1
|
Pauli S, Rothnie HM, Chen G, He X, Hohn T. The cauliflower mosaic virus 35S promoter extends into the transcribed region. J Virol 2004; 78:12120-8. [PMID: 15507598 PMCID: PMC525061 DOI: 10.1128/jvi.78.22.12120-12128.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A 60-nucleotide region (S1) downstream of the transcription start site of the cauliflower mosaic virus 35S RNA can enhance gene expression. By using transient expression assays with plant protoplasts, this activity was shown to be at least partially due to the effect of transcriptional enhancers within this region. We identify sequence motifs with enhancer function, which are normally masked by the powerful upstream enhancers of the 35S promoter. A repeated CT-rich motif is involved both in enhancer function and in interaction with plant nuclear proteins. The S1 region can also enhance expression from heterologous promoters.
Collapse
Affiliation(s)
- Sandra Pauli
- Friedrich Miescher Institute, P.O. Box 2543, CH-4002 Basel, Switzerland
| | | | | | | | | |
Collapse
|
2
|
Dilkes BP, Dante RA, Coelho C, Larkins BA. Genetic analyses of endoreduplication in Zea mays endosperm: evidence of sporophytic and zygotic maternal control. Genetics 2002; 160:1163-77. [PMID: 11901131 PMCID: PMC1462025 DOI: 10.1093/genetics/160.3.1163] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Flow cytometry was used to assess the variability of endoreduplication in endosperms of maize inbred lines. Little variation was found between midwestern dent types, and high levels of endoreduplication were observed in popcorns. Endoreduplication is different between inbred lines by 13-18 days after pollination, and flow cytometric analysis of ploidy level was feasible until 20 DAP. To study the genetic regulation of endoreduplication, four inbreds were crossed to B73 and developing endosperms from both parental, reciprocal F(1), and backcross generations were subjected to flow cytometric analysis. Three measurements of endoreduplication were calculated from these data and analyzed as quantitative genetic traits. Multiple models of trait inheritance were considered including triploid, diploid, sporophytic maternal, and maternal and paternal zygotic nuclear inheritance. Maternal zygotic effects, often considered a form of parental imprinting, and maternal sporophytic effects were detected. To test the feasibility of introgressing a high endoreduplication phenotype into a midwestern dent inbred line, a backcross population was generated from B73 x Sg18. Parental and progeny endoreduplication levels were compared and heritabilities assessed. The heritabilities calculated from these data generally agree with the values calculated in the larger crossing experiments.
Collapse
Affiliation(s)
- Brian P Dilkes
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
3
|
Ritt C, Grimm R, Fernández S, Alonso JC, Grasser KD. Four differently chromatin-associated maize HMG domain proteins modulate DNA structure and act as architectural elements in nucleoprotein complexes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 14:623-31. [PMID: 9675905 DOI: 10.1046/j.1365-313x.1998.00154.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In contrast to other eukaryotes which usually express two closely related HMG1-like proteins, plant cells have multiple relatively variable proteins of this type. A systematic analysis of the DNA-binding properties of four chromosomal HMG domain proteins from maize revealed that they bind linear DNA with similar affinity. HMGa, HMGc1/2 and HMGd specifically recognise diverse DNA structures such as DNA mini-circles and supercoiled DNA. They induce DNA-bending, and constrain negative superhelical turns in DNA. In the presence of DNA, the HMG domain proteins can self-associate, whereas they are monomeric in solution. The maize HMG1-like proteins have the ability to facilitate the formation of nucleoprotein structures to different extents, since they can efficiently replace a bacterial chromatin-associated protein required for the site-specific beta-mediated recombination. A variable function of the HMG1-like proteins is indicated by their differential association with maize chromatin, as judged by their 'extractability' from chromatin with spermine and ethidium bromide. Collectively, these findings suggest that the various plant chromosomal HMG domain proteins could be adapted to act in different nucleoprotein structures in vivo.
