1
|
O’Neill CE, Sun K, Sundararaman S, Chang JC, Glynn SA. The impact of nitric oxide on HER family post-translational modification and downstream signaling in cancer. Front Physiol 2024; 15:1358850. [PMID: 38601214 PMCID: PMC11004480 DOI: 10.3389/fphys.2024.1358850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 04/12/2024] Open
Abstract
The human epidermal growth factor receptor (HER) family consists of four members, activated by two families of ligands. They are known for mediating cell-cell interactions in organogenesis, and their deregulation has been associated with various cancers, including breast and esophageal cancers. In particular, aberrant epidermal growth factor receptor (EGFR) and HER2 signaling drive disease progression and result in poorer patient outcomes. Nitric oxide (NO) has been proposed as an alternative activator of the HER family and may play a role in this aberrant activation due to its ability to induce s-nitrosation and phosphorylation of the EGFR. This review discusses the potential impact of NO on HER family activation and downstream signaling, along with its role in the efficacy of therapeutics targeting the family.
Collapse
Affiliation(s)
- Ciara E. O’Neill
- Lambe Institute for Translational Research, Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| | - Kai Sun
- Houston Methodist Research Institute, Houston, TX, United States
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | | | - Jenny C. Chang
- Houston Methodist Research Institute, Houston, TX, United States
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | - Sharon A. Glynn
- Lambe Institute for Translational Research, Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Shen CH, Chou CC, Lai TY, Hsu JE, Lin YS, Liu HY, Chen YK, Ho IL, Hsu PH, Chuang TH, Lee CY, Hsu LC. ZNRF1 Mediates Epidermal Growth Factor Receptor Ubiquitination to Control Receptor Lysosomal Trafficking and Degradation. Front Cell Dev Biol 2021; 9:642625. [PMID: 33996800 PMCID: PMC8118649 DOI: 10.3389/fcell.2021.642625] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/08/2021] [Indexed: 11/30/2022] Open
Abstract
Activation of the epidermal growth factor receptor (EGFR) is crucial for development, tissue homeostasis, and immunity. Dysregulation of EGFR signaling is associated with numerous diseases. EGFR ubiquitination and endosomal trafficking are key events that regulate the termination of EGFR signaling, but their underlying mechanisms remain obscure. Here, we reveal that ZNRF1, an E3 ubiquitin ligase, controls ligand-induced EGFR signaling via mediating receptor ubiquitination. Deletion of ZNRF1 inhibits endosome-to-lysosome sorting of EGFR, resulting in delayed receptor degradation and prolonged downstream signaling. We further demonstrate that ZNRF1 and Casitas B-lineage lymphoma (CBL), another E3 ubiquitin ligase responsible for EGFR ubiquitination, mediate ubiquitination at distinct lysine residues on EGFR. Furthermore, loss of ZNRF1 results in increased susceptibility to herpes simplex virus 1 (HSV-1) infection due to enhanced EGFR-dependent viral entry. Our findings identify ZNRF1 as a novel regulator of EGFR signaling, which together with CBL controls ligand-induced EGFR ubiquitination and lysosomal trafficking.
Collapse
Affiliation(s)
- Chia-Hsing Shen
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Chang Chou
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Lai
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - Jer-En Hsu
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - You-Sheng Lin
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - Huai-Yu Liu
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - Yan-Kai Chen
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Lin Ho
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
4
|
Yamaoka T, Frey MR, Dise RS, Bernard JK, Polk DB. Specific epidermal growth factor receptor autophosphorylation sites promote mouse colon epithelial cell chemotaxis and restitution. Am J Physiol Gastrointest Liver Physiol 2011; 301:G368-76. [PMID: 21617115 PMCID: PMC3154598 DOI: 10.1152/ajpgi.00327.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Upon ligand binding, epidermal growth factor (EGF) receptor (R) autophosphorylates on COOH-terminal tyrosines, generating docking sites for signaling partners that stimulate proliferation, restitution, and chemotaxis. Specificity for individual EGFR tyrosines in cellular responses has been hypothesized but not well documented. Here we tested the requirement for particular tyrosines, and associated downstream pathways, in mouse colon epithelial cell chemotactic migration. We compared these requirements to those for the phenotypically distinct restitution (wound healing) migration. Wild-type, Y992/1173F, Y1045F, Y1068F, and Y1086F EGFR constructs were expressed in EGFR(-/-) cells; EGF-induced chemotaxis or restitution were determined by Boyden chamber or modified scratch wound assay, respectively. Pharmacological inhibitors of p38, phospholipase C (PLC), Src, MEK, JNK/SAPK, phosphatidylinositol 3-kinase (PI 3-kinase), and protein kinase C (PKC) were used to block EGF-stimulated signaling. Pathway activation was determined by immunoblot analysis. Unlike wild-type EGFR, Y992/1173F and Y1086F EGFR did not stimulate colon epithelial cell chemotaxis toward EGF; Y1045F and Y1068F EGFR partially stimulated chemotaxis. Only wild-type EGFR promoted colonocyte restitution. Inhibition of p38, PLC, and Src, or Grb2 knockdown, blocked chemotaxis; JNK, PI 3-kinase, and PKC inhibitors or c-Cbl knockdown blocked restitution but not chemotaxis. All four EGFR mutants stimulated downstream signaling in response to EGF, but Y992/1173F EGFR was partially defective in PLCγ activation whereas both Y1068F and Y1086F EGFR failed to activate Src. We conclude that specific EGFR tyrosines play key roles in determining cellular responses to ligand. Chemotaxis and restitution, which have different migration phenotypes and physiological consequences, have overlapping but not identical EGFR signaling requirements.
Collapse
Affiliation(s)
- Toshimitsu Yamaoka
- 1Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition and
| | - Mark R. Frey
- 3Department of Pediatrics, Division of Gastroenterology and Nutrition and ,4Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine and The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California
| | - Rebecca S. Dise
- 2Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Jessica K. Bernard
- 3Department of Pediatrics, Division of Gastroenterology and Nutrition and
| | - D. Brent Polk
- 1Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition and ,2Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; and ,3Department of Pediatrics, Division of Gastroenterology and Nutrition and ,4Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine and The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
5
|
Gresset A, Hicks SN, Harden TK, Sondek J. Mechanism of phosphorylation-induced activation of phospholipase C-gamma isozymes. J Biol Chem 2010; 285:35836-47. [PMID: 20807769 DOI: 10.1074/jbc.m110.166512] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lipase activity of most phospholipases C (PLCs) is basally repressed by a highly degenerate and mostly disordered X/Y linker inserted within the catalytic domain. Release of this auto-inhibition is driven by electrostatic repulsion between the plasma membrane and the electronegative X/Y linker. In contrast, PLC-γ isozymes (PLC-γ1 and -γ2) are structurally distinct from other PLCs because multiple domains are present in their X/Y linker. Moreover, although many tyrosine kinases directly phosphorylate PLC-γ isozymes to enhance their lipase activity, the underlying molecular mechanism of this activation remains unclear. Here we define the mechanism for the unique regulation of PLC-γ isozymes by their X/Y linker. Specifically, we identify the C-terminal SH2 domain within the X/Y linker as the critical determinant for auto-inhibition. Tyrosine phosphorylation of the X/Y linker mediates high affinity intramolecular interaction with the C-terminal SH2 domain that is coupled to a large conformational rearrangement and release of auto-inhibition. Consequently, PLC-γ isozymes link phosphorylation to phospholipase activation by elaborating upon primordial regulatory mechanisms found in other PLCs.
Collapse
Affiliation(s)
- Aurelie Gresset
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, USA
| | | | | | | |
Collapse
|
6
|
Hsieh MY, Yang S, Raymond-Stinz MA, Edwards JS, Wilson BS. Spatio-temporal modeling of signaling protein recruitment to EGFR. BMC SYSTEMS BIOLOGY 2010; 4:57. [PMID: 20459599 PMCID: PMC2877007 DOI: 10.1186/1752-0509-4-57] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 05/06/2010] [Indexed: 12/31/2022]
Abstract
Background A stochastic simulator was implemented to study EGFR signal initiation in 3D with single molecule detail. The model considers previously unexplored contributions to receptor-adaptor coupling, such as receptor clustering and diffusive properties of both receptors and binding partners. The agent-based and rule-based approach permits consideration of combinatorial complexity, a problem associated with multiple phosphorylation sites and the potential for simultaneous binding of adaptors. Results The model was used to simulate recruitment of four different signaling molecules (Grb2, PLCγ1, Stat5, Shc) to the phosphorylated EGFR tail, with rules based on coarse-grained prediction of spatial constraints. Parameters were derived in part from quantitative immunoblotting, immunoprecipitation and electron microscopy data. Results demonstrate that receptor clustering increases the efficiency of individual adaptor retainment on activated EGFR, an effect that is overridden if crowding is imposed by receptor overexpression. Simultaneous docking of multiple proteins is highly dependent on receptor-adaptor stability and independent of clustering. Conclusions Overall, we propose that receptor density, reaction kinetics and membrane spatial organization all contribute to signaling efficiency and influence the carcinogenesis process.
