1
|
Lopes JLS, Miles AJ, Whitmore L, Wallace BA. Distinct circular dichroism spectroscopic signatures of polyproline II and unordered secondary structures: applications in secondary structure analyses. Protein Sci 2014; 23:1765-72. [PMID: 25262612 DOI: 10.1002/pro.2558] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/23/2014] [Indexed: 11/10/2022]
Abstract
Circular dichroism (CD) spectroscopy is a valuable method for defining canonical secondary structure contents of proteins based on empirically-defined spectroscopic signatures derived from proteins with known three-dimensional structures. Many proteins identified as being "Intrinsically Disordered Proteins" have a significant amount of their structure that is neither sheet, helix, nor turn; this type of structure is often classified by CD as "other", "random coil", "unordered", or "disordered". However the "other" category can also include polyproline II (PPII)-type structures, whose spectral properties have not been well-distinguished from those of unordered structures. In this study, synchrotron radiation circular dichroism spectroscopy was used to investigate the spectral properties of collagen and polyproline, which both contain PPII-type structures. Their native spectra were compared as representatives of PPII structures. In addition, their spectra before and after treatment with various conditions to produce unfolded or denatured structures were also compared, with the aim of defining the differences between CD spectra of PPII and disordered structures. We conclude that the spectral features of collagen are more appropriate than those of polyproline for use as the representative spectrum for PPII structures present in typical amino acid-containing proteins, and that the single most characteristic spectroscopic feature distinguishing a PPII structure from a disordered structure is the presence of a positive peak around 220nm in the former but not in the latter. These spectra are now available for inclusion in new reference data sets used for CD analyses of the secondary structures of soluble proteins.
Collapse
Affiliation(s)
- Jose L S Lopes
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | | | | | | |
Collapse
|
2
|
Grosely R, Sorgen PL. A history of gap junction structure: hexagonal arrays to atomic resolution. ACTA ACUST UNITED AC 2013; 20:11-20. [PMID: 23469928 DOI: 10.3109/15419061.2013.775256] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gap junctions are specialized membrane structures that provide an intercellular pathway for the propagation and/or amplification of signaling cascades responsible for impulse propagation, cell growth, and development. Prior to the identification of the proteins that comprise gap junctions, elucidation of channel structure began with initial observations of a hexagonal nexus connecting apposed cellular membranes. Concomitant with technological advancements spanning over 50 years, atomic resolution structures are now available detailing channel architecture and the cytoplasmic domains that have helped to define mechanisms governing the regulation of gap junctions. Highlighted in this review are the seminal structural studies that have led to our current understanding of gap junction biology.
Collapse
Affiliation(s)
- Rosslyn Grosely
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | |
Collapse
|
3
|
Maeda S, Tsukihara T. Structure of the gap junction channel and its implications for its biological functions. Cell Mol Life Sci 2011; 68:1115-29. [PMID: 20960023 PMCID: PMC11114897 DOI: 10.1007/s00018-010-0551-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 09/28/2010] [Accepted: 09/30/2010] [Indexed: 12/16/2022]
Abstract
Gap junctions consist of arrays of intercellular channels composed of integral membrane proteins called connexin in vertebrates. Gap junction channels regulate the passage of ions and biological molecules between adjacent cells and, therefore, are critically important in many biological activities, including development, differentiation, neural activity, and immune response. Mutations in connexin genes are associated with several human diseases, such as neurodegenerative disease, skin disease, deafness, and developmental abnormalities. The activity of gap junction channels is regulated by the membrane voltage, intracellular microenvironment, interaction with other proteins, and phosphorylation. Each connexin channel has its own property for conductance and molecular permeability. A number of studies have tried to reveal the molecular architecture of the channel pore that should confer the connexin-specific permeability/selectivity properties and molecular basis for the gating and regulation. In this review, we give an overview of structural studies and describe the structural and functional relationship of gap junction channels.