Collapse
Affiliation(s)
- C Ritt
- Institut für Biologie III, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | | | | |
Collapse
|
4
|
Stemmer C, Ritt C, Igloi GL, Grimm R, Grasser KD. Variability in Arabidopsis thaliana chromosomal high-mobility-group-1-like proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:646-52. [PMID: 9461286 DOI: 10.1111/j.1432-1033.1997.00646.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vertebrate high-mobility-group (HMG) protein HMG1 is an abundant non-histone protein which is considered as an architectural element in chromatin. In the monocotyledonous plant maize, four different HMG1-like proteins (HMGa, HMGc1/2, HMGd) have been identified, whereas other eukaryotes usually express only two different proteins of this type. We have examined here the HMG1-like proteins of the dicotyledonous plant Arabidopsis thaliana. The isolation and analysis of cDNAs encoding five different so far uncharacterised HMG1-like proteins (now termed HMG alpha, HMG beta1/2, HMG gamma, HMG delta) from Arabidopsis indicates that the expression of multiple HMG1-like proteins is a general feature of (higher) plants. The Arabidopsis HMG1-like proteins contain an HMG domain as a common feature, but outside this conserved DNA-binding motif the amino acid sequences are significantly different indicating that this protein family displays a greater structural variability in plants than in other eukaryotes. The five HMG1-like proteins were expressed in Escherichia coli and purified. They bind with somewhat different affinity to linear double-stranded DNA. The recognition of DNA structure is evident from their preferential interaction with DNA minicircles relative to linear DNA. Reverse-transcribed PCR suggested that the five HMG1-like genes are simultaneously expressed in Arabidopsis leaves and suspension culture cells.
Collapse
Affiliation(s)
- C Stemmer
- Institut für Biologie III, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | | | | |
Collapse
|
5
|
Grasser KD, Grimm R, Igloi GL. Purification and cDNA cloning of maize HMGd reveal a novel plant chromosomal HMG-box protein with sequence similarity to HMGa. Gene X 1997; 190:303-7. [PMID: 9197548 DOI: 10.1016/s0378-1119(97)00017-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have purified the chromosomal high mobility group (HMG) protein HMGd from maize suspension culture cells, determined the N-terminal amino acid (aa) sequence, and isolated the corresponding cDNA. Sequence analysis showed that the cDNA encoded a protein of 126 aa residues with a theoretical mass of 14,104 Da. The protein contains an HMG-box DNA-binding domain and a short acidic C-terminal tail. HMGd is in approx. 65% of its residues identical to maize HMGa, whereas it is only approx. 46% identical to maize HMGcl/2. The differences to the previously reported HMG proteins in aa sequence, in overall charge and in protein size indicate that we have identified a third type of plant chromosomal HMG-box protein belonging to the HMG1 protein family. Immunoblot analysis with a HMGd antiserum reveals that HMGd is expressed in all tissues tested.
Collapse
Affiliation(s)
- K D Grasser
- Institut für Biologie III, Albert-Ludwigs-Universität Freiburg, Germany.
| | | | | |
Collapse
|
6
|
Grasser KD, Grimm R, Ritt C. Maize chromosomal HMGc. Two closely related structure-specific DNA-binding proteins specify a second type of plant high mobility group box protein. J Biol Chem 1996; 271:32900-6. [PMID: 8955131 DOI: 10.1074/jbc.271.51.32900] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The chromosomal high mobility group (HMG) proteins are small and abundant non-histone proteins common to eukaryotes. We have purified the maize HMGc protein from immature kernels and characterized it by mass spectrometry and amino acid sequence analysis. HMGc could be resolved into two similar proteins by reversed phase chromatography. Cloning and characterization of the corresponding cDNAs revealed that they encode two closely related maize HMGc proteins, now termed HMGc1 and HMGc2. Their theoretical masses of 15,316 and 15,007 Da are >300 Da lower than the masses determined for the proteins purified from maize, indicating post-translational modifications of the proteins. Despite sequence similarity to maize HMGa (and previously described homologous proteins of other species) amino acid sequence alignments reveal that HMGc is in several conserved regions distinct from these proteins. Consequently, we have identified a novel type of plant protein containing an HMG box DNA binding domain and belonging to the HMG1 protein family. HMGc1 and HMGc2 were expressed in Escherichia coli, purified to homogeneity, and analyzed for their DNA binding properties. They proved to bind to DNA structure-specifically since they formed complexes with DNA minicircles at concentrations approximately 100-fold lower than the concentrations required to form complexes with linear fragments of identical sequence. Furthermore, HMGc1 and HMGc2 can constrain negative superhelical turns in plasmid DNA.