Collapse
Affiliation(s)
- Ming-yu Hsieh
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
7
|
Sandebring A, Dehvari N, Perez-Manso M, Thomas KJ, Karpilovski E, Cookson MR, Cowburn RF, Cedazo-Mínguez A. Parkin deficiency disrupts calcium homeostasis by modulating phospholipase C signalling. FEBS J 2009; 276:5041-52. [PMID: 19663908 DOI: 10.1111/j.1742-4658.2009.07201.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations in the E3 ubiquitin ligase parkin cause early-onset, autosomal-recessive juvenile parkinsonism (AJRP), presumably as a result of a lack of function that alters the level, activity, aggregation or localization of its substrates. Recently, we have reported that phospholipase Cgamma1 is a substrate for parkin. In this article, we show that parkin mutants and siRNA parkin knockdown cells possess enhanced levels of phospholipase Cgamma1 phosphorylation, basal phosphoinositide hydrolysis and intracellular Ca2+ concentration. The protein levels of Ca2+-regulated protein kinase Calpha were decreased in AJRP parkin mutant cells. Neomycin and dantrolene both decreased the intracellular Ca2+ levels in parkin mutants in comparison with those seen in wild-type parkin cells, suggesting that the differences were a consequence of altered phospholipase C activity. The protection of wild-type parkin against 6-hydroxydopamine (6OHDA) toxicity was also established in ARJP mutants on pretreatment with dantrolene, implying that a balancing Ca2+ release from ryanodine-sensitive stores decreases the toxic effects of 6OHDA. Our findings suggest that parkin is an important factor for maintaining Ca2+ homeostasis and that parkin deficiency leads to a phospholipase C-dependent increase in intracellular Ca2+ levels, which make cells more vulnerable to neurotoxins, such as 6OHDA.
Collapse
Affiliation(s)
- Anna Sandebring
- Karolinska Institutet, Department of NVS, KI-Alzheimer's Disease Research Center, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Galvis A, Giambini H, Villasana Z, Barbieri MA. Functional determinants of ras interference 1 mutants required for their inhbitory activity on endocytosis. Exp Cell Res 2008; 315:820-35. [PMID: 19118546 DOI: 10.1016/j.yexcr.2008.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 12/04/2008] [Accepted: 12/09/2008] [Indexed: 01/11/2023]
Abstract
In this study, we initiated experiments to address the structure-function relationship of Rin1. A total of ten substitute mutations were created, and their effects on Rin1 function were examined. Of the ten mutants, four of them (P541A, E574A, Y577F, T580A) were defective in Rab5 binding, while two other Rin1 mutants (D537A, Y561F) partially interacted with Rab5. Mutations in several other residues (Y506F, Y523F, T572A, Y578F) resulted in partial loss of Rab5 function. Biochemical studies showed that six of them (D537A, P541A, Y561F, E574A, Y577F, T580A) were unable to activate Rab5 in an in vitro assay. In addition, Rin1: D537A and Rin1: Y561F mutants showed dominant inhibition of Rab5 function. Consistent with the biochemical studies, we observed that these two Rin1 mutants have lost their ability to stimulate the endocytosis of EGF, form enlarged Rab5-positive endosomes, or support in vitro endosome fusion. Based on these data, our results showed that mutations in the Vps9 domain of Rin1 lead to a loss-of-function phenotype, indicating a specific structure-function relationship between Rab5 and Rin1.
Collapse
Affiliation(s)
- Adriana Galvis
- Department of Biological Sciences, Florida International University 11220 SW 8(th) Street, Miami, FL 33199, USA
| | | | | | | |
Collapse
|
9
|
Kim YH, Song M, Oh YS, Heo K, Choi JW, Park JM, Kim SH, Lim S, Kwon HM, Ryu SH, Suh PG. Inhibition of phospholipase C-beta1-mediated signaling by O-GlcNAc modification. J Cell Physiol 2006; 207:689-96. [PMID: 16538662 DOI: 10.1002/jcp.20609] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Here we report inhibition of phospholipase C-beta1 (PLC-beta1)-mediated signaling by post-translational glycosylation with beta-N-acetylglucosamine (O-GlcNAc modification). In C2C12 myoblasts, isoform-specific knock-down experiments using siRNA showed that activation of bradykinin (BK) receptor led to stimulation of PLC-beta1 and subsequent intracellular Ca2+ mobilization. In C2C12 myotubes, O-GlcNAc modification of PLC-beta1 was markedly enhanced in response to treatment with glucosamine (GlcNH2), an inhibitor of O-GlcNAase (PUGNAc) and hyperglycemia. This was associated with more than 50% inhibition of intracellular production of IP3 and Ca2+ mobilization in response to BK. Since the abundance of PLC-beta1 remained unchanged, these data suggest that O-GlcNAc modification of PLC-beta1 led to inhibition of its activity. Moreover, glucose uptake stimulated by BK was significantly blunted by treatment with PUGNAc. These data support the notion that O-GlcNAc modification negatively modulates the activity of PLC-beta1.
Collapse
Affiliation(s)
- Yun-Hee Kim
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hughes DPM, Thomas DG, Giordano TJ, McDonagh KT, Baker LH. Essential erbB family phosphorylation in osteosarcoma as a target for CI-1033 inhibition. Pediatr Blood Cancer 2006; 46:614-23. [PMID: 16007579 DOI: 10.1002/pbc.20454] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The role of erbB tyrosine kinases, especially Her-2, in osteosarcoma has engendered intense debate. Some investigators identified an association between low-level Her-2 expression, compared to none, and poor patient outcome. Others questioned the importance of apparent cytoplasmic expression of Her-2, since membranous overexpression is associated with poor outcome in carcinomas. We previously demonstrated that primary osteosarcoma cells express cell-surface EGFR and Her-2, with the p80 isoform of Her-4 localized to the nucleus. We wished to determine if erbB kinases in osteosarcoma were phosphorylated, and if this was required for growth. PROCEDURES We cultured early passage osteosarcoma cell lines in the presence or absence of the pan-erbB inhibitor CI-1033 and examined the phosphorylation status of EGFR, Her-2, and Her-4 by immunohistochemistry, cell-based ELISA, flow cytometry and two dimensional Western blot. We also assessed the impact of CI-1033 upon osteosarcoma growth and survival in vitro. RESULTS EGFR, Her-2, and Her-4 were constitutively phosphorylated in early passage osteosarcoma cells cultured in vitro. CI-1033 abrogated erbB receptor phosphorylation and caused growth inhibition and apoptosis in a titratible fashion with concentrations of 1 muM or more. CONCLUSIONS EGFR, Her-2, and Her-4 are constitutively phosphorylated in early passage osteosarcoma cells in tissue culture, and erbB signaling provides essential growth and anti-apoptotic signals to osteosarcoma cells. This suggests that erbB overexpression is not required for erbB to promote malignancy, but rather that overexpression is one of several mechanisms that generate unregulated erbB signaling.
Collapse
Affiliation(s)
- Dennis P M Hughes
- Division of Pediatrics, MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
11
|
Jin Q, Ding W, Staub CM, Gao G, Tang Q, Mulder KM. Requirement of km23 for TGFβ-mediated growth inhibition and induction of fibronectin expression. Cell Signal 2005; 17:1363-72. [PMID: 15925487 DOI: 10.1016/j.cellsig.2005.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 02/04/2005] [Accepted: 02/15/2005] [Indexed: 02/03/2023]
Abstract
We previously identified km23 as a novel TGFbeta receptor-interacting protein. Here we show that km23 is ubiquitously expressed in human tissues and that cell-type specific differences in endogenous km23 protein expression exist. In addition, we demonstrate that the phosphorylation of km23 is TGFbeta-dependent, in that EGF was unable to phosphorylate km23. Further, the kinase activity of both TGFbeta receptors appears to play a role in the TGFbeta-mediated phosphorylation of km23, although TGFbeta RII kinase activity is absolutely required for km23 phosphorylation. Blockade of km23 using small interfering RNAs significantly decreased key TGFbeta responses, including induction of fibronectin expression and inhibition of cell growth. Thus, our results demonstrate that km23 is required for TGFbeta induction of fibronectin expression and is necessary, but not sufficient, for TGFbeta-mediated growth inhibition.
