1
|
Li J, Lin J, Kohen A, Singh P, Francis K, Cheatum CM. Evolution of Optimized Hydride Transfer Reaction and Overall Enzyme Turnover in Human Dihydrofolate Reductase. Biochemistry 2021; 60:3822-3828. [PMID: 34875176 PMCID: PMC8697555 DOI: 10.1021/acs.biochem.1c00558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Evolution of dihydrofolate
reductase (DHFR) has been studied using
the enzyme from Escherichia coli DHFR
(ecDHFR) as a model, but less studies have used the enzyme from Homo sapiens DHFR (hsDHFR). Each enzyme maintains
a short and narrow distribution of hydride donor-acceptor distances
(DAD) at the tunneling ready state (TRS). Evolution of the enzyme
was previously studied in ecDHFR where three key sites were identified
as important to the catalyzed reaction. The corresponding sites in
hsDHFR are F28, 62-PEKN, and 26-PPLR. Each of these sites was studied
here through the creation of mutant variants of the enzyme and measurements
of the temperature dependence of the intrinsic kinetic isotope effects
(KIEs) on the reaction. F28 is mutated first to M (F28M) and then
to the L of the bacterial enzyme (F28L). The KIEs of the F28M variant
are larger and more temperature-dependent than wild-type (WT), suggesting
a broader and longer average DAD at the TRS. To more fully mimic ecDHFR,
we also study a triple mutant of the human enzyme (F32L-PP26N-PEKN62G).
Remarkably, the intrinsic KIEs, while larger in magnitude, are temperature-independent
like the WT enzymes. We also construct deletion mutations of hsDHFR
removing both the 62-PEKN and 26-PPLR sequences. The results mirror
those described previously for insertion mutants of ecDHFR. Taken
together, these results suggest a balancing act during DHFR evolution
between achieving an optimal TRS for hydride transfer and preventing
product inhibition arising from the different intercellular pools
of NADPH and NADP+ in prokaryotic and eukaryotic cells.
Collapse
Affiliation(s)
- Jiayue Li
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jennifer Lin
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Priyanka Singh
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kevin Francis
- Texas A&M University-Kingsville, Kingsville, Texas 78363, United States
| | | |
Collapse
|
2
|
Adesina AS, Luk LYP, Allemann RK. Cryo-kinetics Reveal Dynamic Effects on the Chemistry of Human Dihydrofolate Reductase. Chembiochem 2021; 22:2410-2414. [PMID: 33876533 PMCID: PMC8360168 DOI: 10.1002/cbic.202100017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/16/2021] [Indexed: 12/03/2022]
Abstract
Effects of isotopic substitution on the rate constants of human dihydrofolate reductase (HsDHFR), an important target for anti-cancer drugs, have not previously been characterized due to its complex fast kinetics. Here, we report the results of cryo-measurements of the kinetics of the HsDHFR catalyzed reaction and the effects of protein motion on catalysis. Isotopic enzyme labeling revealed an enzyme KIE (kHLE /kHHE ) close to unity above 0 °C; however, the enzyme KIE was increased to 1.72±0.15 at -20 °C, indicating that the coupling of protein motions to the chemical step is minimized under optimal conditions but enhanced at non-physiological temperatures. The presented cryogenic approach provides an opportunity to probe the kinetics of mammalian DHFRs, thereby laying the foundation for characterizing their transition state structure.
Collapse
Affiliation(s)
| | - Louis Y. P. Luk
- School of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | | |
Collapse
|
3
|
Li J, Fortunato G, Lin J, Agarwal PK, Kohen A, Singh P, Cheatum CM. Evolution Conserves the Network of Coupled Residues in Dihydrofolate Reductase. Biochemistry 2019; 58:3861-3868. [PMID: 31423766 PMCID: PMC7296831 DOI: 10.1021/acs.biochem.9b00460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Understanding protein motions and their role in enzymatic reactions is an important and timely topic in enzymology. Protein motions that are involved in the chemical step of catalysis are particularly intriguing but difficult to identify. A global network of coupled residues in Escherichia coli dihydrofolate reductase (E. coli DHFR), which assists in catalyzing the chemical step, has previously been demonstrated through quantum mechanical/molecular mechanical and molecular dynamics simulations as well as bioinformatic analyses. A few specific residues (M42, G121, F125, and I14) were shown to function synergistically with measurements of single-turnover rates and the temperature dependence of intrinsic kinetic isotope effects (KIEsint) of site-directed mutants. This study hypothesizes that the global network of residues involved in the chemical step is evolutionarily conserved and probes homologous residues of the potential global network in human DHFR through measurements of the temperature dependence of KIEsint and computer simulations based on the empirical valence bond method. We study mutants M53W and S145V. Both of these remote residues are homologous to network residues in E. coli DHFR. Non-additive isotope effects on activation energy are observed between M53 and S145, indicating their synergistic effect on the chemical step in human DHFR, which suggests that both of these residues are part of a network affecting the chemical step in enzyme catalysis. This finding supports the hypothesis that human and E. coli DHFR share similar networks, consistent with evolutionary preservation of such networks.
Collapse
Affiliation(s)
- Jiayue Li
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | | | - Jennifer Lin
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | - Pratul K. Agarwal
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | - Priyanka Singh
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | | |
Collapse
|
4
|
Chen L, Zhang Z, Hoshino A, Zheng HD, Morley M, Arany Z, Rabinowitz JD. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism. Nat Metab 2019. [DOI: 10.1038/s42255-019-0043-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Petrović D, Risso VA, Kamerlin SCL, Sanchez-Ruiz JM. Conformational dynamics and enzyme evolution. J R Soc Interface 2018; 15:20180330. [PMID: 30021929 PMCID: PMC6073641 DOI: 10.1098/rsif.2018.0330] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022] Open
Abstract
Enzymes are dynamic entities, and their dynamic properties are clearly linked to their biological function. It follows that dynamics ought to play an essential role in enzyme evolution. Indeed, a link between conformational diversity and the emergence of new enzyme functionalities has been recognized for many years. However, it is only recently that state-of-the-art computational and experimental approaches are revealing the crucial molecular details of this link. Specifically, evolutionary trajectories leading to functional optimization for a given host environment or to the emergence of a new function typically involve enriching catalytically competent conformations and/or the freezing out of non-competent conformations of an enzyme. In some cases, these evolutionary changes are achieved through distant mutations that shift the protein ensemble towards productive conformations. Multifunctional intermediates in evolutionary trajectories are probably multi-conformational, i.e. able to switch between different overall conformations, each competent for a given function. Conformational diversity can assist the emergence of a completely new active site through a single mutation by facilitating transition-state binding. We propose that this mechanism may have played a role in the emergence of enzymes at the primordial, progenote stage, where it was plausibly promoted by high environmental temperatures and the possibility of additional phenotypic mutations.
Collapse
Affiliation(s)
- Dušan Petrović
- Department of Chemistry, BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Valeria A Risso
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | | | - Jose M Sanchez-Ruiz
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| |
Collapse
|
6
|
Cooperativity and flexibility in enzyme evolution. Curr Opin Struct Biol 2018; 48:83-92. [DOI: 10.1016/j.sbi.2017.10.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022]
|
7
|
Luk LYP, Loveridge EJ, Allemann RK. Protein motions and dynamic effects in enzyme catalysis. Phys Chem Chem Phys 2016; 17:30817-27. [PMID: 25854702 DOI: 10.1039/c5cp00794a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The role of protein motions in promoting the chemical step of enzyme catalysed reactions remains a subject of considerable debate. Here, a unified view of the role of protein dynamics in dihydrofolate reductase catalysis is described. Recently the role of such motions has been investigated by characterising the biophysical properties of isotopically substituted enzymes through a combination of experimental and computational analyses. Together with previous work, these results suggest that dynamic coupling to the chemical coordinate is detrimental to catalysis and may have been selected against during DHFR evolution. The full catalytic power of Nature's catalysts appears to depend on finely tuning protein motions in each step of the catalytic cycle.
