1
|
Milton LA, Davern JW, Hipwood L, Chaves JCS, McGovern J, Broszczak D, Hutmacher DW, Meinert C, Toh YC. Liver click dECM hydrogels for engineering hepatic microenvironments. Acta Biomater 2024; 185:144-160. [PMID: 38960110 DOI: 10.1016/j.actbio.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Decellularized extracellular matrix (dECM) hydrogels provide tissue-specific microenvironments which accommodate physiological cellular phenotypes in 3D in vitro cell cultures. However, their formation hinges on collagen fibrillogenesis, a complex process which limits regulation of physicochemical properties. Hence, achieving reproducible results with dECM hydrogels poses as a challenge. Here, we demonstrate that thiolation of solubilized liver dECM enables rapid formation of covalently crosslinked hydrogels via Michael-type addition, allowing for precise control over mechanical properties and superior organotypic biological activity. Investigation of various decellularization methodologies revealed that treatment of liver tissue with Triton X-100 and ammonium hydroxide resulted in near complete DNA removal with significant retention of the native liver proteome. Chemical functionalization of pepsin-solubilized liver dECMs via 1-ethyl-3(3-dimethylamino)propyl carbodiimide (EDC)/N-hydroxysuccinimide (NHS) coupling of l-Cysteine created thiolated liver dECM (dECM-SH), which rapidly reacted with 4-arm polyethylene glycol (PEG)-maleimide to form optically clear hydrogels under controlled conditions. Importantly, Young's moduli could be precisely tuned between 1 - 7 kPa by varying polymer concentrations, enabling close replication of healthy and fibrotic liver conditions in in vitro cell cultures. Click dECM-SH hydrogels were cytocompatible, supported growth of HepG2 and HepaRG liver cells, and promoted liver-specific functional phenotypes as evidenced by increased metabolic activity, as well CYP1A2 and CYP3A4 activity and excretory function when compared to monolayer culture and collagen-based hydrogels. Our findings demonstrate that click-functionalized dECM hydrogels offer a highly controlled, reproducible alternative to conventional tissue-derived hydrogels for in vitro cell culture applications. STATEMENT OF SIGNIFICANCE: Traditional dECM hydrogels face challenges in reproducibility and mechanical property control due to variable crosslinking processes. We introduce a click hydrogel based on porcine liver decellularized extracellular matrix (dECM) that circumnavigates these challenges. After optimizing liver decellularization for ECM retention, we integrated thiol-functionalized liver dECM with polyethylene-glycol derivatives through Michael-type addition click chemistry, enabling rapid, room-temperature gelation. This offers enhanced control over the hydrogel's mechanical and biochemical properties. The resultant click dECM hydrogels mimic the liver's natural ECM and exhibit greater mechanical tunability and handling ease, facilitating their application in high-throughput and industrial settings. Moreover, these hydrogels significantly improve the function of HepaRG-derived hepatocytes in 3D culture, presenting an advancement for liver tissue cell culture models for drug testing applications.
Collapse
Affiliation(s)
- Laura A Milton
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia
| | - Jordan W Davern
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia
| | - Luke Hipwood
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Juliana C S Chaves
- Cell & Molecular Biology Department, Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jacqui McGovern
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia; Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
| | - Daniel Broszczak
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Dietmar W Hutmacher
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia; Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, Australia
| | - Christoph Meinert
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia.
| | - Yi-Chin Toh
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia; Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia; Centre for Microbiome Research, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
2
|
Vena MP, van Hazendonk LS, van Zyl W, Tuinier R, Friedrich H. A Systems Approach to Study Collagen Type I Self-Assembly: Kinetics and Morphology. SMALL METHODS 2024; 8:e2301171. [PMID: 38229526 DOI: 10.1002/smtd.202301171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/18/2023] [Indexed: 01/18/2024]
Abstract
Collagen type I, the main component of the extracellular matrix in vertebrates, is widely used in tissue engineering applications. This is on account that collagen molecules can self-assemble under certain conditions into 3D fibrillar hydrogels. Although there is an extensive body of literature studying collagen self-assembly, there is a lack of systematic understanding on how different experimental factors, such as pH and temperature, and their cumulative effects guide the self-assembly process. In this work, a comprehensive workflow to study the interactive effects of several assembly parameters on the collagen self-assembly process is implemented. This workflow consists of: 1) efficient statistical sampling based on Design of Experiments, 2) high-throughput and automated data collection and 3) automated data analysis. This approach enables to screen several parameters simultaneously and derive a set of mathematical equations that link parameters with the kinetics and morphological aspects of collagen self-assembly, and can be used to design collagen constructs with predefined characteristics.
Collapse
Affiliation(s)
- María Paula Vena
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
- Center for Multiscale Electron Microscopy, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Laura S van Hazendonk
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
- Center for Multiscale Electron Microscopy, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Willem van Zyl
- Thermo Fisher Scientific, Zwaanstraat 31G/H, Building TR, Eindhoven, 5651 CA, The Netherlands
| | - Remco Tuinier
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Heiner Friedrich
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
- Center for Multiscale Electron Microscopy, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
3
|
Meli V, Rowley AT, Veerasubramanian PK, Heedy SE, Liu WF, Wang SW. Modulation of Stiffness-Dependent Macrophage Inflammatory Responses by Collagen Deposition. ACS Biomater Sci Eng 2024; 10:2212-2223. [PMID: 38467019 PMCID: PMC11005009 DOI: 10.1021/acsbiomaterials.3c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024]
Abstract
Macrophages are innate immune cells that interact with complex extracellular matrix environments, which have varied stiffness, composition, and structure, and such interactions can lead to the modulation of cellular activity. Collagen is often used in the culture of immune cells, but the effects of substrate functionalization conditions are not typically considered. Here, we show that the solvent system used to attach collagen onto a hydrogel surface affects its surface distribution and organization, and this can modulate the responses of macrophages subsequently cultured on these surfaces in terms of their inflammatory activation and expression of adhesion and mechanosensitive molecules. Collagen was solubilized in either acetic acid (Col-AA) or N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid (HEPES) (Col-HEP) solutions and conjugated onto soft and stiff polyacrylamide (PA) hydrogel surfaces. Bone marrow-derived macrophages cultured under standard conditions (pH 7.4) on the Col-HEP-derived surfaces exhibited stiffness-dependent inflammatory activation; in contrast, the macrophages cultured on Col-AA-derived surfaces expressed high levels of inflammatory cytokines and genes, irrespective of the hydrogel stiffness. Among the collagen receptors that were examined, leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) was the most highly expressed, and knockdown of the Lair-1 gene enhanced the secretion of inflammatory cytokines. We found that the collagen distribution was more homogeneous on Col-AA surfaces but formed aggregates on Col-HEP surfaces. The macrophages cultured on Col-AA PA hydrogels were more evenly spread, expressed higher levels of vinculin, and exerted higher traction forces compared to those of cells on Col-HEP. These macrophages on Col-AA also had higher nuclear-to-cytoplasmic ratios of yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), key molecules that control inflammation and sense substrate stiffness. Our results highlight that seemingly slight variations in substrate deposition for immunobiology studies can alter critical immune responses, and this is important to elucidate in the broader context of immunomodulatory biomaterial design.
Collapse
Affiliation(s)
- Vijaykumar
S. Meli
- Department
of Biomedical Engineering, University of
California Irvine, Irvine, California 92697, United States
- UCI
Edwards Lifesciences Foundation Cardiovascular Innovation and Research
Center, University of California Irvine, Irvine, California 92697, United States
- Department
of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Andrew T. Rowley
- Department
of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Praveen K. Veerasubramanian
- Department
of Biomedical Engineering, University of
California Irvine, Irvine, California 92697, United States
- UCI
Edwards Lifesciences Foundation Cardiovascular Innovation and Research
Center, University of California Irvine, Irvine, California 92697, United States
| | - Sara E. Heedy
- Department
of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Wendy F. Liu
- Department
of Biomedical Engineering, University of
California Irvine, Irvine, California 92697, United States
- UCI
Edwards Lifesciences Foundation Cardiovascular Innovation and Research
Center, University of California Irvine, Irvine, California 92697, United States
- Department
of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
- Department
of Molecular Biology and Biochemistry, University
of California Irvine, Irvine, California 92697, United States
- Institute
for Immunology, University of California
Irvine, Irvine, California 92697, United States
| | - Szu-Wen Wang
- Department
of Biomedical Engineering, University of
California Irvine, Irvine, California 92697, United States
- Department
of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
- Institute
for Immunology, University of California
Irvine, Irvine, California 92697, United States
- Chao Family
Comprehensive Cancer Center, University
of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
4
|
Salinas-Fernandez S, Garcia O, Kelly DJ, Buckley CT. The influence of pH and salt concentration on the microstructure and mechanical properties of meniscus extracellular matrix-derived implants. J Biomed Mater Res A 2024; 112:359-372. [PMID: 37921203 DOI: 10.1002/jbm.a.37634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Meniscus-related injuries are a common orthopedic challenge with an increasing incidence in the population. While the preservation of viable meniscal tissue is the preferred approach in repair strategies, complex or total traumatic lesions may require alternative therapeutic approaches such as meniscal reconstruction using allografts or engineered equivalents. Although clinical studies suggest promising outcomes with the use of acellular implants, further development is needed to improve their biological and mechanical requirements. Decellularized extracellular matrix (dECM) derived from menisci is a promising biomaterial for meniscus tissue engineering due to its recapitulation of the native tissue environment and the maintenance of tissue-specific cues. However, the associated mechanical limitations of dECM-derived scaffolds frequently impedes their adoption, requiring additional reinforcement or combining with stiffer biomaterials to increase their load-bearing properties. In this study, decellularized extracellular matrix was extracted and its fibrillation was controlled by adjusting both pH and salt concentrations to fabricate mechanically functional meniscal tissue equivalents. The effect of collagen fibrillation on the mechanical properties of the dECM constructs was assessed, and porcine-derived fibrochondrocytes were used to evaluate in vitro biocompatibility. It was also possible to fabricate meniscus-shaped implants by casting of the dECM and to render the implants suitable for off-the-shelf use by adopting a freeze-drying preservation method. Suture pull-out tests were also performed to assess the feasibility of using existing surgical methods to fix such implants within a damaged meniscus. This study highlights the potential of utilizing ECM-derived materials for meniscal tissue substitutes that closely mimic the mechanical and biological properties of native tissue.
Collapse
Affiliation(s)
- Soraya Salinas-Fernandez
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services, Inc., Irvine, California, USA
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Conor T Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
5
|
Mbitta Akoa D, Sicard L, Hélary C, Torrens C, Baroukh B, Poliard A, Coradin T. Role of Physico-Chemical and Cellular Conditions on the Bone Repair Potential of Plastically Compressed Collagen Hydrogels. Gels 2024; 10:130. [PMID: 38391460 PMCID: PMC10887598 DOI: 10.3390/gels10020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Since their first description nearly 20 years ago, dense collagen hydrogels obtained by plastic compression have become popular scaffolds in tissue engineering. In particular, when seeded with dental pulp stem cells, they have demonstrated a great in vivo potential in cranial bone repair. Here, we investigated how physico-chemical and cell-seeding conditions could influence the formation and in vitro mineralization of these cellularized scaffolds. A qualitative assessment demonstrated that the gel stability before and after compression was highly sensitive to the conditions of fibrillogenesis, especially initial acid acetic and buffer concentrations. Gels with similar rheological properties but different fibrillar structures that exhibited different stabilities when used for the 3D culture of Stem cells from Human Exfoliated Deciduous teeth (SHEDs) could be prepared. Finally, in our optimal physico-chemical conditions, mineralization could be achieved only using human dental pulp stem cells (hDPSCs) at a high cell density. These results highlight the key role of fibrillogenic conditions and cell type/density on the bone repair potential of cell-laden plastically compressed collagen hydrogels.