Collapse
Affiliation(s)
- K D Grasser
- Institut für Biologie III, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Federal Republic of Germany.
| | | | | |
Collapse
|
7
|
Nakase M, Yamada T, Kira T, Yamaguchi J, Aoki N, Nakamura R, Matsuda T, Adachi T. The same nuclear proteins bind to the 5'-flanking regions of genes for the rice seed storage protein: 16 kDa albumin, 13 kDa prolamin and type II glutelin. PLANT MOLECULAR BIOLOGY 1996; 32:621-630. [PMID: 8980514 DOI: 10.1007/bf00020203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Expression of rice seed storage-protein genes is dramatically regulated over a short period of seed maturation. To characterize the expression mechanism of the rice seed storage protein genes, their expression of major storage protein genes (16 kDa albumin, 13 kDa prolamin and type II glutelin) were compared by RNA blot analysis. Their coordinate expression suggests that the transcriptional regulatory machinery is shared among the glutelin, prolamin and albumin-genes. We isolated two novel genomic genes for prolamins (PG5a and PG5b) and obtained the promoter region of the glutelin gene by PCR. The 5'-flanking regions of these three rice seed storage protein genes were found to contain some similar conserved sequences. Nuclear extract partially purified from maturing rice seeds was used for the gel shift assay of the 5' region of the RA gene. We identified two DNA sequences of RA gene which were recognized by independent DNA-binding proteins. The complexes of these DNA sequences and DNA-binding proteins were inhibited by the fragments containing the 5' regions of the prolamin and glutelin genes, suggesting that these three genes share transcription factors.
Collapse
Affiliation(s)
- M Nakase
- Department of Applied Biological Sciences, School of Agricultural Sciences, Nagoya University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Royo J, Diaz I, Rodriquez-Palenzuela P, Carbonero P. Isolation and promoter characterization of barley gene Itr1 encoding trypsin inhibitor BTI-CMe: differential activity in wild-type and mutant lys3a endosperm. PLANT MOLECULAR BIOLOGY 1996; 31:1051-1059. [PMID: 8843947 DOI: 10.1007/bf00040723] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The gene Itr1, encoding trypsin inhibitor BTI-CMe, has been obtained from a genomic library of Hordeum vulgare L. The gene has no introns and presents in its 5'-upstream region 605 bp that are homologous to the long terminal repeats (LTR) of the 'copia-like' retro-transposon Bare-1. Functional analysis of the Itr1 promoter by transient expression in protoplasts derived from different barley tissues, has shown that in this system the Itr1 promoter retains its endosperm specifity and the trans-regulation mediated by the Lys3a gene. The proximal promoter extending 343 bp upstream of the translation initiation ATG codon is sufficient to confer full GUS expression and for endosperm specifity. In protoplasts derived from the lys3a mutant, Risø 1508, GUS activity was less than 5% of that obtained with the same constructs in the protoplasts of wild-type Bomi from which it derives. Gel retardation experiments, after incubation with proteins obtained from both types of endosperm nuclei, also show differential patterns. Possible reasons for these differences are discussed.
Collapse
Affiliation(s)
- J Royo
- Dpto Biotecnología-UPM, ETS Ingenieros Agrónomos, Ciudad Universitaria, Madrid, Spain
| | | | | | | |
Collapse
|
9
|
de Froidmont D, Lejour C, Stoeva P, Jacquemin JM. Endosperm Box Binding Proteins: cDNA Cloning of a Wheat HMG Protein. BIOTECHNOL BIOTEC EQ 1996. [DOI: 10.1080/13102818.1996.10818875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
10
|
Kneidl C, Dinkl E, Grummt F. An intrinsically bent region upstream of the transcription start site of the rRNA genes of Arabidopsis thaliana interacts with an HMG-related protein. PLANT MOLECULAR BIOLOGY 1995; 27:705-713. [PMID: 7727748 DOI: 10.1007/bf00020224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Intrinsically bent DNA structures are thought to play crucial roles as functionally important modules in promoter/enhancer elements. Here we show the existence of a DNA bending centre within the intergenic region of the tandemly arranged rRNA genes of Arabidopsis thaliana. By use of a circular permutation assay, this bending centre was localized to position -284 to -256 upstream of the transcription start site. A 143 bp fragment containing the bent region was shown to interact with several nuclear proteins. Evidence is presented that one of these proteins is related to the high-mobility-group (HMG) proteins, a group thought to be involved in transcription and replication processes.
