1
|
Abstract
Glycogen accumulation occurs in Escherichia coli and Salmonella enterica serovar Typhimurium as well as in many other bacteria. Glycogen will be formed when there is an excess of carbon under conditions in which growth is limited because of the lack of a growth nutrient, e.g., a nitrogen source. This review describes the enzymatic reactions involved in glycogen synthesis and the allosteric regulation of the first enzyme, ADP-glucose pyrophosphorylase. The properties of the enzymes involved in glycogen synthesis, ADP-glucose pyrophosphorylase, glycogen synthase, and branching enzyme are also characterized. The data describing the genetic regulation of the glycogen synthesis are also presented. An alternate pathway for glycogen synthesis in mycobacteria is also described.
Collapse
|
2
|
Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, Viale AM, Pozueta-Romero J. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 2011; 34:952-85. [PMID: 20412306 DOI: 10.1111/j.1574-6976.2010.00220.x] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microorganisms have the capacity to utilize a variety of nutrients and adapt to continuously changing environmental conditions. Many microorganisms, including yeast and bacteria, accumulate carbon and energy reserves to cope with the starvation conditions temporarily present in the environment. Glycogen biosynthesis is a main strategy for such metabolic storage, and a variety of sensing and signaling mechanisms have evolved in evolutionarily distant species to ensure the production of this homopolysaccharide. At the most fundamental level, the processes of glycogen synthesis and degradation in yeast and bacteria share certain broad similarities. However, the regulation of these processes is sometimes quite distinct, indicating that they have evolved separately to respond optimally to the habitat conditions of each species. This review aims to highlight the mechanisms, both at the transcriptional and at the post-transcriptional level, that regulate glycogen metabolism in yeast and bacteria, focusing on selected areas where the greatest increase in knowledge has occurred during the last few years. In the yeast system, we focus particularly on the various signaling pathways that control the activity of the enzymes of glycogen storage. We also discuss our recent understanding of the important role played by the vacuole in glycogen metabolism. In the case of bacterial glycogen, special emphasis is placed on aspects related to the genetic regulation of glycogen metabolism and its connection with other biological processes.
Collapse
Affiliation(s)
- Wayne A Wilson
- Biochemistry and Nutrition Department, Des Moines University, Des Moines, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Escherichia coli glycogen metabolism is controlled by the PhoP-PhoQ regulatory system at submillimolar environmental Mg2+ concentrations, and is highly interconnected with a wide variety of cellular processes. Biochem J 2009; 424:129-41. [PMID: 19702577 DOI: 10.1042/bj20090980] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using the Keio collection of gene-disrupted mutants of Escherichia coli, we have recently carried out a genome-wide screening of the genes affecting glycogen metabolism. Among the mutants identified in the study, Delta mgtA, Delta phoP and Delta phoQ cells, all lacking genes that are induced under low extracellular Mg2+ conditions, displayed glycogen-deficient phenotypes. In this work we show that these mutants accumulated normal glycogen levels when the culture medium was supplemented with submillimolar Mg2+ concentrations. Expression analyses conducted in wild-type, Delta phoP and Delta phoQ cells showed that the glgCAP operon is under PhoP-PhoQ control in the submillimolar Mg2+ concentration range. Subsequent screening of the Keio collection under non-limiting Mg2+ allowed the identification of 183 knock-out mutants with altered glycogen levels. The stringent and general stress responses, end-turnover of tRNA, intracellular AMP levels, and metabolism of amino acids, iron, carbon and sulfur were major determinants of glycogen levels. glgC::lacZY expression analyses using mutants representing different functional categories revealed that the glgCAP operon belongs to the RelA regulon. We propose an integrated metabolic model wherein glycogen metabolism is (a) tightly controlled by the energy and nutritional status of the cell and (b) finely regulated by changes in environmental Mg2+ occurring at the submillimolar concentration range.