Collapse
Affiliation(s)
- Daline Mbitta Akoa
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Ludovic Sicard
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales, FHU-DDS-Net, Dental School, 92120 Montrouge, France
- AP-HP Service de Médecine Bucco-Dentaire, Hôpital Bretonneau, 75018 Paris, France
| | - Christophe Hélary
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Coralie Torrens
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales, FHU-DDS-Net, Dental School, 92120 Montrouge, France
| | - Brigitte Baroukh
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales, FHU-DDS-Net, Dental School, 92120 Montrouge, France
| | - Anne Poliard
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales, FHU-DDS-Net, Dental School, 92120 Montrouge, France
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| |
Collapse
|
6
|
Cortes-Medina M, Bushman AR, Beshay PE, Adorno JJ, Menyhert MM, Hildebrand RM, Agarwal SS, Avendano A, Friedman AK, Song JW. Chondroitin sulfate, dermatan sulfate, and hyaluronic acid differentially modify the biophysical properties of collagen-based hydrogels. Acta Biomater 2024; 174:116-126. [PMID: 38101556 PMCID: PMC10842894 DOI: 10.1016/j.actbio.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Fibrillar collagens and glycosaminoglycans (GAGs) are structural biomolecules that are natively abundant to the extracellular matrix (ECM). Prior studies have quantified the effects of GAGs on the bulk mechanical properties of the ECM. However, there remains a lack of experimental studies on how GAGs alter other biophysical properties of the ECM, including ones that operate at the length scales of individual cells such as mass transport efficiency and matrix microstructure. This study focuses on the GAG molecules chondroitin sulfate (CS), dermatan sulfate (DS), and hyaluronic acid (HA). CS and DS are stereoisomers while HA is the only non-sulfated GAG. We characterized and decoupled the effects of these GAG molecules on the stiffness, transport, and matrix microarchitecture properties of type I collagen hydrogels using mechanical indentation testing, microfluidics, and confocal reflectance imaging, respectively. We complement these biophysical measurements with turbidity assays to profile collagen aggregate formation. Surprisingly, only HA enhanced the ECM indentation modulus, while all three GAGs had no effect on hydraulic permeability. Strikingly, we show that CS, DS, and HA differentially regulate the matrix microarchitecture of hydrogels due to their alterations to the kinetics of collagen self-assembly. In addition to providing information on how GAGs define key physical properties of the ECM, this work shows new ways in which stiffness measurements, microfluidics, microscopy, and turbidity kinetics can be used complementarily to reveal details of collagen self-assembly and structure. STATEMENT OF SIGNIFICANCE: Collagen and glycosaminoglycans (GAGs) are integral to the structure, function, and bioactivity of the extracellular matrix (ECM). Despite widespread interest in collagen-GAG composite hydrogels, there is a lack of quantitative understanding of how different GAGs alter the biophysical properties of the ECM across tissue, cellular, and subcellular length scales. Here we show using mechanical, microfluidic, microscopy, and analytical methods and measurements that the GAG molecules chondroitin sulfate, dermatan sulfate, and hyaluronic acid differentially regulate the mechanical, transport, and microstructural properties of hydrogels due to their alterations to the kinetics of collagen self-assembly. As such, these results will inform improved design and utilization of collagen-based scaffolds of tailored composition, mechanical properties, molecular availability due to mass transport, and microarchitecture.
Collapse
Affiliation(s)
- Marcos Cortes-Medina
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Andrew R Bushman
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Jonathan J Adorno
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Riley M Hildebrand
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Shashwat S Agarwal
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Alex Avendano
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Alicia K Friedman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH 43210, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210, USA; The Comprehensive Cancer Center, The Ohio State University, Columbus OH 43210, USA.
| |
Collapse
|
7
|
Huang JY, Wong TY, Tu TY, Tang MJ, Lin HH, Hsueh YY. Assessment of Tilapia Skin Collagen for Biomedical Research Applications in Comparison with Mammalian Collagen. Molecules 2024; 29:402. [PMID: 38257315 PMCID: PMC10819363 DOI: 10.3390/molecules29020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Collagen is an important material for biomedical research, but using mammalian tissue-derived collagen carries the risk of zoonotic disease transmission. Marine organisms, such as farmed tilapia, have emerged as a safe alternative source of collagen for biomedical research. However, the tilapia collagen products for biomedical research are rare, and their biological functions remain largely unexamined. In this study, we characterized a commercial tilapia skin collagen using SDS-PAGE and fibril formation assays and evaluated its effects on skin fibroblast adhesion, proliferation, and migration, comparing it with commercial collagen from rat tails, porcine skin, and bovine skin. The results showed that tilapia skin collagen is a type I collagen, similar to rat tail collagen, and has a faster fibril formation rate and better-promoting effects on cell migration than porcine and bovine skin collagen. We also confirmed its application in a 3D culture for kidney cells' spherical cyst formation, fibroblast-induced gel contraction, and tumor spheroid interfacial invasion. Furthermore, we demonstrated that the freeze-dried tilapia skin collagen scaffold improved wound closure in a mouse excisional wound model, similar to commercial porcine or bovine collagen wound dressings. In conclusion, tilapia skin collagen is an ideal biomaterial for biomedical research.
Collapse
Affiliation(s)
- Jyun-Yuan Huang
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
| | - Tzyy-Yue Wong
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
| | - Ting-Yuan Tu
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan City 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan City 701, Taiwan
| | - Ming-Jer Tang
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| | - Hsi-Hui Lin
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| | - Yuan-Yu Hsueh
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| |
Collapse
|
8
|
Kowalewski A, Forde NR. Fluence-dependent degradation of fibrillar type I collagen by 222 nm far-UVC radiation. PLoS One 2024; 19:e0292298. [PMID: 38165863 PMCID: PMC10760738 DOI: 10.1371/journal.pone.0292298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/09/2023] [Indexed: 01/04/2024] Open
Abstract
For more than 100 years, germicidal lamps emitting 254 nm ultraviolet (UV) radiation have been used for drinking-water disinfection and surface sterilization. However, due to the carcinogenic nature of 254 nm UV, these lamps have been unable to be used for clinical procedures such as wound or surgical site sterilization. Recently, technical advances have facilitated a new generation of germicidal lamp whose emissions centre at 222 nm. These novel 222 nm lamps have commensurate antimicrobial properties to 254 nm lamps while producing few short- or long-term health effects in humans upon external skin exposure. However, to realize the full clinical potential of 222 nm UV, its safety upon internal tissue exposure must also be considered. Type I collagen is the most abundant structural protein in the body, where it self-assembles into fibrils which play a crucial role in connective tissue structure and function. In this work, we investigate the effect of 222 nm UV radiation on type I collagen fibrils in vitro. We show that collagen's response to irradiation with 222 nm UV is fluence-dependent, ranging from no detectable fibril damage at low fluences to complete fibril degradation and polypeptide chain scission at high fluences. However, we also show that fibril degradation is significantly attenuated by increasing collagen sample thickness. Given the low fluence threshold for bacterial inactivation and the macroscopic thickness of collagenous tissues in vivo, our results suggest a range of 222 nm UV fluences which may inactivate pathogenic bacteria without causing significant damage to fibrillar collagen. This presents an initial step toward the validation of 222 nm UV radiation for internal tissue disinfection.
Collapse
Affiliation(s)
- Antonia Kowalewski
- Department of Physics, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Nancy R. Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
9
|
Wang Y, Zhong Z, Munawar N, Wang R, Zan L, Zhu J. Production of green-natural and "authentic" cultured meat based on proanthocyanidins-dialdehyde chitosan-collagen ternary hybrid edible scaffolds. Food Res Int 2024; 175:113757. [PMID: 38129054 DOI: 10.1016/j.foodres.2023.113757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Cultured meat has the potential to fulfill the meat demand for the growing human population, but cultured meat development will be required to simplify the production process and produce naturally cultured meat, such as no longer stripping off scaffolders and adding artificial dyes. In this study, proanthocyanidins (PC) and dialdehyde chitosan (DAC) were employed as dual crosslinkers with collagen to prepare a hybrid 3D edible scaffold for the production of high-quality cell-cultured meat. The results revealed that the scaffold was biocompatible and could offer robust mechanical support and adhesion sites for bovine myoblasts, enabling long-term cell culture. Meanwhile, the Col-PC-DAC scaffold promoted the myogenic differentiation of bovine myoblasts and extracellular matrix protein secretion, further affecting the texture of cultured meat. After cooking the cultured meat and beef, it was shown that the cultured meat had some similarities to beef in color and flavor. Importantly, our findings demonstrate that cultured meat can acquire a color remarkably similar to that of conventional beef without the need for artificial dyeing. This breakthrough not only simplifies the production process but also ensures a more natural and appealing appearance of cultured meat. In conclusion, the proanthocyanidins-dialdehyde chitosan-collagen hybrid 3D edible scaffolds provide a new option for producing cultured meat that satisfies consumer expectations.
Collapse
Affiliation(s)
- Yafang Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhihao Zhong
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Noshaba Munawar
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruiqi Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linsen Zan
- Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Palladino S, Schwab A, Copes F, D'Este M, Candiani G, Mantovani D. Development of a hyaluronic acid-collagen bioink for shear-induced fibers and cells alignment. Biomed Mater 2023; 18:065017. [PMID: 37751763 DOI: 10.1088/1748-605x/acfd77] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Human tissues are characterized by complex composition and cellular and extracellular matrix (ECM) organization at microscopic level. In most of human tissues, cells and ECM show an anisotropic arrangement, which confers them specific properties.In vitro, the ability to closely mimic this complexity is limited. However, in the last years, extrusion bioprinting showed a certain potential for aligning cells and biomolecules, due to the application of shear stress during the bio-fabrication process. In this work, we propose a strategy to combine collagen (col) with tyramine-modified hyaluronic acid (THA) to obtain a printable col-THA bioink for extrusion bioprinting, solely-based on natural-derived components. Collagen fibers formation within the hybrid hydrogel, as well as collagen distribution and spatial organization before and after printing, were studied. For the validation of the biological outcome, fibroblasts were selected as cellular model and embedded in the col-THA matrix. Cell metabolic activity and cell viability, as well as cell distribution and alignment, were studied in the bioink before and after bioprinting. Results demonstrated successful collagen fibers formation within the bioink, as well as collagen anisotropic alignment along the printing direction. Furthermore, results revealed suitable biological properties, with a slightly reduced metabolic activity at day 1, fully recovered within the first 3 d post-cell embedding. Finally, results showed fibroblasts elongation and alignment along the bioprinting direction. Altogether, results validated the potential to obtain collagen-based bioprinted constructs, with both cellular and ECM anisotropy, without detrimental effects of the fabrication process on the biological outcome. This bioink can be potentially used for a wide range of applications in tissue engineering and regenerative medicine in which anisotropy is required.
