1
|
Horowitz S, Koldewey P, Stull F, Bardwell JC. Folding while bound to chaperones. Curr Opin Struct Biol 2017; 48:1-5. [PMID: 28734135 DOI: 10.1016/j.sbi.2017.06.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 01/08/2023]
Abstract
Chaperones are important in preventing protein aggregation and aiding protein folding. How chaperones aid protein folding remains a key question in understanding their mechanism. The possibility of proteins folding while bound to chaperones was reintroduced recently with the chaperone Spy, many years after the phenomenon was first reported with the chaperones GroEL and SecB. In this review, we discuss the salient features of folding while bound in the cases for which it has been observed and speculate about its biological importance and possible occurrence in other chaperones.
Collapse
Affiliation(s)
- Scott Horowitz
- Department of Chemistry & Biochemistry and the Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Avenue, Denver, CO 80208, USA.
| | - Philipp Koldewey
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA
| | - Frederick Stull
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA
| | - James Ca Bardwell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Replacement of GroEL in Escherichia coli by the Group II Chaperonin from the Archaeon Methanococcus maripaludis. J Bacteriol 2016; 198:2692-700. [PMID: 27432832 PMCID: PMC5019054 DOI: 10.1128/jb.00317-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/23/2016] [Indexed: 12/21/2022] Open
Abstract
Chaperonins are required for correct folding of many proteins. They exist in two phylogenetic groups: group I, found in bacteria and eukaryotic organelles, and group II, found in archaea and eukaryotic cytoplasm. The two groups, while homologous, differ significantly in structure and mechanism. The evolution of group II chaperonins has been proposed to have been crucial in enabling the expansion of the proteome required for eukaryotic evolution. In an archaeal species that expresses both groups of chaperonins, client selection is determined by structural and biochemical properties rather than phylogenetic origin. It is thus predicted that group II chaperonins will be poor at replacing group I chaperonins. We have tested this hypothesis and report here that the group II chaperonin from Methanococcus maripaludis (Mm-cpn) can partially functionally replace GroEL, the group I chaperonin of Escherichia coli. Furthermore, we identify and characterize two single point mutations in Mm-cpn that have an enhanced ability to replace GroEL function, including one that allows E. coli growth after deletion of the groEL gene. The biochemical properties of the wild-type and mutant Mm-cpn proteins are reported. These data show that the two groups are not as functionally diverse as has been thought and provide a novel platform for genetic dissection of group II chaperonins. IMPORTANCE The two phylogenetic groups of the essential and ubiquitous chaperonins diverged approximately 3.7 billion years ago. They have similar structures, with two rings of multiple subunits, and their major role is to assist protein folding. However, they differ with regard to the details of their structure, their cofactor requirements, and their reaction cycles. Despite this, we show here that a group II chaperonin from a methanogenic archaeon can partially substitute for the essential group I chaperonin GroEL in E. coli and that we can easily isolate mutant forms of this chaperonin with further improved functionality. This is the first demonstration that these two groups, despite the long time since they diverged, still overlap significantly in their functional properties.