Collapse
Affiliation(s)
- Qunyan Jin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
12
|
Serrano CJ, Graham L, DeBell K, Rawat R, Veri MC, Bonvini E, Rellahan BL, Reischl IG. A New Tyrosine Phosphorylation Site in PLCγ1: The Role of Tyrosine 775 in Immune Receptor Signaling. THE JOURNAL OF IMMUNOLOGY 2005; 174:6233-7. [PMID: 15879121 DOI: 10.4049/jimmunol.174.10.6233] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phospholipase Cgamma (PLCgamma) is a ubiquitous gatekeeper of calcium mobilization and diacylglycerol-mediated events induced by the activation of Ag and growth factor receptors. The activity of PLCgamma is regulated through its controlled membrane translocation and tyrosine (Y) phosphorylation. Four activation-induced tyrosine phosphorylation sites have been previously described (Y472, Y771, Y783, and Y1254), but their specific roles in Ag receptor-induced PLCgamma1 activation are not fully elucidated. Unexpectedly, we found that the phosphorylation of a PLCgamma1 construct with all four sites mutated to phenylalanine was comparable with that observed with wild-type PLCgamma1, suggesting the existence of an unidentified site(s). Sequence alignment with known phosphorylation sites in PLCgamma2 indicated homology of PLCgamma1 tyrosine residue 775 (Y775) with PLCgamma2 Y753, a characterized phosphorylation site. Tyrosine 775 was characterized as a phosphorylation site using phospho-specific anti-Y775 antiserum, and by mutational analysis. Phosphorylation of Y775 did not depend on the other tyrosines, and point mutation of PLCgamma1 Y775, or the previously described Y783, substantially reduced AgR-induced calcium, NF-AT, and AP-1 activation. Mutation of Y472, Y771, and Y1254 had no effect on overall PLCgamma1 phosphorylation or activation. Although the concomitant mutation of Y775 and Y783 abolished downstream PLCgamma1 signaling, these two tyrosines were sufficient to reconstitute the wild-type response in the absence of functional Y472, Y771, and Y1254. These data establish Y775 as a critical phosphorylation site for PLCgamma1 activation and confirm the functional importance of Y783.
Collapse
Affiliation(s)
- Carmen J Serrano
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, National Institutes of Health Campus, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Uyemura T, Takagi H, Yanagida T, Sako Y. Single-molecule analysis of epidermal growth factor signaling that leads to ultrasensitive calcium response. Biophys J 2005; 88:3720-30. [PMID: 15749770 PMCID: PMC1305518 DOI: 10.1529/biophysj.104.053330] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 02/22/2005] [Indexed: 01/22/2023] Open
Abstract
Quantitative relationships between inputs and outputs of signaling systems are fundamental information for the understanding of the mechanism of signal transduction. Here we report the correlation between the number of epidermal growth factor (EGF) bindings and the response probability of intracellular calcium elevation. Binding of EGF molecules and changes of intracellular calcium concentration were measured for identical HeLa human epithelial cells. It was found that 300 molecules of EGF were enough to induce calcium response in half of the cells. This number is quite small compared to the number of EGF receptors (EGFR) expressed on the cell surface (50,000). There was a sigmoidal correlation between the response probability and the number of EGF bindings, meaning an ultrasensitive reaction. Analysis of the cluster size distribution of EGF demonstrated that dimerization of EGFR contributes to this switch-like ultrasensitive response. Single-molecule analysis revealed that EGF bound faster to clusters of EGFR than to monomers. This property should be important for effective formation of signaling dimers of EGFR under very small numbers of EGF bindings and suggests that the expression of excess amounts of EGFR on the cell surface is required to prepare predimers of EGFR with a large association rate constant to EGF.
Collapse
Affiliation(s)
- Takeshi Uyemura
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, and Laboratories of Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | | | | |
Collapse
|
14
|
Poulin B, Sekiya F, Rhee SG. Intramolecular interaction between phosphorylated tyrosine-783 and the C-terminal Src homology 2 domain activates phospholipase C-gamma1. Proc Natl Acad Sci U S A 2005; 102:4276-81. [PMID: 15764700 PMCID: PMC555506 DOI: 10.1073/pnas.0409590102] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phospholipase C-gamma1 (PLC-gamma1) contains two tandem Src homology 2 (SH2) domains. The NH(2)-terminal SH2 domain has been known to mediate the binding of PLC-gamma1 to receptor protein tyrosine kinases, which then activate PLC-gamma1 via phosphorylation at Y783. We now show that the phosphorylated Y783 residue (pY783) associates with the COOH-terminal SH2 domain [SH2(C)] within the same molecule of PLC-gamma1. The specificity of this intramolecular interaction is demonstrated in several ways. The mutation of SH2(C), but not of the NH(2)-terminal SH2 domain, exposes pY783 and makes it available for binding by anti-pY783 antibodies, for intermolecular association with a GST fusion protein containing the tandem SH2 domains of PLC-gamma1 and for dephosphorylation by phosphatases. The intramolecular interaction between pY783 and SH2(C) induces a rearrangement of surface charge such that PLC-gamma1 molecules phosphorylated at Y783 are retained more strongly by heparin resins than are unphosphorylated molecules. Finally, the intramolecular interaction of pY783 with SH2(C) results in activation of phospholipase activity. Our results thus clarify the molecular mechanism of PLC-gamma1 activation, revealing the specific function of pY783 and the distinct roles of the two SH2 domains in this process.
Collapse
Affiliation(s)
- Benoit Poulin
- Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8015, USA
| | | | | |
Collapse
|
15
|
Humphries LA, Dangelmaier C, Sommer K, Kipp K, Kato RM, Griffith N, Bakman I, Turk CW, Daniel JL, Rawlings DJ. Tec Kinases Mediate Sustained Calcium Influx via Site-specific Tyrosine Phosphorylation of the Phospholipase Cγ Src Homology 2-Src Homology 3 Linker. J Biol Chem 2004; 279:37651-61. [PMID: 15184383 DOI: 10.1074/jbc.m311985200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine phosphorylation of phospholipase Cgamma2 (PLCgamma2) is a crucial activation switch that initiates and maintains intracellular calcium mobilization in response to B cell antigen receptor (BCR) engagement. Although members from three distinct families of non-receptor tyrosine kinases can phosphorylate PLCgamma in vitro, the specific kinase(s) controlling BCR-dependent PLCgamma activation in vivo remains unknown. Bruton's tyrosine kinase (Btk)-deficient human B cells exhibit diminished inositol 1,4,5-trisphosphate production and calcium signaling despite a normal inducible level of total PLCgamma2 tyrosine phosphorylation. This suggested that Btk might modify a critical subset of residues essential for PLCgamma2 activity. To evaluate this hypothesis, we generated site-specific phosphotyrosine antibodies recognizing four putative regulatory residues within PLCgamma2. Whereas all four sites were rapidly modified in response to BCR engagement in normal B cells, Btk-deficient B cells exhibited a marked reduction in phosphorylation of the Src homology 2 (SH2)-SH3 linker region sites, Tyr(753) and Tyr(759). Phosphorylation of both sites was restored by expression of Tec, but not Syk, family kinases. In contrast, phosphorylation of the PLCgamma2 carboxyl-terminal sites, Tyr(1197) and Tyr(1217), was unaffected by the absence of functional Btk. Together, these data support a model whereby Btk/Tec kinases control sustained calcium signaling via site-specific phosphorylation of key residues within the PLCgamma2 SH2-SH3 linker.
Collapse
Affiliation(s)
- Lisa A Humphries
- Molecular Biology Institute and Department of Microbiology and Immunology, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hughes DPM, Thomas DG, Giordano TJ, Baker LH, McDonagh KT. Cell surface expression of epidermal growth factor receptor and Her-2 with nuclear expression of Her-4 in primary osteosarcoma. Cancer Res 2004; 64:2047-53. [PMID: 15026342 DOI: 10.1158/0008-5472.can-03-3096] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is controversy over the role of Her-2 in osteosarcoma, with some investigators reporting association between expression and adverse outcome, whereas others point to the lack of gene amplification and membranous expression by immunohistochemistry (IHC) as inconsistent with biological significance. Her-2 normally requires pairing with epidermal growth factor receptor (EGFR), Her-3, or Her-4, but these have been less well studied in osteosarcoma. We evaluated the expression of each of these receptors in osteosarcoma and their potential to contribute to pathogenesis by examining a panel of low-passage primary osteosarcoma cell lines, comparing these with archival tumor specimens. Her-2 immunoreactivity was seen frequently in the diffuse staining pattern described previously. We observed EGFR in all samples by IHC. Her-3 expression was not observed. Her-4 expression was nuclear in distribution in all tumor samples and many cell line samples, consistent with activation and cleavage of the receptor. Quantified expression of Her-2 and EGFR mRNA by quantitative, real-time PCR in cell lines correlated with IHC for Her-2 but not for EGFR. Western blot identified full-length receptors for EGFR and Her-2 in all expected cell lines and showed Her-4 to be predominantly in the p80 form. Flow cytometry identified cell surface Her-2 and EGFR in all lines with receptor expression by IHC. We conclude that the cell surface expression of Her-2 and EGFR and the nuclear localization of the activated p80 fragment of Her-4 suggest that all three may be contributing to osteosarcoma pathogenesis. Therapy directed against this family of receptors may be beneficial for patients with osteosarcoma.
