1
|
Bretagne D, Pâris A, Matthews D, Fougère L, Burrini N, Wagner GK, Daniellou R, Lafite P. "Mix and match" auto-assembly of glycosyltransferase domains delivers biocatalysts with improved substrate promiscuity. J Biol Chem 2024; 300:105747. [PMID: 38354783 PMCID: PMC10937113 DOI: 10.1016/j.jbc.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Glycosyltransferases (GT) catalyze the glycosylation of bioactive natural products, including peptides and proteins, flavonoids, and sterols, and have been extensively used as biocatalysts to generate glycosides. However, the often narrow substrate specificity of wild-type GTs requires engineering strategies to expand it. The GT-B structural family is constituted by GTs that share a highly conserved tertiary structure in which the sugar donor and acceptor substrates bind in dedicated domains. Here, we have used this selective binding feature to design an engineering process to generate chimeric glycosyltransferases that combine auto-assembled domains from two different GT-B enzymes. Our approach enabled the generation of a stable dimer with broader substrate promiscuity than the parent enzymes that were related to relaxed interactions between domains in the dimeric GT-B. Our findings provide a basis for the development of a novel class of heterodimeric GTs with improved substrate promiscuity for applications in biotechnology and natural product synthesis.
Collapse
Affiliation(s)
- Damien Bretagne
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS-Université d'Orléans, Université d'Orléans, Orléans Cedex 2, France; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, United Kingdom
| | - Arnaud Pâris
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS-Université d'Orléans, Université d'Orléans, Orléans Cedex 2, France
| | - David Matthews
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, United Kingdom
| | - Laëtitia Fougère
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS-Université d'Orléans, Université d'Orléans, Orléans Cedex 2, France
| | - Nastassja Burrini
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS-Université d'Orléans, Université d'Orléans, Orléans Cedex 2, France
| | - Gerd K Wagner
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, United Kingdom
| | - Richard Daniellou
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS-Université d'Orléans, Université d'Orléans, Orléans Cedex 2, France; Chaire de Cosmétologie, AgroParisTech, Orléans, France; Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| | - Pierre Lafite
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS-Université d'Orléans, Université d'Orléans, Orléans Cedex 2, France.
| |
Collapse
|
2
|
Israni B, Wouters FC, Luck K, Seibel E, Ahn SJ, Paetz C, Reinert M, Vogel H, Erb M, Heckel DG, Gershenzon J, Vassão DG. The Fall Armyworm Spodoptera frugiperda Utilizes Specific UDP-Glycosyltransferases to Inactivate Maize Defensive Benzoxazinoids. Front Physiol 2020; 11:604754. [PMID: 33408643 PMCID: PMC7781194 DOI: 10.3389/fphys.2020.604754] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
The relationship between plants and insects is continuously evolving, and many insects rely on biochemical strategies to mitigate the effects of toxic chemicals in their food plants, allowing them to feed on well-defended plants. Spodoptera frugiperda, the fall armyworm (FAW), accepts a number of plants as hosts, and has particular success on plants of the Poaceae family such as maize, despite their benzoxazinoid (BXD) defenses. BXDs stored as inert glucosides are converted into toxic aglucones by plant glucosidases upon herbivory. DIMBOA, the main BXD aglucone released by maize leaves, can be stereoselectively re-glucosylated by UDP-glycosyltransferases (UGTs) in the insect gut, rendering it non-toxic. Here, we identify UGTs involved in BXD detoxification by FAW larvae and examine how RNAi-mediated manipulation of the larval glucosylation capacity toward the major maize BXD, DIMBOA, affects larval growth. Our findings highlight the involvement of members of two major UGT families, UGT33 and UGT40, in the glycosylation of BXDs. Most of the BXD excretion in the frass occurs in the form of glucosylated products. Furthermore, the DIMBOA-associated activity was enriched in the gut tissue, with a single conserved UGT33 enzyme (SfUGT33F28) being dedicated to DIMBOA re-glucosylation in the FAW gut. The knock-down of its encoding gene reduces larval performance in a strain-specific manner. This study thus reveals that a single UGT enzyme is responsible for detoxification of the major maize-defensive BXD in this pest insect.
Collapse
Affiliation(s)
- Bhawana Israni
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Felipe C Wouters
- Max Planck Institute for Chemical Ecology, Jena, Germany.,Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - Katrin Luck
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Elena Seibel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, United States
| | | | | | - Heiko Vogel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - David G Heckel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | |
Collapse
|
3
|
Miners JO, Rowland A, Novak JJ, Lapham K, Goosen TC. Evidence-based strategies for the characterisation of human drug and chemical glucuronidation in vitro and UDP-glucuronosyltransferase reaction phenotyping. Pharmacol Ther 2020; 218:107689. [PMID: 32980440 DOI: 10.1016/j.pharmthera.2020.107689] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022]
Abstract
Enzymes of the UDP-glucuronosyltransferase (UGT) superfamily contribute to the elimination of drugs from almost all therapeutic classes. Awareness of the importance of glucuronidation as a drug clearance mechanism along with increased knowledge of the enzymology of drug and chemical metabolism has stimulated interest in the development and application of approaches for the characterisation of human drug glucuronidation in vitro, in particular reaction phenotyping (the fractional contribution of the individual UGT enzymes responsible for the glucuronidation of a given drug), assessment of metabolic stability, and UGT enzyme inhibition by drugs and other xenobiotics. In turn, this has permitted the implementation of in vitro - in vivo extrapolation approaches for the prediction of drug metabolic clearance, intestinal availability, and drug-drug interaction liability, all of which are of considerable importance in pre-clinical drug development. Indeed, regulatory agencies (FDA and EMA) require UGT reaction phenotyping for new chemical entities if glucuronidation accounts for ≥25% of total metabolism. In vitro studies are most commonly performed with recombinant UGT enzymes and human liver microsomes (HLM) as the enzyme sources. Despite the widespread use of in vitro approaches for the characterisation of drug and chemical glucuronidation by HLM and recombinant enzymes, evidence-based guidelines relating to experimental approaches are lacking. Here we present evidence-based strategies for the characterisation of drug and chemical glucuronidation in vitro, and for UGT reaction phenotyping. We anticipate that the strategies will inform practice, encourage development of standardised experimental procedures where feasible, and guide ongoing research in the field.
Collapse
Affiliation(s)
- John O Miners
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | | | | | | |
Collapse
|
4
|
Gotoh-Saito S, Abe T, Furukawa Y, Oda S, Yokoi T, Finel M, Hatakeyama M, Fukami T, Nakajima M. Characterization of human UGT2A3 expression using a prepared specific antibody against UGT2A3. Drug Metab Pharmacokinet 2019; 34:280-286. [PMID: 31262603 DOI: 10.1016/j.dmpk.2019.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 11/29/2022]
Abstract
UDP-Glucuronosyltransferase (UGT) 2A3 belongs to a UGT superfamily of phase II drug-metabolizing enzymes that catalyzes the glucuronidation of many endobiotics and xenobiotics. Previous studies have demonstrated that UGT2A3 is expressed in the human liver, small intestine, and kidney at the mRNA level; however, its protein expression has not been determined. Evaluation of the protein expression of UGT2A3 would be useful to determine its role at the tissue level. In this study, we prepared a specific antibody against human UGT2A3 and evaluated the relative expression of UGT2A3 in the human liver, small intestine, and kidney. Western blot analysis indicated that this antibody is specific to UGT2A3 because it did not cross-react with other human UGT isoforms or rodent UGTs. UGT2A3 expression in the human small intestine was higher than that in the liver and kidney. Via treatment with endoglycosidase, it was clearly demonstrated that UGT2A3 was N-glycosylated. UGT2A3 protein levels were significantly correlated with UGT2A3 mRNA levels in a panel of 28 human liver samples (r = 0.64, p < 0.001). In conclusion, we successfully prepared a specific antibody against UGT2A3. This antibody would be useful to evaluate the physiological, pharmacological, and toxicological roles of UGT2A3 in human tissues.
Collapse
Affiliation(s)
- Saki Gotoh-Saito
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takayuki Abe
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yoichi Furukawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shingo Oda
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tsuyoshi Yokoi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Moshe Finel
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan; WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan; WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
5
|
Olsson K, Carlsen S, Semmler A, Simón E, Mikkelsen MD, Møller BL. Microbial production of next-generation stevia sweeteners. Microb Cell Fact 2016; 15:207. [PMID: 27923373 PMCID: PMC5142139 DOI: 10.1186/s12934-016-0609-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The glucosyltransferase UGT76G1 from Stevia rebaudiana is a chameleon enzyme in the targeted biosynthesis of the next-generation premium stevia sweeteners, rebaudioside D (Reb D) and rebaudioside M (Reb M). These steviol glucosides carry five and six glucose units, respectively, and have low sweetness thresholds, high maximum sweet intensities and exhibit a greatly reduced lingering bitter taste compared to stevioside and rebaudioside A, the most abundant steviol glucosides in the leaves of Stevia rebaudiana. RESULTS In the metabolic glycosylation grid leading to production of Reb D and Reb M, UGT76G1 was found to catalyze eight different reactions all involving 1,3-glucosylation of steviol C 13- and C 19-bound glucoses. Four of these reactions lead to Reb D and Reb M while the other four result in formation of side-products unwanted for production. In this work, side-product formation was reduced by targeted optimization of UGT76G1 towards 1,3 glucosylation of steviol glucosides that are already 1,2-diglucosylated. The optimization of UGT76G1 was based on homology modelling, which enabled identification of key target amino acids present in the substrate-binding pocket. These residues were then subjected to site-saturation mutagenesis and a mutant library containing a total of 1748 UGT76G1 variants was screened for increased accumulation of Reb D or M, as well as for decreased accumulation of side-products. This screen was performed in a Saccharomyces cerevisiae strain expressing all enzymes in the rebaudioside biosynthesis pathway except for UGT76G1. CONCLUSIONS Screening of the mutant library identified mutations with positive impact on the accumulation of Reb D and Reb M. The effect of the introduced mutations on other reactions in the metabolic grid was characterized. This screen made it possible to identify variants, such as UGT76G1Thr146Gly and UGT76G1His155Leu, which diminished accumulation of unwanted side-products and gave increased specific accumulation of the desired Reb D or Reb M sweeteners. This improvement in a key enzyme of the Stevia sweetener biosynthesis pathway represents a significant step towards the commercial production of next-generation stevia sweeteners.
