined by functional characterization of seven lysine to cysteine substitution mutants. We observed that replacement of Lys-83 with cysteine resulted in a 78% loss of the PLP-mediated inhibition of CTP function. In contrast, replacement of either Lys-37 or Lys-239 with cysteine caused a modest reduction in the inhibition caused by PLP (i.e., 31% and 20% loss of inhibition, respectively). Interestingly, these losses of PLP-mediated inhibition could be rescued by covalent modification of each cysteine with MTSEA, a reagent that adds a lysine-like moiety (i.e. SCH(2)CH(2)NH(3) (+)) to the cysteine sulfhydryl group. Importantly, the replacement of non-binding site lysines (i.e., Lys-45, Lys-48, Lys-134, Lys-141) with cysteine resulted in little change in the PLP inhibition. Based upon these results, we conducted docking calculations with the CTP structural model leading to the development of a physical binding model for PLP. In combination, our data support the conclusion that PLP exerts its main inhibitory effect by binding to residues located within the two substrate binding sites of the CTP, with Lys-83 being the primary determinant of the total PLP effect since the replacement of this single lysine abolishes nearly all of the observed inhibition by PLP.
Collapse
Affiliation(s)
- Sreevidya Remani
- Department of Biochemistry & Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Iacobazzi V, Infantino V, Palmieri F. Epigenetic mechanisms and Sp1 regulate mitochondrial citrate carrier gene expression. Biochem Biophys Res Commun 2008; 376:15-20. [DOI: 10.1016/j.bbrc.2008.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/06/2008] [Indexed: 01/05/2023]
|