Collapse
Affiliation(s)
- Louis Y P Luk
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| | - E Joel Loveridge
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| | - Rudolf K Allemann
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
8
|
Cheng YS, Sacchettini JC. Structural Insights into Mycobacterium tuberculosis Rv2671 Protein as a Dihydrofolate Reductase Functional Analogue Contributing to para-Aminosalicylic Acid Resistance. Biochemistry 2016; 55:1107-19. [PMID: 26848874 PMCID: PMC6201685 DOI: 10.1021/acs.biochem.5b00993] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mycobacterium tuberculosis (Mtb) Rv2671 is annotated as a 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5'-phosphate (AROPP) reductase (RibD) in the riboflavin biosynthetic pathway. Recently, a strain of Mtb with a mutation in the 5' untranslated region of Rv2671, which resulted in its overexpression, was found to be resistant to dihydrofolate reductase (DHFR) inhibitors including the anti-Mtb drug para-aminosalicylic acid (PAS). In this study, a biochemical analysis of Rv2671 showed that it was able to catalyze the reduction of dihydrofolate (DHF) to tetrahydrofolate (THF), which explained why the overexpression of Rv2671 was sufficient to confer PAS resistance. We solved the structure of Rv2671 in complex with the NADP(+) and tetrahydrofolate (THF), which revealed the structural basis for the DHFR activity. The structures of Rv2671 complexed with two DHFR inhibitors, trimethoprim and trimetrexate, provided additional details of the substrate binding pocket and elucidated the differences between their inhibitory activities. Finally, Rv2671 was unable to catalyze the reduction of AROPP, which indicated that Rv2671 and its closely related orthologues are not involved in riboflavin biosynthesis.
Collapse
Affiliation(s)
- Yu-Shan Cheng
- Department of Chemistry, Texas A&M University,
College Station, Texas 77842, United States
| | - James C. Sacchettini
- Department of Chemistry, Texas A&M University,
College Station, Texas 77842, United States
- Department of Biochemistry and Biophysics, Texas
A&M University, College Station, Texas 77843, United States
| |
Collapse
|
9
|
Francis K, Sapienza PJ, Lee AL, Kohen A. The Effect of Protein Mass Modulation on Human Dihydrofolate Reductase. Biochemistry 2016; 55:1100-6. [PMID: 26813442 DOI: 10.1021/acs.biochem.5b00945] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dihydrofolate reductase (DHFR) from Escherichia coli has long served as a model enzyme with which to elucidate possible links between protein dynamics and the catalyzed reaction. Such physical properties of its human counterpart have not been rigorously studied so far, but recent computer-based simulations suggest that these two DHFRs differ significantly in how closely coupled the protein dynamics and the catalyzed C-H → C hydride transfer step are. To test this prediction, two contemporary probes for studying the effect of protein dynamics on catalysis were combined here: temperature dependence of intrinsic kinetic isotope effects (KIEs), which are sensitive to the physical nature of the chemical step, and protein mass modulation, which slows down fast dynamics (femto- to picosecond time scale) throughout the protein. The intrinsic H/T KIEs of human DHFR, like those of E. coli DHFR, are shown to be temperature-independent in the range from 5 to 45 °C, indicating fast sampling of donor and acceptor distances (DADs) at the reaction's transition state (or tunneling ready state, TRS). Mass modulation of these enzymes through isotopic labeling with (13)C, (15)N, and (2)H at nonexchangeable hydrogens yields an 11% heavier enzyme. The additional mass has no effect on the intrinsic KIEs of the human enzyme. This finding indicates that the mass modulation of the human DHFR affects neither DAD distribution nor the DAD's conformational sampling dynamics. Furthermore, reduction in the enzymatic turnover number and the dissociation rate constant for the product indicate that the isotopic substitution affects kinetic steps that are not the catalyzed C-H → C hydride transfer. The findings are discussed in terms of fast dynamics and their role in catalysis, the comparison of calculations and experiments, and the interpretation of isotopically modulated heavy enzymes in general.
Collapse
Affiliation(s)
- Kevin Francis
- The Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| | - Paul J Sapienza
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Andrew L Lee
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Amnon Kohen
- The Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
10
|
Srinivasan B, Tonddast-Navaei S, Skolnick J. Ligand binding studies, preliminary structure-activity relationship and detailed mechanistic characterization of 1-phenyl-6,6-dimethyl-1,3,5-triazine-2,4-diamine derivatives as inhibitors of Escherichia coli dihydrofolate reductase. Eur J Med Chem 2015; 103:600-14. [PMID: 26414808 DOI: 10.1016/j.ejmech.2015.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/29/2015] [Accepted: 08/09/2015] [Indexed: 01/16/2023]
Abstract
Gram-negative bacteria are implicated in the causation of life-threatening hospital-acquired infections. They acquire rapid resistance to multiple drugs and available antibiotics. Hence, there is the need to discover new antibacterial agents with novel scaffolds. For the first time, this study explores the 1,3,5-triazine-2,4-diamine and 1,2,4-triazine-2,4-diamine group of compounds as potential inhibitors of Escherichia coli DHFR, a pivotal enzyme in the thymidine and purine synthesis pathway. Using differential scanning fluorimetry, DSF, fifteen compounds with various substitutions on either the 3rd or 4th positions on the benzene group of 6,6-dimethyl-1-(benzene)-1,3,5-triazine-2,4-diamine were shown to bind to the enzyme with varying affinities. Then, the dose dependence of inhibition by these compounds was determined. Preliminary quantitative structure-activity relationship analysis and docking studies implicate the alkyl linker group and the sulfonyl fluoride group in increasing the potency of inhibition. 4-[4-[3-(4,6-diamino-2,2-dimethyl-1,3,5-triazin-1-yl)phenyl]butyl]benzenesulfonyl fluoride (NSC120927), the best hit from the study and a molecule with no reported inhibition of E. coli DHFR, potently inhibits the enzyme with a Ki value of 42.50 ± 5.34 nM, followed by 4-[6-[4-(4,6-diamino-2,2-dimethyl-1,3,5-triazin-1-yl)phenyl]hexyl]benzenesulfonyl fluoride (NSC132279), with a Ki value of 100.9 ± 12.7 nM. Detailed kinetic characterization of the inhibition brought about by five small-molecule hits shows that these inhibitors bind to the dihydrofolate binding site with preferential binding to the NADPH-bound binary form of the enzyme. Furthermore, in search of novel diaminotriazine scaffolds, it is shown that lamotrigine, a 1,2,4-triazine-3,5-diamine and a sodium-ion channel blocker class of antiepileptic drug, also inhibits E. coli DHFR. This is the first comprehensive study on the binding and inhibition brought about by diaminotriazines of a gram-negative prokaryotic enzyme and provides valuable insights into the SAR as an aid to the discovery of novel antibiotics.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950, Atlantic Drive, Atlanta, GA 30332, United States.
| | - Sam Tonddast-Navaei
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950, Atlantic Drive, Atlanta, GA 30332, United States.
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950, Atlantic Drive, Atlanta, GA 30332, United States.
| |
Collapse
|
11
|
Srinivasan B, Skolnick J. Insights into the slow-onset tight-binding inhibition of Escherichia coli dihydrofolate reductase: detailed mechanistic characterization of pyrrolo [3,2-f] quinazoline-1,3-diamine and its derivatives as novel tight-binding inhibitors. FEBS J 2015; 282:1922-38. [PMID: 25703118 DOI: 10.1111/febs.13244] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 12/11/2022]
Abstract
Dihydrofolate reductase (DHFR) is a pivotal enzyme involved in the de novo pathway of purine synthesis, and hence, represents an attractive target to disrupt systems that require rapid DNA turnover. The enzyme acquires resistance to available drugs by various molecular mechanisms, which necessitates the continuous discovery of novel antifolates. Previously, we identified a set of novel molecules that showed binding to E. coli DHFR by means of a thermal shift without establishing whether they inhibited the enzyme. Here, we show that a fraction of those molecules represent potent and novel inhibitors of DHFR activity. 7-[(4-aminophenyl)methyl]-7H-pyrrolo [3,2-f] quinazoline-1,3-diamine, a molecule with no reported inhibition of DHFR, potently inhibits the enzyme with a Ki value of 7.42 ± 0.92 nm by competitive displacement of the substrate dihydrofolic acid. It shows uncompetitive inhibition vis-à-vis NADPH, indicating that the inhibitor has markedly increased affinity for the NADPH-bound form of the enzyme. Further, we demonstrate that the mode of binding of the inhibitor to the enzyme-NADPH binary complex conforms to the slow-onset, tight-binding model. By contrast, mechanistic characterization of the parent molecule 7H-pyrrolo [3,2-f] quinazoline-1,3-diamine shows that lack of (4-aminophenyl)-methyl group at the seventh position abolishes the slow onset of inhibition. This finding provides novel insights into the role of substitutions on inhibitors of E. coli DHFR and represents the first detailed kinetic investigation of a novel diaminopyrroloquinazoline derivative on a prokaryotic DHFR. Furthermore, marked differences in the potency of inhibition for E. coli and human DHFR makes this molecule a promising candidate for development as an antibiotic.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Center for the Study of Systems Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
12
|
Behiry EM, Luk LYP, Matthews SM, Loveridge EJ, Allemann RK. Role of the occluded conformation in bacterial dihydrofolate reductases. Biochemistry 2014; 53:4761-8. [PMID: 25014833 DOI: 10.1021/bi500507v] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dihydrofolate reductase (DHFR) from Escherichia coli (EcDHFR) adopts two major conformations, closed and occluded, and movement between these two conformations is important for progression through the catalytic cycle. DHFR from the cold-adapted organism Moritella profunda (MpDHFR) on the other hand is unable to form the two hydrogen bonds that stabilize the occluded conformation in EcDHFR and so remains in a closed conformation during catalysis. EcDHFR-S148P and MpDHFR-P150S were examined to explore the influence of the occluded conformation on catalysis by DHFR. Destabilization of the occluded conformation did not affect hydride transfer but altered the affinity for the oxidized form of nicotinamide adenine dinucleotide phosphate (NADP(+)) and changed the rate-determining step of the catalytic cycle for EcDHFR-S148P. Even in the absence of an occluded conformation, MpDHFR follows a kinetic pathway similar to that of EcDHFR with product release being the rate-limiting step in the steady state at pH 7, suggesting that MpDHFR uses a different strategy to modify its affinity for NADP(+). DHFRs from many organisms lack a hydrogen bond donor in the appropriate position and hence most likely do not form an occluded conformation. The link between conformational cycling between closed and occluded forms and progression through the catalytic cycle is specific to EcDHFR and not a general characteristic of prokaryotic DHFR catalysis.