Collapse
MESH Headings
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Cell Membrane/metabolism
- Cell Nucleus/metabolism
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Osteosarcoma/genetics
- Osteosarcoma/metabolism
- Protein Transport
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/metabolism
- Receptor, ErbB-4
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Dennis P M Hughes
- Department of Pediatrics and Infectious Diseases, Division of Pediatric Hematology/Oncology, University of Michigan Medical Center, L2110 Women's Hospital, 0238, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0238, USA.
| | | | | | | | | |
Collapse
|
17
|
Wang Y, Pennock SD, Chen X, Kazlauskas A, Wang Z. Platelet-derived growth factor receptor-mediated signal transduction from endosomes. J Biol Chem 2003; 279:8038-46. [PMID: 14660565 DOI: 10.1074/jbc.m311494200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although accumulated evidence supports the concept of endosomal signaling of receptor tyrosine kinases, most results are generated from studies of epidermal growth factor receptor (EGFR). It is not clear whether the concept of endosomal signaling could be generally applied to the other receptor tyrosine kinases. For example, platelet-derived growth factor receptor (PDGFR) is very similar to EGFR in terms of both signaling and trafficking; however, little is known about the endosomal signaling of PDGFR. In this research, we applied the same approaches from our recent studies regarding EGFR endosomal signaling to investigate the endosomal signaling of PDGFR. We showed in this communication that we are able to establish a system that allows the specific activation of endosome-associated PDGFR without the activation of the plasma membrane-associated PDGFR and without disrupting the overall endocytosis pathway. By using this system, we showed that endosomal activation of PDGFR recruits various signaling proteins including Grb2, SHC, phospholipase C-gamma1, and the p85alpha subunit of phosphatidylinositol 3-kinase into endosomes and forms signaling complexes with PDGFR. We also showed that endosomal PDGFR signaling is sufficient to activate the major signaling pathways implicated in cell proliferation and survival. Moreover, we demonstrate that endosomal PDGFR signaling is sufficient to generate physiological output including cell proliferation and cell survival.
Collapse
Affiliation(s)
- Yi Wang
- Department of Cell Biology and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
18
|
Barbieri MA, Kong C, Chen PI, Horazdovsky BF, Stahl PD. The SRC homology 2 domain of Rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis. J Biol Chem 2003; 278:32027-36. [PMID: 12783862 DOI: 10.1074/jbc.m304324200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.
Collapse
Affiliation(s)
- M Alejandro Barbieri
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110-7463, USA
| | | | | | | | | |
Collapse
|
19
|
Manning CM, Mathews WR, Fico LP, Thackeray JR. Phospholipase C-gamma contains introns shared by src homology 2 domains in many unrelated proteins. Genetics 2003; 164:433-42. [PMID: 12807765 PMCID: PMC1462583 DOI: 10.1093/genetics/164.2.433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many proteins with novel functions were created by exon shuffling around the time of the metazoan radiation. Phospholipase C-gamma (PLC-gamma) is typical of proteins that appeared at this time, containing several different modules that probably originated elsewhere. To gain insight into both PLC-gamma evolution and structure-function relationships within the Drosophila PLC-gamma encoded by small wing (sl), we cloned and sequenced the PLC-gamma homologs from Drosophila pseudoobscura and D. virilis and compared their gene structure and predicted amino acid sequences with PLC-gamma homologs in other animals. PLC-gamma has been well conserved throughout, although structural differences suggest that the role of tyrosine phosphorylation in enzyme activation differs between vertebrates and invertebrates. Comparison of intron positions demonstrates that extensive intron loss has occurred during invertebrate evolution and also reveals the presence of conserved introns in both the N- and C-terminal PLC-gamma SH2 domains that are present in SH2 domains in many other genes. These and other conserved SH2 introns suggest that the SH2 domains in PLC-gamma are derived from an ancestral domain that was shuffled not only into PLC-gamma, but also into many other unrelated genes during animal evolution.
Collapse
Affiliation(s)
- Charlene M Manning
- Biology Department, Clark University, Worcester, Massachusetts 01610, USA
| | | | | | | |
Collapse
|
20
|
Hinsby AM, Olsen JV, Bennett KL, Mann M. Signaling initiated by overexpression of the fibroblast growth factor receptor-1 investigated by mass spectrometry. Mol Cell Proteomics 2003; 2:29-36. [PMID: 12601080 DOI: 10.1074/mcp.m200075-mcp200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Overexpression of the fibroblast growth factor receptor-1 (FGFR-1), a prototypic receptor tyrosine kinase, is a feature of several human tumors. In human 293 cells overexpression of the FGFR-1 leads to constitutive activation of the receptor with concomitant sustained high increase in the cellular level of phosphotyrosine-containing proteins. Here we use mass spectrometry to study the tyrosine-phosphorylated proteins induced by overexpression of the FGFR-1. Several well known components of FGFR-1 signaling were identified along with two novel candidates: NS-1-associated protein-1 and target of Myb 1-like protein. We subsequently applied mass spectrometry precursor ion scanning to identify 22 tyrosine phosphorylation sites distributed on six substrate proteins of the FGFR-1 or downstream tyrosine kinases. Novel in vivo tyrosine phosphorylation sites were found in the FGFR-1, phospholipase Cgamma, p90 ribosomal S6 kinase, cortactin, and NS-1-associated protein-1 as a result of sustained FGFR-1 signaling, and we propose these as functional links to downstream molecular and cellular processes.
Collapse
Affiliation(s)
- Anders M Hinsby
- MDS Proteomics A/S, Staermosegaardsvej 6, Odense DK-5230, Denmark.
| | | | | | | |
Collapse
|
21
|
BEPPU M, WATANABE T, KASAHARA M, KIKUGAWA K. Inhibition of Protein Phosphorylation in Macrophages by Antioxidants. J Oleo Sci 2002. [DOI: 10.5650/jos.51.395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Rodriguez R, Matsuda M, Perisic O, Bravo J, Paul A, Jones NP, Light Y, Swann K, Williams RL, Katan M. Tyrosine residues in phospholipase Cgamma 2 essential for the enzyme function in B-cell signaling. J Biol Chem 2001; 276:47982-92. [PMID: 11606584 DOI: 10.1074/jbc.m107577200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase Cgamma (PLCgamma) isoforms are regulated through activation of tyrosine kinase-linked receptors. The importance of growth factor-stimulated phosphorylation of specific tyrosine residues has been documented for PLCgamma1; however, despite the critical importance of PLCgamma2 in B-cell signal transduction, neither the tyrosine kinase(s) that directly phosphorylate PLCgamma2 nor the sites in PLCgamma2 that become phosphorylated after stimulation are known. By measuring the ability of human PLCgamma2 to restore calcium responses to the B-cell receptor stimulation or oxidative stress in a B-cell line (DT40) deficient in PLCgamma2, we have demonstrated that two tyrosine residues, Tyr(753) and Tyr(759), were important for the PLCgamma2 signaling function. Furthermore, the double mutation Y753F/Y759F in PLCgamma2 resulted in a loss of tyrosine phosphorylation in stimulated DT40 cells. Of the two kinases that previously have been proposed to phosphorylate PLCgamma2, Btk, and Syk, purified Btk had much greater ability to phosphorylate recombinant PLCgamma2 in vitro, whereas Syk efficiently phosphorylated adapter protein BLNK. Using purified proteins to analyze the formation of complexes, we suggest that function of Syk is to phosphorylate BLNK, providing binding sites for PLCgamma2. Further analysis of PLCgamma2 tyrosine residues phosphorylated by Btk and several kinases from the Src family has suggested multiple sites of phosphorylation and, in the context of a peptide incorporating residues Tyr(753) and Tyr(759), shown preferential phosphorylation of Tyr(753).
Collapse
Affiliation(s)
- R Rodriguez
- Cancer Research Campaign Centre for Cell and Molecular Biology, Chester Beatty Laboratories, the Institute of Cancer Research, Fulham Rd., London SW3 6JB, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wilde JI, Watson SP. Regulation of phospholipase C gamma isoforms in haematopoietic cells: why one, not the other? Cell Signal 2001; 13:691-701. [PMID: 11602179 DOI: 10.1016/s0898-6568(01)00191-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phospholipase C gamma (PLCgamma) isoforms are critical for the generation of calcium signals in haematopoietic systems in response to the stimulation of immune receptors. PLCgamma is unique amongst phospholipases in that it is tightly regulated by the action of a number of tyrosine kinases. It is itself directly phosphorylated on a number of tyrosines and contains several domains through which it can interact with other signalling proteins and lipid products such as phosphatidylinositol 3,4,5-trisphosphate. Through this network of interactions, PLCgamma is activated and recruited to its substrate, phosphatidylinositol 4,5-bisphosphate, at the membrane. Both isoforms of PLCgamma, PLCgamma1 and PLCgamma2, are present in haematopoietic cells. The signalling cascade involved in the regulation of these two isoforms varies between cells, though the systems are similar for both PLCgamma1 and PLCgamma2. We will compare these cascades for both PLCgamma1 and PLCgamma2 and discuss possible reasons as to why one form of PLCgamma and not the other is required for signalling in specific haematopoietic cells, including T lymphocytes, B lymphocytes, platelets, and mast cells.