Collapse
Affiliation(s)
- Sara Palladino
- Laboratory for Biomaterials and Bioengineering, CRC-Tier I, Dept Min-Met-Materials Eng and Regenerative Medicine, CHU de Québec, Laval University, Quebec City, Canada
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | | | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, CRC-Tier I, Dept Min-Met-Materials Eng and Regenerative Medicine, CHU de Québec, Laval University, Quebec City, Canada
| | | | - Gabriele Candiani
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-Tier I, Dept Min-Met-Materials Eng and Regenerative Medicine, CHU de Québec, Laval University, Quebec City, Canada
| |
Collapse
|
11
|
Yang F, Das D, Karunakaran K, Genin GM, Thomopoulos S, Chasiotis I. Nonlinear time-dependent mechanical behavior of mammalian collagen fibrils. Acta Biomater 2023; 163:63-77. [PMID: 35259515 PMCID: PMC9441475 DOI: 10.1016/j.actbio.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 11/01/2022]
Abstract
The viscoelastic mechanical behavior of collagenous tissues has been studied extensively at the macroscale, yet a thorough quantitative understanding of the time-dependent mechanics of the basic building blocks of tissues, the collagen fibrils, is still missing. In order to address this knowledge gap, stress relaxation and creep tests at various stress (5-35 MPa) and strain (5-20%) levels were performed with individual collagen fibrils (average diameter of fully hydrated fibrils: 253 ± 21 nm) in phosphate buffered saline (PBS). The experimental results showed that the time-dependent mechanical behavior of fully hydrated individual collagen fibrils reconstituted from Type I calf skin collagen, is described by strain-dependent stress relaxation and stress-dependent creep functions in both the heel-toe and the linear regimes of deformation in monotonic stress-strain curves. The adaptive quasilinear viscoelastic (QLV) model, originally developed to capture the nonlinear viscoelastic response of collagenous tissues, provided a very good description of the nonlinear stress relaxation and creep behavior of the collagen fibrils. On the other hand, the nonlinear superposition (NSP) model fitted well the creep but not the stress relaxation data. The time constants and rates extracted from the adaptive QLV and the NSP models, respectively, pointed to a faster rate for stress relaxation than creep. This nonlinear viscoelastic behavior of individual collagen fibrils agrees with prior studies of macroscale collagenous tissues, thus demonstrating consistent time-dependent behavior across length scales and tissue hierarchies. STATEMENT OF SIGNIFICANCE: Pure stress relaxation and creep experiments were conducted for the first time with fully hydrated individual collagen fibrils. It is shown that collagen nanofibrils have a nonlinear time-dependent behavior which agrees with prior studies on macroscale collagenous tissues, thus demonstrating consistent time-dependent behavior across length scales and tissue hierarchies. This new insight into the non-linear viscoelastic behavior of the building blocks of mammalian collagenous tissues may serve as the foundation for improved macroscale tissue models that capture the mechanical behavior across length scales.
Collapse
Affiliation(s)
- Fan Yang
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Debashish Das
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kathiresan Karunakaran
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Guy M Genin
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, USA
| | - Stavros Thomopoulos
- Orthopedic Surgery, Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Ioannis Chasiotis
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
12
|
Cortes-Medina M, Bushman AR, Beshay PE, Adorno JJ, Menyhert MM, Hildebrand RM, Agarwal SS, Avendano A, Song JW. Chondroitin sulfate, dermatan sulfate, and hyaluronic acid differentially modify the biophysical properties of collagen-based hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541626. [PMID: 37293049 PMCID: PMC10245839 DOI: 10.1101/2023.05.22.541626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fibrillar collagens and glycosaminoglycans (GAGs) are structural biomolecules that are natively abundant to the extracellular matrix (ECM). Prior studies have quantified the effects of GAGs on the bulk mechanical properties of the ECM. However, there remains a lack of experimental studies on how GAGs alter other biophysical properties of the ECM, including ones that operate at the length scales of individual cells such as mass transport efficiency and matrix microstructure. Here we characterized and decoupled the effects of the GAG molecules chondroitin sulfate (CS) dermatan sulfate (DS) and hyaluronic acid (HA) on the stiffness (indentation modulus), transport (hydraulic permeability), and matrix microarchitecture (pore size and fiber radius) properties of collagen-based hydrogels. We complement these biophysical measurements of collagen hydrogels with turbidity assays to profile collagen aggregate formation. Here we show that CS, DS, and HA differentially regulate the biophysical properties of hydrogels due to their alterations to the kinetics of collagen self-assembly. In addition to providing information on how GAGs play significant roles in defining key physical properties of the ECM, this work shows new ways in which stiffness measurements, microscopy, microfluidics, and turbidity kinetics can be used complementary to reveal details of collagen self-assembly and structure.
Collapse
Affiliation(s)
- Marcos Cortes-Medina
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210
| | - Andrew R Bushman
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus OH 43210
| | - Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210
| | - Jonathan J Adorno
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210
| | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus OH 43210
| | - Riley M Hildebrand
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210
| | - Shashwat S Agarwal
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210
| | - Alex Avendano
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210
- The Comprehensive Cancer Center, The Ohio State University, Columbus OH 43210
| |
Collapse
|
13
|
Solbu AA, Caballero D, Damigos S, Kundu SC, Reis RL, Halaas Ø, Chahal AS, Strand BL. Assessing cell migration in hydrogels: An overview of relevant materials and methods. Mater Today Bio 2023; 18:100537. [PMID: 36659998 PMCID: PMC9842866 DOI: 10.1016/j.mtbio.2022.100537] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022] Open
Abstract
Cell migration is essential in numerous living processes, including embryonic development, wound healing, immune responses, and cancer metastasis. From individual cells to collectively migrating epithelial sheets, the locomotion of cells is tightly regulated by multiple structural, chemical, and biological factors. However, the high complexity of this process limits the understanding of the influence of each factor. Recent advances in materials science, tissue engineering, and microtechnology have expanded the toolbox and allowed the development of biomimetic in vitro assays to investigate the mechanisms of cell migration. Particularly, three-dimensional (3D) hydrogels have demonstrated a superior ability to mimic the extracellular environment. They are therefore well suited to studying cell migration in a physiologically relevant and more straightforward manner than in vivo approaches. A myriad of synthetic and naturally derived hydrogels with heterogeneous characteristics and functional properties have been reported. The extensive portfolio of available hydrogels with different mechanical and biological properties can trigger distinct biological responses in cells affecting their locomotion dynamics in 3D. Herein, we describe the most relevant hydrogels and their associated physico-chemical characteristics typically employed to study cell migration, including established cell migration assays and tracking methods. We aim to give the reader insight into existing literature and practical details necessary for performing cell migration studies in 3D environments.
Collapse
Affiliation(s)
- Anita Akbarzadeh Solbu
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - David Caballero
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Spyridon Damigos
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Subhas C. Kundu
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Øyvind Halaas
- Department of Clinical and Molecular Medicine, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Aman S. Chahal
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Berit L. Strand
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
14
|
Staab-Weijnitz CA, Onursal C, Nambiar D, Vanacore R. Assessment of Collagen in Translational Models of Lung Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:213-244. [PMID: 37195533 DOI: 10.1007/978-3-031-26625-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The extracellular matrix (ECM) plays an important role in lung health and disease. Collagen is the main component of the lung ECM, widely used for the establishment of in vitro and organotypic models of lung disease, and as scaffold material of general interest for the field of lung bioengineering. Collagen also is the main readout for fibrotic lung disease, where collagen composition and molecular properties are drastically changed and ultimately result in dysfunctional "scarred" tissue. Because of the central role of collagen in lung disease, quantification, determination of molecular properties, and three-dimensional visualization of collagen is important for both development and characterization of translational models of lung research. In this chapter, we provide a comprehensive overview on the various methodologies currently available for quantification and characterization of collagen including their detection principles, advantages, and disadvantages.
Collapse
Affiliation(s)
- Claudia A Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Member of the German Center for Lung Research (DZL), Ludwig-Maximilians-Universität and Helmholtz Zentrum München, Munich, Germany.
| | - Ceylan Onursal
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Member of the German Center for Lung Research (DZL), Ludwig-Maximilians-Universität and Helmholtz Zentrum München, Munich, Germany
| | - Deepika Nambiar
- Center for Matrix Biology, Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roberto Vanacore
- Center for Matrix Biology, Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
15
|
Baltazar T, Kajave NS, Rodriguez M, Chakraborty S, Jiang B, Skardal A, Kishore V, Pober JS, Albanna MZ. Native human collagen type I provides a viable physiologically relevant alternative to xenogeneic sources for tissue engineering applications: A comparative in vitro and in vivo study. J Biomed Mater Res B Appl Biomater 2022; 110:2323-2337. [PMID: 35532208 PMCID: PMC11103545 DOI: 10.1002/jbm.b.35080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/26/2022]
Abstract
Xenogeneic sources of collagen type I remain a common choice for regenerative medicine applications due to ease of availability. Human and animal sources have some similarities, but small variations in amino acid composition can influence the physical properties of collagen, cellular response, and tissue remodeling. The goal of this work is to compare human collagen type I-based hydrogels versus animal-derived collagen type I-based hydrogels, generated from commercially available products, for their physico-chemical properties and for tissue engineering and regenerative medicine applications. Specifically, we evaluated whether the native human skin type I collagen could be used in the three most common research applications of this protein: as a substrate for attachment and proliferation of conventional 2D cell culture; as a source of matrix for a 3D cell culture; and as a source of matrix for tissue engineering. Results showed that species and tissue specific variations of collagen sources significantly impact the physical, chemical, and biological properties of collagen hydrogels including gelation kinetics, swelling ratio, collagen fiber morphology, compressive modulus, stability, and metabolic activity of hMSCs. Tumor constructs formulated with human skin collagen showed a differential response to chemotherapy agents compared to rat tail collagen. Human skin collagen performed comparably to rat tail collagen and enabled assembly of perfused human vessels in vivo. Despite differences in collagen manufacturing methods and supplied forms, the results suggest that commercially available human collagen can be used in lieu of xenogeneic sources to create functional scaffolds, but not all sources of human collagen behave similarly. These factors must be considered in the development of 3D tissues for drug screening and regenerative medicine applications.