Collapse
Affiliation(s)
- Enas M Behiry
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Tuttle LM, Dyson HJ, Wright PE. Side chain conformational averaging in human dihydrofolate reductase. Biochemistry 2014; 53:1134-45. [PMID: 24498949 PMCID: PMC3985697 DOI: 10.1021/bi4015314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The three-dimensional structures
of the dihydrofolate reductase
enzymes from Escherichia coli (ecDHFR or ecE) and Homo sapiens (hDHFR or hE) are very similar, despite a rather
low level of sequence identity. Whereas the active site loops of ecDHFR
undergo major conformational rearrangements during progression through
the reaction cycle, hDHFR remains fixed in a closed loop conformation
in all of its catalytic intermediates. To elucidate the structural
and dynamic differences between the human and E. coli enzymes, we conducted a comprehensive analysis of side chain flexibility
and dynamics in complexes of hDHFR that represent intermediates in
the major catalytic cycle. Nuclear magnetic resonance relaxation dispersion
experiments show that, in marked contrast to the functionally important
motions that feature prominently in the catalytic intermediates of
ecDHFR, millisecond time scale fluctuations cannot be detected for
hDHFR side chains. Ligand flux in hDHFR is thought to be mediated
by conformational changes between a hinge-open state when the substrate/product-binding
pocket is vacant and a hinge-closed state when this pocket is occupied.
Comparison of X-ray structures of hinge-open and hinge-closed states
shows that helix αF changes position by sliding between the
two states. Analysis of χ1 rotamer populations derived
from measurements of 3JCγCO and 3JCγN couplings
indicates that many of the side chains that contact helix αF
exhibit rotamer averaging that may facilitate the conformational change.
The χ1 rotamer adopted by the Phe31 side chain depends
upon whether the active site contains the substrate or product. In
the holoenzyme (the binary complex of hDHFR with reduced nicotinamide
adenine dinucleotide phosphate), a combination of hinge opening and
a change in the Phe31 χ1 rotamer opens the active
site to facilitate entry of the substrate. Overall, the data suggest
that, unlike ecDHFR, hDHFR requires minimal backbone conformational
rearrangement as it proceeds through its enzymatic cycle, but that
ligand flux is brokered by more subtle conformational changes that
depend on the side chain motions of critical residues.
Collapse
Affiliation(s)
- Lisa M Tuttle
- Department of Integrative Structural and Computational Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | |
Collapse
|
14
|
Whitsett J, Filho AR, Sethumadhavan S, Celinska J, Widlansky M, Vásquez-Vivar J. Human endothelial dihydrofolate reductase low activity limits vascular tetrahydrobiopterin recycling. Free Radic Biol Med 2013; 63:143-50. [PMID: 23707606 PMCID: PMC3748942 DOI: 10.1016/j.freeradbiomed.2013.04.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/09/2013] [Accepted: 04/27/2013] [Indexed: 11/19/2022]
Abstract
Tetrahydrobiopterin (BH₄) is required for NO synthesis and inhibition of superoxide release from endothelial NO synthase. Clinical trials using BH₄ to treat endothelial dysfunction have produced mixed results. Poor outcomes may be explained by the rapid systemic and cellular oxidation of BH₄. One of the oxidation products of BH₄, 7,8-dihydrobiopterin (7,8-BH₂), is recycled back to BH₄ by dihydrofolate reductase (DHFR). This enzyme is ubiquitously distributed and shows a wide range of activity depending on species-specific factors and cell type. Information about the kinetics and efficiency of BH4 recycling in human endothelial cells receiving BH₄ treatment is lacking. To characterize this reaction, we applied a novel multielectrode coulometric HPLC method that enabled the direct quantification of 7,8-BH₂ and BH₄, which is not possible with fluorescence-based methodologies. We found that basal untreated BH₄ and 7,8-BH₂ concentrations in human endothelial cells (ECs) are lower than in bovine and murine endothelioma cells. Treatment of human ECs with BH₄ transiently increased intracellular BH₄ while accumulating the more stable 7,8-BH₂. This was different from bovine or murine ECs, which resulted in preferential BH₄ increase. Using BH₄ diastereomers, 6S-BH₄ and 6R-BH₄, the narrow contribution of enzymatic DHFR recycling to total intracellular BH₄ was demonstrated. Reduction of 7,8-BH₂ to BH₄ occurs at very slow rates in cells and needs supraphysiological levels of 7,8-BH₂, indicating this reaction is kinetically limited. Activity assays verified that human DHFR has very low affinity for 7,8-BH₂ (DHF7,8-BH₂) and folic acid inhibits 7,8-BH₂ recycling. We conclude that low activity of endothelial DHFR is an important factor limiting the benefits of BH4 therapies, which may be further aggravated by folate supplements.
Collapse
Affiliation(s)
- Jennifer Whitsett
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Redox Biology Program, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Artur Rangel Filho
- Department of Pathology, Jackson Memorial Hospital, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136
| | | | - Joanna Celinska
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Michael Widlansky
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Jeannette Vásquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Redox Biology Program, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
15
|
Divergent evolution of protein conformational dynamics in dihydrofolate reductase. Nat Struct Mol Biol 2013; 20:1243-9. [PMID: 24077226 PMCID: PMC3823643 DOI: 10.1038/nsmb.2676] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/16/2013] [Indexed: 11/22/2022]
Abstract
Molecular evolution is driven by mutations, which may affect the fitness of an organism and are then subject to natural selection or genetic drift. Analysis of primary protein sequences and tertiary structures has yielded valuable insights into the evolution of protein function, but little is known about evolution of functional mechanisms, protein dynamics and conformational plasticity essential for activity. We characterized the atomic-level motions across divergent members of the dihydrofolate reductase (DHFR) family. Despite structural similarity, E. coli and human DHFRs use different dynamic mechanisms to perform the same function, and human DHFR cannot complement DHFR-deficient E. coli cells. Identification of the primary sequence determinants of flexibility in DHFRs from several species allowed us to propose a likely scenario for the evolution of functionally important DHFR dynamics, following a pattern of divergent evolution that is tuned by the cellular environment.
Collapse
|
16
|
Functional significance of evolving protein sequence in dihydrofolate reductase from bacteria to humans. Proc Natl Acad Sci U S A 2013; 110:10159-64. [PMID: 23733948 DOI: 10.1073/pnas.1307130110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
With the rapidly growing wealth of genomic data, experimental inquiries on the functional significance of important divergence sites in protein evolution are becoming more accessible. Here we trace the evolution of dihydrofolate reductase (DHFR) and identify multiple key divergence sites among 233 species between humans and bacteria. We connect these sites, experimentally and computationally, to changes in the enzyme's binding properties and catalytic efficiency. One of the identified evolutionarily important sites is the N23PP modification (∼mid-Devonian, 415-385 Mya), which alters the conformational states of the active site loop in Escherichia coli dihydrofolate reductase and negatively impacts catalysis. This enzyme activity was restored with the inclusion of an evolutionarily significant lid domain (G51PEKN in E. coli enzyme; ∼2.4 Gya). Guided by this evolutionary genomic analysis, we generated a human-like E. coli dihydrofolate reductase variant through three simple mutations despite only 26% sequence identity between native human and E. coli DHFRs. Molecular dynamics simulations indicate that the overall conformational motions of the protein within a common scaffold are retained throughout evolution, although subtle changes to the equilibrium conformational sampling altered the free energy barrier of the enzymatic reaction in some cases. The data presented here provide a glimpse into the evolutionary trajectory of functional DHFR through its protein sequence space that lead to the diverged binding and catalytic properties of the E. coli and human enzymes.