Collapse
Affiliation(s)
- J I Wilde
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | |
Collapse
|
24
|
Affiliation(s)
- S Tsukada
- Department of Molecular Medicine, Osaka University Medical School, Yamadaoka, Suita City, Osaka 565-0871, Japan
| | | | | |
Collapse
|
25
|
Kassis J, Lauffenburger DA, Turner T, Wells A. Tumor invasion as dysregulated cell motility. Semin Cancer Biol 2001; 11:105-17. [PMID: 11322830 DOI: 10.1006/scbi.2000.0362] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Investigations across a range of disciplines over the past decade have brought the study of cell motility and its role in invasion to an exciting threshold. The biophysical forces proximally involved in generating cell locomotion, as well as the underlying signaling and genomic regulatory processes, are gradually becoming elucidated. We now appreciate the intricacies of the many cellular and extracellular events that modulate cell migration. This has enabled the demonstration of a causal role of cell motility in tumor progression, with various points of 'dysregulation' of motility being responsible for promoting invasion. In this paper, we describe key fundamental principles governing cell motility and branch out to describe the essence of the data that describe these principles. It has become evident that many proposed models may indeed be converging into a tightly-woven tapestry of coordinated events which employ various growth factors and their receptors, adhesion receptors (integrins), downstream molecules, cytoskeletal components, and altered genomic regulation to accomplish cell motility. Tumor invasion occurs in response to dysregulation of many of these modulatory points; specific examples include increased signaling from the EGF receptor and through PLC gamma, altered localization and expression of integrins, changes in actin modifying proteins and increased transcription from specific promoter sites. This diversity of alterations all leading to tumor invasion point to the difficulty of correcting causal events leading to tumor invasion and rather suggest that the underlying common processes required for motility be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- J Kassis
- Department of Pathology, University of Pittsburgh and Pittsburgh VAMC, 713 Scaife Hall, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
26
|
Ostman A, Heldin CH. Involvement of platelet-derived growth factor in disease: development of specific antagonists. Adv Cancer Res 2001; 80:1-38. [PMID: 11034538 DOI: 10.1016/s0065-230x(01)80010-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Platelet-derived growth factor (PDGF) is a family of dimeric isoforms that stimulates, e.g., growth, chemotaxis and cell shape changes of various connective tissue cell types and certain other cells. The cellular effects of PDGF isoforms are exerted through binding to two structurally related tyrosine kinase receptors. Ligand binding induces receptor dimerization and autophosphorylation. This enables a number of SH2 domain containing signal transduction molecules to bind to the receptors, thereby initiating various signaling pathways. PDGF isoforms have important roles during the embryonic development, particularly in the formation of connective tissue in various organs. In the adult, PDGF stimulates wound healing. Overactivity of PDGF has been implicated in certain disorders, including fibrotic conditions, atherosclerosis, and malignancies. Different kinds of PDGF antagonists are currently being developed and evaluated in different animal disease models, as well as in clinical trials.
Collapse
Affiliation(s)
- A Ostman
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| | | |
Collapse
|
27
|
Rebecchi MJ, Pentyala SN. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 2000; 80:1291-335. [PMID: 11015615 DOI: 10.1152/physrev.2000.80.4.1291] [Citation(s) in RCA: 726] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phosphoinositide-specific phospholipase C (PLC) subtypes beta, gamma, and delta comprise a related group of multidomain phosphodiesterases that cleave the polar head groups from inositol lipids. Activated by all classes of cell surface receptor, these enzymes generate the ubiquitous second messengers inositol 1,4, 5-trisphosphate and diacylglycerol. The last 5 years have seen remarkable advances in our understanding of the molecular and biological facets of PLCs. New insights into their multidomain arrangement and catalytic mechanism have been gained from crystallographic studies of PLC-delta(1), while new modes of controlling PLC activity have been uncovered in cellular studies. Most notable is the realization that PLC-beta, -gamma, and -delta isoforms act in concert, each contributing to a specific aspect of the cellular response. Clues to their true biological roles were also obtained. Long assumed to function broadly in calcium-regulated processes, genetic studies in yeast, slime molds, plants, flies, and mammals point to specific and conditional roles for each PLC isoform in cell signaling and development. In this review we consider each subtype of PLC in organisms ranging from yeast to mammals and discuss their molecular regulation and biological function.
Collapse
Affiliation(s)
- M J Rebecchi
- Departments of Anesthesiology and Physiology and Biophysics, School of Medicine, State University of New York, Stony Brook, New York 11794, USA.
| | | |
Collapse
|
28
|
Jones GA, Lazarchic M. Phosphatidylinositol-specific phospholipase C-gamma1 undergoes pH-induced activation and conformational change. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1487:209-21. [PMID: 11018473 DOI: 10.1016/s1388-1981(00)00097-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phospholipase C-gamma1 displayed sigmoidal kinetics with a S(0.5) value of 0.17 mole fraction PIP(2) when assayed at pH 6.8 using detergent:lipid mixed micelles. The pH optimum for hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C-gamma1 was dependent on the mole fraction of substrate in the micelle. The pH optimum was 5.5 when the enzyme was assayed below the S(0.5). The pH optima shifted to a pH range of 6.0-6.3 when the enzyme was assayed above the S(0.5). The kinetic parameters for phospholipase C-gamma1 assayed at various pH values from pH 7.0 to 5.0 yielded similar n values (n=4), but the constant, K', decreased from 1x10(-2) (mole fraction)(2) at pH 7.0 to 1x10(-5) (mole fraction)(2) at pH 5.0. Maximum enzyme specificity occurred at pH values below pH 6.0 as determined by the plot of logk(cat)/S(0.5) versus pH. Intrinsic fluorescence spectroscopy revealed that at a pH value above 7.0 or below 6.3, tryptophan quenching occurred. Fluorescence quenching experiments performed with acrylamide determined phospholipase C-gamma1 incubated at pH 5.0 had a larger collisional quenching constant than enzyme incubated at pH 7.0. Lowering the pH to 5.0 apparently resulted in interior tryptophans becoming more solvent accessible. These data suggest that pH may activate phospholipase C-gamma1 by disrupting ionizable groups leading to a conformational change.
Collapse
Affiliation(s)
- G A Jones
- Department of Pharmacology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
29
|
MacDonald JI, Gryz EA, Kubu CJ, Verdi JM, Meakin SO. Direct binding of the signaling adapter protein Grb2 to the activation loop tyrosines on the nerve growth factor receptor tyrosine kinase, TrkA. J Biol Chem 2000; 275:18225-33. [PMID: 10748052 DOI: 10.1074/jbc.m001862200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrate that the signaling adapter, Grb2, binds directly to the neurotrophin receptor tyrosine kinase, TrkA. Grb2 binding to TrkA is independent of Shc, FRS-2, phospholipase Cgamma-1, rAPS, and SH2B and is observed in in vitro binding assays, yeast two-hybrid assays, and in co-immunoprecipitation assays. Grb2 binding to TrkA is mediated by the central SH2 domain, requires a kinase-active TrkA, and is phosphotyrosine-dependent. By analyzing a series of rat TrkA mutants, we demonstrate that Grb2 binds to the carboxyl-terminal residue, Tyr(794), as well as to the activation loop tyrosines, Tyr(683) and Tyr(684). By using acidic amino acid substitutions of the activation loop tyrosines on TrkA, we can stimulate constitutive kinase activity and TrkA-Shc interactions but, importantly, abolish TrkA/Grb2 binding. Thus, in addition to providing the first evidence of direct Grb2 binding to the neurotrophin receptor, TrkA, these data provide the first direct evidence that the activation loop tyrosines of a receptor tyrosine kinase, in addition to their essential role in kinase activation, also serve a direct role in the recruitment of intracellular signaling molecules.
Collapse
Affiliation(s)
- J I MacDonald
- John P. Robarts Research Institute, Neurodegeneration Group, 100 Perth Drive, London, Ontario N6A 5K8, Canada
| | | | | | | | | |
Collapse
|
30
|
Abstract
A ubiquitous signaling event in hormonal responses is the phospholipase C (PLC)-catalyzed hydrolysis of phosphatidylinositol 4, 5-bisphosphate to produce the metabolite second messenger molecules inositol 1,4,5-trisphosphate and diacylglycerol. The former provokes a transient increase in intracellular free Ca(2+), while the latter serves as a direct activator of protein kinase C. In tyrosine kinase-dependent signaling pathways this reaction is mediated by the PLC-gamma isozymes. These are direct substrates of many tyrosine kinases in a wide variety of cell types. The mechanism of PLC-gamma activation involves its association with and phosphorylation by receptor and non-receptor tyrosine kinases, as well as interaction with specialized adaptor molecules and, perhaps, other second messenger molecules. However, the biochemistry of PLC-gamma is at a more advanced state than a clear understanding of exactly how this signaling element functions in the generation of a mitogenic response.