Collapse
|
4
|
Abstract
The accumulation of glycogen occurs in Escherichia coli and Salmonella enterica serovar Typhimurium as well as in many other bacteria. Glycogen will be formed when there is an excess of carbon under conditions in which growth is limited due to the lack of a growth nutrient, e.g., a nitrogen source. The structural genes of the glycogen biosynthetic enzymes of E. coli and S. serovar Typhimurium have been cloned previously, and that has provided insights in the genetic regulation of glycogen synthesis. An important aspect of the regulation of glycogen synthesis is the allosteric regulation of the ADP-Glc PPase. The current information, views, and concepts regarding the regulation of enzyme activity and the expression of the glycogen biosynthetic enzymes are presented in this review. The recent information on the amino acid residues critical for the activity of both glycogen synthase and branching enzyme (BE) is also presented. The residue involved in catalysis in the E. coli ADP-Glc PPase was determined by comparing a predicted structure of the enzyme with the known three-dimensional structures of sugar-nucleotide PPase domains. The molecular cloning of the E. coliglg K-12 structural genes greatly facilitated the subsequent study of the genetic regulation of bacterial glycogen biosynthesis. Results from studies of glycogen excess E. coli B mutants SG3 and AC70R1, which exhibit enhanced levels of the enzymes in the glycogen synthesis pathway (i.e., they are derepressed mutants), suggested that glycogen synthesis is under negative genetic regulation.
Collapse
|
5
|
Ballicora MA, Erben ED, Yazaki T, Bertolo AL, Demonte AM, Schmidt JR, Aleanzi M, Bejar CM, Figueroa CM, Fusari CM, Iglesias AA, Preiss J. Identification of regions critically affecting kinetics and allosteric regulation of the Escherichia coli ADP-glucose pyrophosphorylase by modeling and pentapeptide-scanning mutagenesis. J Bacteriol 2007; 189:5325-33. [PMID: 17496097 PMCID: PMC1951854 DOI: 10.1128/jb.00481-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 04/30/2007] [Indexed: 11/20/2022] Open
Abstract
ADP-glucose pyrophosphorylase (ADP-Glc PPase) is the enzyme responsible for the regulation of bacterial glycogen synthesis. To perform a structure-function relationship study of the Escherichia coli ADP-Glc PPase enzyme, we studied the effects of pentapeptide insertions at different positions in the enzyme and analyzed the results with a homology model. We randomly inserted 15 bp in a plasmid with the ADP-Glc PPase gene. We obtained 140 modified plasmids with single insertions of which 21 were in the coding region of the enzyme. Fourteen of them generated insertions of five amino acids, whereas the other seven created a stop codon and produced truncations. Correlation of ADP-Glc PPase activity to these modifications validated the enzyme model. Six of the insertions and one truncation produced enzymes with sufficient activity for the E. coli cells to synthesize glycogen and stain in the presence of iodine vapor. These were in regions away from the substrate site, whereas the mutants that did not stain had alterations in critical areas of the protein. The enzyme with a pentapeptide insertion between Leu(102) and Pro(103) was catalytically competent but insensitive to activation. We postulate this region as critical for the allosteric regulation of the enzyme, participating in the communication between the catalytic and regulatory domains.
Collapse
|
6
|
Preiss J. Regulation of adenosine diphosphate glucose pyrophosphorylase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 46:317-81. [PMID: 345767 DOI: 10.1002/9780470122914.ch5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Wu MX, Preiss J. Truncated forms of the recombinant Escherichia coli ADP-glucose pyrophosphorylase: the importance of the N-terminal region for allosteric activation and inhibition. Arch Biochem Biophys 2001; 389:159-65. [PMID: 11339804 DOI: 10.1006/abbi.2001.2327] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Truncated forms of Escherichia coli ADPglucose pyrophosphorylase were constructed using recombinant DNA techniques. A truncated form of the enzyme having the first 11 amino acid residues from the N-terminus and 2 amino acid residues from the C-terminus deleted was found to be highly active in absence of activator. A 1.6-fold activation by 1.5 mM fructose 1,6 bis-phosphate was observed for the truncated enzyme as compared to the 30-fold activation seen for the intact enzyme. Inhibition of the truncated enzyme by AMP was less than that seen with the intact enzyme. Similar properties were displayed by an enzyme truncated only at the N-terminal. Conversely, the C-terminal truncated enzyme shortened by 2 amino acid residues at the C-terminus is as sensitive as the intact enzyme to activation and inhibition. These results suggest that the N-terminal region is required for allosteric regulation of the enzyme.