Collapse
|
17
|
Bhabha G, Tuttle L, Martinez-Yamout MA, Wright PE. Identification of endogenous ligands bound to bacterially expressed human and E. coli dihydrofolate reductase by 2D NMR. FEBS Lett 2011; 585:3528-32. [PMID: 22024482 DOI: 10.1016/j.febslet.2011.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/13/2011] [Accepted: 10/09/2011] [Indexed: 11/25/2022]
Abstract
Dihydrofolate reductase (DHFR) is a well-studied drug target and a paradigm for understanding enzyme catalysis. Preparation of pure DHFR samples, in defined ligand-bound states, is a prerequisite for in vitro studies and drug discovery efforts. We use NMR spectroscopy to monitor ligand content of human and Escherichia coli DHFR (ecDHFR), which bind different co-purifying ligands during expression in bacteria. An alternate purification strategy yields highly pure DHFR complexes, containing only the desired ligands, in the quantities required for structural studies. Interestingly, ecDHFR is bound to endogenous THF while human DHFR is bound to NADP. Consistent with these findings, a designed "humanized" mutant of ecDHFR switches binding specificity in the cell.
Collapse
Affiliation(s)
- Gira Bhabha
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
18
|
Czekster CM, Vandemeulebroucke A, Blanchard JS. Two parallel pathways in the kinetic sequence of the dihydrofolate reductase from Mycobacterium tuberculosis. Biochemistry 2011; 50:7045-56. [PMID: 21744813 DOI: 10.1021/bi200608n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dihydrofolate reductase from Mycobacterium tuberculosis (MtDHFR) catalyzes the NAD(P)H-dependent reduction of dihydrofolate, yielding NAD(P)(+) and tetrahydrofolate, the primary one-carbon unit carrier in biology. Tetrahydrofolate needs to be recycled so that reactions involved in dTMP synthesis and purine metabolism can be maintained. Previously, steady-state studies revealed that the chemical step significantly contributes to the steady-state turnover number, but that a step after the chemical step was likely limiting the reaction rate. Here, we report the first pre-steady-state investigation of the kinetic sequence of the MtDHFR aiming to identify kinetic intermediates, and the identity of the rate-limiting steps. This kinetic analysis suggests a kinetic sequence comprising two parallel pathways with a rate-determining product release. Although product release is likely occurring in a random fashion, there is a slight preference for the release of THF first, a kinetic sequence never observed for a wild-type dihydrofolate reductase of any organism studied to date. Temperature studies were conducted to determine the magnitude of the energetic barrier posed by the chemical step, and the pH dependence of the chemical step was studied, demonstrating an acidic shift from the pK(a) observed at the steady state. The rate constants obtained here were combined with the activation energy for the chemical step to compare energy profiles for each kinetic sequence. The two parallel pathways are discussed, as well as their implications for the catalytic cycle of this enzyme.
Collapse
Affiliation(s)
- Clarissa M Czekster
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States.
| | | | | |
Collapse
|
19
|
Czekster CM, Vandemeulebroucke A, Blanchard JS. Kinetic and chemical mechanism of the dihydrofolate reductase from Mycobacterium tuberculosis. Biochemistry 2010; 50:367-75. [PMID: 21138249 DOI: 10.1021/bi1016843] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dihydrofolate reductase from Mycobacterium tuberculosis (MtDHFR) catalyzes the NAD(P)-dependent reduction of dihydrofolate, yielding NAD(P)(+) and tetrahydrofolate, the primary one-carbon unit carrier in biology. Tetrahydrofolate needs to be recycled so that reactions involved in dTMP synthesis and purine metabolism are maintained. In this work, we report the kinetic characterization of the MtDHFR. This enzyme has a sequential steady-state random kinetic mechanism, probably with a preferred pathway with NADPH binding first. A pK(a) value for an enzymic acid of approximately 7.0 was identified from the pH dependence of V, and the analysis of the primary kinetic isotope effects revealed that the hydride transfer step is at least partly rate-limiting throughout the pH range analyzed. Additionally, solvent and multiple kinetic isotope effects were determined and analyzed, and equilibrium isotope effects were measured on the equilibrium constant. (D(2)O)V and (D(2)O)V/K([4R-4-(2)H]NADH) were slightly inverse at pH 6.0, and inverse values for (D(2)O)V([4R-4-(2)H]NADH) and (D(2)O)V/K([4R-4-(2)H]NADH) suggested that a pre-equilibrium protonation is occurring before the hydride transfer step, indicating a stepwise mechanism for proton and hydride transfer. The same value was obtained for (D)k(H) at pH 5.5 and 7.5, reaffirming the rate-limiting nature of the hydride transfer step. A chemical mechanism is proposed on the basis of the results obtained here.
Collapse
Affiliation(s)
- Clarissa M Czekster
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
20
|
Cody V, Pace J, Makin J, Piraino J, Queener SF, Rosowsky A. Correlations of inhibitor kinetics for Pneumocystis jirovecii and human dihydrofolate reductase with structural data for human active site mutant enzyme complexes. Biochemistry 2010; 48:1702-11. [PMID: 19196009 DOI: 10.1021/bi801960h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To understand the role of specific active site residues in conferring selective dihydrofolate reductase (DHFR) inhibition from pathogenic organisms such as Pneumocystis carinii (pc) or Pneumocystis jirovecii (pj), the causative agent in AIDS pneumonia, it is necessary to evaluate the role of these residues in the human enzyme. We report the first kinetic parameters for DHFR from pjDHFR and pcDHFR with methotrexate (MTX), trimethoprim (TMP), and its potent analogue, PY957. We also report the mutagenesis and kinetic analysis of active site mutant proteins at positions 35 and 64 of human (h) DHFR and the crystal structure determinations of hDHFR ternary complexes of NADPH and PY957 with the wild-type DHFR enzyme, the single mutant protein, Gln35Lys, and two double mutant proteins, Gln35Ser/Asn64Ser and Gln35Ser/Asn64Phe. These substitutions place into human DHFR amino acids found at those sites in the opportunistic pathogens pcDHFR (Q35K/N64F) and pjDHFR (Q35S/N64S). The K(i) inhibition constant for PY957 showed greatest potency of the compound for the N64F single mutant protein (5.2 nM), followed by wild-type pcDHFR (K(i) 22 nM) and then wild-type hDHFR enzyme (K(i) 230 nM). Structural data reveal significant conformational changes in the binding interactions of PY957 in the hDHFR Q35S/N64F mutant protein complex compared to the other hDHFR mutant protein complexes and the pcDHFR ternary complex. The conformation of PY957 in the wild-type DHFR is similar to that observed for the single mutant protein. These data support the hypothesis that the enhanced selectivity of PY957 for pcDHFR is in part due to the contributions at positions 37 and 69 (pcDHFR numbering). This insight will help in the design of more selective inhibitors that target these opportunistic pathogens.