Collapse
Affiliation(s)
- G Carpenter
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232-0146, USA.
| | | |
Collapse
|
31
|
DeBell KE, Stoica BA, Verí MC, Di Baldassarre A, Miscia S, Graham LJ, Rellahan BL, Ishiai M, Kurosaki T, Bonvini E. Functional independence and interdependence of the Src homology domains of phospholipase C-gamma1 in B-cell receptor signal transduction. Mol Cell Biol 1999; 19:7388-98. [PMID: 10523627 PMCID: PMC84732 DOI: 10.1128/mcb.19.11.7388] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B-cell receptor (BCR)-induced activation of phospholipase C-gamma1 (PLCgamma1) and PLCgamma2 is crucial for B-cell function. While several signaling molecules have been implicated in PLCgamma activation, the mechanism coupling PLCgamma to the BCR remains undefined. The role of PLCgamma1 SH2 and SH3 domains at different steps of BCR-induced PLCgamma1 activation was examined by reconstitution in a PLCgamma-negative B-cell line. PLCgamma1 membrane translocation required a functional SH2 N-terminal [SH2(N)] domain, was decreased by mutation of the SH3 domain, but was unaffected by mutation of the SH2(C) domain. Tyrosine phosphorylation did not require the SH2(C) or SH3 domains but depended exclusively on a functional SH2(N) domain, which mediated the association of PLCgamma1 with the adapter protein, BLNK. Forcing PLCgamma1 to the membrane via a myristoylation signal did not bypass the SH2(N) domain requirement for phosphorylation, indicating that the phosphorylation mediated by this domain is not due to membrane anchoring alone. Mutation of the SH2(N) or the SH2(C) domain abrogated BCR-stimulated phosphoinositide hydrolysis and signaling events, while mutation of the SH3 domain partially decreased signaling. PLCgamma1 SH domains, therefore, have interrelated but distinct roles in BCR-induced PLCgamma1 activation.
Collapse
Affiliation(s)
- K E DeBell
- Laboratory of Immunobiology, Division of Monoclonal Antibodies, Center for Biologics Evaluation and Research, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Platelet-derived growth factor (PDGF) is a major mitogen for connective tissue cells and certain other cell types. It is a dimeric molecule consisting of disulfide-bonded, structurally similar A- and B-polypeptide chains, which combine to homo- and heterodimers. The PDGF isoforms exert their cellular effects by binding to and activating two structurally related protein tyrosine kinase receptors, denoted the alpha-receptor and the beta-receptor. Activation of PDGF receptors leads to stimulation of cell growth, but also to changes in cell shape and motility; PDGF induces reorganization of the actin filament system and stimulates chemotaxis, i.e., a directed cell movement toward a gradient of PDGF. In vivo, PDGF has important roles during the embryonic development as well as during wound healing. Moreover, overactivity of PDGF has been implicated in several pathological conditions. The sis oncogene of simian sarcoma virus (SSV) is related to the B-chain of PDGF, and SSV transformation involves autocrine stimulation by a PDGF-like molecule. Similarly, overproduction of PDGF may be involved in autocrine and paracrine growth stimulation of human tumors. Overactivity of PDGF has, in addition, been implicated in nonmalignant conditions characterized by an increased cell proliferation, such as atherosclerosis and fibrotic conditions. This review discusses structural and functional properties of PDGF and PDGF receptors, the mechanism whereby PDGF exerts its cellular effects, and the role of PDGF in normal and diseased tissues.
Collapse
Affiliation(s)
- C H Heldin
- Ludwig Institute for Cancer Research, Biomedical Center, and Department of Pathology, University Hospital, Uppsala, Sweden.
| | | |
Collapse
|
33
|
Klingbeil CK, Gill GN. A basic residue, Lys 782, composes part of the ATP-binding site on the epidermal growth factor receptor tyrosine kinase. Arch Biochem Biophys 1999; 363:27-32. [PMID: 10049496 DOI: 10.1006/abbi.1998.1052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To identify amino acids specific for tyrosine kinase activity, the role of several conserved basic residues in kinase function was tested. Modeling of the epidermal growth factor receptor tyrosine kinase domain based on the crystal structure of cyclic AMP-dependent protein kinase and insulin receptor revealed several basic residues present on the surface of epidermal growth factor receptor. Using the molecular modeling program, GRASP, the basic residues Arg 779, Lys 782, and Lys 855 were shown to provide an area of positive charge to the surface of the molecule. To deduce the role of these residues in ATP and substrate binding, site-directed mutants were prepared and kinetic constants were measured. Mutation of Lys 855 to Ala destabilized the enzyme and caused partial inactivation. Mutation of either Arg 779 or Lys 782 had little effect on the Km value for peptide substrate. However, alteration of Lys 782 increased the Km value for ATP 28-fold, indicating a role for Lys 782 in binding ATP. Because residues similar to Lys 782 in the sequences of mitogen-activated protein kinase and insulin receptor make contact with a ribose hydroxyl of ATP, it is proposed that Lys 782 may be one of the residues composing the ribose-binding site of epidermal growth factor receptor.
Collapse
Affiliation(s)
- C K Klingbeil
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, 92093-0650, USA
| | | |
Collapse
|
34
|
Yu H, Fukami K, Itoh T, Takenawa T. Phosphorylation of phospholipase Cgamma1 on tyrosine residue 783 by platelet-derived growth factor regulates reorganization of the cytoskeleton. Exp Cell Res 1998; 243:113-22. [PMID: 9716455 DOI: 10.1006/excr.1998.4132] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that platelet-derived growth factor (PDGF) induces the phosphorylation of phospholipase C (PLC) gamma1 and that phosphorylation on tyrosine (Tyr) 783 of PLCgamma1 is essential for phosphatidylinositol 4,5-bisphosphate hydrolyzing activity in vivo, while phosphorylation does not affect the catalytic activity in vitro. To study the roles of Tyr-783 phosphorylation in vivo, we developed a polyclonal antibody that recognizes PLCgamma1 containing phosphotyrosine 783 (alpha-PLCgamma1 PY). Tyr-783-phosphorylated PLCgamma1 was not detected in the absence of PDGF, appeared after stimulation, increased for 30 min, and then decreased to near the prestimulation level. Immunostaining of cells showed that PDGF-produced Tyr-783-phosphorylated PLCgamma1 localized predominantly at membrane ruffles and stress fibers where it colocalized with actin filaments within 30 min. Ninety minutes after PDGF stimulation, the actin filaments were disassembled to short fragments, and the levels of Tyr-783-phosphorylated PLCgamma1 were remarkably decreased in membrane ruffles and cytoskeleton. Furthermore, the depolymerization of actin filaments and membrane ruffling caused by PDGF stimulation were blocked by microinjecting alpha-PLCgamma1 PY, as occurred following the microinjection of the PLCgamma1-2SH2 domain, which is expected to associate with phosphorylated PDGF receptors and to block PLCgamma1 binding. It is worth noting that the microinjection of tyrosine-phosphorylated peptide (consisting of 13 amino acids containing Tyr-783) induced the disassembly of actin filaments and membrane ruffling as observed in PDGF-stimulated cells, while nonphosphorylated peptide did not cause any effect. These data suggest that the phosphorylation of PLCgamma1 on tyrosine 783 by PDGF plays an important role in cytoskeletal reorganization in addition to mitogenesis.
Collapse
Affiliation(s)
- H Yu
- Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108, Japan
| | | | | | | |
Collapse
|
35
|
Kamat A, Carpenter G. Phospholipase C-gamma1: regulation of enzyme function and role in growth factor-dependent signal transduction. Cytokine Growth Factor Rev 1997; 8:109-17. [PMID: 9244406 DOI: 10.1016/s1359-6101(97)00003-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Phospholipase C(gamma)1 (PLC-gamma1), a tyrosine kinase substrate, is a multi-domain molecule that modulates the intracellular levels of the second messenger molecules: Ca2+ and diacylglycerol. Although a wide variety of growth factor receptor tyrosine kinases phosphorylate and activate PLC-gamma1, the biological role and necessity of this signal transduction element in mitogenesis has remained unclear. Recent results, however, point to a more essential role than was suggested by initial studies. Also, biochemical studies have indicated a putative means for the intramolecular repression of PLC-gamma1 activity and provide a means for interpreting activation signals through a derepression mechanism.
Collapse
Affiliation(s)
- A Kamat
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
36
|
Singer WD, Brown HA, Sternweis PC. Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Annu Rev Biochem 1997; 66:475-509. [PMID: 9242915 DOI: 10.1146/annurev.biochem.66.1.475] [Citation(s) in RCA: 335] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review focuses on two phospholipase activities involved in eukaryotic signal transduction. The action of the phosphatidylinositol-specific phospholipase C enzymes produces two well-characterized second messengers, inositol 1,4,5-trisphosphate and diacylglycerol. This discussion emphasizes recent advances in elucidation of the mechanisms of regulation and catalysis of the various isoforms of these enzymes. These are especially related to structural information now available for a phospholipase C delta isozyme. Phospholipase D hydrolyzes phospholipids to produce phosphatidic acid and the respective head group. A perspective of selected past studies is related to emerging molecular characterization of purified and cloned phospholipases D. Evidence for various stimulatory agents (two small G protein families, protein kinase C, and phosphoinositides) suggests complex regulatory mechanisms, and some studies suggest a role for this enzyme activity in intracellular membrane traffic.