Collapse
Affiliation(s)
- M X Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
8
|
Wu MX, Preiss J. The N-terminal region is important for the allosteric activation and inhibition of the Escherichia coli ADP-glucose pyrophosphorylase. Arch Biochem Biophys 1998; 358:182-8. [PMID: 9750179 DOI: 10.1006/abbi.1998.0846] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ADPglucose pyrophosphorylase (EC 2.7.7.27) from Escherichia coli is allosterically activated by fructose 1,6-bisphosphate and inhibited by AMP. Proteolysis of the enzyme with proteinase K causes loss of activity and generates two peptides, 21 and 28 kDa, from the 49.7-kDa subunit. The presence of ADPglucose, Mg2+, and fructose 1, 6-bisphosphate during the incubation with proteinase K protected the enzyme activity and prevented cleavage at sites Met181-Ala182 and Phe192-Val193. Proteolysis of the protected enzyme removed 10 to 13 amino acids from the N-terminal and 2 amino acids from the C-terminal. The resulting enzyme was almost independent of the need for fructose 1,6-bisphosphate for maximal activity and insensitive to inhibition by AMP. The apparent affinity for the substrates was similar to that of the fully-activated wild-type enzyme. These data suggest that amino acid residues in the N-terminal portion and possibly the C-terminal portion of ADPglucose pyrophosphorylase are part of the regulatory domain of the enzyme, critical for allosteric regulation of the enzyme.
Collapse
Affiliation(s)
- M X Wu
- Department of Biochemistry, Michigan State University, East Lansing, Michigan, 48824, USA
| | | |
Collapse
|
9
|
Meyer CR, Yirsa J, Gott B, Preiss J. A kinetic study of site-directed mutants of Escherichia coli ADP-glucose pyrophosphorylase: the role of residue 295 in allosteric regulation. Arch Biochem Biophys 1998; 352:247-54. [PMID: 9587413 DOI: 10.1006/abbi.1998.0593] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of amino acid substitutions at residue 295 on the regulatory properties of Escherichia coli ADP-glucose pyrophosphorylase were studied. In previous studies, this residue, altered from proline to serine (P295S) in the gene of a mutant strain of E. coli, resulted in a high-activity form of enzyme [higher activity in absence of activator fructose 1,6-bisphosphate (FBP), higher apparent affinity for FBP and substrates, and lower apparent affinity for the inhibitor, AMP]. The effects of size and charge on this site were explored by replacing Pro with Gly, Asp, Asn, Gln, or Glu. All mutant enzymes were expressed and purified for kinetic analysis. All mutant enzymes, to varying extents, were in more active form than the wild-type enzyme. Enzymes with a substituted negative charge (P295D, P295E) had the highest activity in the absence of FBP, while the P295G enzyme was most similar to the wild type. The P295D and P295E enzymes had the lowest apparent affinities for AMP; this effect was partially abolished by the neutral substitutions P295N and P295Q. Another mutation, G336D, had previously been found to produce an even higher activity enzyme form. In order to examine interactions between substitutions at the 295 and 336 positions, the double mutant P295D-G336D was constructed and characterized. The double mutant enzyme was more active in the absence of FBP, with a higher affinity for FBP and a lower apparent affinity for AMP than either single mutated enzyme. The significance of residue 295 in regulation is discussed.