Collapse
Affiliation(s)
- Kim Olsson
- Evolva A/S, Lersø Park Alle 42-44, 5th, 2100 Copenhagen OE, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Simon Carlsen
- Evolva A/S, Lersø Park Alle 42-44, 5th, 2100 Copenhagen OE, Denmark
| | - Angelika Semmler
- Evolva A/S, Lersø Park Alle 42-44, 5th, 2100 Copenhagen OE, Denmark
| | - Ernesto Simón
- Evolva A/S, Lersø Park Alle 42-44, 5th, 2100 Copenhagen OE, Denmark
| | | | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
- Center for Synthetic Biology “bioSYNergy”, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen Denmark
| |
Collapse
|
6
|
Nakamura T, Yamaguchi N, Miyauchi Y, Takeda T, Yamazoe Y, Nagata K, Mackenzie PI, Yamada H, Ishii Y. Introduction of an N-Glycosylation Site into UDP-Glucuronosyltransferase 2B3 Alters Its Sensitivity to Cytochrome P450 3A1-Dependent Modulation. Front Pharmacol 2016; 7:427. [PMID: 27895582 PMCID: PMC5107996 DOI: 10.3389/fphar.2016.00427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/26/2016] [Indexed: 01/28/2023] Open
Abstract
Our previous studies have demonstrated functional protein-protein interactions between cytochrome P450 (CYP) 3A and UDP-glucuronosyltransferase (UGT). However, the role of carbohydrate chains of UGTs in the interaction with CYP is not well understood. To address this issue, we examined whether CYP3A1 modulates the function of UGT2B3 which lacks potential glycosylation sites. We also examined whether the introduction of N-glycosylation to UGT2B3 affects CYP3A-dependent modulation of UGT function. To introduce a potential glycosylation site into UGT2B3, Ser 316 of UGT2B3 was substituted with Asn by site-directed mutagenesis. A baculovirus-Sf-9 cell system for expressing CYP3A1 and UGT2B3/UGT2B3(S316N) was established using a Bac-to-Bac system. Glycosylation of UGT2B3(S316N) was demonstrated in this expression system. The microsomal activity of recombinant UGT was determined using 4-methylumbelliferone as a substrate. The effect of CYP3A1 co-expression on UGT function was examined by comparing the kinetic profiles between single (UGT alone) and double expression (UGT plus CYP) systems. The kinetics of the two expression systems fitted a Michaelis-Menten equation. When the 4-MU concentration was varied, co-expression of CYP3A1 lowered the Vmax of UGT2B3-mediated conjugation. Conversely, for UGT2B3(S316N), the Vmax in the dual expression system was higher than that in the single expression system. The data obtained demonstrate that the introduction of N-glycosylation to UGT2B3 alters its sensitivity to CYP3A1-dependent modulation while CYP3A1 enhanced UGT2B3(S316N) activity, and wild-type UGT2B3 was suppressed by CYP3A1. These data suggest that N-glycosylation of UGT is one of the determinants regulating the interaction between CYP3A and UGT.
Collapse
Affiliation(s)
- Tatsuro Nakamura
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University Fukuoka, Japan
| | - Naho Yamaguchi
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University Fukuoka, Japan
| | - Yuu Miyauchi
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University Fukuoka, Japan
| | - Tomoki Takeda
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University Fukuoka, Japan
| | | | - Kiyoshi Nagata
- Department of Environmental Health Science, Tohoku Medical and Pharmaceutical University Sendai, Japan
| | - Peter I Mackenzie
- Department of Clinical Pharmacology, Flinders University, Adelaide SA, Australia
| | - Hideyuki Yamada
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University Fukuoka, Japan
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University Fukuoka, Japan
| |
Collapse
|
7
|
Vandenbossche J, Richards H, Francke S, Van Den Bergh A, Lu CC, Franc MA. The effect ofUGT2B7*2polymorphism on the pharmacokinetics of OROS® hydromorphone in Taiwanese subjects. J Clin Pharmacol 2014; 54:1170-9. [DOI: 10.1002/jcph.305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/01/2014] [Indexed: 11/06/2022]
Affiliation(s)
| | - Henry Richards
- Janssen Research and Development; L.L.C.; Titusville NJ USA
| | | | - An Van Den Bergh
- Johnson & Johnson Pharmaceutical Research and Development; Beerse Belgium
| | - Chih Cherng Lu
- Department of Anesthesiology; Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
| | | |
Collapse
|
8
|
Korprasertthaworn P, Rowland A, Lewis BC, Mackenzie PI, Yoovathaworn K, Miners JO. Effects of amino acid substitutions at positions 33 and 37 on UDP-glucuronosyltransferase 1A9 (UGT1A9) activity and substrate selectivity. Biochem Pharmacol 2012; 84:1511-21. [DOI: 10.1016/j.bcp.2012.08.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 08/29/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
|
9
|
Uchihashi S, Nishikawa M, Sakaki T, Ikushiro SI. The critical role of amino acid residue at position 117 of mouse UDP-glucuronosyltransfererase 1a6a and 1a6b in resveratrol glucuronidation. J Biochem 2012; 152:331-40. [DOI: 10.1093/jb/mvs078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Meech R, Miners JO, Lewis BC, Mackenzie PI. The glycosidation of xenobiotics and endogenous compounds: Versatility and redundancy in the UDP glycosyltransferase superfamily. Pharmacol Ther 2012; 134:200-18. [DOI: 10.1016/j.pharmthera.2012.01.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 11/24/2022]
|
11
|
Chaturvedi P, Misra P, Tuli R. Sterol glycosyltransferases--the enzymes that modify sterols. Appl Biochem Biotechnol 2011; 165:47-68. [PMID: 21468635 DOI: 10.1007/s12010-011-9232-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/22/2011] [Indexed: 01/12/2023]
Abstract
Sterols are important components of cell membranes, hormones, signalling molecules and defense-related biotic and abiotic chemicals. Sterol glycosyltransferases (SGTs) are enzymes involved in sterol modifications and play an important role in metabolic plasticity during adaptive responses. The enzymes are classified as a subset of family 1 glycosyltransferases due to the presence of a signature motif in their primary sequence. These enzymes follow a compulsory order sequential mechanism forming a ternary complex. The diverse applications of sterol glycosides, like cytotoxic and apoptotic activity, anticancer activity, medicinal values, anti-stress roles and anti-insect and antibacterial properties, draws attention towards their synthesis mechanisms. Many secondary metabolites are derived from sterol pathways, which are important in defense mechanisms against pathogens. SGTs in plants are involved in changed sensitivity to stress hormones and their agrochemical analogs and changed tolerance to biotic and abiotic stresses. SGTs that glycosylate steroidal hormones, such as brassinosteroids, function as growth and development regulators in plants. In terms of metabolic roles, it can be said that SGTs occupy important position in plant metabolism and may offer future tools for crop improvement.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- National Botanical Research Institute (Council of Scientific & Industrial Research), Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
| | | | | |
Collapse
|
12
|
Magdalou J, Fournel-Gigleux S, Ouzzine M. Insights on membrane topology and structure/function of UDP-glucuronosyltransferases. Drug Metab Rev 2010; 42:159-66. [PMID: 19807219 DOI: 10.3109/03602530903209270] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The main characteristic of uridine diphosphate (UDP)-glucuronosyltransferases is their potency to glucuronidate a large array of structurally unrelated substances with various nucleophilic groups. The activity of these enzymes strongly depends on their tight association to the membrane of the endoplasmic reticulum. In light of recent data, this review is focused on the membrane-assembly process, which is a prerequisite for activity, and on the amino acids that govern substrate recognition and catalysis at the active site. The major implication of the highly variable N-terminal domain of UDP-glucuronosyltransferases in the substrate specificity of these enzymes is highlighted. In the absence of crystal data of the N-terminal domain, multidisciplinary approaches of genetic-/protein-engineering techniques, homology modeling with glycosyltransferases, and quantitative structure-activity relationships allowed us to point out crucial amino acids. On the basis of these results, possible reaction mechanisms for the glucuronidation of xenobiotics, involving histidine and aspartic acid residues, have been built and are discussed.
Collapse
Affiliation(s)
- Jacques Magdalou
- UMR 7561 CNRS-Université Henri Poincaré-Nancy-1, Faculté de Médecine, Vandoeuvre-lès-Nancy, France.
| | | | | |
Collapse
|
13
|
Nakajima M, Koga T, Sakai H, Yamanaka H, Fujiwara R, Yokoi T. N-Glycosylation plays a role in protein folding of human UGT1A9. Biochem Pharmacol 2010; 79:1165-72. [DOI: 10.1016/j.bcp.2009.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/23/2009] [Accepted: 11/24/2009] [Indexed: 11/24/2022]
|
14
|
Abstract
Phase-II metabolism has a major contribution to androgen metabolism, converting the highly non-polar compounds to a more easily excreted form prior to their excretion in urine. In the human body the main phase-II metabolic reactions are glucuronidation and sulphonation. These reactions are catalysed by enzymes, which are categorised into families and further subfamilies based on their function and similarities of their amino-acid sequences. Due to inter-individual variation of the metabolising enzymes and their activities, the metabolic patterns of prohibited substances should be estimated for efficient doping control. In addition to target analytes the phase-II reactions have an effect on the selection of sample preparation procedure, chromatographic technique and ionisation method of the analysis routine. For method development and identification purposes adequate reference material is required, and to replace the laborious in vivo excretion studies, in vitro methodologies have been implemented to produce intact phase-II metabolites of androgens.