Collapse
Affiliation(s)
- Tânia Baltazar
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nilabh S. Kajave
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Marco Rodriguez
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Srija Chakraborty
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Bo Jiang
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Vipuil Kishore
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Jordan S. Pober
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mohammad Z. Albanna
- Humabiologics Inc, Phoenix, Arizona, USA
- Department of General Surgery, Wake Forest Baptist Health, Winston-Salem, North Carolina, USA
| |
Collapse
|
16
|
Nakamura S, Hoshi H, Wakabayashi K, Seki M, Watanabe M, Watanabe M, Inaba H, Ushijima N, Akasaka T. Extracted tissue‐specific atelocollagens have distinctive textural properties. J Texture Stud 2022; 53:654-661. [DOI: 10.1111/jtxs.12715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Sayaka Nakamura
- Department of Biotechnology Maebashi Institute of Technology
| | - Hiroko Hoshi
- Department of Biotechnology Maebashi Institute of Technology
- Graduate School of Biotechnology, Maebashi Institute of Technology, Kamisadori‐machi 460‐1 Maebashi‐shi Gumma Japan
| | | | - Manami Seki
- Department of Biotechnology Maebashi Institute of Technology
| | - Makoto Watanabe
- Department of Biotechnology Maebashi Institute of Technology
| | - Momoka Watanabe
- Department of Biotechnology Maebashi Institute of Technology
| | - Hiroki Inaba
- Department of Biotechnology Maebashi Institute of Technology
- Graduate School of Biotechnology, Maebashi Institute of Technology, Kamisadori‐machi 460‐1 Maebashi‐shi Gumma Japan
| | - Natsumi Ushijima
- Support Section for Education and Research, Faculty of Dental Medicine Hokkaido University, N13 W7, Kita‐ku Sapporo Japan
| | - Tsukasa Akasaka
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine Hokkaido University, N13 W7, Kita‐ku Sapporo Japan
| |
Collapse
|
17
|
Anithabanu P, Balasubramanian S, David Dayanidhi P, Nandhini T, Vaidyanathan VG. Physico-chemical characterization studies of collagen labelled with Ru(II) polypyridyl complex. Heliyon 2022; 8:e10173. [PMID: 36033328 PMCID: PMC9404281 DOI: 10.1016/j.heliyon.2022.e10173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/01/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
The rich luminescence behaviour exerted by transition metal complexes has found significant role in the development of biomolecular and cellular probes. The conjugation of fluorophore to a protein has its own advantage over the label-free system due to its high sensitivity. While numerous proteins have been labelled with either organic or inorganic fluorophores, the conjugation of luminescent transition metal complexes with collagen has not yet been attempted. Here, in this study, the conjugation of a Ru(II) polypyridyl complex with collagen was carried out and its physico-chemical characterization was studied. The conjugation of Ru(II) to collagen was characterized by UV-Visible, fluorescence and ATR-FT-IR spectroscopy. The conjugation of Ru(II) did not alter the triple helical structure of the collagen as evidenced from CD spectral data. The luminescence behaviour of the Ru-tagged collagen was found to be similar to that of the commercially available fluorescein isothiocyanate (FITC) tagged collagen with increase in luminescence upon addition of collagenase. Gel-based collagenase assay showed that the digestion of collagen can be vizualized using UV light due to intrinsic fluorophore tag without carrying out the staining-destaining processes. Energy dispersive X-Ray analysis (EDAX) confirms the presence of Ru in Ru-collagen fibrils. To the best of our knowledge, this is the first report on the conjugation of a Ru(II) complex with the fibrous protein collagen that exhibits similar property as of FITC-collagen and can be used as an alternative.
Collapse
Affiliation(s)
- P Anithabanu
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Surabhya Balasubramanian
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - P David Dayanidhi
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - T Nandhini
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - V G Vaidyanathan
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Lei M, Zhang S, Zhou H, Wan H, Lu Y, Lin S, Sun J, Qu X, Liu C. Electrical Signal Initiates Kinetic Assembly of Collagen to Construct Optically Transparent and Geometry Customized Artificial Cornea Substitutes. ACS NANO 2022; 16:10632-10646. [PMID: 35802553 DOI: 10.1021/acsnano.2c02291] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Corneal transplantation is an effective treatment for reconstructing injured corneas but is very limited due to insufficient donors, which has led to a growing demand for development of artificial corneal substitutes (ACSs). Collagen is a potential building block for ACS fabrication, whereas technically there are limited capabilities to control the collagen assembly for creating highly transparent collagen ACSs. Here, we report an electro-assembly technique to kinetically control collagen assembly on the nanoscale that allows the yielding collagen ACSs with structure determined superior optics. Structurally, the kinetically electro-assembled collagen (KEA-Col) is composed of partially aligned microfibrils (∼10 nm in diameter) with compacted lamellar organization. Optical analysis reveals that such microstructure is directly responsible for its optimal light transmittance by reducing light scattering. Moreover, this method allows the creation of complex three-dimensional geometries and thus is convenient to customize collagen ACSs with specific curvatures to meet refractive power requirements. Available properties (e.g., optics and mechanics) of cross-linked KEA-Cols were studied to meet the clinical requirement as ACSs, and in vitro tests further proved their beneficial characteristics of cell growth and migration. An in vivo study established a rabbit lamellar keratectomy corneal wound model and demonstrated the customized collagen ACSs can adapt to the defective cornea and support epithelial healing as well as stroma integration and reconstruction with lower immunoreaction compared with commercial xenografts, which suggests its promising application prospects. More broadly, this work illustrates the potential for enlisting electrical signals to mediate collagen's assembly and microstructure organization for specific structural functionalization for regenerative medicine.
Collapse
Affiliation(s)
- Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaohua Zhang
- Eye Institute and Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Hang Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haoran Wan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Lu
- Eye Institute and Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Shaoliang Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianguo Sun
- Eye Institute and Department of Ophthalmology, NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
19
|
Darvish DM. Collagen fibril formation in vitro: From origin to opportunities. Mater Today Bio 2022; 15:100322. [PMID: 35757034 PMCID: PMC9218154 DOI: 10.1016/j.mtbio.2022.100322] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Sometimes, to move forward, it is necessary to look back. Collagen type I is one of the most commonly used biomaterials in tissue engineering and regenerative medicine. There are a variety of collagen scaffolds and biomedical products based on collagen have been made, and the development of new ones is still ongoing. Materials, where collagen is in the fibrillar form, have some advantages: they have superior mechanical properties, higher degradation time and, what is most important, mimic the structure of the native extracellular matrix. There are some standard protocols for the formation of collagen fibrils in vitro, but if we look more carefully at those methods, we can see some controversies. For example, why is the formation of collagen gel commonly carried out at 37 °C, when it was well investigated that the temperature higher than 35 °C results in a formation of not well-ordered fibrils? Biomimetic collagen materials can be obtained both using culture medium or neutralizing solution, but it requires a deep understanding of all of the crucial points. One of this point is collagen extraction method, since not every method retains the ability of collagen to reconstitute native banded fibrils. Collagen polymorphism is also often overlooked in spite of the appearance of different polymorphic forms during fibril formation is possible, especially when collagen blends are utilized. In this review, we will not only pay attention to these issues, but we will overview the most prominent works related to the formation of collagen fibrils in vitro starting from the first approaches and moving to the up-to-date recipes.
Collapse
Affiliation(s)
- Diana M Darvish
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Prospekt, 4, Saint-Petersburg, 194064, Russia
| |
Collapse
|
20
|
Yang F, Das D, Chasiotis I. Strain rate induced toughening of individual collagen fibrils. APPLIED PHYSICS LETTERS 2022; 120:114101. [PMID: 35355883 PMCID: PMC8934191 DOI: 10.1063/5.0084054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The nonlinear mechanical behavior of individual nanoscale collagen fibrils is governed by molecular stretching and sliding that result in a viscous response, which is still not fully understood. Toward this goal, the in vitro mechanical behavior of individual reconstituted mammalian collagen fibrils was quantified in a broad range of strain-rates, spanning roughly six orders of magnitude, from 10-4 to 35 s-1. It is shown that the nonlinear mechanical response is strain rate sensitive with the tangent modulus in the linear deformation regime increasing monotonically from 214 ± 8 to 358 ± 11 MPa. More pronounced is the effect of the strain rate on the ultimate tensile strength that is found to increase monotonically by a factor of four, from 42 ± 6 to 160 ± 14 MPa. Importantly, fibril strengthening takes place without a reduction in ductility, which results in equivalently large increase in toughness with the increasing strain rate. This experimental strain rate dependent mechanical response is captured well by a structural constitutive model that incorporates the salient features of the collagen microstructure via a process of gradual recruitment of kinked tropocollagen molecules, thus giving rise to the initial "toe-heel" mechanical behavior, followed by molecular stretching and sustained intermolecular slip that is initiated at a strain rate dependent stress threshold. The model shows that the fraction of tropocollagen molecules undergoing straightening increases continuously during loading, whereas molecular sliding is initiated after a small fibril strain (1%-2%) and progressively increases with applied strain.
Collapse
|
21
|
Bousalis D, McCrary MW, Vaughn N, Hlavac N, Evering A, Kolli S, Song YH, Morley C, Angelini T, Schmidt CE. Decellularized peripheral nerve as an injectable delivery vehicle for neural applications. J Biomed Mater Res A 2022; 110:595-611. [PMID: 34590403 PMCID: PMC8742792 DOI: 10.1002/jbm.a.37312] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022]
Abstract
Damage to the nervous system can result in loss of sensory and motor function, paralysis, or even death. To facilitate neural regeneration and functional recovery, researchers have employed biomaterials strategies to address both peripheral and central nervous system injuries. Injectable hydrogels that recapitulate native nerve extracellular matrix are especially promising for neural tissue engineering because they offer more flexibility for minimally invasive applications and provide a growth-permissive substrate for neural cell types. Here, we explore the development of injectable hydrogels derived from decellularized rat peripheral nerves (referred to as "injectable peripheral nerve [iPN] hydrogels"), which are processed using a newly developed sodium deoxycholate and DNase (SDD) decellularization method. We assess the gelation kinetics, mechanical properties, cell bioactivity, and drug release kinetics of the iPN hydrogels. The iPN hydrogels thermally gel when exposed to 37°C in under 20 min and have mechanical properties similar to neural tissue. The hydrogels demonstrate in vitro biocompatibility through support of Schwann cell viability and metabolic activity. Additionally, iPN hydrogels promote greater astrocyte spreading compared to collagen I hydrogels. Finally, the iPN is a promising delivery vehicle of drug-loaded microparticles for a combinatorial approach to neural injury therapies.
Collapse
Affiliation(s)
- Deanna Bousalis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Michaela W. McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Natalie Vaughn
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Nora Hlavac
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Ashley Evering
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Shruti Kolli
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL,Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR
| | - Cameron Morley
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL
| | - Thomas Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL
| | - Christine E. Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
22
|
Yang F, Das D, Chasiotis I. Microscale Creep and Stress Relaxation Experiments with Individual Collagen Fibrils. OPTICS AND LASERS IN ENGINEERING 2022; 150:106869. [PMID: 35027783 PMCID: PMC8752082 DOI: 10.1016/j.optlaseng.2021.106869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nanoscale macromolecular biological structures exhibit time-dependent behavior, yet a quantitative understanding of their time-dependent mechanical behavior remains elusive, largely due to experimental challenges in attaining sufficient spatial and temporal resolution and control of stress or strain in conditions that guarantee their molecular integrity. To address this gap, an experimental methodology was developed to conduct creep and stress relaxation experiments with individual mammalian collagen fibrils. An image-based edge detection method implemented with high magnification optical microscopy and combined with closed-loop proportional-integral-derivative (PID) control was implemented and calibrated to apply constant force or stretch ratio values to individual collagen fibrils via a Microelectromechanical Systems (MEMS) device. This experimental methodology allowed for real-time control of uniaxial tensile stress or strain with 27 nm displacement resolution. The overall experimental system was tuned to apply step inputs with rise times below 0.5 s, less than 2.5% overshoot, and steady-state error less than 0.5%. Three individual collagen fibrils with diameters 101-121 nm were subjected to creep and stress relaxation tests in the range 4-20% engineering strain, under partially hydrated conditions. The collagen fibrils demonstrated non-linear viscoelastic behavior that was described well by the adaptive quasi-linear viscoelastic model. The results of this study demonstrate for the first time that mammalian collagen fibrils, the building blocks of connective tissues, exhibit nonlinear viscoelastic behavior in their partially hydrated state.