Collapse
Affiliation(s)
- C Kneidl
- Institut für Biochemie, Biozentrum, Am Hubland, Würzburg, Germany
| | | | | |
Collapse
|
11
|
Ponte I, Guillén P, Debón RM, Reina M, Aragay A, Espel E, Di Fonzo N, Palau J. Narrow A/T-rich zones present at the distal 5'-flanking sequences of the zein genes Zc1 and Zc2 bind a unique 30 kDa HMG-like protein. PLANT MOLECULAR BIOLOGY 1994; 26:1893-1906. [PMID: 7858225 DOI: 10.1007/bf00019501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nuclear extracts from maize endosperm were used to investigate protein-DNA interactions in the 5'-upstream region of the Zc1 and Zc2 genes. These genes encode for zeins of apparent molecular mass (MWapp) 16 and 28 kDa, respectively, which accumulate in the endosperm during seed maturation. Binding assays revealed specific binding of a nuclear protein to three A/T-rich elements, 0.9-1.0 kbp upstream from the initiation codon. One of these elements (41 bp, 88% A/T), present in Zc1, contained a 13 nucleotide duplication. The other two (28 bp, 86% A/T; 42 bp alternating A-T) are consecutive elements in Zc2. Competition experiments strongly suggest that the three elements bind to the same protein. Protein-DNA interaction was detected in endosperm nuclear extracts of 8 to 21 days after pollination (DAP), as well as in 25 DAP embryos and in different tissues from plantlets. The protein factor has an MWapp of ca. 30 kDa. This factor has properties suggesting it is an HMG-like protein. These results are consistent with a growing accumulation of data for a number of genes indicating that A/T-rich elements, located at distal and proximal zones of the 5'-flanking sequences, interact with HMG-like proteins.
Collapse
Affiliation(s)
- I Ponte
- Dept. de Bioquímica i Biotecnologia, Facultat de Química, Universitat Rovira i Virgili, Tarragona (Catalunya), Spain
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pwee KH, Webster CI, Gray JC. HMG protein binding to an A/T-rich positive regulatory region of the pea plastocyanin gene promoter. PLANT MOLECULAR BIOLOGY 1994; 26:1907-20. [PMID: 7858226 DOI: 10.1007/bf00019502] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Gel retardation assays using pea nuclear extracts have detected specific binding to regions of the promoter of the pea plastocyanin gene (petE). Several complexes which differ in sensitivity to competition with unlabelled promoter fragments and various DNA alternating copolymers, to heat treatment and to digestion with proteinase K have been detected. A protein factor, PCF1, forming one of these complexes was heat-stable and most sensitive to competition with poly(dAdT).poly(dAdT) compared to other alternating copolymers. DNase I footprinting assays showed that tracts of A/T-rich sequence within the -444 to -177 positive regulatory region of the petE promoter were protected in the presence of the pea nuclear extract. The factor PCF1 copurified with a high-mobility-group (HMG) protein preparation from pea chromatin. DNase I footprinting with the HMG protein preparation demonstrated that similar tracts of A/T-rich sequences within the promoter were protected. Southwestern-blot analysis of pea HMG proteins purified by gel filtration through Superose 12 detected a single DNA-binding species of 21 kDa. The properties of the factor PCF1 suggest that it is likely to be an HMG I protein.
Collapse
Affiliation(s)
- K H Pwee
- Department of Plant Sciences, University of Cambridge, UK
| | | | | |
Collapse
|
13
|
Grasser KD, Hetz W, Feix G. Stability of the maize chromosomal high-mobility-group proteins, HMGa and HMGb, in vivo. PLANT MOLECULAR BIOLOGY 1994; 25:565-568. [PMID: 8049380 DOI: 10.1007/bf00043885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chromosomal non-histone high-mobility-group (HMG) proteins represent essential components of eukaryotic chromatin and have also been isolated from a variety of plants. In maize, studies on structure and function of the two larger of the four major HMG proteins have recently been performed and are now extended by analysis of their in vivo stability using pulse-chase experiments in a cell suspension culture. The half-life of the analyzed HMGa and HMGb proteins was found to be 65 h or more than 78 h, respectively.
Collapse
Affiliation(s)
- K D Grasser
- Institut für Biologie III, Albert-Ludwigs-Universität Freiburg, FRG
| | | | | |
Collapse
|
14
|
Grasser KD, Wohlfarth T, Bäumlein H, Feix G. Comparative analysis of chromosomal HMG proteins from monocotyledons and dicotyledons. PLANT MOLECULAR BIOLOGY 1993; 23:619-625. [PMID: 8219095 DOI: 10.1007/bf00019309] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chromosomal high-mobility-group (HMG) proteins occur ubiquitously in eukaryotes and their common structural and biochemical features indicate a critical role. In this context, we compared structural and functional aspects of HMG proteins from the monocotyledonous plant maize and the dicotyledonous plant Vicia faba. Besides biochemical similarities and immunological differences found between these proteins, the isolation and characterization of a cDNA encoding the V. faba homologue of the maize HMGa protein revealed great similarities between these two proteins, including the HMG-box DNA-binding motif and an acidic domain. Therefore, like the maize HMGa protein, the V. faba HMG protein belongs to the vertebrate HMG1 family, which consists of HMG proteins and transcription factors of various eukaryotes.