Collapse
Affiliation(s)
- Vivian Cody
- Structural Biology Department, Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, New York 14203, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Lee J, Yennawar NH, Gam J, Benkovic SJ. Kinetic and structural characterization of dihydrofolate reductase from Streptococcus pneumoniae. Biochemistry 2010; 49:195-206. [PMID: 19950924 DOI: 10.1021/bi901614m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drug resistance associated with dihydrofolate reductase (DHFR) has emerged as a critical issue in the treatment of bacterial infections. In our efforts to understand the mechanism of a drug-resistant dihydrofolate reductase (DHFR) from a pathogenic bacterial source, we report the first kinetic characterization of Streptococcus pneumoniae DHFR (spDHFR) along with its X-ray structure. This study revealed that the kinetic properties of spDHFR were significantly different from those of Escherichia coli DHFR. The product (tetrahydrofolate) dissociation step that is the rate-limiting step in E. coli DHFR is significantly accelerated in spDHFR so that hydride transfer or a preceding step is rate-limiting. Comparison of the binding parameters of this enzyme to those of a mutant spDHFR (Sp9) confirmed that the Leu100 residue in spDHFR is the critical element for the trimethoprim (TMP) resistance. Steady-state kinetics exhibited a pH dependence in k(cat), which prompted us to elucidate the role of the new catalytic residue (His33) in the active site of spDHFR. Structural data of the Sp9 mutant in complex with NADPH and methotrexate confirmed the participation of His33 in a hydrogen bonding network involving a water molecule, the hydroxyl group of Thr119, and the carboxylate ion of Glu30. Sequence analysis of the DHFR superfamily revealed that the His residue is the major amino acid component at this position and is found mostly in pathogenic bacterial DHFRs. A mutation of Val100 to Leu demonstrated a steric clash of the leucine side chain with the side chains of Ile8 and Phe34, rationalizing weaker binding of trimethoprim to Leu100 DHFR. Understanding the role of specific amino acids in the active site coupled with detailed structural analysis will inform us on how to better design inhibitors targeting drug-resistant pathogenic bacterial DHFRs.
Collapse
Affiliation(s)
- Jeeyeon Lee
- Department of Chemistry, 414 Wartik Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
22
|
The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc Natl Acad Sci U S A 2009; 106:15424-9. [PMID: 19706381 DOI: 10.1073/pnas.0902072106] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Numerous clinical trials using folic acid for prevention of cardiovascular disease, stroke, cognitive decline, and neural tube defects have been completed or are underway. Yet, all functions of folate are performed by tetrahydrofolate and its one-carbon derivatives. Folic acid is a synthetic oxidized form not significantly found in fresh natural foods; to be used it must be converted to tetrahydrofolate by dihydrofolate reductase (DHFR). Increasing evidence suggests that this process may be slow in humans. Here we show, using a sensitive assay we developed, that the reduction of folic acid by DHFR per gram of human liver (n = 6) obtained from organ donors or directly from surgery is, on average, less than 2% of that in rat liver at physiological pH. Moreover, in contrast to rats, there was almost a 5-fold variation of DHFR activity among the human samples. This limited ability to activate the synthetic vitamer raises issues about clinical trials using high levels of folic acid. The extremely low rate of conversion of folic acid suggests that the benefit of its use in high doses will be limited by saturation of DHFR, especially in individuals possessing lower than average activity. These results are also consistent with the reports of unmetabolized folic acid in plasma and urine.
Collapse
|
23
|
Bourne CR, Bunce RA, Bourne PC, Berlin KD, Barrow EW, Barrow WW. Crystal structure of Bacillus anthracis dihydrofolate reductase with the dihydrophthalazine-based trimethoprim derivative RAB1 provides a structural explanation of potency and selectivity. Antimicrob Agents Chemother 2009; 53:3065-73. [PMID: 19364848 PMCID: PMC2704665 DOI: 10.1128/aac.01666-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/03/2009] [Accepted: 04/06/2009] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis possesses an innate resistance to the antibiotic trimethoprim due to poor binding to dihydrofolate reductase (DHFR); currently, there are no commercial antibacterials that target this enzyme in B. anthracis. We have previously reported a series of dihydrophthalazine-based trimethoprim derivatives that are inhibitors for this target. In the present work, we have synthesized one compound (RAB1) displaying favorable 50% inhibitory concentration (54 nM) and MIC (< or =12.8 microg/ml) values. RAB1 was cocrystallized with the B. anthracis DHFR in the space group P2(1)2(1)2(1), and X-ray diffraction data were collected to a 2.3-A resolution. Binding of RAB1 causes a conformational change of the side chain of Arg58 and Met37 to accommodate the dihydrophthalazine moiety. Unlike the natural substrate or trimethoprim, the dihydrophthalazine group provides a large hydrophobic anchor that embeds within the DHFR active site and accounts for its selective inhibitory activity against B. anthracis.
Collapse
Affiliation(s)
- Christina R Bourne
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Blakley RL. Eukaryotic dihydrofolate reductase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 70:23-102. [PMID: 8638484 DOI: 10.1002/9780470123164.ch2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- R L Blakley
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
25
|
Redecke L, Brehm MA, Bredehorst R. Cloning and characterization of dihydrofolate reductase from a facultative alkaliphilic and halotolerant bacillus strain. Extremophiles 2006; 11:75-83. [PMID: 17021659 DOI: 10.1007/s00792-006-0013-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Elucidation of the molecular basis of the stability of enzymes from extremophilic organisms is of fundamental importance for various industrial applications. Due to the wealth of structural data from various species, dihydrofolate reductase (DHFR, EC 1.5.1.3) provides an excellent model for systematic investigations. In this report, DHFR from alkaliphilic Bacillus halodurans C-125 was cloned and expressed in E. coli. Functional analyses revealed that BhDHFR exhibits the most alkali-stable phenotype of DHFRs characterized so far. Optimal enzyme activity was observed in a slightly basic pH region ranging from 7.25 to 8.75. Alkali-stability is associated with a remarkable resistance to elevated temperatures (half-life of 60 min at 52.5 degrees C) and to high concentrations of urea (up to 3 M). Although the secondary structure shows distinct similarities to those of mesophilic DHFR molecules, BhDHFR exhibits molecular features contributing to its alkaliphilic properties. Interestingly, the unique phenotype is diminished by C-terminal addition of a His-tag sequence. Therefore, His-tag-derivatized BhDHFR offers the opportunity to obtain deeper insights into the specific mechanisms of alkaliphilic adaption by comparison of the three dimensional structure of both BhDHFR molecules.
Collapse
Affiliation(s)
- Lars Redecke
- Institute of Biochemistry and Food Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany.
| | | | | |
Collapse
|
26
|
Craciun G, Tang Y, Feinberg M. Understanding bistability in complex enzyme-driven reaction networks. Proc Natl Acad Sci U S A 2006; 103:8697-702. [PMID: 16735474 PMCID: PMC1592242 DOI: 10.1073/pnas.0602767103] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Indexed: 11/18/2022] Open
Abstract
Much attention has been paid recently to bistability and switch-like behavior that might be resident in important biochemical reaction networks. There is, in fact, a great deal of subtlety in the relationship between the structure of a reaction network and its capacity to engender bistability. In common physicochemical settings, large classes of extremely complex networks, taken with mass action kinetics, cannot give rise to bistability no matter what values the rate constants take. On the other hand, bistable behavior can be induced in those same settings by certain very simple and classical mass action mechanisms for enzyme catalysis of a single overall reaction. We present a theorem that distinguishes between those mass action networks that might support bistable behavior and those that cannot. Moreover, we indicate how switch-like behavior results from a well-studied mechanism for the action of human dihydrofolate reductase, an important anti-cancer target.
Collapse
Affiliation(s)
- Gheorghe Craciun
- *Mathematical Biosciences Institute, 231 West 18th Avenue, and
- Departments of Mathematics and Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706
| | | | - Martin Feinberg
- Departments of Chemical Engineering and
- Mathematics, 140 West 19th Avenue, Ohio State University, Columbus, OH 43210; and
| |
Collapse
|
27
|
Abstract
Molecular motions are widely regarded as contributing factors in many aspects of protein function. The enzyme dihydrofolate reductase (DHFR), and particularly that from Escherichia coli, has become an important system for investigating the linkage between protein dynamics and catalytic function, both because of the location and timescales of the motions observed and because of the availability of a large amount of structural and mechanistic data that provides a detailed context within which the motions can be interpreted. Changes in protein dynamics in response to ligand binding, conformational change, and mutagenesis have been probed using numerous experimental and theoretical approaches, including X-ray crystallography, fluorescence, nuclear magnetic resonance (NMR), molecular dynamics simulations, and hybrid quantum/classical dynamics methods. These studies provide a detailed map of changes in conformation and dynamics throughout the catalytic cycle of DHFR and give new insights into the role of protein motions in the catalytic activity of this enzyme.