Collapse
Affiliation(s)
- Shoji Maeda
- Institute for Protein Research, Osaka University, OLABB, 6-2-3 Furuedai, Suita, 565-0874 Japan
- Department of Life Science, University of Hyogo, 3-2-1 Koto, Kamighori, Akoh, Hyogo 678-1297 Japan
- Present Address: Paul Scherrer Institut, Biology and Chemistry OFLG 101, 5232 Villigen, Switzerland
| | - Tomitake Tsukihara
- Institute for Protein Research, Osaka University, OLABB, 6-2-3 Furuedai, Suita, 565-0874 Japan
- Department of Life Science, University of Hyogo, 3-2-1 Koto, Kamighori, Akoh, Hyogo 678-1297 Japan
| |
Collapse
|
4
|
Sosinsky GE, Nicholson BJ. Structural organization of gap junction channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1711:99-125. [PMID: 15925321 DOI: 10.1016/j.bbamem.2005.04.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 03/22/2005] [Accepted: 04/02/2005] [Indexed: 11/16/2022]
Abstract
Gap junctions were initially described morphologically, and identified as semi-crystalline arrays of channels linking two cells. This suggested that they may represent an amenable target for electron and X-ray crystallographic studies in much the same way that bacteriorhodopsin has. Over 30 years later, however, an atomic resolution structural solution of these unique intercellular pores is still lacking due to many challenges faced in obtaining high expression levels and purification of these structures. A variety of microscopic techniques, as well as NMR structure determination of fragments of the protein, have now provided clearer and correlated views of how these structures are assembled and function as intercellular conduits. As a complement to these structural approaches, a variety of mutagenic studies linking structure and function have now allowed molecular details to be superimposed on these lower resolution structures, so that a clearer image of pore architecture and its modes of regulation are beginning to emerge.
Collapse
Affiliation(s)
- Gina E Sosinsky
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093-0608, USA
| | | |
Collapse
|
5
|
Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC. Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 2003; 83:1359-400. [PMID: 14506308 DOI: 10.1152/physrev.00007.2003] [Citation(s) in RCA: 881] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Members of the connexin gene family are integral membrane proteins that form hexamers called connexons. Most cells express two or more connexins. Open connexons found at the nonjunctional plasma membrane connect the cell interior with the extracellular milieu. They have been implicated in physiological functions including paracrine intercellular signaling and in induction of cell death under pathological conditions. Gap junction channels are formed by docking of two connexons and are found at cell-cell appositions. Gap junction channels are responsible for direct intercellular transfer of ions and small molecules including propagation of inositol trisphosphate-dependent calcium waves. They are involved in coordinating the electrical and metabolic responses of heterogeneous cells. New approaches have expanded our knowledge of channel structure and connexin biochemistry (e.g., protein trafficking/assembly, phosphorylation, and interactions with other connexins or other proteins). The physiological role of gap junctions in several tissues has been elucidated by the discovery of mutant connexins associated with genetic diseases and by the generation of mice with targeted ablation of specific connexin genes. The observed phenotypes range from specific tissue dysfunction to embryonic lethality.
Collapse
Affiliation(s)
- Juan C Saez
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | | | | | | | | |
Collapse
|
6
|
Structure and biochemistry of gap junctions. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1569-2558(00)30003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
7
|
Foote CI, Zhou L, Zhu X, Nicholson BJ. The pattern of disulfide linkages in the extracellular loop regions of connexin 32 suggests a model for the docking interface of gap junctions. J Cell Biol 1998; 140:1187-97. [PMID: 9490731 PMCID: PMC2132700 DOI: 10.1083/jcb.140.5.1187] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/1997] [Revised: 01/08/1998] [Indexed: 02/06/2023] Open
Abstract
Connexins, like true cell adhesion molecules, have extracellular domains that provide strong and specific homophilic, and in some cases, heterophilic interactions between cells. Though the structure of the binding domains of adhesion proteins have been determined, the extracellular domains of connexins, consisting of two loops of approximately 34-37 amino acids each, are not easily studied in isolation from the rest of the molecule. As an alternative, we used a novel application of site-directed mutagenesis in which four of the six conserved cysteines in the extracellular loops of connexin 32 were moved individually and in all possible pairwise and some quadruple combinations. This mapping allowed us to deduce that all disulfides form between the two loops of a single connexin, with the first cysteine in one loop connected to the third of the other. Furthermore, the periodicity of movements that produced functional channels indicated that these loops are likely to form antiparallel beta sheets. A possible model that could explain how these domains from apposed connexins interact to form a complete channel is discussed.