Collapse
Affiliation(s)
- Tiia Kuuranne
- Doping Control Laboratory, United Laboratories Ltd, Höyläämötie 14, 00380, Helsinki, Finland.
| |
Collapse
|
15
|
Fujiwara R, Nakajima M, Yamamoto T, Nagao H, Yokoi T. In silico and in vitro approaches to elucidate the thermal stability of human UDP-glucuronosyltransferase (UGT) 1A9. Drug Metab Pharmacokinet 2009; 24:235-44. [PMID: 19571435 DOI: 10.2133/dmpk.24.235] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UDP-Glucuronosyltransferases (UGTs) are predominant drug metabolizing enzymes in the liver and extrahepatic tissues. Human UGT1A9 is uniquely stable against heat treatment. To understand the unique properties of UGT1A9, the three-dimensional structure was constructed by homology modeling using a crystal structure of TDP-epi-vancosaminyltransferase as template. Sequence alignment analysis revealed that 13 amino acid residues (Arg42, Lys91, Ala92, Tyr106, Gly111, Tyr113, Asp115, Asn152, Leu173, Leu219, His221, Arg222, and Glu241) are unique to UGT1A9 as compared with UGT1A7, UGT1A8 and UGT1A10. To examine the roles of these residues in the conformational stability of UGT1A9, molecular dynamics simulation of the structures was carried out at 310 K and 360 K in aqueous solution for 3.0 nanoseconds. Root mean square deviation analyses revealed that Arg42, Leu173, Leu219, His221 and Arg222 were responsible for the thermal stability. Root mean square fluctuation analyses and a dynamical cross correlation map revealed that Lys91, Ala92, Tyr106, Gly111, Tyr113, Asp115, Leu219, His221, Arg222 and Glu241 were responsible for the thermal stability. In vitro study using mutants of these residues demonstrated that all these amino acids may be collectively involved in the thermal stability of UGT1A9. The results presented here provide a molecular basis for the thermal stability of human UGT1A9.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | | | | | | | | |
Collapse
|
16
|
Truman AW, Dias MVB, Wu S, Blundell TL, Huang F, Spencer JB. Chimeric glycosyltransferases for the generation of hybrid glycopeptides. ACTA ACUST UNITED AC 2009; 16:676-85. [PMID: 19549605 DOI: 10.1016/j.chembiol.2009.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 04/23/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
Abstract
Glycodiversification, an invaluable tool for generating biochemical diversity, can be catalyzed by glycosyltransferases, which attach activated sugar "donors" onto "acceptor" molecules. However, many glycosyltransferases can tolerate only minor modifications to their native substrates, thus making them unsuitable tools for current glycodiversification strategies. Here we report the production of functional chimeric glycosyltransferases by mixing and matching the N- and C-terminal domains of glycopeptide glycosyltransferases. Using this method we have generated hybrid glycopeptides and have demonstrated that domain swapping can result in a predictable switch of substrate specificity, illustrating that N- and C-terminal domains predominantly dictate acceptor and donor specificity, respectively. The determination of the structure of a chimera in complex with a sugar donor analog shows that almost all sugar-glycosyltransferase binding interactions occur in the C-terminal domain.
Collapse
Affiliation(s)
- Andrew W Truman
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England, UK.
| | | | | | | | | | | |
Collapse
|
17
|
Osmani SA, Bak S, Møller BL. Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. PHYTOCHEMISTRY 2009; 70:325-47. [PMID: 19217634 DOI: 10.1016/j.phytochem.2008.12.009] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/01/2008] [Accepted: 12/05/2008] [Indexed: 05/05/2023]
Abstract
Plant family 1 UDP-dependent glycosyltransferases (UGTs) catalyze the glycosylation of a plethora of bioactive natural products. In Arabidopsis thaliana, 120 UGT encoding genes have been identified. The crystal-based 3D structures of four plant UGTs have recently been published. Despite low sequence conservation, the UGTs show a highly conserved secondary and tertiary structure. The sugar acceptor and sugar donor substrates of UGTs are accommodated in the cleft formed between the N- and C-terminal domains. Several regions of the primary sequence contribute to the formation of the substrate binding pocket including structurally conserved domains as well as loop regions differing both with respect to their amino acid sequence and sequence length. In this review we provide a detailed analysis of the available plant UGT crystal structures to reveal structural features determining substrate specificity. The high 3D structural conservation of the plant UGTs render homology modeling an attractive tool for structure elucidation. The accuracy and utility of UGT structures obtained by homology modeling are discussed and quantitative assessments of model quality are performed by modeling of a plant UGT for which the 3D crystal structure is known. We conclude that homology modeling offers a high degree of accuracy. Shortcomings in homology modeling are also apparent with modeling of loop regions remaining as a particularly difficult task.
Collapse
Affiliation(s)
- Sarah A Osmani
- University of Copenhagen, Department of Plant Biology and Biotechnology, Plant Biochemistry Laboratory, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | |
Collapse
|
18
|
Huang FF, Chai CL, Zhang Z, Liu ZH, Dai FY, Lu C, Xiang ZH. The UDP-glucosyltransferase multigene family in Bombyx mori. BMC Genomics 2008; 9:563. [PMID: 19038024 PMCID: PMC2633020 DOI: 10.1186/1471-2164-9-563] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Accepted: 11/27/2008] [Indexed: 12/18/2022] Open
Abstract
Background Glucosidation plays a major role in the inactivation and excretion of a great variety of both endogenous and exogenous compounds. A class of UDP-glycosyltransferases (UGTs) is involved in this process. Insect UGTs play important roles in several processes, including detoxication of substrates such as plant allelochemicals, cuticle formation, pigmentation, and olfaction. Identification and characterization of Bombyx mori UGT genes could provide valuable basic information for this important family and explain the detoxication mechanism and other processes in insects. Results Taking advantage of the newly assembled genome sequence, we performed a genome-wide analysis of the candidate UGT family in the silkworm, B. mori. Based on UGT signature and their similarity to UGT homologs from other organisms, we identified 42 putative silkworm UGT genes. Most of them are clustered on the silkworm chromosomes, with two major clusters on chromosomes 7 and 28, respectively. The phylogenetic analysis of these identified 42 UGT protein sequences revealed five major groups. A comparison of the silkworm UGTs with homologs from other sequenced insect genomes indicated that some UGTs are silkworm-specific genes. The expression patterns of these candidate genes were investigated with known expressed sequence tags (ESTs), microarray data, and RT-PCR method. In total, 36 genes were expressed in tissues examined and showed different patterns of expression profile, indicating that these UGT genes might have different functions. Conclusion B. mori possesses a largest insect UGT gene family characterized to date, including 42 genes. Phylogenetic analysis, genomic organization and expression profiles provide an overview for the silkworm UGTs and facilitate their functional studies in future.
Collapse
Affiliation(s)
- Fei-Fei Huang
- The Key Sericultural Laboratory of Agricultural Ministry, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, PR China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Zhao P, Bai L, Ma J, Zeng Y, Li L, Zhang Y, Lu C, Dai H, Wu Z, Li Y, Wu X, Chen G, Hao X, Shen Y, Deng Z, Floss HG. Amide N-glycosylation by Asm25, an N-glycosyltransferase of ansamitocins. ACTA ACUST UNITED AC 2008; 15:863-74. [PMID: 18721757 DOI: 10.1016/j.chembiol.2008.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/10/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022]
Abstract
Ansamitocins are potent antitumor maytansinoids produced by Actinosynnema pretiosum. Their biosynthesis involves the initial assembly of a macrolactam polyketide, followed by a series of postpolyketide synthase (PKS) modifications. Three ansamitocin glycosides were isolated from A. pretiosum and fully characterized structurally as novel ansamitocin derivatives, carrying a beta-D-glucosyl group attached to the macrolactam amide nitrogen in place of the N-methyl group. By gene inactivation and complementation, asm25 was identified as the N-glycosyltransferase gene responsible for the macrolactam amide N-glycosylation of ansamitocins. Soluble, enzymatically active Asm25 protein was obtained from asm25-expressing E. coli by solubilization from inclusion bodies. Its optimal reaction conditions, including temperature, pH, metal ion requirement, and Km/Kcat, were determined. Asm25 also showed broad substrate specificity toward other ansamycins and synthetic indolin-2-ones. To the best of our knowledge, this represents the first in vitro characterization of a purified antibiotic N-glycosyltransferase.
Collapse
Affiliation(s)
- Peiji Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fujiwara R, Nakajima M, Yamanaka H, Yokoi T. Key Amino Acid Residues Responsible for the Differences in Substrate Specificity of Human UDP-Glucuronosyltransferase (UGT)1A9 and UGT1A8. Drug Metab Dispos 2008; 37:41-6. [DOI: 10.1124/dmd.108.022913] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Uchaipichat V, Galetin A, Houston JB, Mackenzie PI, Williams JA, Miners JO. Kinetic Modeling of the Interactions between 4-Methylumbelliferone, 1-Naphthol, and Zidovudine Glucuronidation by UDP-Glucuronosyltransferase 2B7 (UGT2B7) Provides Evidence for Multiple Substrate Binding and Effector Sites. Mol Pharmacol 2008; 74:1152-62. [DOI: 10.1124/mol.108.048645] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Amino acid positions 69-132 of UGT1A9 are involved in the C-glucuronidation of phenylbutazone. Arch Biochem Biophys 2008; 478:75-80. [PMID: 18602884 DOI: 10.1016/j.abb.2008.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/12/2008] [Accepted: 06/17/2008] [Indexed: 11/20/2022]
Abstract
Phenylbutazone (PB) is known to be biotransformed to its O- and C-glucuronide. Recently, we reported that PB C-glucuronide formation is catalyzed by UGT1A9. Interestingly, despite UGT1A8 sharing high amino acid sequence identity with UGT1A9, UGT1A8 had no PB C-glucuronidating activity. In the present study, we constructed eight UGT1A9/UGT1A8 chimeras and evaluated which region is important for PB C-glucuronide formation. All of the chimeras and UGT1A8 and UGT1A9 had 7-hydroxy-(4-trifluoromethyl)coumarin (HFC) O-glucuronidating activity. The K(m) values for HFC glucuronidation of UGT1A8, UGT1A9 and their chimeras were divided into two types, UGT1A8 type (high K(m)) and UGT1A9 type (low K(m)), and these types were determined according to whether their amino acids at positions 69-132 were those of UGT1A8 or UGT1A9. Likewise, PB O-glucuronidating activity was also detected by all of the chimeras, and their K(m) values were divided into two types. On the contrary, PB C-glucuronidating activity was detected by UGT1A9((1-132))/1A8((133-286)), UGT1A9((1-212))/1A8((213-286)), UGT1A8((1-68))/1A9((69-286)), and UGT1A8((1-68))/1A9((69-132))/1A8((133-286)) chimeras. The region 1A9((69-132)) was common among chimeras having PB C-glucuronidating activity. Of interest is that UGT1A9((1-68))/1A8((69-132))/1A9((133-286)) had lost PB C-glucuronidation activity, but retained activities of PB and HFC O-glucuronidation. These results strongly suggested that amino acid positions 69-132 of UGT1A9 are responsible for chemoselectivity for PB and affinity to substrates such as PB and HFC.