Collapse
Affiliation(s)
- Fan Yang
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Debashish Das
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ioannis Chasiotis
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
23
|
Lei M, Qu X, Wan H, Jin D, Wang S, Zhao Z, Yin M, Payne GF, Liu C. Electro-assembly of a dynamically adaptive molten fibril state for collagen. SCIENCE ADVANCES 2022; 8:eabl7506. [PMID: 35108048 PMCID: PMC8809537 DOI: 10.1126/sciadv.abl7506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/08/2021] [Indexed: 05/25/2023]
Abstract
Collagen is a biological building block that is hierarchically assembled into diverse morphological structures that, in some cases, is dynamically adaptive in response to external cues and in other cases forms static terminal structures. Technically, there is limited capabilities to guide the emergence of collagen's hierarchical organization to recapitulate the richness of biological structure and function. Here, we report an electro-assembly pathway to create a dynamically adaptive intermediate molten fibril state for collagen. Structurally, this intermediate state is composed of partially aligned and reversibly associating fibrils with limited hierarchical structure. These molten fibrils can be reversibly reconfigured to offer dynamic properties such as stimuli-stiffening, stimuli-contracting, self-healing, and self-shaping. Also, molten fibrils can be guided to further assemble to recapitulate the characteristic hierarchical structural features of native collagen (e.g., aligned fibers with D-banding). We envision that the electro-assembly of collagen fibrils will provide previously unidentified opportunities for tailored collagen-based biomedical materials.
Collapse
Affiliation(s)
- Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Haoran Wan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Shijia Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiling Zhao
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Biomedical Device Institute, 5118 A. James Clark Hall, College Park, MD 20742, USA
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Biomedical Device Institute, 5118 A. James Clark Hall, College Park, MD 20742, USA
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
24
|
Model Systems for Evidencing the Mediator Role of Riboflavin in the UVA Cross-Linking Treatment of Keratoconus. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010190. [PMID: 35011421 PMCID: PMC8746477 DOI: 10.3390/molecules27010190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 11/27/2022]
Abstract
Riboflavin under UVA radiation generates reactive oxygen species (ROS) that can induce various changes in biological systems. Under controlled conditions, these processes can be used in some treatments for ocular or dermal diseases. For instance, corneal cross-linking (CXL) treatment of keratoconus involves UVA irradiation combined with riboflavin aiming to induce the formation of new collagen fibrils in cornea. To reduce the damaging effect of ROS formed in the presence of riboflavin and UVA, the CXL treatment is performed with the addition of polysaccharides (dextran). Hyaluronic acid is a polysaccharide that can be found in the aqueous layer of the tear film. In many cases, keratoconus patients also present dry eye syndrome that can be reduced by the application of topical solutions containing hyaluronic acid. This study presents physico-chemical evidence on the effect of riboflavin on collagen fibril formation revealed by the following methods: differential scanning microcalorimetry, rheology, and STEM images. The collagen used was extracted from calf skin that contains type I collagen similar to that found in the eye. Spin trapping experiments on collagen/hyaluronic acid/riboflavin solutions evidenced the formation of ROS species by electron paramagnetic resonance measurements.
Collapse
|
25
|
Staab-Weijnitz CA. Fighting the Fiber: Targeting Collagen in Lung Fibrosis. Am J Respir Cell Mol Biol 2021; 66:363-381. [PMID: 34861139 DOI: 10.1165/rcmb.2021-0342tr] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Organ fibrosis is characterized by epithelial injury and aberrant tissue repair, where activated effector cells, mostly fibroblasts and myofibroblasts, excessively deposit collagen into the extracellular matrix. Fibrosis frequently results in organ failure and has been estimated to contribute to at least one third of all global deaths. Also lung fibrosis, in particular idiopathic pulmonary fibrosis (IPF), is a fatal disease with rising incidence worldwide. As current treatment options targeting fibrogenesis are insufficient, there is an urgent need for novel therapeutic strategies. During the last decade, several studies have proposed to target intra- and extracellular components of the collagen biosynthesis, maturation, and degradation machinery. This includes intra- and extracellular targets directly acting on collagen gene products, but also such that anabolize essential building blocks of collagen, in particular glycine and proline biosynthetic enzymes. Collagen, however, is a ubiquitous molecule in the body and fulfils essential functions as a macromolecular scaffold, growth factor reservoir, and receptor binding site in virtually every tissue. This review summarizes recent advances and future directions in this field. Evidence for the proposed therapeutic targets and where they currently stand in terms of clinical drug development for treatment of fibrotic disease is provided. The drug targets are furthermore discussed in light of (1) specificity for collagen biosynthesis, maturation and degradation, and (2) specificity for disease-associated collagen. As therapeutic success and safety of these drugs may largely depend on targeted delivery, different strategies for specific delivery to the main effector cells and to the extracellular matrix are discussed.
Collapse
Affiliation(s)
- Claudia A Staab-Weijnitz
- Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Gesundheit und Umwelt, 9150, Comprehensive Pneumology Center/Institute of Lung Biology and Disease, Member of the German Center of Lung Research (DZL), München, Germany;
| |
Collapse
|
26
|
Siadat SM, Silverman AA, Susilo ME, Paten JA, DiMarzio CA, Ruberti JW. Development of Fluorescently Labeled, Functional Type I Collagen Molecules. Macromol Biosci 2021; 22:e2100144. [PMID: 34856056 DOI: 10.1002/mabi.202100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/22/2021] [Indexed: 11/11/2022]
Abstract
While de novo collagen fibril formation is well-studied, there are few investigations into the growth and remodeling of extant fibrils, where molecular collagen incorporation into and erosion from the fibril surface must delicately balance during fibril growth and remodeling. Observing molecule/fibril interactions is difficult, requiring the tracking of molecular dynamics while, at the same time, minimizing the effect of the observation on fibril structure and assembly. To address the observation-interference problem, exogenous collagen molecules are tagged with small fluorophores and the fibrillogenesis kinetics of labeled collagen molecules as well as the structure and network morphology of assembled fibrils are examined. While excessive labeling significantly disturbs fibrillogenesis kinetics and network morphology of assembled fibrils, adding less than ≈1.2 labels per collagen molecule preserves these characteristics. Applications of the functional, labeled collagen probe are demonstrated in both cellular and acellular systems. The functional, labeled collagen associates strongly with native fibrils and when added to an in vitro model of corneal stromal development at low concentration, the labeled collagen is incorporated into a fine extracellular matrix (ECM) network associated with the cells within 24 h.
Collapse
Affiliation(s)
| | | | - Monica E Susilo
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Jeffrey A Paten
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02134, USA
| | - Charles A DiMarzio
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
27
|
Vedhanayagam M, Kumar AS, Nair BU, Sreeram KJ. Dendrimer-Functionalized Metal Oxide Nanoparticle-Mediated Self-Assembled Collagen Scaffold for Skin Regenerative Application: Function of Metal in Metal Oxides. Appl Biochem Biotechnol 2021; 194:266-290. [PMID: 34817807 DOI: 10.1007/s12010-021-03764-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022]
Abstract
Functionalized metal oxide nanoparticles cross-linked collagen scaffolds are widely used in skin regenerative applications because of their enhanced physicochemical and biocompatibility properties. From the safety clinical trials point of view, there are no reports that have compared the effects of functionalized metal oxide nanoparticles mediated collagen scaffolds for in vivo skin regenerative applications. In this work, triethoxysilane-poly (amido amine) dendrimer generation 3 (TES-PAMAM-G3 or G3)-functionalized spherical shape metal oxide nanoparticles (MO NPs: ZnO, TiO2, Fe3O4, CeO2, and SiO2, size: 12-25 nm) cross-linked collagen scaffolds were prepared by using a self-assembly method. Triple helical conformation, pore size, mechanical strength, and in vitro cell viability of MO-TES-PAMAM-G3-collagen scaffolds were studied through different methods. The in vivo skin regenerative proficiency of MO-TES-PAMAM-G3-collagen scaffolds was analyzed by implanting the scaffold on wounds in Wistar albino rats. The results demonstrated that MO-TES-PAMAM-G3-collagen scaffold showed superior skin regeneration properties than other scaffolds. The skin regenerative efficiency of MO NPs followed the order ZnO > TiO2 > CeO2 > SiO2 > Fe3O4 NPs. This result can be attributed to higher mechanical strength, cell viability, and better antibacterial activity of ZnO-TES-PAMAM-G3-collagen scaffold that leads to accelerate the skin regenerative properties in comparison to other metal oxide based collagen scaffolds.
Collapse
Affiliation(s)
- Mohan Vedhanayagam
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600 020, India
| | - Anandasadagopan Suresh Kumar
- Biochemistry and Biotechnology Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600 020, India
| | - Balachandran Unni Nair
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600 020, India
| | | |
Collapse
|
28
|
Anithabanu P, Vaidyanathan VG. The water soluble zinc based metal-organic frameworks (Zn-MOFs) as potential inhibitors for collagen fibrillogenesis. Int J Biol Macromol 2021; 190:56-60. [PMID: 34480906 DOI: 10.1016/j.ijbiomac.2021.08.204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/02/2021] [Accepted: 08/27/2021] [Indexed: 11/28/2022]
Abstract
Small molecules ranging from organic to inorganic systems have been reported as stabilizing agents for collagen. Various transition metal complexes have been utilized as tanning agent. However, as per the environmental norms issued by various regulatory agencies, the presence of certain metals such as Cr, Fe, Al, Zr and Ti in leather has been restricted to minimal amount (50 ppm), an unsurmountable task. To overcome the above issue and find an alternative tanning system, here in this study, we have reported the interaction of two water-soluble zinc-based metal-organic frameworks (MOFs), i.e., ZnPV (1) and ZnPA (2), with collagen using various spectroscopic techniques. Fibrillation kinetics studies showed that a significant delay in fibril formation with Zn-MOFs treated collagen was observed compared to the collagen untreated/ treated with individual ligands and metal salt. Circular dichroism studies show that at a low weight ratio (1:0.2 and 1:1::Collagen: MOF), no perturbation in the triple helical structure was observed, while at higher weight ratio (1:4), denaturation of collagen occurs. FT-IR studies showed that no perturbation was observed in the amide backbone in MOF-treated collagen. Differential scanning calorimetric data revealed that both Zn-MOFs increased the thermal denaturation temperature by 22 ± 2 °C compared to the collagen treated with individual entities. The viscosity of collagen rises with the increase in the concentration of Zn-MOFs. To the best of our knowledge, this is the first report on the use of the metal-organic framework as a stabilizing agent for collagen structure and might help in exploring the MOFs as potential tanning agents.
Collapse
Affiliation(s)
- P Anithabanu
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India
| | - V G Vaidyanathan
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
29
|
Kang Y, Kim JH, Kim SY, Koh WG, Lee HJ. Blue Light-Activated Riboflavin Phosphate Promotes Collagen Crosslinking to Modify the Properties of Connective Tissues. MATERIALS 2021; 14:ma14195788. [PMID: 34640185 PMCID: PMC8510499 DOI: 10.3390/ma14195788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/29/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Reduced amounts of collagen and fragmented collagen fibers are characteristics of aging skin. Recently, user-friendly, at-home personal aesthetic devices using light-emitting diode (LED) light have been used for cost-effective and safe skin improvement. However, to dramatically improve the skin via collagen repair, we need to develop an LED-responsive photosensitizer. Corneal collagen crosslinking uses ultraviolet light to activate riboflavin phosphate (RFP) and is used in ophthalmology. RFP is a biocompatible photosensitizer derived from vitamin B2. This study aimed to prove that RFP combined with blue light (BL) can increase collagen crosslinking density, improving its mechanical properties in skin tissue and enhancing skin elasticity. We confirmed the RFP-induced photo-crosslinking in pure collagen by studying changes in its dynamic modulus and matrix morphology using collagen hydrogels. We also measured the changes in the mechanical properties after applying photo-crosslinking on porcine skin. The Young’s modulus (1.07 ± 0.12 MPa) and tensile strength (11.04 ± 1.06 MPa) of the porcine skin after photo-crosslinking were 2.8 and 3.5 times better compared to those of normal porcine skin, respectively. Thus, photo-crosslinking through RFP and BL irradiation can be potentially used for skin improvement using aesthetic LED devices.