Collapse
Affiliation(s)
- C I Foote
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260-1300, USA
| | | | | | | |
Collapse
|
8
|
Unger VM, Kumar NM, Gilula NB, Yeager M. Projection structure of a gap junction membrane channel at 7 A resolution. NATURE STRUCTURAL BIOLOGY 1997; 4:39-43. [PMID: 8989321 DOI: 10.1038/nsb0197-39] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Electron cryo-microscopy and image analysis of frozen-hydrated, two-dimensional crystals of gap junction membrane channels formed by recombinant alpha 1 connexin (Cx43) reveal a ring of transmembrane alpha-helices that lines the aqueous pore and a second ring of alpha-helices in close contact with the membrane lipids.
Collapse
|
9
|
Abstract
Gap junctions regulate a variety of cell functions by creating a conduit between two apposing tissue cells. Gap junctions are unique among membrane channels. Not only do the constituent membrane channels span two cell membranes, but the intercellular channels pack into discrete cell-cell contact areas forming in vivo closely packed arrays. Gap junction membrane channels can be isolated either as two-dimensional crystals, individual intercellular channels, or individual hemichannels. The family of gap junction proteins, the connexins, create a family of gap junctions channels and structures. Each channel has distinct physiological properties but a similar overall structure. This review focuses on three aspects of gap junction structure: (1) the molecular structure of the gap junction membrane channel and hemichannel, (2) the packing of the intercellular channels into arrays, and (3) the ways that different connexins can combine into gap junction channel structures with distinct physiological properties. The physiological implications of the different structural forms are discussed.
Collapse
Affiliation(s)
- G E Sosinsky
- Department of Neurosciences, University of California, San Diego, La Jolla 92093-0322, USA
| |
Collapse
|
10
|
Rhee SK, Bevans CG, Harris AL. Channel-forming activity of immunoaffinity-purified connexin32 in single phospholipid membranes. Biochemistry 1996; 35:9212-23. [PMID: 8703927 DOI: 10.1021/bi960295m] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Connexin32, a member of the family of proteins that forms gap junction channels between cells, was immunoaffinity-purified from rat liver using a monoclonal antibody, under nondenaturing conditions and reconstituted into unilamellar phospholipid liposomes and bilayers. Gel-filtration studies indicate that the connexin32 is purified predominantly in structures of a size consistent with that of single hemichannels and too small to be junctional channels (dimers of hemichannels). Purified connexin formed channels permeable to sucrose and to Lucifer Yellow. The permeability was reversibly reduced by acidic pH and unaffected by several agents that modulate coupling between cells. Modeling of the distribution of the permeability in the liposomes indicates that it is mediated by connexin structures that distribute among the liposomes as single hemichannels. Bilayer recordings of the purified connexin show high conductance channels with asymmetric voltage sensitivity. The results show that immunopurified connexin32 can form channels, in single phospholipid membranes, that have permeability similar to that of gap junction channels and thus can be utilized in studies of permeability and its regulation to investigate its role in normal physiological function, development, and disease.
Collapse
Affiliation(s)
- S K Rhee
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
11
|
Abstract
Gap junctions are formed by a multigene family of polytopic membrane channel proteins, connexins, that have four hydrophobic transmembrane domains and their N and C termini located on the cytoplasmic membrane face. The C-terminal tail plays important roles in channel regulation by pH and phosphorylation. Conserved cysteine residues stabilize the conformation of the extracellular loops that mediate the 'docking' between connexons in the intercellular channel. Over the past year, electron cryocrystallography of two-dimensional crystals of a truncated recombinant alpha 1 (Cx43) has revealed that the transmembrane boundary of the intercellular channel is lined with alpha helices. Furthermore, a ring of alpha helices resides at the interface with the membrane lipids. A three-dimensional analysis based on images recorded from tilted crystals should reveal the location and secondary structure of additional transmembrane domains, as well as provide important structural details about the interactions between connexins within a hemi-channel and connexon-connexon interactions in the extracellular gap.