Collapse
Affiliation(s)
- Jason R Schnell
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
28
|
Garcia-Viloca M, Truhlar DG, Gao J. Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase. Biochemistry 2004; 42:13558-75. [PMID: 14622003 DOI: 10.1021/bi034824f] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have studied the hydride transfer reaction catalyzed by the enzyme dihydrofolate reductase (DHFR) and the coenzyme nicotinamide adenine dinucleotide phosphate (NADPH); the substrate is 5-protonated 7,8-dihydrofolate, and the product is tetrahydrofolate. The potential energy surface is modeled by a combined quantum mechanical-molecular mechanical (QM/MM) method employing Austin model 1 (AM1) and a simple valence bond potential for 69 QM atoms and employing the CHARMM22 and TIP3P molecular mechanics force fields for the other 21 399 atoms; the QM and MM regions are joined by two boundary atoms treated by the generalized hybrid orbital (GHO) method. All simulations are carried out using periodic boundary conditions at neutral pH and 298 K. In stage 1, a reaction coordinate is defined as the difference between the breaking and forming bond distances to the hydride ion, and a quasithermodynamic free energy profile is calculated along this reaction coordinate. This calculation includes quantization effects on bound vibrations but not on the reaction coordinate, and it is used to locate the variational transition state that defines a transition state ensemble. Then, the key interactions at the reactant, variational transition state, and product are analyzed in terms of both bond distances and electrostatic energies. The results of both analyses support the conclusion derived from previous mutational studies that the M20 loop of DHFR makes an important contribution to the electrostatic stabilization of the hydride transfer transition state. Third, transmission coefficients (including recrossing factors and multidimensional tunneling) are calculated and averaged over the transition state ensemble. These averaged transmission coefficients, combined with the quasithermodynamic free energy profile determined in stage 1, allow us to calculate rate constants, phenomenological free energies of activation, and primary and secondary kinetic isotope effects. A primary kinetic isotope effect (KIE) of 2.8 has been obtained, in good agreement with the experimentally determined value of 3.0 and with the value 3.2 calculated previously. The primary KIE is mainly a consequence of the quantization of bound vibrations. In contrast, the secondary KIE, with a value of 1.13, is almost entirely due to dynamical effects on the reaction coordinate, especially tunneling.
Collapse
Affiliation(s)
- Mireia Garcia-Viloca
- Department of Chemistry and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
29
|
Shrimpton P, Mullaney A, Allemann RK. Functional role for Tyr 31 in the catalytic cycle of chicken dihydrofolate reductase. Proteins 2003; 51:216-23. [PMID: 12660990 DOI: 10.1002/prot.10370] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite much work, many key aspects of the mechanism of the dihydrofolate reductase (DHFR) catalyzed reduction of dihydrofolate remain unresolved. In bacterial forms of DHFR both substrate and water access to the active site are controlled by the conformation of the mobile M20 loop. In vertebrate DHFRs only one conformation of the residues corresponding to the M20 loop has been observed. Access to the active site was proposed to be controlled by residue 31. MD simulations of chicken DHFR complexed with substrates and cofactor revealed a closing of the side chain of Tyr 31 over the active site on binding of dihydrofolate. This conformational change was dependent on the presence of glutamate on the para-aminobenzoylamide moiety of dihydrofolate. In its absence, the conformation remained open. Although water could enter the active site and hydrogen bond to N5 of dihydrofolate, indicating the feasibility of water as the proton donor, this was not controlled by the conformation of Tyr 31. The water accessibility of the active site was low for both conformations of Tyr 31. However, when hydride was transferred from NADPH to C6 of dihydrofolate before protonation, the average time during which water was found in hydrogen bonding distance to N5 of dihydrofolate in the active site increased almost fivefold. These results indicated that water can serve as the Broensted acid for the protonation of N5 of dihydrofolate during the DHFR catalyzed reduction.
Collapse
Affiliation(s)
- Paul Shrimpton
- School of Chemical Sciences, University of Birmingham, Edgbaston, United Kingdom
| | | | | |
Collapse
|
30
|
MESH Headings
- Chromatography, Affinity/methods
- Chromatography, Gel/methods
- Cloning, Molecular
- Crystallization
- Dimerization
- Enzyme Stability
- Escherichia coli
- Gram-Negative Anaerobic Straight, Curved, and Helical Rods/enzymology
- Gram-Negative Anaerobic Straight, Curved, and Helical Rods/genetics
- Gram-Negative Anaerobic Straight, Curved, and Helical Rods/growth & development
- Guanidine
- Methotrexate/metabolism
- Molecular Weight
- Recombinant Proteins/chemistry
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Spectrophotometry, Ultraviolet
- Tetrahydrofolate Dehydrogenase/chemistry
- Tetrahydrofolate Dehydrogenase/genetics
- Tetrahydrofolate Dehydrogenase/isolation & purification
- Tetrahydrofolate Dehydrogenase/metabolism
Collapse
Affiliation(s)
- T Dams
- Abteilung Strukturforschung, Max Planck Institut für Biochemie, Martinsried D-82151, Germany
| | | |
Collapse
|
31
|
Blakley RL, Sorrentino BP. In vitro mutations in dihydrofolate reductase that confer resistance to methotrexate: potential for clinical application. Hum Mutat 2000; 11:259-63. [PMID: 9554740 DOI: 10.1002/(sici)1098-1004(1998)11:4<259::aid-humu1>3.0.co;2-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mammalian cells cultured in the presence of the chemotherapeutic agent, methotrexate, develop resistance to this drug. Sometimes this is due to mutations in the gene for dihydrofolate reductase, the primary target of methotrexate. However, it has not been possible to link such polymorphism to resistance of neoplastic disease to therapy with methotrexate. Nevertheless, interest in this possibility lead to the introduction of many mutations into the cDNA for human DHFR by mutagenesis. Most of the corresponding enzyme variants have been expressed in Escherichia coli and characterized. Many mutations in codons for hydrophobic residues at the active site greatly decrease inhibition by methotrexate, and by the related substrate analogue, trimetrexate, while allowing the retention of considerable catalytic efficiency. Introduction of some of these mutants into mammalian cells by retroviral transfer provides substantial protection from toxic effects of the inhibitors, and has promise for the myeloprotection of patients receiving therapy with methotrexate or trimetrexate. Another potential use is in therapy for inherited disorders of hematopoiesis, where genetic modification of enough cells is a perennial problem. After transplantation of bone marrow that has been transduced with a bicistronic vector encoding both the mutant DHFR and a therapeutic gene, subsequent administration of methotrexate or trimetrexate should permit selection and enrichment of genetically modified hematopoietic cells.
Collapse
Affiliation(s)
- R L Blakley
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
32
|
Happel J, Otarod M. New Treatment of Enzyme Kinetics Applied to Human Dihydrofolate Reductase. J Phys Chem B 2000. [DOI: 10.1021/jp000412u] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John Happel
- Department of Chemical Engineering and Applied Chemistry, Columbia University, New York, New York 10027
| | - Masood Otarod
- Department of Mathematics, University of Scranton, Scranton, Pennsylvania 18510
| |
Collapse
|
33
|
Dams T, Auerbach G, Bader G, Jacob U, Ploom T, Huber R, Jaenicke R. The crystal structure of dihydrofolate reductase from Thermotoga maritima: molecular features of thermostability. J Mol Biol 2000; 297:659-72. [PMID: 10731419 DOI: 10.1006/jmbi.2000.3570] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Two high-resolution structures have been obtained for dihydrofolate reductase from the hyperthermophilic bacterium Thermotoga maritima in its unliganded state, and in its ternary complex with the cofactor NADPH and the inhibitor, methotrexate. While the overall fold of the hyperthermophilic enzyme is closely similar to monomeric mesophilic dihydrofolate reductase molecules, its quaternary structure is exceptional, in that T. maritima dihydrofolate reductase forms a highly stable homodimer. Here, the molecular reasons for the high intrinsic stability of the enzyme are elaborated and put in context with the available data on the physical parameters governing the folding reaction. The molecule is extremely rigid, even with respect to structural changes during substrate binding and turnover. Subunit cooperativity can be excluded from structural and biochemical data. Major contributions to the high intrinsic stability of the enzyme result from the formation of the dimer. Within the monomer, only subtle stabilizing interactions are detectable, without clear evidence for any of the typical increments of thermal stabilization commonly reported for hyperthermophilic proteins. The docking of the subunits is optimized with respect to high packing density in the dimer interface, additional salt-bridges and beta-sheets. The enzyme does not show significant structural changes upon binding its coenzyme, NADPH, and the inhibitor, methotrexate. The active-site loop, which is known to play an important role in catalysis in mesophilic dihydrofolate reductase molecules, is rearranged, participating in the association of the subunits; it no longer participates in catalysis.