Collapse
Affiliation(s)
- Yeyoung Kang
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Korea; (Y.K.); (J.H.K.); (S.Y.K.)
| | - Jae Hak Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Korea; (Y.K.); (J.H.K.); (S.Y.K.)
| | - Seo Young Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Korea; (Y.K.); (J.H.K.); (S.Y.K.)
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Correspondence: (W.-G.K.); (H.J.L.)
| | - Hyun Jong Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Korea; (Y.K.); (J.H.K.); (S.Y.K.)
- Correspondence: (W.-G.K.); (H.J.L.)
| |
Collapse
|
30
|
Xu Q, Torres JE, Hakim M, Babiak PM, Pal P, Battistoni CM, Nguyen M, Panitch A, Solorio L, Liu JC. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2021; 146:100641. [PMID: 34483486 PMCID: PMC8409465 DOI: 10.1016/j.mser.2021.100641] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogels have been widely investigated in biomedical fields due to their similar physical and biochemical properties to the extracellular matrix (ECM). Collagen and hyaluronic acid (HA) are the main components of the ECM in many tissues. As a result, hydrogels prepared from collagen and HA hold inherent advantages in mimicking the structure and function of the native ECM. Numerous studies have focused on the development of collagen and HA hydrogels and their biomedical applications. In this extensive review, we provide a summary and analysis of the sources, features, and modifications of collagen and HA. Specifically, we highlight the fabrication, properties, and potential biomedical applications as well as promising commercialization of hydrogels based on these two natural polymers.
Collapse
Affiliation(s)
- Qinghua Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mazin Hakim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pallabi Pal
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carly M Battistoni
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Nguyen
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
31
|
Ewald ML, Chen YH, Lee AP, Hughes CCW. The vascular niche in next generation microphysiological systems. LAB ON A CHIP 2021; 21:3244-3262. [PMID: 34396383 PMCID: PMC8635227 DOI: 10.1039/d1lc00530h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In recent years, microphysiological system (MPS, also known as, organ-on-a-chip or tissue chip) platforms have emerged with great promise to improve the predictive capacity of preclinical modeling thereby reducing the high attrition rates when drugs move into trials. While their designs can vary quite significantly, in general MPS are bioengineered in vitro microenvironments that recapitulate key functional units of human organs, and that have broad applications in human physiology, pathophysiology, and clinical pharmacology. A critical next step in the evolution of MPS devices is the widespread incorporation of functional vasculature within tissues. The vasculature itself is a major organ that carries nutrients, immune cells, signaling molecules and therapeutics to all other organs. It also plays critical roles in inducing and maintaining tissue identity through expression of angiocrine factors, and in providing tissue-specific milieus (i.e., the vascular niche) that can support the survival and function of stem cells. Thus, organs are patterned, maintained and supported by the vasculature, which in turn receives signals that drive tissue specific gene expression. In this review, we will discuss published vascularized MPS platforms and present considerations for next-generation devices looking to incorporate this critical constituent. Finally, we will highlight the organ-patterning processes governed by the vasculature, and how the incorporation of a vascular niche within MPS platforms will establish a unique opportunity to study stem cell development.
Collapse
Affiliation(s)
- Makena L Ewald
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
32
|
Synthesis and Assembly of Recombinant Collagen. Methods Mol Biol 2021. [PMID: 34472057 DOI: 10.1007/978-1-0716-1574-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Collagen represents the major structural protein of the extracellular matrix. The desired mechanical and biological performances of collagen that have led to its broad applications as a building block in a great deal of fields, such as tissue engineering, drug delivery, and nanodevices. The most direct way to obtain collagen is to separate and extract it from biological tissues, but these top-down methods are usually cumbersome, and the structure of collagen is usually destroyed during the preparation process. Moreover, there is currently no effective method to separate some scarce collagens (such as collagen from human beings). Alternatively, bottom-up assembly methods have been developed to obtain collagen assembly or their analogs. The collagen used in this type of method is usually obtained by genetic recombination. A distinct advantage of gene recombination is that the sequence structure of collagen can be directly customized, so its assembly mode can be regulated at the primary structure level, and then a collagen assembly with a predesigned configuration can be achieved. Additionally, insights into the assembly behavior of these specific structures provide a rational approach to understand the pathogenic mechanisms of collagen-associated diseases, such as diabetes. In this chapter, Type I collagen is used as an example to introduce the key methods and procedures of collagen recombination, and on this basis, we will introduce in detail the experimental protocols for further assembly of these recombinant proteins to specific structures, such as fibril.
Collapse
|
33
|
Cai H, Sasikumar P, Little G, Bihan D, Hamaia SW, Zhou A, Gibbins JM, Farndale RW. Identification of HSP47 Binding Site on Native Collagen and Its Implications for the Development of HSP47 Inhibitors. Biomolecules 2021; 11:biom11070983. [PMID: 34356607 PMCID: PMC8301893 DOI: 10.3390/biom11070983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
HSP47 (heat shock protein 47) is a collagen-specific molecular chaperone that is essential for procollagen folding and function. Previous studies have shown that HSP47 binding requires a critical Arg residue at the Y position of the (Gly-Xaa-Yaa) repeats of collagen; however, the exact binding sites of HSP47 on native collagens are not fully defined. To address this, we mapped the HSP47 binding sites on collagens through an ELISA binding assay using collagen toolkits, synthetic collagen peptides covering the entire amino acid sequences of collagen types II and III assembled in triple-helical conformation. Our results showed that HSP47 binds to only a few of the GXR motifs in collagen, with most of the HSP47 binding sites identified located near the N-terminal part of the triple-helical region. Molecular modelling and binding energy calculation indicated that residues flanking the key Arg in the collagen sequence also play an important role in defining the high-affinity HSP47 binding site of collagen. Based on this binding mode of HSP47 to collagen, virtual screening targeting both the Arg binding site and its neighboring area on the HSP47 surface, and a subsequent bioassay, we identified two novel compounds with blocking activity towards HSP47 binding of collagen. Overall, our study revealed the native HSP47 binding sites on collagen and provided novel information for the design of small-molecule inhibitors of HSP47.
Collapse
Affiliation(s)
- Haiyan Cai
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China; (H.C.); (A.Z.)
| | - Parvathy Sasikumar
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, Health and Life Sciences Building, Whiteknights, Reading RG6 6EX, UK; (P.S.); (G.L.); (J.M.G.)
| | - Gemma Little
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, Health and Life Sciences Building, Whiteknights, Reading RG6 6EX, UK; (P.S.); (G.L.); (J.M.G.)
| | - Dominique Bihan
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK; (D.B.); (S.W.H.)
| | - Samir W. Hamaia
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK; (D.B.); (S.W.H.)
| | - Aiwu Zhou
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China; (H.C.); (A.Z.)
| | - Jonathan M. Gibbins
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, Health and Life Sciences Building, Whiteknights, Reading RG6 6EX, UK; (P.S.); (G.L.); (J.M.G.)
| | - Richard W. Farndale
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK; (D.B.); (S.W.H.)
- CambCol Laboratories Ltd., Ely CB6 1RS, UK
- Correspondence:
| |
Collapse
|
34
|
Onursal C, Dick E, Angelidis I, Schiller HB, Staab-Weijnitz CA. Collagen Biosynthesis, Processing, and Maturation in Lung Ageing. Front Med (Lausanne) 2021; 8:593874. [PMID: 34095157 PMCID: PMC8172798 DOI: 10.3389/fmed.2021.593874] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
In addition to providing a macromolecular scaffold, the extracellular matrix (ECM) is a critical regulator of cell function by virtue of specific physical, biochemical, and mechanical properties. Collagen is the main ECM component and hence plays an essential role in the pathogenesis and progression of chronic lung disease. It is well-established that many chronic lung diseases, e.g., chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) primarily manifest in the elderly, suggesting increased susceptibility of the aged lung or accumulated alterations in lung structure over time that favour disease. Here, we review the main steps of collagen biosynthesis, processing, and turnover and summarise what is currently known about alterations upon lung ageing, including changes in collagen composition, modification, and crosslinking. Recent proteomic data on mouse lung ageing indicates that, while the ER-resident machinery of collagen biosynthesis, modification and triple helix formation appears largely unchanged, there are specific changes in levels of type IV and type VI as well as the two fibril-associated collagens with interrupted triple helices (FACIT), namely type XIV and type XVI collagens. In addition, levels of the extracellular collagen crosslinking enzyme lysyl oxidase are decreased, indicating less enzymatically mediated collagen crosslinking upon ageing. The latter contrasts with the ageing-associated increase in collagen crosslinking by advanced glycation endproducts (AGEs), a result of spontaneous reactions of protein amino groups with reactive carbonyls, e.g., from monosaccharides or reactive dicarbonyls like methylglyoxal. Given the slow turnover of extracellular collagen such modifications accumulate even more in ageing tissues. In summary, the collective evidence points mainly toward age-induced alterations in collagen composition and drastic changes in the molecular nature of collagen crosslinks. Future work addressing the consequences of these changes may provide important clues for prevention of lung disease and for lung bioengineering and ultimately pave the way to novel targeted approaches in lung regenerative medicine.
Collapse
Affiliation(s)
- Ceylan Onursal
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Elisabeth Dick
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Claudia A Staab-Weijnitz
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
35
|
Okuno D, Sakamoto N, Tagod MSO, Akiyama Y, Moriyama S, Miyamura T, Hara A, Kido T, Ishimoto H, Ishimatsu Y, Tanaka T, Ishihara J, Takeda K, Tanaka Y, Mukae H. Screening of Inhibitors Targeting Heat Shock Protein 47 Involved in the Development of Idiopathic Pulmonary Fibrosis. ChemMedChem 2021; 16:2515-2523. [PMID: 33890415 DOI: 10.1002/cmdc.202100064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/09/2021] [Indexed: 12/16/2022]
Abstract
Heat shock protein 47 (HSP47), a collagen-specific molecular chaperone, is causally related to fibrotic diseases, including idiopathic pulmonary fibrosis. The identification of Compounds that interfere with the HSP47-collagen interaction is essential for the development of relevant therapeutics. Herein, we prepared human HSP47 as a soluble fusion protein expressed in E. coli and established an assay system for HSP47 inhibitor screening. We screened a natural and synthetic Compound library established at Nagasaki University. Among 1023 Compounds, 13 exhibited inhibitory activity against human HSP47, of which three inhibited its function in a dose-dependent manner. Epigallocatechin-3-O-gallate, one of these three Compounds, is a typical polyphenol Compound derived from tea leaves. Structurally related Compounds were synthesized and examined for their activity, revealing a hydroxyl group at A-ring position 5 as important for its activity. The present findings provide valuable insight for the development of natural product-derived therapeutics for fibrotic diseases, including idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Daisuke Okuno
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Noriho Sakamoto
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Mohammed S O Tagod
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Yoshiko Akiyama
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Sakiko Moriyama
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Takuto Miyamura
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Atsuko Hara
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Takashi Kido
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Hiroshi Ishimoto
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yuji Ishimatsu
- Department of Nursing, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8520, Japan
| | - Takashi Tanaka
- Department of Natural Product Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Jun Ishihara
- Department of Pharmaceutical Organic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Kohsuke Takeda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
36
|
Crosby CO, Hillsley A, Kumar S, Stern B, Parekh SH, Rosales A, Zoldan J. Phototunable interpenetrating polymer network hydrogels to stimulate the vasculogenesis of stem cell-derived endothelial progenitors. Acta Biomater 2021; 122:133-144. [PMID: 33359297 PMCID: PMC7983093 DOI: 10.1016/j.actbio.2020.12.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Vascularization of engineered scaffolds remains a critical obstacle hindering the translation of tissue engineering from the bench to the clinic. We previously demonstrated the robust micro-vascularization of collagen hydrogels with induced pluripotent stem cell (iPSC)-derived endothelial progenitors; however, physically cross-linked collagen hydrogels compact rapidly and exhibit limited strength. We have synthesized an interpenetrating polymer network (IPN) hydrogel comprised of collagen and norbornene-modified hyaluronic acid (NorHA) to address these challenges. This dual-network hydrogel combines the natural cues presented by collagen's binding sites and extracellular matrix (ECM)-mimicking fibrous architecture with the in situ modularity and chemical cross-linking of NorHA. We modulated the IPN hydrogel's stiffness and degradability by varying the concentration and sequence, respectively, of the NorHA peptide cross-linker. Rheological characterization of the photo-mediated gelation process revealed that the IPN hydrogel's stiffness increased with cross-linker concentration and was decoupled from the bulk NorHA content. Conversely, the swelling of the IPN hydrogel decreased linearly with increasing cross-linker concentration. Collagen microarchitecture remained relatively unchanged across cross-linking conditions, although the addition of NorHA delayed collagen fibrillogenesis. Upon iPSC-derived endothelial progenitor encapsulation, robust, lumenized microvascular networks developed in IPN hydrogels over two weeks. Subsequent computational analysis showed that an initial rise in stiffness increased the number of branch points and vessels, but vascular growth was suppressed in high stiffness IPN hydrogels. These results suggest that an IPN hydrogel consisting of collagen and NorHA is highly tunable, compaction resistant, and capable of supporting vasculogenesis.