Collapse
Affiliation(s)
- C R Meyer
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | | | | | |
Collapse
|
10
|
Charng Y, Iglesias A, Preiss J. Structure-function relationships of cyanobacterial ADP-glucose pyrophosphorylase. Site-directed mutagenesis and chemical modification of the activator-binding sites of ADP-glucose pyrophosphorylase from Anabaena PCC 7120. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51054-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
11
|
Preiss J, Romeo T. Molecular biology and regulatory aspects of glycogen biosynthesis in bacteria. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 47:299-329. [PMID: 8016324 DOI: 10.1016/s0079-6603(08)60255-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J Preiss
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | |
Collapse
|
12
|
Ghosh P, Meyer C, Remy E, Peterson D, Preiss J. Cloning, expression, and nucleotide sequence of glgC gene from an allosteric mutant of Escherichia coli B. Arch Biochem Biophys 1992; 296:122-8. [PMID: 1339262 DOI: 10.1016/0003-9861(92)90553-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Escherichia coli B mutant strain CL1136 accumulates glycogen at a 3.4- to 4-fold greater rate than the parent E. coli B strain and contains an ADPglucose synthetase with altered kinetic and allosteric properties. The enzyme from CL1136 is less dependent on the allosteric activator, fructose 1,6-bisphosphate, for activity and less sensitive to inhibition by AMP than the parent strain enzyme. The structural gene, glgC, for the allosteric mutant enzyme was selected by colony hybridization and cloned into the bacterial plasmid pBR322 by insertion of the chromosomal DNA at the PstI site. One recombinant plasmid, designated pKG3, was isolated from the genomic library of CL1136 containing glgC. The cloned ADPglucose synthetase from the mutant CL1136 was expressed and characterized with respect to kinetic and allosteric properties and found to be identical to the enzyme purified from the CL1136 strain. The mutant glgC was then subcloned into pUC118/119 for dideoxy sequencing of both strands. The mutant glgC sequence was found to differ from the wild-type at the deduced amino acid residue 67 where a single point mutation resulted in a change from arginine to cysteine.
Collapse
Affiliation(s)
- P Ghosh
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- J Preiss
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | |
Collapse
|
14
|
|
15
|
Biosynthesis of bacterial glycogen. Use of site-directed mutagenesis to probe the role of tyrosine 114 in the catalytic mechanism of ADP-glucose synthetase from Escherichia coli. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68084-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Lee YM, Mukherjee S, Preiss J. Covalent modification of Escherichia coli ADPglucose synthetase with 8-azido substrate analogs. Arch Biochem Biophys 1986; 244:585-95. [PMID: 3004345 DOI: 10.1016/0003-9861(86)90627-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two photoaffinity labeling agents, 8-azido-ATP and 8-azido-ADPglucose, are substrate site specific probes of the Escherichia coli ADPglucose synthetase. In the presence of light (254 nm), the analogs specifically and covalently modify the enzyme with concomitant loss of catalytic activity. The substrate ADPglucose completely protects the enzyme from covalent modification by these 8-azido analogs. ATP, another substrate, also provides nearly 100% protection from 8-azido-ATP inactivation but is less efficient in protection of inactivation by 8-azido-ADPglucose. In the absence of light, however, ADPglucose synthetase can utilize either 8-azido-ATP or 8-azido-ADPglucose as substrates.
Collapse
|
17
|
Leckie MP, Porter SE, Roth WG, Tieber VL, Dietzler DN. Evidence that cyclic AMP stimulates bacterial glycogen synthesis by relieving AMP inhibition of and by increasing the cellular level of ADP-glucose synthetase. Arch Biochem Biophys 1984; 235:493-503. [PMID: 6097189 DOI: 10.1016/0003-9861(84)90222-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Using Escherichia coli mutants that possess an ADP-glucose synthetase (EC 2.7.7.27, the rate-limiting enzyme of bacterial glycogen synthesis) that differs in its inhibition by physiological levels of AMP, evidence was obtained that cyclic AMP stimulates cellular glycogen synthesis during nitrogen starvation by relieving AMP inhibition of this enzyme (without altering the cellular AMP level). Deinhibition for AMP of an enzyme controlled by the adenylate energy charge allows selective release from this control despite the maintenance of a constant cellular energy charge value. It was also shown that an additional increase in rate, not accounted for by AMP deinhibition, was due to an increase in the cellular level of ADP-glucose synthetase.
Collapse
|
18
|
Dietzler DN, Porter SE, Roth WG, Leckie MP. Identification of GTP as a physiologically relevant inhibitor of Escherichia coli ADP-glucose synthetase. Biochem Biophys Res Commun 1984; 122:289-96. [PMID: 6234895 DOI: 10.1016/0006-291x(84)90473-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We show that physiological concentrations of GTP can significantly inhibit wild-type Escherichia coli ADP-glucose synthetase (the rate-limiting enzyme of bacterial glycogen synthesis) and that mutant-strain enzymes known to show less inhibition by physiological AMP levels also show less inhibition by physiological levels of GTP. This decreased inhibition by both AMP and GTP can almost totally account for the higher cellular rates of glycogen synthesis observed in the mutant strains. In addition, in metabolic conditions where we have shown that cellular glycogen synthesis increases, cellular GTP levels are known to decrease. Thus, we conclude that GTP inhibition is physiologically relevant.