Collapse
Affiliation(s)
- T Dams
- Institut für Biophysik und physikalische Biochemie, Regensburg, 93040, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Cinquina CC, Grogan E, Sun R, Lin SF, Beardsley GP, Miller G. Dihydrofolate reductase from Kaposi's sarcoma-associated herpesvirus. Virology 2000; 268:201-17. [PMID: 10683342 DOI: 10.1006/viro.1999.0165] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the first human virus known to encode dihydrofolate reductase (DHFR), an enzyme required for nucleotide and methionine biosynthesis. We have studied the purified KSHV-DHFR enzyme in vitro and analyzed its expression in cultured B-cell lines derived from primary effusion lymphoma (PEL), an AIDS-associated malignancy. The amino acid sequence of KSHV-DHFR is most similar to human DHFR (hDHFR), but the viral enzyme contains an additional 23 amino acids at the carboxyl-terminus. The viral DHFR, overexpressed and purified from E. coli, was catalytically active in vitro. The K(m) of KSHV-DHFR for dihydrofolate (FH(2)) was 2.4 microM, which is significantly higher than the K(m) of recombinant hDHFR (rhDHFR) for FH(2) (390 nM). K(m) values for NADPH were similar for the two enzymes, about 1 microM. KSHV-DHFR was inhibited by folate antagonists such as methotrexate (K(i): 200 pM), aminopterin (K(i): 610 pM), pyrimethamine (K(i): 29 nM), trimethoprim (K(i): 2.3 microM), and piritrexim (K(i): 3.9 nM). In all cases, K(i) values for these folate antagonists were higher for KSHV-DHFR than for rhDHFR. The viral enzyme was expressed at levels two- to tenfold higher than hDHFR in PEL cell lines as an early lytic cycle gene. KSHV-DHFR mRNA and protein appeared from 6 to 24 h after chemical induction of the KSHV lytic cycle. Epitope-tagged KSHV-DHFR and rhDHFR both localized to the nucleus of transfected cells, while other KSHV nucleotide metabolism genes localized to the cytoplasm. DHFR activity was not essential for viral replication in cultured PEL cells. Since hDHFR was not detectable in peripheral blood mononuclear cells (PBMCs), KSHV-DHFR may function to provide increased DHFR activity in vivo in infected cells that have little or none of their own enzyme.
Collapse
Affiliation(s)
- C C Cinquina
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | | | | | | | | | | |
Collapse
|
35
|
Miller GP, Benkovic SJ. Stretching exercises--flexibility in dihydrofolate reductase catalysis. CHEMISTRY & BIOLOGY 1998; 5:R105-13. [PMID: 9578637 DOI: 10.1016/s1074-5521(98)90616-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As an enzyme, dihydrofolate reductase performs two tasks: transformation of its substrate dihydrofolate or folate to tetrahydrofolate, using NADPH as a cofactor, and regeneration of the enzyme for a subsequent round of catalysis. Studies discussed in this review highlight the role of conformational flexibility in both of these enzymatic functions.
Collapse
Affiliation(s)
- G P Miller
- Department of Chemistry, Pennsylvania State University, University Park 16802, USA
| | | |
Collapse
|
36
|
Patel M, Sleep SE, Lewis WS, Spencer HT, Mareya SM, Sorrentino BP, Blakley RL. Comparison of the protection of cells from antifolates by transduced human dihydrofolate reductase mutants. Hum Gene Ther 1997; 8:2069-77. [PMID: 9414255 DOI: 10.1089/hum.1997.8.17-2069] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Retroviral transduction of antifolate-resistant variants of human dihydrofolate reductase (hDHFR) into cells can increase their resistance to the cytotoxic effects of these drugs. We evaluated the ability of wild-type hDHFR and 20 mutant enzymes (13 with single-amino acid substitutions, 7 with two substitutions) to prevent growth inhibition in antifolate-treated CCRF-CEM cells. The wild-type enzyme and all of the variants significantly protected transduced cells from trimetrexate (TMTX)-induced growth inhibition. However, only half of the variants conferred more protection than does the wild-type enzyme. For the variants tested, the observed protective effect was higher for TMTX than for methotrexate (< or =7.5-fold increased resistance), piritrexim (< or =16-fold), and edatrexate (negligible). Transduction of the variants L22Y-F31S and L22Y-F31R led to the greatest protection against TMTX (approximately 200-fold). Protection from loss of cell viability was similar to protection from growth inhibition. The protection associated with a particular mutant hDHFR did not result from the level of expression: Efficient protection resulted from low affinity of the variant for antifolates, reasonable catalytic activity, and good thermal stability. Clones isolated from a polyclonal population of transduced cells varied by as much as 30-fold in their resistance to TMTX, the resistance differences depending on hDHFR expression levels.
Collapse
Affiliation(s)
- M Patel
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Varney MD, Romines WH, Boritzki T, Margosiak SA, Bartlett C, Howland EJ. Synthesis and biological evaluation of -n[4-(2-trans-[([2,6-diamino-4(3H)-oxopyrimidin-5-yl]methyl)thio]cyclobutyl)benzoyl] -l-glutamic acid a novel 5-thiapyrimidinone inhibitor of dihydrofolate reductase. J Heterocycl Chem 1995. [DOI: 10.1002/jhet.5570320514] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Lewis WS, Cody V, Galitsky N, Luft JR, Pangborn W, Chunduru SK, Spencer HT, Appleman JR, Blakley RL. Methotrexate-resistant variants of human dihydrofolate reductase with substitutions of leucine 22. Kinetics, crystallography, and potential as selectable markers. J Biol Chem 1995; 270:5057-64. [PMID: 7890613 DOI: 10.1074/jbc.270.10.5057] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Although substitution of tyrosine, phenylalanine, tryptophan, or arginine for leucine 22 in human dihydrofolate reductase greatly slows hydride transfer, there is little loss in overall activity (kcat) at pH 7.65 (except for the arginine 22 variant), but Km for dihydrofolate and NADPH are increased significantly. The greatest effect, decreased binding of methotrexate to the enzyme-NADPH complex by 740- to 28,000-fold due to a large increase in the rate of methotrexate dissociation, makes these variants suitable to act as selectable markers. Affinities for four other inhibitors are also greatly decreased. Binding of methotrexate to apoenzyme is decreased much less (decreases as much as 120-fold), binding of tetrahydrofolate is decreased as much as 23-fold, and binding of dihydrofolate is decreased little or increased. Crystal structures of ternary complexes of three of the variants show that the mutations cause little perturbation of the protein backbone, of side chains of other active site residues, or of bound inhibitor. The largest structural deviations occur in the ternary complex of the arginine variant at residues 21-27 and in the orientation of the methotrexate. Tyrosine 22 and arginine 22 relieve short contacts to methotrexate and NADPH by occupying low probability conformations, but this is unnecessary for phenylalanine 22 in the piritrexim complex.
Collapse
Affiliation(s)
- W S Lewis
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- C A Fierke
- Department of Biochemistry, College of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
40
|
Nakano T, Spencer HT, Appleman JR, Blakley RL. Critical role of phenylalanine 34 of human dihydrofolate reductase in substrate and inhibitor binding and in catalysis. Biochemistry 1994; 33:9945-52. [PMID: 8061003 DOI: 10.1021/bi00199a017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Directed mutagenesis has been used to construct five variants of human dihydrofolate reductase in which smaller residues are substituted for phenylalanine 34, a residue participating in the binding of substrate and methotrexate by interaction with their pteridine rings. The variant enzymes are stable and have decreased affinities for methotrexate (by factors of 2700-60000 at pH 7.65) due to a decreased rate of methotrexate association and a much larger increase in the rate constant for dissociation. However, the catalytic efficiencies of the variants are also lowered by factors of 160-5000, so that it is doubtful whether these enzymes are capable of conferring methotrexate resistance on the cells harboring them. High concentrations of dihydrofolate cause marked inhibition of all the variants, which complicates the determination of kinetic parameters. By the use of stopped-flow spectrophotometry and fluorimetry and other methods, it has been shown that, like the wild-type enzyme, the variants have a branched reaction pathway, but in contrast to the wild-type enzyme, the distribution of flux between alternate pathways is dependent on the concentration of dihydrofolate. This different branch point is a consequence of the very rapid dissociation of tetrahydrofolate from the ternary product complexes of the variant enzymes. Inhibition by dihydrofolate is due to its combination with the enzyme-NADP complex and the slow dissociation of NADP from the resulting abortive complex. When steady state kinetics for this model are simulated using the experimentally determined rate and dissociation constants for the alanine 34 variant, most steady state experimental results are closely approximated.