Collapse
|
23
|
Patana AS, Kurkela M, Finel M, Goldman A. Mutation analysis in UGT1A9 suggests a relationship between substrate and catalytic residues in UDP-glucuronosyltransferases. Protein Eng Des Sel 2008; 21:537-43. [PMID: 18502788 DOI: 10.1093/protein/gzn030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) catalyze the transfer of glucuronic acid from UDP-glucuronic acid to endo- and xenobiotics in our body. UGTs belong to the GT1 family of glycosyltransferases and many GT1s use a serine protease-like catalytic mechanism in which an Asp-His pair deprotonates a hydroxyl on the aglycone for nucleophilic attack on the sugar donor. The pair in human UGTs could be H37 and either D143 or D148 (UGT1A9 numbering). However, H37 is not totally conserved, being replaced by either Pro or Leu in UGT1A4 and UGT2B10. We therefore investigated the role of H37, D143 and D148 in UGT1A9 by site-directed mutagenesis, activity and kinetic measurements with several substrates. The results suggest that H37 is not critical in N-glucuronidation, but is so in O-glucuronidation. The V(max) of the H37A mutant was much less affected in N- than O-glucuronidation, while the reverse was true for the Asp mutations, particularly D143A. We suggest that this is due to the opposing properties of O- and N- nucleophiles. O-nucleophiles require the histidine to deprotonate them so that they become effective nucleophiles, while N-nucleophiles develop a formal positive charge during the reaction (RNH(2)(+)-GlcA), and thus require a negatively charged residue to stabilize the transition state.
Collapse
Affiliation(s)
- Anne-Sisko Patana
- Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Biocenter 3, PO Box 65, Viikinkaari 1, FIN-00014 Helsinki, Finland
| | | | | | | |
Collapse
|
24
|
Engineering and kinetic characterisation of two glucosyltransferases from Arabidopsis thaliana. Biochimie 2008; 90:830-4. [DOI: 10.1016/j.biochi.2008.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 01/25/2008] [Indexed: 11/23/2022]
|
25
|
Conformational change of UGT1A1 by a novel missense mutation (p.L131P) causing Crigler-Najjar syndrome type I. J Pediatr Gastroenterol Nutr 2008; 46:308-11. [PMID: 18376249 DOI: 10.1097/mpg.0b013e3181638c8b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
26
|
Xiong Y, Patana AS, Miley MJ, Zielinska AK, Bratton SM, Miller GP, Goldman A, Finel M, Redinbo MR, Radominska-Pandya A. The first aspartic acid of the DQxD motif for human UDP-glucuronosyltransferase 1A10 interacts with UDP-glucuronic acid during catalysis. Drug Metab Dispos 2007; 36:517-22. [PMID: 18048489 DOI: 10.1124/dmd.107.016469] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
All UDP-glucuronosyltransferase enzymes (UGTs) share a common cofactor, UDP-glucuronic acid (UDP-GlcUA). The binding site for UDP-GlcUA is localized to the C-terminal domain of UGTs on the basis of amino acid sequence homology analysis and crystal structures of glycosyltransferases, including the C-terminal domain of human UGT2B7. We hypothesized that the (393)DQMDNAK(399) region of human UGT1A10 interacts with the glucuronic acid moiety of UDP-GlcUA. Using site-directed mutagenesis and enzymatic analysis, we demonstrated that the D393A mutation abolished the glucuronidation activity of UGT1A10 toward all substrates. The effects of the alanine mutation at Q(394),D(396), and K(399) on glucuronidation activities were substrate-dependent. Previously, we examined the importance of these residues in UGT2B7. Although D(393) (D(398) in UGT2B7) is similarly critical for UDP-GlcUA binding in both enzymes, the effects of Q(394) (Q(399) in UGT2B7) to Ala mutation on activity were significant but different between UGT1A10 and UGT2B7. A model of the UDP-GlcUA binding site suggests that the contribution of other residues to cosubstrate binding may explain these differences between UGT1A10 and UGT2B7. We thus postulate that D(393) is critical for the binding of glucuronic acid and that proximal residues, e.g., Q(394) (Q(399) in UGT2B7), play a subtle role in cosubstrate binding in UGT1A10 and UGT2B7. Hence, this study provides important new information needed for the identification and understanding of the binding sites of UGTs, a major step forward in elucidating their molecular mechanism.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Madina BR, Sharma LK, Chaturvedi P, Sangwan RS, Tuli R. Purification and characterization of a novel glucosyltransferase specific to 27β-hydroxy steroidal lactones from Withania somnifera and its role in stress responses. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1199-207. [PMID: 17704015 DOI: 10.1016/j.bbapap.2007.06.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/04/2007] [Accepted: 06/18/2007] [Indexed: 01/09/2023]
Abstract
Sterol glycosyltransferases catalyze the synthesis of diverse glycosterols in plants. Withania somnifera is a medically important plant, known for a variety of pharmacologically important withanolides and their glycosides. In this study, a novel 27beta-hydroxy glucosyltransferase was purified to near homogeneity from cytosolic fraction of W. somnifera leaves and studied for its biochemical and kinetic properties. The purified enzyme showed activity with UDP-glucose but not with UDP-galactose as sugar donor. It exhibited broad sterol specificity by glucosylating a variety of sterols/withanolides with beta-OH group at C-17, C-21 and C-27 positions. It transferred glucose to the alkanol at C-25 position of the lactone ring, provided an alpha-OH was present at C-17 in the sterol skeleton. A comparable enzyme has not been reported earlier from plants. The enzyme is distinct from the previously purified W. somnifera 3beta-hydroxy specific sterol glucosyltransferase and does not glucosylate the sterols at C-3 position; though it also follows an ordered sequential bisubstrate reaction mechanism, in which UDP-glucose and sterol are the first and second binding substrates. The enzyme activity with withanolides suggests its role in secondary metabolism in W. somnifera. Results on peptide mass fingerprinting showed its resemblance with glycuronosyltransferase like protein. The enzyme activity in the leaves of W. somnifera was enhanced following the application of salicylic acid. In contrast, it decreased rapidly on exposure of the plants to heat shock, suggesting functional role of the enzyme in biotic and abiotic stresses.
Collapse
|
28
|
Kubota T, Lewis BC, Elliot DJ, Mackenzie PI, Miners JO. Critical Roles of Residues 36 and 40 in the Phenol and Tertiary Amine Aglycone Substrate Selectivities of UDP-Glucuronosyltransferases 1A3 and 1A4. Mol Pharmacol 2007; 72:1054-62. [PMID: 17636046 DOI: 10.1124/mol.107.037952] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Despite high sequence identity, UGT1A3 and UGT1A4 differ in terms of substrate selectivity. UGT1A3 glucuronidates the planar phenols 1-naphthol (1-NP) and 4-methylumbelliferone (4-MU), whereas UGT1A4 converts the tertiary amines lamotrigine (LTG) and trifluoperazine (TFP) to quaternary ammonium glucuronides. Residues 45 to 154 (which incorporate 21 of the 35 amino acid differences) and 45 to 535 were exchanged between UGT1A3 and UGT1A4 to generate UGT1A3-4((45-535)), UGT1A3-4((45-154))-3, UGT1A4-3((45-535)), and UGT1A4-3((45-154))-4 hybrid proteins. Although differences in kinetic parameters were observed between the parent enzymes and chimeras, UGT1A4-3((45-535)) and UGT1A4-3((45-154))-4 [but not UGT1A3-4((45-535)) and UGT1A3-4((45-154))-3] retained the capacity to glucuronidate LTG and TFP. Likewise, UGT1A3-4((45-535)) and UGT1A3-4((45-154))-3 retained the capacity to glucuronidate 1-NP and 4-MU, but UGT1A4-3((45-535)) and UGT1A4-3((45-154))-4 exhibited low or absent activity. Within the first 44 residues, UGT1A3 and UGT1A4 differ in sequence at positions 36 and 40. "Reciprocal" mutagenesis was performed to generate the UGT1A3(I36T), UGT1A3(H40P), UGT1A4(T36I), and UGT1A4 (P40H) mutants. The T36I and P40H mutations in UGT1A4 reduced in vitro clearances for LTG and TFP glucuronidation by >90%. Conversely, the I36T and H40P mutations in UGT1A3 reduced the in vitro clearances for 1-NP and 4-MU glucuronidation by >90%. Introduction of the single H40P mutation in UGT1A3 conferred LTG and TFP glucuronidation, whereas the single T36I mutation in UGT1A4 conferred 1-NP and 4-MU glucuronidation. Thus, residues 36 and 40 of UGT1A3 and UGT1A4 are pivotal for the respective selectivities of these enzymes toward planar phenols and tertiary amines, although other regions of the proteins influence binding affinity and/or turnover.