Collapse
|
19
|
Yung SG, Paule M, Beggs R, Greenberg E, Preiss J. Biosynthesis of bacterial glycogen: characterization of adenosine diphosphate glucose synthetases from Enterobacter hafniae and Aeromonas hydrophila. Arch Microbiol 1984; 138:1-8. [PMID: 6331331 DOI: 10.1007/bf00425398] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Enterobacter hafniae and Aeromonas hydrophila ADPglucose synthetases were purified approximately 39- and 61-fold, respectively, over the crude extract. Both enzymes were heat stable at 60 degrees C in the presence of inorganic phosphate. The molecular weights of both enzymes were approximately 200,000 which are similar to other enteric ADPglucose synthetases studied. Based on kinetic results obtained from the partially purified enzymes, the E. hafniae enzyme is activated twofold by phospho-enolpyruvate while the A. hydrophila enzyme is activated twofold by fructose 6-P and 1.5-fold by fructose 1,6 bis-phosphate. The E. hafniae enzyme activity is strongly inhibited by AMP and ADP and the inhibition can be partially reversed by P-enolpyruvate. ADP is the most effective inhibitor of the A. hydrophila enzyme and its inhibition can be partially overcome by the presence of the activators fructose 6-P and fructose 1,6-P2. These kinetic results show that the allosteric properties of the E. hafniae enzyme are distinctly different from the ADPglucose synthetases of those previously studied from bacteria of the genus Enterobacter. Although the A. hydrophila enzyme is activated by fructose 1,6-P2, its allosteric properties are quite different than those observed for ADPglucose synthetase of the Enterobacteriaceae.
Collapse
|
20
|
Preiss J, Greenberg E. Pyrophosphate may be involved in regulation of bacterial glycogen synthesis. Biochem Biophys Res Commun 1983; 115:820-6. [PMID: 6312996 DOI: 10.1016/s0006-291x(83)80008-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Inorganic pyrophosphate is a potent inhibitor of the enzyme that catalyzes synthesis of the glucosyl donor for Escherichia coli glycogen synthesis, ADP-glucose pyrophosphorylase. The Ki is determined to be 40 microM and the substrate ATP, the activator, fructose 1,6-P2 or the allosteric inhibitor, AMP do not greatly affect the inhibition. PPi exhibits mixed type inhibition with the other substrate, glucose 1-P. The potential regulation of glycogen synthesis by PPi is discussed.
Collapse
|
21
|
Urbanowski J, Leung P, Weissbach H, Preiss J. The in vitro expression of the gene for Escherichia coli ADP glucose pyrophosphorylase is stimulated by cyclic AMP and cyclic AMP receptor protein. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32785-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Regulation of bacterial glycogen synthesis. Stimulation of glycogen synthesis by endogenous and exogenous cyclic adenosine 3':5'-monophosphate in Escherichia coli and the requirement for a functional CRP gene. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32739-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Okita T, Rodriguez R, Preiss J. Biosynthesis of bacterial glycogen. Cloning of the glycogen biosynthetic enzyme structural genes of Escherichia coli. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)69082-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
24
|
Kappel WK, Preiss J. Biosynthesis of bacterial glycogen: purification and characterization of ADPglucose pyrophosphorylase with modified regulatory properties from Escherichia coli B mutant CL1136-504. Arch Biochem Biophys 1981; 209:15-28. [PMID: 6269493 DOI: 10.1016/0003-9861(81)90252-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Preiss J, Greenberg E, Parsons TF, Downey J. Regulatory properties of the ADPglucose pyrophosphorylase from Rhodopseudomonas sphaeroides and from Rhodopseudomonas gelatinosa. Arch Microbiol 1980; 126:21-31. [PMID: 6249230 DOI: 10.1007/bf00421887] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The ADPglucose pyrophosphorylases from Rhodopseudomonas sphaeroides and Rhodopseudomonas gelatinosa are activated by fructose-6-phosphate, pyruvate and fructose-1,6 biophosphate-P2. The effects of the activators are to increase significantly the Vmax of ADPglucose synthesis and to lower the S0.5 values (concentration of substrates giving 50% maximal velocity) for ATP and MgCl2. The R. sphaeroides enzyme is inhibited by Pi while the R. gelatinosa enzyme is inhibited by AMP as well as by Pi. The interaction between inhibitor and activator is complex. At very low concentrations of activator the enzyme is more sensitized to inhibition. However, at higher concentrations of activator there is a decrease in the sensitivity of the enzyme towards inhibition. The findings are discussed with respect to glycogen synthesis in these microorganisms and may be related to findings that indicate that Rhodopseudomonads have the ability to degrade sugars via the Entner-Duodoroff or Embden-Meyerhoff pathways.