Collapse
Affiliation(s)
- M Yeager
- Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
12
|
Cascio M, Kumar NM, Safarik R, Gilula NB. Physical characterization of gap junction membrane connexons (hemi-channels) isolated from rat liver. J Biol Chem 1995; 270:18643-8. [PMID: 7629194 DOI: 10.1074/jbc.270.31.18643] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Enriched subcellular fractions of double membrane gap junctions (plaques) from rat livers were treated under reducing conditions with high salt and non-ionic detergent concentrations at high pH to obtain a preparation of structural 80-90 A complexes of oligomers (connexons). The isolated oligomers were chromatographically purified, and subsequently characterized immunologically, morphologically by electron microscopy, hydrodynamically by gel filtration and ultracentrifugation, spectroscopically by circular dichroism, and chemically via cross-linking studies. The physical characteristics of these isolated gap junction complexes were compared to those of native membrane-bound gap junctions in rat liver. These analyses indicate that the isolated complex (connexon) principally contains a hexameric arrangement of gap junction protein to form a single membrane hemi-channel.
Collapse
Affiliation(s)
- M Cascio
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Cardiac gap junctions play an important functional role in the myocardium by electrically coupling adjacent cells, thereby providing a low resistance pathway for cell-to-cell propagation of the action potential. Two-dimensional crystallization of biochemically isolated rat ventricular gap junctions has been accomplished by an in situ method in which membrane suspensions are sequentially dialyzed against low concentrations of deoxycholate and dodecyl-beta-D-maltoside. Lipids are partially extracted without solubilizing the protein, and the increased protein concentration facilitates two-dimensional crystallization in the native membrane environment. The two-dimensional crystals have a nominal resolution of 16 A and display plane group symmetry p6 with a = b = 85 A and gamma = 120 degrees. Projection density maps show that the connexons in cardiac gap junctions are formed by a hexameric cluster of alpha 1 connexin subunits. Protease cleavage of alpha 1 connexin from 43 to 30 kDa releases approximately 13kDa from the carboxy-tail, and the projection density maps are not significantly altered. Uranyl acetate stain penetrates the ion channel, whereas phosphotungstic acid is preferentially deposited over the lipid regions. This differential staining can be used to selectively probe the central channel of the connexon and the interface between the connexon and the lipid. The hexameric design of alpha 1 connexons appears to be a recurring quaternary motif for the multigene family of gap junction proteins.
Collapse
Affiliation(s)
- M Yeager
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
14
|
Harris AL, Walter A, Paul D, Goodenough DA, Zimmerberg J. Ion channels in single bilayers induced by rat connexin32. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1992; 15:269-80. [PMID: 1279354 DOI: 10.1016/0169-328x(92)90118-u] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The gap junction channel mediates an important form of intercellular communication, but its detailed study is hindered by inaccessibility in situ. We show here that connexin32, the major protein composing junctional channels in rat liver, forms ion channels in single bilayer membranes. The properties of these reconstituted connexin32 channels are characterized and compared with those of gap junction channels. The demonstration that connexin32 forms channels in single membranes has implications for assembly and regulation of junctional channels, and permits detailed study of the gating, permeability and modulation of this channel-forming protein.
Collapse
Affiliation(s)
- A L Harris
- Thomas C. Jenkins Department of Biophyscis, Johns Hopkins University, Baltimore, MD 21218
| | | | | | | | | |
Collapse
|
15
|
Abstract
Gap junctions are regions of contact between adjacent cells, consisting of arrays of channels linking the cell interiors. The channels are formed by polypeptides called connexins; the amino acid sequences of many different connexins are known, and they are thought to resemble each other closely in tertiary and quarternary structure. Single channels have recently been isolated and purified, and earlier evidence has been confirmed showing that they consist of six identical subunits arranged around the central pore. Gap junction channels are known to open and close in response to changes in ligand concentrations and electrical potential; in this respect they are very similar to ligand-gated ion channels which act as receptors in the membranes of excitable cells. The similarity is shown to extend to structural features such as the amino acid residues lining the pore, and perhaps the location of the actual gate.