Collapse
Affiliation(s)
- Takahiro Kubota
- Department of Clinical Pharmacology, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| | | | | | | | | |
Collapse
|
29
|
Patana AS, Kurkela M, Goldman A, Finel M. The human UDP-glucuronosyltransferase: identification of key residues within the nucleotide-sugar binding site. Mol Pharmacol 2007; 72:604-11. [PMID: 17578897 DOI: 10.1124/mol.107.036871] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) play important roles in the metabolism, detoxification,and clearance of many different xenobiotics, including drugs and endogenous compounds. Structural information about these membrane-bound enzymes of the endoplasmic reticulum is limited. We do not know the identity or the location of the key residues for catalysis and binding of the aglycone substrate and the cosubstrate UDP-glucuronic acid (UDPGA). One suggestion was that His371 (UGT1A6 numbering) is the "catalytic base" that deprotonates the phenol group. We have now re-examined this hypothesis by analyzing the activities of the corresponding mutants, 6H371A (in UGT1A6) and the 9H369A (in UGT1A9). The K(m) values of mutant 6H371A for scopoletin and UDPGA were higher by 4- and 11-fold, respectively, than in UGT1A6. The K(d) for the enzyme-UDPGA complex, derived from bisubstrate kinetics, was about 9-fold higher in 6H371A than in UGT1A6, indicating severely impaired cosubstrate binding by the mutant. The effect of mutation on V(max) was large in UGT1A6 but variable in UGT1A9, suggesting that His371 does not play the catalytic role previously hypothesized. In both UGTs, the E379A mutation (UGT1A6 numbering) had an effect similar to that of the H371A mutations. A homology model of the putative UDPGA binding region of UGT1A6 was built using distant homologous protein structures from the "GT1 class." The combined results of activity determinations, kinetic analyses, and modeling strongly suggest that His371 and Glu379 are directly involved in UDPGA binding but are not the general acid or general base.
Collapse
Affiliation(s)
- Anne-Sisko Patana
- Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
30
|
Lewis BC, Mackenzie PI, Elliot DJ, Burchell B, Bhasker CR, Miners JO. Amino terminal domains of human UDP-glucuronosyltransferases (UGT) 2B7 and 2B15 associated with substrate selectivity and autoactivation. Biochem Pharmacol 2007; 73:1463-73. [PMID: 17223084 DOI: 10.1016/j.bcp.2006.12.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 12/18/2006] [Accepted: 12/18/2006] [Indexed: 11/28/2022]
Abstract
Despite the important role of UDP-glucuronosyltransferases (UGT) in the metabolism of drugs, environmental chemicals and endogenous compounds, the structural features of these enzymes responsible for substrate binding and selectivity remain poorly understood. Since UGT2B7 and UGT2B15 exhibit distinct, but overlapping, substrate selectivities, UGT2B7-UGT2B15 chimeras were constructed here to identify substrate binding domains. A UGT2B7-15-7 chimera that incorporated amino acids 61-194 of UGT2B15 glucuronidated the UGT2B15 substrates testosterone and phenolphthalein, but not the UGT2B7 substrates zidovudine and 11alpha-hydroxyprogesterone. Derived apparent K(m) values for testosterone and phenolphthalein glucuronidation by UGT2B7-15((61-194))-7 were similar in magnitude to those determined for UGT2B15. Moreover, glucuronidation of the non-selective substrate 4-methylumbelliferone (4MU) by UGT2B7-15((61-194))-7 and UGT2B15 followed Michaelis-Menten and weak substrate inhibition kinetics, respectively, whereas 4MU glucuronidation by UGT2B7 exhibited sigmoidal kinetics characteristic of autoactivation. Six UGT2B7-15-7 chimeras that incorporated smaller domains of UGT2B15 were subsequently generated. Of these, UGT2B7-15((61-157))-7, UGT2B7-15((91-157))-7 and UGT2B7-15((61-91))-7 glucuronidated 4MU, but activity towards the other substrates investigated here was not detected. Like UGT2B7, the UGT2B7-15((61-157))-7, UGT2B7-15((91-157))-7 and UGT2B7-15((61-91))-7 chimeras exhibited sigmoidal 4MU glucuronidation kinetics. The sigmoidal 4MU kinetic data were well modelled using both the Hill equation and the expression for a two-site model that assumes the simultaneous binding of two substrate molecules at equivalent sites. It may be concluded that residues 61-194 of UGT2B15 are responsible for substrate binding and for conferring the unique substrate selectivity of UGT2B15, while residues 158-194 of UGT2B7 appear to facilitate the binding of multiple 4MU molecules within the active site.
Collapse
Affiliation(s)
- Benjamin C Lewis
- Department of Clinical Pharmacology, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
31
|
Fujiwara R, Nakajima M, Yamanaka H, Nakamura A, Katoh M, Ikushiro SI, Sakaki T, Yokoi T. Effects of Coexpression of UGT1A9 on Enzymatic Activities of Human UGT1A Isoforms. Drug Metab Dispos 2007; 35:747-57. [PMID: 17293379 DOI: 10.1124/dmd.106.014191] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We established stable HEK293 cell lines expressing double isoforms, UGT1A1 and UGT1A9, UGT1A4 and UGT1A9, or UGT1A6 and UGT1A9, as well as stable cell lines expressing each single isoform. To analyze the protein-protein interaction between the UGT1As, we investigated the thermal stability and resistance to detergent. UGT1A9 uniquely demonstrated thermal stability, which was enhanced in the presence of UDP-glucuronic acid (>90% of control), and resistance to detergent. Interestingly, UGT1A1, UGT1A4, and UGT1A6 acquired thermal stability and resistance to detergent by the coexpression of UGT1A9. An immunoprecipitation assay revealed that UGT1A6 and UGT1A9 interact in the double expression system. Using the single expression systems, it was confirmed that estradiol 3-O-glucuronide, imipramine N-glucuronide, serotonin O-glucuronide, and propofol O-glucuronide formations are specific for UGT1A1, UGT1A4, UGT1A6, and UGT1A9, respectively. By kinetic analyses, we found that the coexpressed UGT1A9 significantly affected the kinetics of estradiol 3-O-glucuronide formation (decreased Vmax), imipramine N-glucuronide formation (increased Km and Vmax), and serotonin O-glucuronide formation (decreased Vmax) catalyzed by UGT1A1, UGT1A4, and UGT1A6, respectively. On the other hand, the coexpressed UGT1A1 increased Km and decreased the Vmax of the propofol O-glucuronide formation catalyzed by UGT1A9. The coexpressed UGT1A4 and UGT1A6 also increased the Vmax of the propofol O-glucuronide formation by UGT1A9. This is the first study showing that human UGT1A isoforms interact with other isoforms to change the enzymatic characteristics.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Barre L, Fournel-Gigleux S, Finel M, Netter P, Magdalou J, Ouzzine M. Substrate specificity of the human UDP-glucuronosyltransferase UGT2B4 and UGT2B7. Identification of a critical aromatic amino acid residue at position 33. FEBS J 2007; 274:1256-64. [PMID: 17263731 DOI: 10.1111/j.1742-4658.2007.05670.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The human UDP-glucuronosyltransferase (UGT) isoforms UGT2B4 and UGT2B7 play a major role in the detoxification of bile acids, steroids and phenols. These two isoforms present distinct but overlapping substrate specificity, sharing common substrates such as the bile acid hyodeoxycholic acid (HDCA) and catechol-estrogens. Here, we show that in UGT2B4, substitution of phenylalanine 33 by leucine suppressed the activity towards HDCA, and impaired the glucuronidation of several substrates, including 4-hydroxyestrone and 17-epiestriol. On the other hand, the substrate specificity of the mutant UGT2B4F33Y, in which phenylalanine was replaced by tyrosine, as found at position 33 of UGT2B7, was similar to wild-type UGT2B4. In the case of UGT2B7, replacement of tyrosine 33 by leucine strongly reduced the activity towards all the tested substrates, with the exception of 17-epiestriol. In contrast, mutation of tyrosine 33 by phenylalanine exhibited similar or even somewhat higher activities than wild-type UGT2B7. Hence, the results strongly indicated that the presence of an aromatic residue at position 33 is important for the activity and substrate specificity of both UGT2B4 and UGT2B7.
Collapse
Affiliation(s)
- Lydia Barre
- UMR 7561 CNRS, Université Henri Poincaré-Nancy I, Faculté de Médecine, F-54505 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
33
|
Madina BR, Sharma LK, Chaturvedi P, Sangwan RS, Tuli R. Purification and physico-kinetic characterization of 3beta-hydroxy specific sterol glucosyltransferase from Withania somnifera (L) and its stress response. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:392-402. [PMID: 17293176 DOI: 10.1016/j.bbapap.2006.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 12/25/2006] [Accepted: 12/26/2006] [Indexed: 11/16/2022]
Abstract
Sterol glycosyltransferases catalyze the synthesis of diverse glycosteroids in plants, leading to a change in their participation in cellular metabolism. Withania somnifera is a medically important plant, known for a variety of pharmacologically important withanolides and their glycosides. In this study, a cytosolic sterol glucosyltransferase was purified 3406 fold to near homogeneity from W. somnifera leaves and studied for its biochemical and kinetic properties. The purified enzyme was active with UDP-glucose but not with UDP-galactose as sugar donor. It exhibited broad sterol specificity by glucosylating a variety of sterols and phytosterols with 3beta-OH group. It showed a low level of activity with flavonoids and isoflavonoids. The enzyme gave maximum K(cat)/K(m) value (0.957) for 24-methylenecholesterol that resembles aglycone structure of pharmacologically important sitoindosides VII and VIII from W. somnifera. The enzyme follows ordered sequential bisubstrate mechanism of reaction, in which UDP-glucose and sterol are the first and second binding substrates. This is the first detailed kinetic study on purified plant cytosolic sterol glucosyltransferases. Results on peptide mass fingerprinting and substrate specificity suggested that the enzyme belongs to the family of secondary metabolite glucosylating glucosyltransferases. The enzyme activity exhibited a rapid in vivo response to high temperature and salicylic acid treatment of plants, suggesting its physiological role in abiotic and biotic stress.