Collapse
|
26
|
Dietzler D, Leckie M, Sternheim W, Ungar J, Crimmins D, Lewis J. Regulation of glycogen synthesis and glucose utilization in Escherichia coli during maintenance of the energy charge. Quantitative correlation of changes in the rates of glycogen synthesis and glucose utilization with simultaneous changes in the cellular levels of both glucose 6-phosphate and fructose 1,6-diphosphate. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(19)86887-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
27
|
Contribution of cyclic adenosine 3':5'-monophosphate to the regulation of bacterial glycogen synthesis in vivo. Effect of carbon source and cyclic adenosine 3':5'-monophosphate on the quantitative relationship between the rate of glycogen synthesis and the cellular concentrations of glucose 6-phosphate and fructose 1,6-diphosphate in Escherichia coli. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(19)86890-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Dietzler D, Leckie M, Lewis J, Porter S, Taxman T, Lais C. Evidence for new factors in the coordinate regulation of energy metabolism in Escherichia coli. Effects of hypoxia, chloramphenicol succinate, and 2,4-dinitrophenol on glucose utilization, glycogen synthesis, adenylate energy charge, and hexose phosphates during the first two periods of nitrogen starvation. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(19)86889-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Periodic inventory review as a strategy for survival in Escherichia coli. The observation of precisely timed, rapid, and simultaneous shifts in glycogen synthesis and glucose utilization in the absence of an external stimulus during prolonged nitrogen starvation. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(19)86888-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Bender H. Glycogen from Klebsiella pneumoniae M 5 al and Escherichia coli K 12. ACTA ACUST UNITED AC 1979. [DOI: 10.1007/bf00508792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Haugen T, Preiss J. Biosynthesis of bacterial glycogen. The nature of the binding of substrates and effectors to ADP-glucose synthase. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(17)30281-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
Parsons T, Preiss J. Biosynthesis of bacterial glycogen. Isolation and characterization of the pyridoxal-P allosteric activator site and the ADP-glucose-protected pyridoxal-P binding site of Escherichia coli B ADP-glucose synthase. J Biol Chem 1978. [DOI: 10.1016/s0021-9258(17)34418-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Parsons T, Preiss J. Biosynthesis of bacterial glycogen. Incorporation of pyridoxal phosphate into the allosteric activator site and an ADP-glucose-protected pyridoxal phosphate binding site of Escherichia coli B ADP-glucose synthase. J Biol Chem 1978. [DOI: 10.1016/s0021-9258(17)34599-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
34
|
Dietzler DN, Leckie MP. Regulation of ADP-glucose synthetase, the rate-limiting enzyme of bacterial glycogen synthesis, by the pleiotropic nucleotides ppGpp and pppGpp. Biochem Biophys Res Commun 1977; 77:1459-67. [PMID: 197960 DOI: 10.1016/s0006-291x(77)80143-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Dietzler DN, Leckie MP, Sternheim WL, Taxman TL, Ungar JM, Porter SE. Evidence for the regulation of bacterial glycogen synthesis by cyclic AMP. Biochem Biophys Res Commun 1977; 77:1468-77. [PMID: 197961 DOI: 10.1016/s0006-291x(77)80144-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Haugen TH, Ishaque A, Preiss J. Biosynthesis of bacterial glycogen. Characterization of the subunit structure of Escherichia coli B glucose-1-phosphate adenylyltransferase (EC 2.7.7.27). J Biol Chem 1976. [DOI: 10.1016/s0021-9258(19)57016-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Carlson CA, Parsons TF, Preiss J. Biosynthesis of bacterial glycogen. Activator-induced oligomerization of a mutant Escherichia coli ADP-glucose synthase. J Biol Chem 1976. [DOI: 10.1016/s0021-9258(19)57017-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