Collapse
Affiliation(s)
- Cody O Crosby
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX 78712, United States; Department of Physics, Southwestern University, Georgetown, TX, 78626, United States
| | - Alex Hillsley
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Sachin Kumar
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX 78712, United States
| | - Brett Stern
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX 78712, United States
| | - Sapun H Parekh
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX 78712, United States
| | - Adrianne Rosales
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Janet Zoldan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX 78712, United States.
| |
Collapse
|
37
|
Vijayan V, Sreekumar S, Singh F, Srivatsan KV, Lakra R, Sai KP, Kiran MS. Nanotized praseodymium oxide collagen 3-D pro-vasculogenic biomatrix for soft tissue engineering. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 33:102364. [PMID: 33515752 DOI: 10.1016/j.nano.2021.102364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
The current study explores development of highly vascularizable biomatrix scaffold containing rare-earth metal praseodymium oxide nanoadditives for angiogenic and soft tissue regenerative applications. The therapeutic potential of praseodymium oxide nanoparticles rendered excellent endothelial cell differentiation for inducing pro angiogenic microenvironment by eliciting VE-Cadherin expression in the biomatrix scaffold. The nanoparticles were incorporated into bio-macromolecule collagen which aided in stabilization of collagen by maintaining the structural integrity of collagen and showed less susceptibility towards protease enzymes, high cyto-compatibility and high hemo-compatibility. The scaffold provided 3-dimensional micro-environments for the proliferation of endothelial cells and fibroblast cells promoting the wound healing process in an orchestrated fashion. Biological signal modulatory property of rare earth metal is the unexplored domains that can essentially bring significant therapeutic advancement in engineering advanced biological materials. This study opens potential use of nano-scaled rare earth metals in biomaterial application for tissue regeneration by modulating the pro-angiogenesis and anti-proteolysis properties.
Collapse
Affiliation(s)
- Vinu Vijayan
- Biological Materials Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India; University of Madras, Chennai, Tamil Nadu, India
| | - Sreelekshmi Sreekumar
- Biological Materials Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India; Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India
| | - Fathe Singh
- Biological Materials Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India; Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India
| | - Kunnavakkam Vinjimur Srivatsan
- Biological Materials Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India
| | - Rachita Lakra
- Biological Materials Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India
| | - Korrapati Purna Sai
- Biological Materials Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India; Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India
| | - Manikantan Syamala Kiran
- Biological Materials Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India; University of Madras, Chennai, Tamil Nadu, India; Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, Tamil Nadu, India.
| |
Collapse
|
38
|
Abstract
Collagen is the most abundant fibrous protein in nature and widely exists in tissues such as connective tissue, tendon, skin, bone, and cartilage. On the one hand, collagen provides mechanical support in tissues, and on the other hand, plays an important role in controlling cell adhesion, cell migration, and tissue repair. A systematic understanding of the structure of collagen can promote the understanding of the biological functions of collagen scaffolds, and also provide theoretical guidance for applications of these natural fibrous protein materials. Therefore, this chapter centers on introducing the structure of collagen. As collagen has a typical hierarchical structure, the introduction to its structure will also be divided into different structural levels, from primary structure to quaternary structure. Due to the diversity of collagen types, this chapter will mainly focus on type I collagen.
Collapse
Affiliation(s)
- Chenxi Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuelong Xiao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying Pei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
39
|
Siadat SM, Zamboulis DE, Thorpe CT, Ruberti JW, Connizzo BK. Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:45-103. [PMID: 34807415 DOI: 10.1007/978-3-030-80614-9_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In his Lissner Award medal lecture in 2000, Stephen Cowin asked the question: "How is a tissue built?" It is not a new question, but it remains as relevant today as it did when it was asked 20 years ago. In fact, research on the organization and development of tissue structure has been a primary focus of tendon and ligament research for over two centuries. The tendon extracellular matrix (ECM) is critical to overall tissue function; it gives the tissue its unique mechanical properties, exhibiting complex non-linear responses, viscoelasticity and flow mechanisms, excellent energy storage and fatigue resistance. This matrix also creates a unique microenvironment for resident cells, allowing cells to maintain their phenotype and translate mechanical and chemical signals into biological responses. Importantly, this architecture is constantly remodeled by local cell populations in response to changing biochemical (systemic and local disease or injury) and mechanical (exercise, disuse, and overuse) stimuli. Here, we review the current understanding of matrix remodeling throughout life, focusing on formation and assembly during the postnatal period, maintenance and homeostasis during adulthood, and changes to homeostasis in natural aging. We also discuss advances in model systems and novel tools for studying collagen and non-collagenous matrix remodeling throughout life, and finally conclude by identifying key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Danae E Zamboulis
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Brianne K Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
40
|
Ilamaran M, Sundarapandian A, Aarthy M, Shanmugam G, Ponesakki G, Ramudu KN, Niraikulam A. Growth factor-mimicking 3,4-dihydroxyphenylalanine-encoded bioartificial extracellular matrix like protein promotes wound closure and angiogenesis. Biomater Sci 2020; 8:6773-6785. [PMID: 33141121 DOI: 10.1039/d0bm01379j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The present work reports a new route to prepare a "smart biomaterial" by mimicking long-acting cellular growth factor showing enhanced cell-material interactions by promoting cell proliferation and angiogenesis. For that, reactive non-proteogenic amino acid 3,4-dihydroxyphenylalanine (DOPA) was genetically introduced into an intrinsic triple-helical hierarchical structure forming protein to initiate hierarchical self-assembly to form a macromolecular structure. The self-assembled scaffold displayed vascular endothelial growth factor mimicking the pro-angiogenic reactive group for repairing and remodeling of damaged tissue cells. We customized the recombinant collagen-like protein (CLP) with DOPA to promote rapid wound healing and cell migrations. Selective incorporation of catechol in variable and C-terminal region of CLP enhanced interaction between inter- and intra-triple-helical collagen molecules that resulted in a structure resembling higher-order native collagen fibril. Turbidity analysis indicated that the triple-helical CLP self-assembled at neutral pH via a catechol intra-crosslinking mechanism. After self-assembly, only DOPA-encoded CLP formed branched filamentous structures suggesting that catechol mediated network coordination. The catechol-encoded CLP also acted as a "smart material" by mimicking long-acting cellular growth factor showing enhanced cell-material interactions by promoting cell proliferation and angiogenesis. It eliminates release rate, stability, and shelf-life of hybrid growth factor conjugated biomaterials. The newly synthesized CLP has the potential to promote accelerated cell migration, pro-angiogenesis, and biocompatibility and could be used in the field of implantable medical devices and tissue engineering.
Collapse
Affiliation(s)
- Meganathan Ilamaran
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | | | | | | | | | | | | |
Collapse
|
41
|
Lakra R, Kiran MS, Korrapati PS. Effect of magnesium ascorbyl phosphate on collagen stabilization for wound healing application. Int J Biol Macromol 2020; 166:333-341. [PMID: 33122062 DOI: 10.1016/j.ijbiomac.2020.10.193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/26/2022]
Abstract
Wound healing is a complex process which requires appropriate structural support for restoration of tissue continuity and function. Collagen can act as a template for cellular activities but poor physico-chemical properties necessitates the stabilization of collagen without impairing its structure and function. This study investigates the effect of magnesium ascorbyl phosphate (MAP) on collagen with reference to physico-chemical properties. Incorporation of MAP enhanced the rate of collagen fibrillation signifying increased interaction at reduced time interval. MAP did not induce any changes in the secondary structure of collagen while there was an increase in shear viscosity with increase in shear stress at different shear rate. MAP stabilized collagen film exhibited higher denaturation temperature and showed an increase in Young's Modulus when compared with that of collagen film. In vivo studies showed complete wound closure on day 16 in case of stabilized collagen film. Mechanical properties of healed skin revealed that MAP collagen film treated rat skin completely regained its properties similar to that of normal skin thereby making them a potential candidate for wound healing application.