Collapse
Affiliation(s)
- Bhaskara Reddy Madina
- National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, (U.P.) India
| | | | | | | | | |
Collapse
|
34
|
Operaña TN, Tukey RH. Oligomerization of the UDP-glucuronosyltransferase 1A proteins: homo- and heterodimerization analysis by fluorescence resonance energy transfer and co-immunoprecipitation. J Biol Chem 2006; 282:4821-4829. [PMID: 17179145 DOI: 10.1074/jbc.m609417200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are membrane-bound proteins localized to the endoplasmic reticulum and catalyze the formation of beta-d-glucopyranosiduronic acids (glucuronides) using UDP-glucuronic acid and acceptor substrates such as drugs, steroids, bile acids, xenobiotics, and dietary nutrients. Recent biochemical evidence indicates that the UGT proteins may oligomerize in the membrane, but conclusive evidence is still lacking. In the present study, we have used fluorescence resonance energy transfer (FRET) to study UGT1A oligomerization in live cells. This technique demonstrated that UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, and UGT1A10 self-oligomerize (homodimerize). Heterodimer interactions were also explored, and it was determined that UGT1A1 was capable of binding with UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, and UGT1A10. In addition to the in vivo FRET analysis, UGT1A protein-protein interactions were demonstrated through co-immunoprecipitation experiments. Co-expression of hemagglutinin-tagged and cyan fluorescent protein-tagged UGT1A proteins, followed by immunoprecipitation with anti-hemagglutinin beads, illustrated the potential of each UGT1A protein to homodimerize. Co-immunoprecipitation results also confirmed that UGT1A1 was capable of forming heterodimer complexes with all of the UGT1A proteins, corroborating the FRET results in live cells. These preliminary studies suggest that the UGT1A family of proteins form oligomerized complexes in the membrane, a property that may influence function and substrate selectivity.
Collapse
Affiliation(s)
- Theresa N Operaña
- Departments of Chemistry & Biochemistry and Pharmacology, Laboratory of Environmental Toxicology, University of California, San Diego, La Jolla, California 92093
| | - Robert H Tukey
- Departments of Chemistry & Biochemistry and Pharmacology, Laboratory of Environmental Toxicology, University of California, San Diego, La Jolla, California 92093.
| |
Collapse
|
35
|
Khymenets O, Joglar J, Clapés P, Parella T, Covas MI, de la Torre R. Biocatalyzed Synthesis and Structural Characterization of Monoglucuronides of Hydroxytyrosol, Tyrosol, Homovanillic Alcohol, and 3-(4′-Hydroxyphenyl)propanol. Adv Synth Catal 2006. [DOI: 10.1002/adsc.200606221] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Luukkanen L, Taskinen J, Kurkela M, Kostiainen R, Hirvonen J, Finel M. KINETIC CHARACTERIZATION OF THE 1A SUBFAMILY OF RECOMBINANT HUMAN UDP-GLUCURONOSYLTRANSFERASES. Drug Metab Dispos 2005; 33:1017-26. [PMID: 15802387 DOI: 10.1124/dmd.105.004093] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The initial glucuronidation rates were determined for eight recombinant human UDP-glucuronosyltransferases (UGTs) of the 1A subfamily, and the bisubstrate kinetics and inhibition patterns were analyzed. At low substrate concentrations, the reactions followed general ternary complex kinetics, whereas at higher concentrations of both substrates, the reactions were mostly characterized by ternary complex kinetics with substrate inhibition. The glucuronidation of entacapone by UGT1A9 was inhibited by 1-naphthol in a competitive fashion, with respect to entacapone, and an uncompetitive fashion, with respect to UDP-glucuronic acid (UDPGA). Its inhibition by UDP, on the other hand, was noncompetitive with respect to entacapone and competitive with respect to UDPGA. These inhibition patterns are compatible with a compulsory ordered bi bi mechanism in which UDPGA is the first-binding substrate. Despite the identical primary structure of the C-terminal halves of the UGT1A isoforms, there were marked differences in the respective K(m) values for UDPGA, ranging from 52 microM for UGT1A6 to 1256 microM for UGT1A8. Relative specificity constants were calculated for the eight UGT1A isoforms with 1-hydroxypyrene, 4-nitrophenol, scopoletin, 4-methylumbelliferone, and entacapone as aglycone substrates. The results demonstrated that seven of the UGT1A isoforms are capable of conjugating phenolic substrates with similar highest k(cat) values, and UGT1A4 has a lower relative turnover rate. The highest specificity constants were obtained for 1-hydroxypyrene, even with UGT1A6, which has been regarded as a specific isoform for small planar phenols. A k(cat) value of 1.9 s(-1) was calculated for the glucuronidation of scopoletin by purified UGT1A9.
Collapse
Affiliation(s)
- Leena Luukkanen
- University of Helsinki, Faculty of Pharmacy, Division of Pharmaceutical Chemistry, FIN-00014 Finland.
| | | | | | | | | | | |
Collapse
|
37
|
Ouzzine M, Barré L, Netter P, Magdalou J, Fournel-Gigleux S. The human UDP-glucuronosyltransferases: structural aspects and drug glucuronidation. Drug Metab Rev 2004; 35:287-303. [PMID: 14705862 DOI: 10.1081/dmr-120026397] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mohamed Ouzzine
- UMR 7561 CNRS-University Henri Poincaré-Nancy I, Faculté de Médecine, Vandoeuvre-lés-Nancy, France.
| | | | | | | | | |
Collapse
|
38
|
Sparks R, Ulrich CM, Bigler J, Tworoger SS, Yasui Y, Rajan KB, Porter P, Stanczyk FZ, Ballard-Barbash R, Yuan X, Lin MG, McVarish L, Aiello EJ, McTiernan A. UDP-glucuronosyltransferase and sulfotransferase polymorphisms, sex hormone concentrations, and tumor receptor status in breast cancer patients. Breast Cancer Res 2004; 6:R488-98. [PMID: 15318931 PMCID: PMC549165 DOI: 10.1186/bcr818] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 05/11/2004] [Accepted: 05/20/2004] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) enzymes are involved in removing sex hormones from circulation. Polymorphic variation in five UGT and SULT genes - UGT1A1 ((TA)6/(TA)7), UGT2B4 (Asp458Glu), UGT2B7 (His268Tyr), UGT2B15 (Asp85Tyr), and SULT1A1 (Arg213His)--may be associated with circulating sex hormone concentrations, or the risk of an estrogen receptor-negative (ER-) or progesterone receptor-negative (PR-) tumor. METHODS Logistic regression analysis was used to estimate the odds ratios of an ER- or PR- tumor associated with polymorphisms in the genes listed above for 163 breast cancer patients from a population-based cohort study of women in western Washington. Adjusted geometric mean estradiol, estrone, and testosterone concentrations were calculated within each UGT and SULT genotype for a subpopulation of postmenopausal breast cancer patients not on hormone therapy 2-3 years after diagnosis (n = 89). RESULTS The variant allele of UGT1A1 was associated with reduced risk of an ER- tumor (P for trend = 0.03), and variants of UGT2B15 and SULT1A1 were associated with non-statistically significant risk reductions. There was some indication that plasma estradiol and testosterone concentrations varied by UGT2B15 and SULT1A1 genotypes; women with the UGT2B15 Asp/Tyr and Tyr/Tyr genotypes had higher concentrations of estradiol than women with the Asp/Asp genotype (P = 0.004). Compared with women with the SULT1A1 Arg/Arg and Arg/His genotypes, women with the His/His genotype had elevated concentrations of testosterone (P = 0.003). CONCLUSIONS The risk of ER- breast cancer tumors may vary by UGT or SULT genotype. Further, plasma estradiol and testosterone concentrations in breast cancer patients may differ depending on some UGT and SULT genotypes.
Collapse
Affiliation(s)
- Rachel Sparks
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Cornelia M Ulrich
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Jeannette Bigler
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Shelley S Tworoger
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Yutaka Yasui
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kumar B Rajan
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Peggy Porter
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Rachel Ballard-Barbash
- Applied Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland, USA
| | - Xiaopu Yuan
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ming Gang Lin
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lynda McVarish
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Erin J Aiello
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Group Health Cooperative, Center for Health Studies, Seattle, Washington, USA
| | - Anne McTiernan
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
39
|
Kurkela M, García-Horsman JA, Luukkanen L, Mörsky S, Taskinen J, Baumann M, Kostiainen R, Hirvonen J, Finel M. Expression and characterization of recombinant human UDP-glucuronosyltransferases (UGTs). UGT1A9 is more resistant to detergent inhibition than other UGTs and was purified as an active dimeric enzyme. J Biol Chem 2003; 278:3536-44. [PMID: 12435745 DOI: 10.1074/jbc.m206136200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eight human liver UDP-glucuronosyltransferases (UGTs) were expressed in baculovirus-infected insect cells as fusion proteins carrying a short C-terminal extension that ends with 6 histidine residues (His tag). The activity of recombinant UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT2B4, UGT2B7, and UGT2B15 was almost fully inhibited by 0.2% Triton X-100. In the case of UGT1A9, however, glucuronidation of alpha-naphthol and scopoletin was resistant to such inhibition, whereas glucuronidation of entacapone and several other aglycones was sensitive. His-tagged UGT1A9 was purified by immobilized metal-chelating chromatography (IMAC). Purified UGT1A9 glucuronidated scopoletin at a high rate, whereas its glucuronidation activity toward entacapone was low and largely dependent on phospholipid addition. Recombinant UGT1A9 in which the His tag was replaced by hemagglutinin antigenic peptide (HA tag) was also prepared. Insect cells were co-infected with baculoviruses encoding both HA-tagged and His-tagged UGT1A9. Membranes from the co-infected cells, or a mixture of membranes from separately infected cells, were subjected to detergent extraction and IMAC, and the resulting fractions were analyzed for the presence of each type of UGT1A9 using tag-specific antibodies. In the case of separate infection, the HA-tagged UGT1A9 did not bind to the column. When co-infected with His-tagged UGT1A9, however, part of the HA-tagged enzyme was bound to the column and was eluted by imidazole concentration gradient together with the His-tagged UGT1A9, suggesting the formation of stable dimers that contain one His-tagged and one HA-tagged UGT1A9 monomers.