Collapse
Affiliation(s)
- W D Singer
- Department of Pharmacology, University of Texas-Southwestern Medical Center, DaHas 75235-9041, USA
| | | | | |
Collapse
|
37
|
Groundwater PW, Solomons KR, Drewe JA, Munawar MA. Protein tyrosine kinase inhibitors. PROGRESS IN MEDICINAL CHEMISTRY 1996; 33:233-329. [PMID: 8776945 DOI: 10.1016/s0079-6468(08)70307-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
38
|
Kauffmann-Zeh A, Thomas GM, Ball A, Prosser S, Cunningham E, Cockcroft S, Hsuan JJ. Requirement for phosphatidylinositol transfer protein in epidermal growth factor signaling. Science 1995; 268:1188-90. [PMID: 7761838 DOI: 10.1126/science.7761838] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Stimulation of phosphatidylinositol-4,5-bisphosphate (PIP2) hydrolysis is a widespread mechanism for receptor-mediated signaling in eukaryotes. Cytosolic phosphatidylinositol transfer protein (PITP) is necessary for guanosine triphosphate (GTP)-dependent hydrolysis of PIP2 by phospholipase C-beta (PLC-beta), but the role of PITP is unclear. Stimulation of phospholipase C-gamma (PLC-gamma) in A431 human epidermoid carcinoma cells treated with epidermal growth factor (EGF) required PITP. Stimulation of PI-4 kinase in cells treated with EGF also required PITP. Coprecipitation studies revealed an EGF-dependent association of PITP with the EGF receptor, with PI-4 kinase, and with PLC-gamma.
Collapse
Affiliation(s)
- A Kauffmann-Zeh
- Protein Biochemistry Group, Ludwig Institute for Cancer Research, University College London School of Medicine, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Eriksson A, Nånberg E, Rönnstrand L, Engström U, Hellman U, Rupp E, Carpenter G, Heldin CH, Claesson-Welsh L. Demonstration of functionally different interactions between phospholipase C-gamma and the two types of platelet-derived growth factor receptors. J Biol Chem 1995; 270:7773-81. [PMID: 7535778 DOI: 10.1074/jbc.270.13.7773] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Phosphorylated tyrosine residues in receptor tyrosine kinases serve as binding sites for signal transduction molecules. We have identified two autophosphorylation sites, Tyr-988 and Tyr-1018, in the platelet-derived growth factor (PDGF) alpha-receptor carboxyl-terminal tail, which are involved in binding of phospholipase C-gamma (PLC-gamma). The capacities of the Y988F and Y1018F mutant PDGF alpha-receptors, expressed in porcine aortic endothelial cells, to bind PLC-gamma are 60 and 5% of that of the wild-type receptor, respectively. Phosphorylated but not unphosphorylated peptides containing Tyr-1018 are able to compete with the intact receptor for binding to immobilized PLC-gamma SH2 domains; a phosphorylated Tyr-988 peptide competes 10 times less efficiently. The complex between PLC-gamma and the PDGF alpha-receptor is more stable than that of PLC-gamma and the PDGF beta-receptor. However, PDGF stimulation results in a smaller fraction of tyrosine-phosphorylated PLC-gamma and a smaller accumulation of inositol trisphosphate in cells expressing the alpha-receptor as compared with cells expressing the beta-receptor. We conclude that phosphorylated Tyr-988 and Tyr-1018 in the PDGF alpha-receptor carboxyl-terminal tail bind PLC-gamma, but this association leads to only a relatively low level of tyrosine phosphorylation and activation of PLC-gamma.
Collapse
Affiliation(s)
- A Eriksson
- Ludwig Institute for Cancer Research, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Banno Y, Nakashima S, Hachiya T, Nozawa Y. Endogenous cleavage of phospholipase C-beta 3 by agonist-induced activation of calpain in human platelets. J Biol Chem 1995; 270:4318-24. [PMID: 7876193 DOI: 10.1074/jbc.270.9.4318] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two membrane-associated phosphoinositide-specific phospholipase Cs (mPI-PLC-1 and mPI-PLC-2) and a cytosolic enzyme (cPI-PLC) that were activated by brain G-protein beta gamma subunits have been isolated from human platelets. The truncation of mPI-PLC-1 that was mediated by mu-calpain induced much higher activation by beta gamma subunits (Banno, Y., Asano, T., and Nozawa, Y. (1994) FEBS Lett. 340, 185-188). On the basis of size and immunological cross-reactivity, mPI-PLC-1 (155 kDa) was PLC-beta 3, and mPI-PLC-2 (100 kDa) was its truncated form. The cPI-PLC (140 kDa) was recognized by the antibody selective for internal sequences of PLC-beta 3 but not by the antibody raised against its carboxyl terminus, indicating that it may be related to PLC-beta 3. Treatment of human platelets with A23187 and dibucaine, activators of calpain, caused cleavage of actin-binding protein and talin in a time-dependent manner. At the same time, decrease of PLC-beta 3 (155 and 140 kDa) and concomitant increase of the 100-kDa product of cleavage were observed on immunoblots with the antibody to internal sequences of PLC-beta 3. Furthermore, stimulation of platelets by natural agonists, thrombin and collagen, caused the cleavage of PLC-beta 3 (155 and 140 kDa) and an increase of 100 kDa PLC-beta 3 in a time- and dose-dependent manner. The cleavage of these PLC-beta 3 enzymes was completely blocked by calpain inhibitor, calpeptin, indicating that the PLC-beta 3 modification may be a consequence of platelet activation leading to activation of calpain. This is the first demonstration that PLC-beta 3 is indeed cleaved by calpain upon platelet activation by physiological agonists. The cleavage of PLC-beta 3 evoked by thrombin and collagen but not ADP was correlated with irreversible aggregation, suggesting that the PLC-beta 3 modification may play a role in secondary irreversible aggregation in agonist-stimulated human platelets.
Collapse
Affiliation(s)
- Y Banno
- Department of Biochemistry, Gifu University School of Medicine, Japan
| | | | | | | |
Collapse
|
41
|
Berchuck A, Elbendary A, Havrilesky L, Rodriguez GC, Bast RC. Pathogenesis of ovarian cancers. JOURNAL OF THE SOCIETY FOR GYNECOLOGIC INVESTIGATION 1994; 1:181-90. [PMID: 9419769 DOI: 10.1177/107155769400100302] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To review our current understanding of the molecular genetic events involved in the development of epithelial ovarian cancers. METHODS Molecular biologic techniques have been used to examine the role of growth-stimulatory genes (oncogenes) and -inhibitory genes (tumor suppressors) in ovarian cancer. RESULTS A number of different peptide growth factors and their receptors are expressed by normal and malignant ovarian epithelial cells. However, the role, if any, of growth factors in ovarian carcinogenesis or maintenance of the transformed phenotype remains unknown. Amplification and overexpression of the HER-2/neu and c-myc oncogenes occur in a significant fraction of epithelial ovarian cancers (20-30%). Overexpression of HER-2/neu has correlated with poor survival in some studies, whereas c-myc amplification is more common in serous cancers. Mutation of the K-ras oncogene frequently occurs in borderline ovarian tumors, but is less common in invasive epithelial ovarian cancers. Mutation of the p53 tumor suppressor gene occurs in approximately half of advanced (stage III/IV) ovarian cancers and in 15% of early (stage IA/IB) cases. Most recently, preliminary studies have focused on the role of other tumor suppressor genes, cyclins, WAF1, and DNA mismatch repair genes. CONCLUSIONS An understanding of the molecular events involved in the pathogenesis of epithelial ovarian cancer is beginning to evolve. Improvements in early diagnosis, treatment, and prevention of this deadly disease are dependent on further progress in this area.
Collapse
Affiliation(s)
- A Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
BACKGROUND/AIMS The postnatal rat small intestine undergoes major morphological, biochemical, and physiological changes during weaning. Phospholipase C-gamma 1 (PLC gamma 1), a tyrosine kinase substrate of the epidermal growth factor receptor (EGFR) hydrolyzes phosphatidylinositol-4,5-bisphosphate to products that may serve as mediators of growth and development. The aim of this study was to define developmental changes in intestinal PLC gamma 1 expression, catalytic activity, and growth factor regulation of PLC gamma 1. METHODS Immunodetection was used to compare the expression and tyrosine phosphorylation state of PLC gamma 1, EGFR, phosphatidylinositol 3-kinase (PI 3-kinase), ras guanosine triphosphatase activating protein (GAP), and src homologous collagen-like protein (SHC) in the postnatal rat intestine. RESULTS The catalytic activity and expression of PLC gamma 1 markedly increased during weaning. Significant EGF-induced increases in the activity and tyrosine phosphorylation of PLC gamma 1 occurred in weanling but not suckling animals. EGFR and SHC expression were increased in weanling compared with suckling and adult animals; however, differences in expression of PI 3-kinase and GAP did not occur during weaning. CONCLUSIONS The expression and catalytic activity of rat intestinal PLC gamma 1 are greatest during weaning. A functional consequence is the age-dependent modulation of EGF regulation of PLC gamma 1 tyrosine phosphorylation state and catalytic activity. This is the first in vivo demonstration of EGF-dependent tyrosine phosphorylation of PLC gamma 1 in normal animal tissue.