Collapse
Affiliation(s)
- Rachita Lakra
- Biological Materials Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai 600 020, India
| | - Manikantan Syamala Kiran
- Biological Materials Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai 600 020, India
| | - Purna Sai Korrapati
- Biological Materials Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai 600 020, India.
| |
Collapse
|
42
|
Schmitt T, Kajave N, Cai HH, Gu L, Albanna M, Kishore V. In vitro characterization of xeno-free clinically relevant human collagen and its applicability in cell-laden 3D bioprinting. J Biomater Appl 2020; 35:912-923. [PMID: 32957839 DOI: 10.1177/0885328220959162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Collagen type I, commonly derived from xenogenic sources, is extensively used as a biomaterial for tissue engineering applications. However, the use of xenogenic collagen is typically associated with species specific variation in mechanical, structural, and biological properties that are known to influence cellular response and remodeling. In addition, immunological complications and risks of disease transmission are also major concerns. The goal of this study is to characterize a new xeno-free human skin-derived collagen and assess its applicability as a bioink for cell-laden 3 D bioprinting. Four different concentrations of human collagen (i.e., 0.5 mg/mL, 1 mg/mL, 3 mg/mL and 6 mg/mL) were employed for the synthesis of collagen hydrogels. In addition, bovine collagen was used as a xenogenic control. Results from SDS-PAGE analysis showed the presence of α1, α2, and β chains, confirming that the integrity of type I human collagen is maintained post isolation. Polymerization rate and compressive modulus increased significantly with increase in the concentration of human collagen. When comparing two different sources of collagen, the polymerization rate of xenogenic collagen was significantly faster (p < 0.05) than human collagen while the compressive modulus was comparable. Raman spectroscopy showed a large peak in the Amide I band around 1600 cm-1, indicating a dense and supraorganized fibrillar structure in human collagen hydrogels. Conversely, Amide I band intensity for xenogenic collagen was comparable to that of Amide II and Amide III bands. Further, the use of 6 mg/mL human collagen as a bioink yielded 3 D printed constructs with high shape fidelity and cell viability. On the other hand, xenogenic collagen failed to yield stable 3 D printed constructs. Together, the results from this study provides an impetus for using human-derived collagen as a viable alternative to xenogenic sources for 3 D bioprinting of clinically relevant scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Trevor Schmitt
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Nilabh Kajave
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Huan Huan Cai
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Linxia Gu
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | | | - Vipuil Kishore
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| |
Collapse
|
43
|
Miller EP, Pokorski JK, Palomo L, Eppell SJ. A Bottom-Up Approach Grafts Collagen Fibrils Perpendicularly to Titanium Surfaces. ACS APPLIED BIO MATERIALS 2020; 3:6088-6095. [PMID: 35021741 DOI: 10.1021/acsabm.0c00678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Currently, titanium dental implant apposition to bone is achieved via osseointegration leading to ankylosis. A biomimetic Sharpey's fiber-type interface could be constructed around collagen fibrils robustly attached and projecting perpendicularly from the titanium surface. We present a proof-of-concept for a method to create upright-standing collagen nanofibrils covalently bonded to a titanium surface. The method involves activation of the titanium surface using a plasma discharge treatment followed by functionalization with an oxyamine-terminated silane coupling molecule. Using Rapoport's salt, the N-termini of individual type I collagen monomers are converted to ketones. When presented to the functionalized titanium surface, these ketones form oxime linkages with the silanes thus immobilizing the collagen. In a two-step process, these covalently bonded monomers act as sites for the formation of fibrils. Many fibril-surface junctions were observed by scanning electron microscopy on three different surfaces. These findings set the stage for working toward a high surface density of such features which might act as a platform from which to build a synthetic ligament.
Collapse
Affiliation(s)
- Eloise P Miller
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jonathan K Pokorski
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Leena Palomo
- Department of Periodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Steven J Eppell
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
44
|
An insight on type I collagen from horse tendon for the manufacture of implantable devices. Int J Biol Macromol 2020; 154:291-306. [DOI: 10.1016/j.ijbiomac.2020.03.082] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
|
45
|
Schwab A, Hélary C, Richards R, Alini M, Eglin D, D'Este M. Tissue mimetic hyaluronan bioink containing collagen fibers with controlled orientation modulating cell migration and alignment. Mater Today Bio 2020; 7:100058. [PMID: 32613184 PMCID: PMC7317236 DOI: 10.1016/j.mtbio.2020.100058] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022] Open
Abstract
Biofabrication is providing scientists and clinicians the ability to produce engineered tissues with desired shapes and gradients of composition and biological cues. Typical resolutions achieved with extrusion-based bioprinting are at the macroscopic level. However, for capturing the fibrillar nature of the extracellular matrix (ECM), it is necessary to arrange ECM components at smaller scales, down to the micron and the molecular level. Herein, we introduce a bioink containing the tyramine derivative of hyaluronan (HA; henceforth known as THA) and collagen (Col) type 1. In this bioink, similar to connective tissues, Col is present in the fibrillar form, and HA functions as a viscoelastic space filler. THA was enzymatically cross-linked under mild conditions allowing simultaneous Col fibrillogenesis, thus achieving a homogeneous distribution of Col fibrils within the viscoelastic HA-based matrix. The THA-Col composite displayed synergistic properties in terms of storage modulus and shear thinning, translating into good printability. Shear-induced alignment of the Col fibrils along the printing direction was achieved and quantified via immunofluorescence and second-harmonic generation. Cell-free and cell-laden constructs were printed and characterized, analyzing the influence of the controlled microscopic anisotropy on human bone marrow-derived mesenchymal stromal cell (hMSC) migration. Anisotropic HA-Col showed cell-instructive properties modulating hMSC adhesion, morphology, and migration from micropellets stimulated by the presence and the orientation of Col fibers. Actin filament staining showed that hMSCs embedded in aligned constructs displayed increased cytoskeleton alignment along the fibril direction. Based on gene expression of cartilage/bone markers and ECM production, hMSCs embedded in the isotropic bioink displayed chondrogenic differentiation comparable with standard pellet culture by means of proteoglycan production (safranin O staining and proteoglycan quantification). The possibility of printing matrix components with control over microscopic alignment brings biofabrication one step closer to capturing the complexity of native tissues.
Collapse
Affiliation(s)
- A. Schwab
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - C. Hélary
- Sorbonne Université, UPMC Laboratoire de Chimie de La Matière Condensée de Paris (LCMCP), Paris, France
| | - R.G. Richards
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - M. Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - D. Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - M. D'Este
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| |
Collapse
|
46
|
Nerger BA, Brun PT, Nelson CM. Marangoni flows drive the alignment of fibrillar cell-laden hydrogels. SCIENCE ADVANCES 2020; 6:eaaz7748. [PMID: 32582851 PMCID: PMC7292634 DOI: 10.1126/sciadv.aaz7748] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/08/2020] [Indexed: 05/25/2023]
Abstract
When a sessile droplet containing a solute in a volatile solvent evaporates, flow in the droplet can transport and assemble solute particles into complex patterns. Transport in evaporating sessile droplets has largely been examined in solvents that undergo complete evaporation. Here, we demonstrate that flow in evaporating aqueous sessile droplets containing type I collagen-a self-assembling polymer-can be harnessed to engineer hydrated networks of aligned collagen fibers. We find that Marangoni flows direct collagen fiber assembly over millimeter-scale areas in a manner that depends on the rate of self-assembly, the relative humidity of the surrounding environment, and the geometry of the droplet. Skeletal muscle cells that are incorporated into and cultured within these evaporating droplets collectively orient and subsequently differentiate into myotubes in response to aligned networks of collagen. Our findings demonstrate a simple, tunable, and high-throughput approach to engineer aligned fibrillar hydrogels and cell-laden biomimetic materials.
Collapse
Affiliation(s)
- Bryan A. Nerger
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - P.-T. Brun
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M. Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
47
|
Li C, Wu Y, Li G, Zhang Y, Ma X, Fang Y, Li W, Tian Z. Aggregation Behavior of Acylated Pepsin-Solubilized Collagen Based on Fluorescence Spectrum Technology. APPLIED SPECTROSCOPY 2020; 74:391-399. [PMID: 32031012 DOI: 10.1177/0003702820903817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The aggregation behavior of collagen-based materials plays an important role in their processing because it could affect their physicochemical properties. Based on the intrinsic fluorescence characteristic of tyrosine, fluorescence spectrum technology was used to investigate the aggregation state of the acylated collagen molecules in aqueous solution. The results showed that the aggregate degree of the acylated collagen was higher than that of the native collagen due to the hydrophobic interaction. With the increase of concentrations of the acylated collagen or at NaCl higher than 40 mmol/L, the aggregate degree of the acylated collagen molecules increased. When the pH was close to the isoelectric point of the acylated collagen, the hydrophobic interaction and the hydrogen bond helped to increase the aggregation degree. However, with the increase of temperature (10-70 ℃), the aggregation state of the acylated collagen decreased gradually due to the quenching, the molecular collision, and the broken of hydrogen bonds. Furthermore, two-dimensional correlation spectroscopy (2D-COS) showed that the response order was 360 > 305 nm at various acylated collagen and NaCl (>40 mmol/L) concentrations, while the response order was 305 > 360 nm when the pH value was increased from 5.0 to 9.0. Temperature-dependent 2D-COS showed there were four bands that occurred and the response order was listed as follows: 293 > 305 > 360 > 420 nm. In brief, the results might provide an important guide for molding processes of the acylated collagen.
Collapse
Affiliation(s)
- Conghu Li
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
- College of Life Sciences, Anqing Normal University, Anqing, China
| | - Yan Wu
- College of Life Sciences, Anqing Normal University, Anqing, China
| | - Guoying Li
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| | - Ying Zhang
- College of Life Sciences, Anqing Normal University, Anqing, China
| | - Xinghong Ma
- College of Life Sciences, Anqing Normal University, Anqing, China
| | - Yifan Fang
- College of Life Sciences, Anqing Normal University, Anqing, China
| | - Wenjuan Li
- College of Life Sciences, Anqing Normal University, Anqing, China
| | - Zhenhua Tian
- College of Bioresources Chemical and Materials Engineering, Shanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
48
|
Meng D, Li W, Ura K, Takagi Y. Effects of phosphate ion concentration on in-vitro fibrillogenesis of sturgeon type I collagen. Int J Biol Macromol 2020; 148:182-191. [PMID: 31953179 DOI: 10.1016/j.ijbiomac.2020.01.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 01/25/2023]
Abstract
Nonmammalian collagens have attracted significant attention owing to their potential for use as a source of cell scaffolds for tissue engineering. Since the morphology of collagen fibrils controls cell proliferation and differentiation, its regulation is essential for fabricating scaffolds with desirable characteristics. In this study, we evaluated the effects of the phosphate ion (Pi) concentration on the characteristics of fibrils formed from swim bladder type I collagen (SBC) and skin type I collagen (SC) from the Bester sturgeon. An increase in the Pi concentration decreased the fibril formation rate, promoted the formation of thick fibrils, and increased the thermal stability of the fibrils for both SBC and SC. However, the SBC and SC fibrils exhibited different fibril formation rates, degrees of fibrillogenesis, morphologies, and denaturation temperatures for the same reaction conditions. Finally, by regulating the Pi concentration, various types of SBC and SC fibrils could be coated on cell culture wells, and fibroblasts could be cultured on them. The results showed that thin fibrils enhance fibroblast extension and proliferation, whereas thick fibrils restrain fibroblast extension but orient them in the same direction. The results of this study suggest that SBC fibrils, which exhibit diverse morphologies, are suitable for use as a novel scaffold material, whose characteristics can be tailored readily by varying the Pi concentration.
Collapse
Affiliation(s)
- Dawei Meng
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China; Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan.
| | - Wen Li
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
| | - Kazuhiro Ura
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan.
| | - Yasuaki Takagi
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
49
|
Optimizing cell encapsulation condition in ECM-Collagen I hydrogels to support 3D neuronal cultures. J Neurosci Methods 2020; 329:108460. [DOI: 10.1016/j.jneumeth.2019.108460] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 01/05/2023]
|
50
|
Abstract
Increasing ethical and biological concerns require a paradigm shift toward animal-free testing strategies for drug testing and hazard assessments. To this end, the application of bioprinting technology in the field of biomedicine is driving a rapid progress in tissue engineering. In particular, standardized and reproducible in vitro models produced by three-dimensional (3D) bioprinting technique represent a possible alternative to animal models, enabling in vitro studies relevant to in vivo conditions. The innovative approach of 3D bioprinting allows a spatially controlled deposition of cells and biomaterial in a layer-by-layer fashion providing a platform for engineering reproducible models. However, despite the promising and revolutionizing character of 3D bioprinting technology, standardized protocols providing detailed instructions are lacking. Here, we provide a protocol for the automatized printing of simple alveolar, bronchial, and intestine epithelial cell layers as the basis for more complex respiratory and gastrointestinal tissue models. Such systems will be useful for high-throughput toxicity screening and drug efficacy evaluation.
Collapse
|