Collapse
Affiliation(s)
- Mika Kurkela
- Viikki Drug Discovery Technology Center, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Coffman BL, Kearney WR, Goldsmith S, Knosp BM, Tephly TR. Opioids bind to the amino acids 84 to 118 of UDP-glucuronosyltransferase UGT2B7. Mol Pharmacol 2003; 63:283-8. [PMID: 12527799 DOI: 10.1124/mol.63.2.283] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The UDP-glucuronosyltransferase UGT2B7 is an important human UGT isoform that catalyzes the conjugation of many endogenous and exogenous compounds, among them opioids, resulting in the formation of D-glucuronides. The binding site of the aglycone is located in the N-terminal half of the protein. Using NMR analysis, we demonstrate that the opioid binding site in UGT2B7 is within the 84 to 118 N-terminal amino acids. Three maltose binding protein-UGT2B7 fusion proteins, 2B7F3 and 2B7F4 incorporating the amino acids 24 to 118 and 24 to 96 of UGT2B7, respectively, and 2B7F5 incorporating amino acids 84 to 118 of UGT2B7 were expressed in Escherichia coli and purified by affinity chromatography. NMR analysis showed that morphine was bound to the fusion protein 2B7F3 with a K(D) value similar to the K(D) values obtained for the previously produced fusion proteins, which included amino acids 24 to 180. Morphine did not bind to 2B7F4, but it did bind to 2B7F5. Both NMR 1-D spectra and NOESY experiments indicated that the 2B7F5 protein was mediating magnetization transfer within the morphine. These results allowed us to predict and model a binding site within the amino acids 96 to 101 of UGT2B7. A mutant fusion protein 2B7F3 with the substitution D99A was produced, and the NMR spectroscopy analysis of the protein supported the model. A marked reduction of morphine binding was observed when the charged aspartate was substituted with alanine.
Collapse
Affiliation(s)
- Birgit L Coffman
- Department of Pharmacology, College of Medicine, and ITS Research Technologies, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
41
|
Luque T, O'Reilly DR. Functional and phylogenetic analyses of a putative Drosophila melanogaster UDP-glycosyltransferase gene. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1597-1604. [PMID: 12429111 DOI: 10.1016/s0965-1748(02)00080-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Glucosidation plays a major role in the inactivation and excretion of a great variety of both endogenous and exogenous compounds. The recent determination of the complete genome sequence of Drosophila melanogaster has revealed the presence of over 30 putative UDP-glucosyltransferase (UGT) genes in this organism. We report here the molecular cloning and functional characterisation of one of these genes, named DmUgt37a1. The predicted protein comprises 525 amino acids and has about 30% overall amino acid identity with vertebrate members of the UGT family. The phylogenetic relationships of DmUgt37a1 with other members of the UGT family from D. melanogaster are discussed. DmUgt37a1 was expressed in lepidopteran insect cells and the ability of the enzyme to conjugate 38 potential substrates belonging to diverse chemical groups was assessed using UDP-glucose as sugar-donor. However, no activity was detected with any compound under the conditions used and thus, the substrate specificity of the enzyme remains unknown.
Collapse
Affiliation(s)
- Teresa Luque
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Imperial College Road, SW7 2AZ, London, UK.
| | | |
Collapse
|
42
|
Leung YK, Ho JW. Induction of UDP-glucuronosyltransferase 1A8 mRNA by 3-methylcholanthene in rat hepatoma cells. Biochem Pharmacol 2002; 63:767-75. [PMID: 11992647 DOI: 10.1016/s0006-2952(01)00902-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) catalyze the glucuronidation of a broad spectrum of endobiotic and xenobiotic compounds, which leads to the excretion of hydrophilic glucuronides via bile or urine. By a mechanism of exon sharing, isoforms of the UGT1 family are made from the complex gene locus by an alternative combination of one of the unique first exons with the other commonly used exons. This study demonstrates that the expression of the UGT1 gene UGT1A6, 1A7 and 1A8 is regulated at the transcriptional level by 3-methylcholanthene (3-MC) in rat hepatoma H-4-II-E cells. Following 3-MC treatment, there is a gradual increase in the amount of UGT1A6 and UGT1A7 mRNA to the maximum levels after 16hr of treatment. The induction effect of 3-MC led to the expression of UGT1A8 which has not been reported before. This induction is suppressed by the RNA synthesis inhibitor actinomycin D, indicating that the inducer does not act at the level of mRNA stabilization. Northern blot analysis showed a 4-fold increase in UGT1A8 transcription after treatment with 3-MC. The prolonged treatment with the protein synthesis inhibitor did not affect the induction process. The results provide experimental evidence for a transcriptional control of UGT1A8 synthesis. Transcriptional activation of the UGT1A8 by 3-MC does not appear to require de novo protein synthesis. 3-MC dependent activation is probably the result of a direct action of the compound on the aryl hydrocarbon receptor complex (AhR).
Collapse
Affiliation(s)
- Yuet Kin Leung
- Department of Biochemistry and Environmental Science Programme, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | |
Collapse
|
43
|
Luque T, Okano K, O'Reilly DR. Characterization of a novel silkworm (Bombyx mori) phenol UDP-glucosyltransferase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:819-25. [PMID: 11846783 DOI: 10.1046/j.0014-2956.2001.02723.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sugar conjugation is a major pathway for the inactivation and excretion of both endogenous and exogenous compounds. We report here the molecular cloning and functional characterization of a phenol UDP-glucosyltransferase (UGT) from the silkworm, Bombyx mori, which was named BmUGT1. The complete cDNA clone is 1.6 kb, and the gene is expressed in several tissues of fifth-instar larvae, including fat body, midgut, integument, testis, silk gland and haemocytes. The predicted protein comprises 520 amino acids and has approximately 30% overall amino-acid identity with other members of the UGT family. The most conserved region of the protein is the C-terminal half, which has been implicated in binding the UDP-sugar. BmUGT1 was expressed in insect cells using the baculovirus expression system, and a range of compounds belonging to diverse chemical groups were assessed as potential substrates for the enzyme. The expressed enzyme had a wide substrate specificity, showing activity with flavonoids, coumarins, terpenoids and simple phenols. These results support a role for the enzyme in detoxication processes, such as minimizing the harmful effects of ingested plant allelochemicals. This work represents the first instance where an insect ugt gene has been associated with a specific enzyme activity.
Collapse
Affiliation(s)
- Teresa Luque
- Department of Biology, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK
| | | | | |
Collapse
|
44
|
Ghosh SS, Sappal BS, Kalpana GV, Lee SW, Chowdhury JR, Chowdhury NR. Homodimerization of human bilirubin-uridine-diphosphoglucuronate glucuronosyltransferase-1 (UGT1A1) and its functional implications. J Biol Chem 2001; 276:42108-15. [PMID: 11546782 DOI: 10.1074/jbc.m106742200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genetic lesions of bilirubin-uridine-diphosphoglucuronate glucuronosyltransferase-1 (UGT1A1) completely or partially abolish hepatic bilirubin glucuronidation, causing Crigler-Najjar syndrome type 1 or 2, respectively. Clinical observations indicate that some mutant forms of human UGT1A1 (hUGT1A1) may be dominant-negative, suggesting their interaction with the wild-type enzyme. To evaluate intermolecular interaction of hUGT1A1, Gunn rat fibroblasts were stably transduced with hUGT1A1 cDNA. Gel permeation chromatography of solubilized microsomes suggested dimerization of hUGT1A1 in solution. Nearest-neighbor cross-linking analysis indicated that, within microsomal membranes, hUGT1A1 dimerized more efficiently at pH 7.4 than at pH 9. Two-hybrid analysis in yeast and mammalian systems demonstrated positive interaction of hUGT1A1 with itself, but not with another UGT isoform, human UGT1A6, which differs only in the N-terminal domain. Dimerization was abolished by deletion of the membrane-embedded helix from the N-terminal domain of hUGT1A1, but not by substitution of several individual amino acid residues or partial deletion of the C-terminal domain. A C127Y substitution abolished UGT1A1 activity, but not its dimerization. Coexpression of mutagenized and wild-type hUGT1A1 in COS-7 cells showed that the mutant form markedly suppressed the catalytic activity of wild-type hUGT1A1. Homodimerization of hUGT1A1 may explain the dominant-negative effect of some mutant forms of the enzyme.
Collapse
Affiliation(s)
- S S Ghosh
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
45
|
Hoffmeister D, Ichinose K, Bechthold A. Two sequence elements of glycosyltransferases involved in urdamycin biosynthesis are responsible for substrate specificity and enzymatic activity. CHEMISTRY & BIOLOGY 2001; 8:557-67. [PMID: 11410375 DOI: 10.1016/s1074-5521(01)00039-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Two deoxysugar glycosyltransferases (GTs), UrdGT1b and UrdGT1c, involved in urdamycin biosynthesis share 91% identical amino acids. However, the two GTs show different specificities for both nucleotide sugar and acceptor substrate. Generally, it is proposed that GTs are two-domain proteins with a nucleotide binding domain and an acceptor substrate site with the catalytic center in an interface cleft between these domains. Our work aimed at finding out the region responsible for determination of substrate specificities of these two urdamycin GTs. RESULTS A series of 10 chimeric GT genes were constructed consisting of differently sized and positioned portions of urdGT1b and urdGT1c. Gene expression experiments in host strains Streptomyces fradiae Ax and XTC show that nine of 10 chimeric GTs are still functional, with either UrdGT1b- or UrdGT1c-like activity. A 31 amino acid region (aa 52-82) located close to the N-terminus of these enzymes, which differs in 18 residues, was identified to control both sugar donor and acceptor substrate specificity. Only one chimeric gene product of the 10 was not functional. Targeted stepwise alterations of glycine 226 (G226R, G226S, G226SR) were made to reintroduce residues conserved among streptomycete GTs. Alterations G226S and G226R restored a weak activity, whereas G226SR showed an activity comparable with other functional chimeras. CONCLUSIONS A nucleotide sugar binding motif is present in the C-terminal moiety of UrdGT1b and UrdGT1c from S. fradiae. We could demonstrate that it is an N-terminal section that determines specificity for the nucleotide sugar and also the acceptor substrate. This finding directs the way towards engineering this class of streptomycete enzymes for antibiotic derivatization applications. Amino acids 226 and 227, located outside the putative substrate binding site, might be part of a larger protein structure, perhaps a solvent channel to the catalytic center. Therefore, they could play a role in substrate accessibility to it.