Collapse
Affiliation(s)
- T Nakano
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101
| | | | | | | |
Collapse
|
41
|
Methotrexate-resistant variants of human dihydrofolate reductase. Effects of Phe31 substitutions. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36916-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Blakley RL, Appleman JR, Chunduru SK, Nakano T, Lewis WS, Harris SE. Mutations of human dihydrofolate reductase causing decreased inhibition by methotrexate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 338:473-9. [PMID: 8304162 DOI: 10.1007/978-1-4615-2960-6_96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- R L Blakley
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38101
| | | | | | | | | | | |
Collapse
|
43
|
Blakley RL, Piper JR, Maharaj G, Appleman JR, Delcamp TJ, Freisheim JH, Kulinski RF, Montgomery JA. Mobility of the spin-labeled side chains of some novel antifolate inhibitors in their complexes with dihydrofolate reductase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 196:271-80. [PMID: 1848814 DOI: 10.1111/j.1432-1033.1991.tb15814.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Four spin-labeled inhibitors of dihydrofolate reductase (DHFR) have been synthesized, each of which has the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) reporting group at a different distance from the 2,4-diaminopyrimidine moiety by which the inhibitors are anchored and oriented in the active site. Inhibitors in which the TEMPO group is attached by a short side chain are weakly bound to DHFR from bacteria (Streptococcus faecium and Lactobacillus casei), to the bovine enzyme and to recombinant human DHFR. However, binding is sufficiently tight, especially in the ternary complexes with NADPH, for recording of the EPR spectra of the bound ligands. The spectra indicate that when these inhibitors are bound to the enzyme the TEMPO group is highly immobilized with correlation time, tau c, 4-20ns. Inhibitors that have the reporter group attached to the glutamate moiety of methotrexate bind to all four DHFRs more tightly than the inhibitors with shorter side chains by factors of up to 10(6). However, in most complexes formed by the inhibitors with longer side chains immobilization of the TEMPO group is slight (tau c 0.2-4 ns). These results are in general agreement with predictions from X-ray crystallographic results including thermal factors but there are some unanticipated differences between some results for bacterial and eukaryotic enzymes. Three of the splin-labeled inhibitors would provide good probes for distance measurements in and around the active site of mammalian DHFR.
Collapse
Affiliation(s)
- R L Blakley
- Department of Biochemical and Clinical Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Beard WA, Appleman JR, Huang SM, Delcamp TJ, Freisheim JH, Blakley RL. Role of the conserved active site residue tryptophan-24 of human dihydrofolate reductase as revealed by mutagenesis. Biochemistry 1991; 30:1432-40. [PMID: 1991124 DOI: 10.1021/bi00219a038] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The active sites of all bacterial and vertebrate dihydrofolate reductases that have been examined have a tryptophan residue near the binding sites for NADPH and dihydrofolate. In cases where the three-dimensional structure has been determined by X-ray crystallography, this conserved tryptophan residue makes hydrophobic and van der Waals interactions with the nicotinamide moiety of bound NADPH, and its indole nitrogen interacts with the C4 oxygen of bound folate through a bridge provided by a bound water molecule. We have addressed the question of why even the very conservative replacement of this tryptophan by phenylalanine does not seem to occur naturally. Human dihydrofolate reductase with this replacement of tryptophan by phenylalanine has increased rate constants for dissociation of substrates and products and a considerably decreased rate of hydride transfer. These cause some changes in steady-state kinetic behavior, including substantial increases in Michaelis constants for NADPH and dihydrofolate, but there is also a 3-fold increase in kcat. The branched mechanistic pathway for this enzyme has been completely defined and is sufficiently different from that of wild-type enzyme to cause changes in some transient-state kinetics. The most critical changes resulting from the amino acid substitution appear to be a 50% decrease in stability and a decrease in efficiency from 69% to 21% under intracellular conditions.
Collapse
Affiliation(s)
- W A Beard
- Department of Biochemical and Clinical Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101
| | | | | | | | | | | |
Collapse
|
45
|
Davies JF, Delcamp TJ, Prendergast NJ, Ashford VA, Freisheim JH, Kraut J. Crystal structures of recombinant human dihydrofolate reductase complexed with folate and 5-deazafolate. Biochemistry 1990; 29:9467-79. [PMID: 2248959 DOI: 10.1021/bi00492a021] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The 2.3-A crystal structure of recombinant human dihydrofolate reductase (EC 1.5.1.3, DHFR) has been solved as a binary complex with folate (a poor substrate at neutral pH) and also as a binary complex with an inhibitor, 5-deazafolate. The inhibitor appears to be protonated at N8 on binding, whereas folate is not. Rotation of the peptide plane joining I7 and V8 from its position in the folate complex permits hydrogen bonding of 5-deazafolate's protonated N8 to the backbone carbonyl of I7, thus contributing to the enzyme's greater affinity for 5-deazafolate than for folate. In this respect it is likely that bound 5-deazafolate furnishes a model for 7,8-dihydrofolate binding and, in addition, resembles the transition state for folate reduction. A hypothetical transition-state model for folate reduction, generated by superposition of the DHFR binary complexes human.5-deazafolate and chicken liver.NADPH, reveals a 1-A overlap of the binding sites for folate's pteridine ring and the dihydronicotinamide ring of NADPH. It is proposed that this binding-site overlap accelerates the reduction of both folate and 7,8-dihydrofolate by simultaneously binding substrate and cofactor with a sub van der Waals separation that is optimal for hydride transfer.
Collapse
Affiliation(s)
- J F Davies
- Department of Chemistry, University of California, San Diego, La Jolla 92093
| | | | | | | | | | | |
Collapse
|
46
|
Huang S, Appleman R, Tan XH, Thompson PD, Blakley RL, Sheridan RP, Venkataraghavan R, Freisheim JH. Role of lysine-54 in determining cofactor specificity and binding in human dihydrofolate reductase. Biochemistry 1990; 29:8063-9. [PMID: 2124504 DOI: 10.1021/bi00487a011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lysine-54 of human dihydrofolate reductase (hDHFR) appears to be involved in the interaction with the 2'-phosphate of NADPH and is conserved as a basic residue in other species. Studies have suggested that in Lactobacillus casei dihydrofolate reductase Arg-43, the homologous residue at this position, plays an important role in the binding of NADPH and in the differentiation of Km values for NADPH and NADH. A Lys-54 to Gln-54 mutant (K54Q) of hDHFR has been constructed by oligodeoxynucleotide-directed mutagenesis in order to study the role of Lys-54 in differentiating Km and Kcat values for NADPH and NADH as well as in other functions of hDHFR. The purpose of this paper is to delineate in quantitative terms the magnitude of the effect of the Lys-54 to Gln-54 replacement on the various kinetic parameters of hDHFR. Such quantitative effects cannot be predicted solely on the basis of X-ray structures. The Km for NADPH for the K54Q mutant enzyme is 58-fold higher, while the Km for NADH for K54Q is only 3.9-fold higher than that of the wild type, indicating that the substitution of Lys-54 with Gln-54 decreases the apparent affinity of the enzyme for NADPH dramatically, but has a lesser effect on the apparent affinity for NADH.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Huang
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, Toledo 43699-0008
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Tsay JT, Appleman JR, Beard WA, Prendergast NJ, Delcamp TJ, Freisheim JH, Blakley RL. Kinetic investigation of the functional role of phenylalanine-31 of recombinant human dihydrofolate reductase. Biochemistry 1990; 29:6428-36. [PMID: 2207084 DOI: 10.1021/bi00479a014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The role of the active site residue phenylalanine-31 (Phe31) for recombinant human dihydrofolate reductase (rHDHFR) has been probed by comparing the kinetic behavior of wild-type enzyme (wt) with mutant in which Phe31 is replaced by leucine (F31L rHDHFR). At pH 7.65 the steady-state kcat is almost doubled, but the rate constant for hydride transfer is decreased to less than half that for wt enzyme, as is the rate of the obligatory isomerization of the substrate complex that precedes hydride transfer. Although steady-state measurements indicated that the mutation causes large increases in Km for both substrates, dissociation constants for many complexes are decreased. These apparent paradoxes are due to major mutation-induced decreases in rate constants (koff) for dissociation of folate, dihydrofolate, and tetrahydrofolate from all of their complexes. This results in a mechanism proceeding almost entirely by only one of the two pathways used by wt enzyme. Other consequences of these changes are a much altered dependence of steady-state kcat on pH, inhibition rather than activation by tetrahydrofolate, absence of hysteresis in transient-state kinetics, and a decrease in enzyme efficiency under physiological conditions. The results indicate that there is no quantitative correlation between dihydrofolate binding and the rate of hydride transfer for this enzyme.
Collapse
Affiliation(s)
- J T Tsay
- Department of Biochemical and Clinical Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101
| | | | | | | | | | | | | |
Collapse
|