Collapse
Affiliation(s)
- K A Stauffer
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
16
|
Abstract
Gap junctional communication between cells provides a mechanism for the movement of molecular information between cells via the unit of gap junction structure and function, the gap junctional channel. In the past five years, there has been rapid progress in identifying and characterizing a multigene family that is responsible for producing the gap junction polypeptides that are responsible for generating gap junctional channel oligomers between cells. The products of these genes have been referred to as connexins, and the multigene family can be categorized into two classes at present, the alpha class and the beta class. Members of these two classes can be distinguished on the basis of their primary sequence and overall predicted topological organization. The gap junction genes map to different chromosomes in both mice and humans, and these genes are utilized on a cell specific basis. Furthermore, these genes can be developmentally regulated, and multiple genes can be co-expressed simultaneously by the same cell type. Efforts to understand the precise structure-function relationship of the products of these different genes is now being approached by utilizing various expression systems. Criteria that can be used as a basis for determining membership in the multigene family is presented and discussed, as well as the rationale for using a nomenclature system for the gap junction multigene family that is based on genetic and structural relationships rather than the molecular size of the deduced protein products.
Collapse
Affiliation(s)
- N M Kumar
- Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037
| | | |
Collapse
|
17
|
Abstract
Isolated gap junction plaques contain hexagonal crystalline arrays of membrane channels called connexons which are a suitable specimen for electron crystallography. Image analysis of gap junction lattices has shown that while there is sufficient lattice order for structural analysis to approximately 25 A, there is enough disorder in both the lattice and the connexon to create a family of related images. This review is focused on how these images can be interpreted in terms of what is known about both the connexon and its constituent protein, connexin.
Collapse
Affiliation(s)
- G E Sosinsky
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02254
| |
Collapse
|
18
|
|
19
|
Sáez JC, Nairn AC, Czernik AJ, Spray DC, Hertzberg EL, Greengard P, Bennett MV. Phosphorylation of connexin 32, a hepatocyte gap-junction protein, by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:263-73. [PMID: 2170122 DOI: 10.1111/j.1432-1033.1990.tb19223.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Phosphorylation of connexin 32, the major liver gap-junction protein, was studied in purified liver gap junctions and in hepatocytes. In isolated gap junctions, connexin 32 was phosphorylated by cAMP-dependent protein kinase (cAMP-PK), by protein kinase C (PKC) and by Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM-PK II). Connexin 26 was not phosphorylated by these three protein kinases. Phosphopeptide mapping of connexin 32 demonstrated that cAMP-PK and PKC primarily phosphorylated a seryl residue in a peptide termed peptide 1. PKC also phosphorylated seryl residues in additional peptides. CA2+/CaM-PK II phosphorylated serine and to a lesser extent, threonine, at sites different from those phosphorylated by the other two protein kinases. A synthetic peptide PSRKGSGFGHRL-amine (residues 228-239 based on the deduced amino acid sequence of rat connexin 32) was phosphorylated by cAMP-PK and by PKC, with kinetic properties being similar to those for other physiological substrates phosphorylated by these enzymes. Ca2+/CaM-PK II did not phosphorylate the peptide. Phosphopeptide mapping and amino acid sequencing of the phosphorylated synthetic peptide indicated that Ser233 of connexin 32 was present in peptide 1 and was phosphorylated by cAMP-PK or by PKC. In hepatocytes labeled with [32P]orthophosphoric acid, treatment with forskolin or 20-deoxy-20-oxophorbol 12,13-dibutyrate (PDBt) resulted in increased 32P-incorporation into connexin 32. Phosphopeptide mapping and phosphoamino acid analysis showed that a seryl residue in peptide 1 was most prominently phosphorylated under basal conditions. Treatment with forskolin or PDBt stimulated the phosphorylation of peptide 1. PDBt treatment also increased the phosphorylation of seryl residues in several other peptides. PDBt did not affect the cAMP-PK activity in hepatocytes. It has previously been shown that phorbol ester reduces dye coupling in several cell types, however in rat hepatocytes, dye coupling was not reduced by treatment with PDBt. Thus, activation of PKC may have differential effects on junctional permeability in different cell types; one source of this variability may be differences in the sites of phosphorylation in different gap-junction proteins.
Collapse
Affiliation(s)
- J C Sáez
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | | | | | | | | |
Collapse
|