Collapse
Affiliation(s)
- K D Grasser
- Institut für Biologie III, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | | |
Collapse
|
15
|
Lessard PA, Allen RD, Fujiwara T, Beachy RN. Upstream regulatory sequences from two beta-conglycinin genes. PLANT MOLECULAR BIOLOGY 1993; 22:873-85. [PMID: 8358033 DOI: 10.1007/bf00027372] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Genes encoding the beta-conglycinin seed storage proteins of soybean are expressed only in seeds during specific stages of development. The different subunits of beta-conglycinin, alpha', alpha and beta, are encoded by distinct members of a gene family. Yet there are marked differences in the regulation of the genes encoding the alpha'/alpha and beta subunits. Previous work (Chen et al., EMBO J 7: 297-302, 1988) identified a seed specific transcriptional enhancer upstream of a gene encoding the alpha' subunit. Mutations were made within this region to discern its functional components. Among those identified is a 62 bp region (between -77 and -140) that contains a vicilin box consensus sequence as well as a sequence that binds the soybean nuclear factor SEF4 in vitro. A second region, which contains a sequence homologous to the core of the legumin box consensus (i.e., CATGCAT-like or RY repeat element) at -246, was also shown to affect the activity of this enhancer in transgenic plants. A series of 5' terminal deletions were used to identify regulatory elements upstream of the beta subunit gene. Two regions were identified (from -553 to -442 and from -308 to -72) that, when deleted, led to a marked reduction in gene expression. Both of these elements contain sequences that bind SEF4 in vitro. The distal element also contains an AT-rich segment that recognizes a second nuclear factor, SEF1, in vitro. Neither of these elements contains any homology to the vicilin box consensus.
Collapse
Affiliation(s)
- P A Lessard
- Department of Biology, Washington University, St. Louis, MO 63130
| | | | | | | |
Collapse
|
16
|
Grasser KD, Hetz W, Griess EA, Feix G. Stimulatory effect of the maize HMGa protein on reporter gene expression in maize protoplasts. FEBS Lett 1993; 327:141-4. [PMID: 8335103 DOI: 10.1016/0014-5793(93)80158-q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The high mobility group (HMG) proteins represent a class of chromosomal non-histone proteins with an assumed influence on transcription. In this context, the effect of the maize HMGa protein on reporter gene expression was examined. Transient co-transformation experiments in maize protoplasts with plasmid constructs directing the synthesis of the maize HMGa protein and with a luciferase reporter plasmid demonstrated a stimulatory effect of the HMGa protein on the reporter gene expression. Additional experiments with HMGa deletion constructs indicated that the HMG-Box DNA-binding motif is important for the observed effect, while the acidic carboxy-terminal domain of the HMGa protein appears to be dispensable.
Collapse
Affiliation(s)
- K D Grasser
- Institut für Biologie III, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | | |
Collapse
|
17
|
Yanagisawa S, Izui K. Molecular cloning of two DNA-binding proteins of maize that are structurally different but interact with the same sequence motif. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82353-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Affiliation(s)
- T Ueda
- Waksman Institute, Rutgers University, Piscataway, NJ 08855
| | | |
Collapse
|
19
|
Quayle T, Feix G. Functional analysis of the -300 region of maize zein genes. MOLECULAR & GENERAL GENETICS : MGG 1992; 231:369-74. [PMID: 1538693 DOI: 10.1007/bf00292705] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A 43 bp fragment containing the -300 region upstream control element common to the endosperm expressed zein genes of Zea mays L. has been analyzed by in vivo and in vitro techniques. Transient transformation studies with protoplasts from a maize endosperm culture indicate that the element positively affects CaMV 35S promoter-driven gene expression, and that this effect is both orientation- and position-dependent. Band-shift and Southwestern blotting experiments demonstrate that the element is specifically bound by different sets of DNA-binding proteins from seedling and endosperm nuclei. A 2 bp substitution within the most conserved region of the element both reduces the stimulatory effect on transcription and alters the binding of nuclear proteins from both tissues.
Collapse
Affiliation(s)
- T Quayle
- Institut für Biologie III, Universität Freiburg, FRG
| | | |
Collapse
|
20
|
Affiliation(s)
- S Utsumi
- Research Institute for Food Science, Kyoto University, Japan
| |
Collapse
|