Collapse
Affiliation(s)
- D B Polk
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
43
|
Banno Y, Okano Y, Nozawa Y. Thrombin-mediated phosphoinositide hydrolysis in Chinese hamster ovary cells overexpressing phospholipase C-delta 1. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40758-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
44
|
Todo T, Fahlbusch R. Accumulation of inositol phosphates in low-passage human meningioma cells following treatment with epidermal growth factor. J Neurosurg 1994; 80:890-6. [PMID: 8169630 DOI: 10.3171/jns.1994.80.5.0890] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In order to elucidate some of the signal transduction processes in human meningioma cells, the authors studied the effect of epidermal growth factor (EGF) and bromocriptine on inositol phospholipid hydrolysis, using low-passage human meningioma cells in culture. Epidermal growth factor is a well-studied mitogenic factor for meningioma cells, whereas bromocriptine is known to have an inhibitory effect on meningioma cell proliferation. The addition of EGF to meningioma cells caused stimulation of inositol phosphate accumulation in a dose-dependent manner at 60 minutes posttreatment, with the maximum effect (120% to 167% of control) achieved at a concentration of 10 ng/ml. Extraction of separate inositol phosphates accumulation in a dose-dependent manner at 60 minutes posttreatment, with the maximum effect (120% to 167% of control) achieved at a concentration of 10 ng/ml. Extraction of separate inositol phosphates revealed that inositol monophosphate (IP1) and inositol bisphosphate (IP2), but not inositol trisphosphate (IP3), accounted for the increase at 60 minutes. Kinetic analysis of EGF-stimulated inositol phospholipid hydrolysis showed that a sharp and transient increase in IP3 from 5 to 12 minutes post-EGF and a transient but more gradual increase in IP2 from 2 to 12 minutes post-EGF were followed by a gradual and steady increase in IP1, which was significantly greater than control after 5 minutes. On the other hand, long-term studies showed a down-regulation of inositol phosphate accumulation (a 64% decrease vs. control) after 7 days of treatment with EGF (10 ng/ml). Bromocriptine (5 microM) exhibited no significant effect on inositol phosphate accumulation at 60 minutes in four of five meningiomas studied. However, of two meningiomas studied with bromocriptine in combination with EGF, both showed a significant additive increase in inositol phosphate accumulation compared to those treated with EGF alone. The results suggest a close involvement of inositol phospholipid turnover in human meningioma cells in response to mitogenic stimulation by EGF.
Collapse
Affiliation(s)
- T Todo
- Department of Neurosurgery, International Medical Center of Japan, Tokyo
| | | |
Collapse
|
45
|
Yang L, Rhee S, Williamson J. Epidermal growth factor-induced activation and translocation of phospholipase C-gamma 1 to the cytoskeleton in rat hepatocytes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37261-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
46
|
Johnson MD, Horiba M, Winnier AR, Arteaga CL. The epidermal growth factor receptor is associated with phospholipase C-gamma 1 in meningiomas. Hum Pathol 1994; 25:146-53. [PMID: 8119714 DOI: 10.1016/0046-8177(94)90270-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this study we evaluated phospholipase C-gamma 1 (PLC-gamma 1) expression, activity, and association with the epidermal growth factor (EGF) receptor in a series of human meningiomas as well as cultured meningioma cells. Phospholipase C-gamma 1 was detectable by immunoblot and immunohistochemistry in 13 of 13 meningioma specimens. Epidermal growth factor receptors were detected by immunoblot in six of nine meningiomas (67%) and by immunohistochemistry in 13 of 19 meningiomas (68%) but not in normal leptomeningeal cells. In two of three meningiomas EGF receptors and/or a 170-kd phosphotyrosine band precipitated with a PLC-gamma 1 antiserum. Both PLC-gamma 1 and EGF receptors also exhibited the same pattern of immunostaining on meningioma tissue sections. Phospholipase C-gamma 1 catalytic activity, measured in a PIP2 hydrolysis assay, was higher in nine EGF receptor-positive meningiomas than in six EGF receptor-negative meningiomas (P = .05; t test). Finally, treatment of cultured meningioma cells with transforming growth factor-alpha induced a 78% increase in PLC-gamma 1 catalytic activity. Thus, these data are consistent with the possibility that the EGF receptor tyrosine kinase regulates PLC-gamma 1 activity in native meningioma tissue.
Collapse
Affiliation(s)
- M D Johnson
- Nashville Veterans Administration Medical Center, TN
| | | | | | | |
Collapse
|
47
|
Middlemas D, Meisenhelder J, Hunter T. Identification of TrkB autophosphorylation sites and evidence that phospholipase C-gamma 1 is a substrate of the TrkB receptor. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37708-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Gamou S, Shimizu N. Calphostin-C stimulates epidermal growth factor receptor phosphorylation and internalization via light-dependent mechanism. J Cell Physiol 1994; 158:151-9. [PMID: 7505275 DOI: 10.1002/jcp.1041580119] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Calphostin-C with perylenequinone structure is known to bind the regulatory domain of protein kinase C (PKC) and to inhibit kinase activity in vitro in a light-dependent fashion. We have found that calphostin-C induces substantial serine and threonine phosphorylation of the epidermal growth factor (EGF) receptor in a light-dependent fashion in the EGF receptor-hyperproducing squamous carcinoma cell line NA. Tryptic phospho-peptide mapping and phospho-amino acid analysis revealed that calphostin-C-enhanced phosphorylation was on threonine 669, serine 671, serine 1046/1047, and serine 1166. However, calphostin-C did not inhibit phosphorylation of the 80 K protein, a cytosolic major substrate of PKC (MARCKS). Staurosporine, a potent PKC inhibitor with affinity for the catalytic domain of PKC, inhibited phosphorylation of the 80 K protein and 12-O-tetradecanoyl-13-phorbol acetate induction of EGF receptor phosphorylation but did not inhibit the calphostin-C induction of the EGF receptor phosphorylation. These results suggest that the target of calphostin-C in vivo is different from that of staurosporine and thus calphostin-C in vivo does not inhibit PKC. Furthermore, calphostin-C enhanced the internalization of phosphorylated EGF receptor. Thus, calphostin-C apparently activates a novel signal transduction pathway which involves phosphorylation and internalization of the EGF receptor via light-dependent mechanism.
Collapse
Affiliation(s)
- S Gamou
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
49
|
Abstract
BACKGROUND Phospholipase C isozymes (PLC) play a role in ligand-mediated signal transduction for cellular activity, such as proliferation and differentiation. However, the biologic significance of their molecules in carcinogenesis or tumor progression is yet to be determined. METHODS Using PLC isozyme-specific antibodies, the relative content of PLC in human colorectal carcinomas and in normal colonic mucosa was examined. RESULTS Immunoreactive analysis revealed considerably higher levels of PLC-gamma 1 protein in 15 of 17 colorectal carcinomas and little difference in PLC-beta 1 or PLC-gamma 1 content compared with normal colorectal tissues. By radioimmunoassay and Western blotting, PLC-gamma 1 showed three-fold to fourfold more expression in carcinomas than that in normal tissues. CONCLUSION Although factors that might influence the level of PLC-gamma 1 expression in colorectal carcinomas still remain obscure, the fact that most colorectal carcinomas display elevated levels of PLC-gamma 1 expression implies that PLC-gamma 1 may play an important role in proliferation of colorectal carcinoma cells.
Collapse
Affiliation(s)
- D Y Noh
- Laboratory of Cell Biology, Seoul National University College of Medicine, Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Fry DW, McMichael A, Singh J, Dobrusin EM, McNamara DJ. Design of a potent peptide inhibitor of the epidermal growth factor receptor tyrosine kinase utilizing sequences based on the natural phosphorylation sites of phospholipase C-gamma 1. Peptides 1994; 15:951-7. [PMID: 7991458 DOI: 10.1016/0196-9781(94)90057-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Peptides that possess primary sequences identical to segments surrounding the natural phosphorylation sites of phospholipase C-gamma 1 (i.e., tyrosines 472, 771, 783, and 1284) have been synthesized and evaluated with respect to substrate kinetics for the epidermal growth factor receptor tyrosine kinase. A peptide that was based on tyrosine 472 was the superior substrate in terms of lowest Km value at 37 microM and had the following amino acid sequence: Lys-His-Lys-Lys-Leu-Ala-Glu-Gly-Ser-Ala-Tyr472-Glu-Glu-Val. This peptide sequence was used as a foundation to make amino acid substitutions and/or chemical modifications directed toward the synthesis of a potent peptide inhibitor. As a result, a nine amino acid peptide was synthesized having a K(i) of 10 microM.
Collapse
Affiliation(s)
- D W Fry
- Department of Cancer Research, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, MI 48105
| | | | | | | | | |
Collapse
|