38
|
Preiss J, Lammel C, Greenberg E. Biosynthesis of bacterial glycogen. Kinetic studies of a glucose-1-P adenylyltransferase (EC 2.7.7.27) from a glycogen-excess mutant of Escherichia coli B. Arch Biochem Biophys 1976; 174:105-19. [PMID: 779654 DOI: 10.1016/0003-9861(76)90329-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Haugen T, Ishaque A, Preiss J. ADPGlucose pyrophosphorylase: evidence for a lysine residue at the activator site of the Escherichia coli B enzyme. Biochem Biophys Res Commun 1976; 69:346-53. [PMID: 773375 DOI: 10.1016/0006-291x(76)90528-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Preiss J, Greenberg E, Sabraw A. Biosynthesis of bacterial glycogen. Kinetic studies of a glucose-1-phosphate adenylyltransferase (EC 2.7.7.27) from a glycogen-deficient mutant of Escherichia coli B. J Biol Chem 1975. [DOI: 10.1016/s0021-9258(19)40862-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
41
|
Dietzler DN, Leckie MP, Magnani JL, Sughrue MJ, Bergstein PE. Evidence for the coordinate control of glycogen synthesis, glucose utilization, and glycolysis in Escherichia coli. II. Quantitative correlation of the inhibition of glycogen synthesis and the stimulation of glucose utilization by 2,4-dinitrophenol with the effects on the cellular levels of glucose 6-phosphate, fructose, 1,6-diphosphate, and total adenylates. J Biol Chem 1975. [DOI: 10.1016/s0021-9258(19)40928-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
42
|
Dietzler DN, Leckie MP, Bergstein PE, Sughrue MJ. Evidence for the coordinate control of glycogen synthesis, glucose utilization, and glycolysis in Escherichia coli. I. Quantitative covariance of the rate of glucose utilization and the cellular level of fructose 1,6-diphosphate during exponential growth and nutrient limitation. J Biol Chem 1975. [DOI: 10.1016/s0021-9258(19)40927-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Abdelal AT, Ingraham JL. Carbamylphosphate synthetase from Salmonella typhimurium. Regulations, subunit composition, and function of the subunits. J Biol Chem 1975. [DOI: 10.1016/s0021-9258(19)41317-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
44
|
Evidence for the allosteric regulation of glycogen synthesis in the intact Escherichia coli cell. Agreement of the values of the parameters of the Hill equation fitted to data for glycogen synthesis in vivo with the abailable values obtained in vitro with adenosine diphosphoglucose synthetase. J Biol Chem 1975. [DOI: 10.1016/s0021-9258(19)41728-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
Dietzler DN, Lais CJ, Magnani JL, Leckie MP. Maintenance of the energy charge in the presence of large decreases in the total adenylate pool of Escherichia coli and concurrent changes in glucose-6-P, fructose-P2 and glycogen synthesis. Biochem Biophys Res Commun 1974. [DOI: 10.1016/0006-291x(74)90397-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Dietzler DN, Leckie MP, Magnani JL. Evidence that ATP exerts control of the rate of glucose utilization in the intact Escherichia coli cell by altering the cellular level of glucose-6-P, an intermediate known to inhibit glucose transport in vitro. Biochem Biophys Res Commun 1974; 60:622-8. [PMID: 4607992 DOI: 10.1016/0006-291x(74)90286-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
47
|
Dietzler DN, Leckie MP, Lais CJ, Magnani JL. Evidence for the allosteric regulation of bacterial glycogen synthesis in vivo. Arch Biochem Biophys 1974; 162:602-6. [PMID: 4600958 DOI: 10.1016/0003-9861(74)90221-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
48
|
Dietzler DN, Lais CJ, Leckie MP. Simultaneous increases of the adenylate energy charge and the rate of glycogen synthesis in nitrogen-starved Escherichia coli W4597(K). Arch Biochem Biophys 1974; 160:14-25. [PMID: 4151323 DOI: 10.1016/s0003-9861(74)80003-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|