Collapse
Affiliation(s)
- D Hoffmeister
- Albert-Ludwigs-Universität Freiburg, Pharmazeutische Biologie, Stefan-Meier-Strasse, Germany
| | | | | |
Collapse
|
46
|
Coffman BL, Kearney WR, Green MD, Lowery RG, Tephly TR. Analysis of Opioid Binding to UDP-Glucuronosyltransferase 2B7 Fusion Proteins Using Nuclear Magnetic Resonance Spectroscopy. Mol Pharmacol 2001; 59:1464-9. [PMID: 11353807 DOI: 10.1124/mol.59.6.1464] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The UDP-glucuronosyltransferase UGT2B7 is an important human UGT isoform that catalyzes the conjugation of many endogenous and exogenous compounds, among them opioids, resulting in the formation of D-glucuronides. The binding site of the aglycone is located in the N-terminal half of the protein. In this study, we demonstrate that the opioid binding site in UGT2B7 is within the first 119 amino-terminal amino acids. Two maltose binding protein fusion proteins, 2B7F1 and 2B7F2, incorporating the first 157 or 119 amino acids, respectively, of UGT2B7 were expressed in Escherichia coli and purified by affinity chromatography. NMR spectroscopy using one-dimensional spectra, the inversion recovery method, and the transferred nuclear Overhauser effect spectroscopy was used to study the binding properties of opioids to the fusion proteins. Morphine was found to bind at a single site within the first 119 amino acids and to undergo a conformational change upon binding, as demonstrated by transferred nuclear Overhauser effect spectroscopy. Dissociation constants were obtained for morphine, naloxone, buprenorphine, and zidovudine, and the results were confirmed by equilibrium dialysis determinations. Two possible opioid binding sites, based on the nearest neighbors from opioid binding to the micro-receptor and to cytochrome 2D6, are proposed.
Collapse
Affiliation(s)
- B L Coffman
- University of Iowa, Department of Pharmacology, College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
47
|
Ouzzine M, Antonio L, Burchell B, Netter P, Fournel-Gigleux S, Magdalou J. Importance of histidine residues for the function of the human liver UDP-glucuronosyltransferase UGT1A6: evidence for the catalytic role of histidine 370. Mol Pharmacol 2000; 58:1609-15. [PMID: 11093802 DOI: 10.1124/mol.58.6.1609] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human UDP-glucuronosyltransferase isoform UGT1A6 catalyzes the nucleophilic attack of phenolic xenobiotics on glucuronic acid, leading to the formation of water-soluble glucuronides. Based on the irreversible inhibition of the enzyme activity by the histidyl-selective reagent diethyl pyrocarbonate (DEPC), histidine was suggested to play a key role in the glucuronidation reaction. Therefore, the role of four strictly conserved histidine residues (His38, His361, His370, and His485) in the glucuronidation of 4-methylumbelliferone, as reporter substrate, was examined using site-directed mutagenesis. For this purpose, stable heterologous expression of wild-type and mutant UGT1A6 was achieved in the yeast Pichia pastoris. Replacement of histidine residues by alanine or glutamine led to fully inactive H38A, H38Q, and H485A mutants. Substitution of His361 by alanine affected the interaction of the enzyme with the cosubstrate, as indicated by a 4-fold increase in the K(m) value toward UDP-glucuronic acid. Interestingly, H370A mutant presented a severely impaired catalytic efficiency (with a V(max) value approximately 5% that of the wild-type), whereas conservative substitution of His370 by glutamine (H370Q) led to a significant restoration of activity. Whereas H361A was inactivated by DEPC as the wild-type enzyme, this chemical reagent only produced a minor effect on either H370Q or H370A mutant, providing evidence that His370 is probably the reactive histidine residue targeted by DEPC. The dramatic changes in catalytic efficiency on substitution of His370 by alanine and the ability of glutamine to function in place of histidine along with a weak sensitivity of these mutants to DEPC strongly suggest that His370 plays a catalytic role in the glucuronidation reaction.
Collapse
Affiliation(s)
- M Ouzzine
- Unité Mixte de Recherche 7561 Centre National de la Recherche Scientifique-Université Henri Poincaré Nancy 1, Vandouvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
48
|
Bhasker CR, McKinnon W, Stone A, Lo AC, Kubota T, Ishizaki T, Miners JO. Genetic polymorphism of UDP-glucuronosyltransferase 2B7 (UGT2B7) at amino acid 268: ethnic diversity of alleles and potential clinical significance. PHARMACOGENETICS 2000; 10:679-85. [PMID: 11186130 DOI: 10.1097/00008571-200011000-00002] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
UGT2B7 catalyses the glucuronidation of a diverse range of drugs, environmental chemicals and endogenous compounds. Hence, coding region polymorphisms of UGT2B7 are potentially of pharmacological, toxicological and physiological significance. Two variant UGT2B7 cDNAs encoding enzymes with either His or Tyr at residue 268 have been isolated. The variants, referred to as UGT2B7*1 and UGT2B7*2, respectively, arise from a C to T transversion at nucleotide 802 of the UGT2B7 coding region. Analysis of genomic DNA from 91 unrelated Caucasians and 84 unrelated Japanese demonstrated the presence of the variant alleles encoding UGT2B7*1 and UGT2B7*2 in both populations. However, while there was an approximately equal distribution of subjects homozygous for each allele in the Caucasian population, subjects homozygous for the UGT2B7*1 allele were over 10-fold more prevalent than UGT2B7*2 homozygotes in Japanese. The frequencies of the UGT2B7*1 and UGT2B7*2 alleles were 0.511 and 0.489, respectively, in Caucasians, and 0.732 and 0.268, respectively, in Japanese. The 95% confidence intervals for the two alleles did not overlap between Caucasians and Japanese. Rates of microsomal androsterone, menthol and morphine (3-position) glucuronidation were determined for genotyped livers from Caucasian donors. Statistically significant inter-genotypic differences were not apparent for any of the three substrates. Although the UGT2B7 polymorphism characterized here is probably not associated with altered enzyme activity, the results highlight the need to consider ethnic variability in assessing the consequences of UGT polymorphisms.
Collapse
Affiliation(s)
- C R Bhasker
- Department of Clinical Pharmacology, Flinders Medical Centre and Flinders University of SA, Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 2000; 40:581-616. [PMID: 10836148 DOI: 10.1146/annurev.pharmtox.40.1.581] [Citation(s) in RCA: 1092] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In vertebrates, the glucuronidation of small lipophilic agents is catalyzed by the endoplasmic reticulum UDP-glucuronosyltransferases (UGTs). This metabolic pathway leads to the formation of water-soluble metabolites originating from normal dietary processes, cellular catabolism, or exposure to drugs and xenobiotics. This classic detoxification process, which led to the discovery nearly 50 years ago of the cosubstrate UDP-glucuronic acid (19), is now known to be carried out by 15 human UGTs. Characterization of the individual gene products using cDNA expression experiments has led to the identification of over 350 individual compounds that serve as substrates for this superfamily of proteins. This data, coupled with the introduction of sophisticated RNA detection techniques designed to elucidate patterns of gene expression of the UGT superfamily in human liver and extrahepatic tissues of the gastrointestinal tract, has aided in understanding the contribution of glucuronidation toward epithelial first-pass metabolism. In addition, characterization of the UGT1A locus and genetic studies directed at understanding the role of bilirubin glucuronidation and the biochemical basis of the clinical symptoms found in unconjugated hyperbilirubinemia have uncovered the structural gene polymorphisms associated with Crigler-Najjar's and Gilbert's syndrome. The role of the UGTs in metabolism and different disease states in humans is the topic of this review.
Collapse
Affiliation(s)
- R H Tukey
- Department of Chemistry & Biochemistry, Cancer Center, University of California, San Diego, La Jolla 92093, USA.
| | | |
Collapse
|
50
|
Li YQ, Prentice DA, Howard ML, Mashford ML, Wilson JS, Desmond PV. Alcohol up-regulates UDP-glucuronosyltransferase mRNA expression in rat liver and in primary rat hepatocyte culture. Life Sci 2000; 66:575-84. [PMID: 10794513 DOI: 10.1016/s0024-3205(99)00630-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The interactions between alcohol and cytochrome P-450 enzymes have been well investigated. However, the data regarding the effect of alcohol on the regulation of UDP-glucuronosyltranferase (UGT) activity are less clear. The aim of the present study was to determine the role of alcohol in the regulation of UGT mRNA expression by using whole animal and primary cultured hepatocytes. Chronic ethanol feeding of rats significantly increased the expression of liver UGT1A1 mRNA to 177% of control. The mRNA levels for UGT1A5, UGT2B1 and UGT2B3 were also enhanced, but did not reach statistical significance. In cultured hepatocytes, treatment with either ethanol or isopentanol significantly increased the expression of UGT1A1, UGT1A5, UGT2B1, and UGT2B3 mRNAs, but to different degrees. The induction of UGT1A1 and UGT2B1 mRNAs by ethanol or isopentanol was time-dependent and maximal changes occurred at 48 h. The expression of UGT1A6 mRNA was not significantly modified by either ethanol or isopentanol. In conclusion, ethanol and isopentanol have direct roles in the regulation of UGT.
Collapse
Affiliation(s)
- Y Q Li
- Department of Gastroenterology, St Vincent's Hospital, Fitzroy, VIC, Australia
| | | | | | | | | | | |
Collapse
|