Collapse
|
3
|
Ren Y, Gao J, Ge W, Li J. Thermal Unfolding of a Double-Domain Protein: Molecular Dynamics Simulation of Rhodanese. Ind Eng Chem Res 2008. [DOI: 10.1021/ie801441x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ying Ren
- State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, and Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jian Gao
- State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, and Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Ge
- State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, and Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jinghai Li
- State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, and Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
4
|
Melkani GC, Zardeneta G, Mendoza JA. On the chaperonin activity of GroEL at heat-shock temperature. Int J Biochem Cell Biol 2005; 37:1375-85. [PMID: 15833270 DOI: 10.1016/j.biocel.2005.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2004] [Accepted: 01/18/2005] [Indexed: 10/25/2022]
Abstract
The studies of GroEL, almost exclusively, have been concerned with the function of the chaperonin under non-stress conditions, and little is known about the role of GroEL during heat shock. Being a heat shock protein, GroEL deserves to be studied under heat shock temperature. As a model for heat shock in vitro, we have investigated the interaction of GroEL with the enzyme rhodanese undergoing thermal unfolding at 43 degrees C. GroEL interacted strongly with the unfolding enzyme forming a binary complex. Active rhodanese (82%) could be recovered by releasing the enzyme from GroEL after the addition of several components, e.g. ATP and the co-chaperonin GroES. After evaluating the stability of the GroEL-rhodanese complex, as a function of the percentage of active rhodanese that could be released from GroEL with time, we found that the complex had a half-life of only one and half-hours at 43 degrees C; while, it remained stable at 25 degrees C for more than 2 weeks. Interestingly, the GroEL-rhodanese complex remained intact and only 13% of its ATPase activity was lost during its incubation at 43 degrees C. Further, rhodanese underwent a conformational change over time while it was bound to GroEL at 43 degrees C. Overall, our results indicated that the inability to recover active enzyme at 43 degrees C from the GroEL-rhodanese complex was not due to the disruption of the complex or aggregation of rhodanese, but rather to the partial loss of its ATPase activity and/or to the inability of rhodanese to be released from GroEL due to a conformational change.
Collapse
Affiliation(s)
- Girish C Melkani
- Department of Chemistry and Biochemistry, California State University San Marcos, 333 S Twin Oaks Valley RD, San Marcos, CA 92096-0001, USA
| | | | | |
Collapse
|
5
|
Melino S, Cicero DO, Forlani F, Pagani S, Paci M. The N-terminal rhodanese domain fromAzotobacter vinelandiihas a stable and folded structure independently of the C-terminal domain. FEBS Lett 2004; 577:403-8. [PMID: 15556618 DOI: 10.1016/j.febslet.2004.10.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 09/17/2004] [Accepted: 10/14/2004] [Indexed: 11/21/2022]
Abstract
Sulfurtransferase are enzymes involved in the formation, conversion and transport of compounds containing sulfane-sulfur atoms. Although the three-dimensional structure of the rhodanese from the nitrogen-fixing bacterium Azotobacter vinelandii is known, the role of its two domains in the protein conformational stability is still obscure. We have evaluated the susceptibility to proteolytic degradation of the two domains of the enzyme. The two domains show different resistance to the endoproteinases and, in particular, the N-terminal domain shows to be more stable to digestion during time than the C-terminal one. Cloning and overexpression of the N-terminal domain of the protein was performed to better understand its functional and structural role. The recombinant N-terminal domain of rhodanese A. vinelandii is soluble in water solution and the spectroscopic studies by circular dichroism and heteronuclear NMR spectroscopy indicate a stable fold of the protein with the expected alpha/beta topology. The results indicate that this N-terminal domain has already got all the elements necessary for an C-terminal domain independent folding. Its solution structure by NMR, actually under course, will be a valid contribution to understand the role of this domain in the folding process of the sulfurtransferase.
Collapse
Affiliation(s)
- Sonia Melino
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome "Tor Vergata", via della Ricerca Scientifica, 00133 Rome, Italy.
| | | | | | | | | |
Collapse
|
6
|
Williams RAM, Kelly SM, Mottram JC, Coombs GH. 3-Mercaptopyruvate sulfurtransferase of Leishmania contains an unusual C-terminal extension and is involved in thioredoxin and antioxidant metabolism. J Biol Chem 2003; 278:1480-6. [PMID: 12419809 DOI: 10.1074/jbc.m209395200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic 3-mercaptopyruvate sulfurtransferases (EC ) of Leishmania major and Leishmania mexicana have been cloned, expressed as active enzymes in Escherichia coli, and characterized. The leishmanial single-copy genes predict a sulfurtransferase that is structurally peculiar in possessing a C-terminal domain of some 70 amino acids. Homologous genes of Trypanosoma cruzi and Trypanosoma brucei encode enzymes with a similar C-terminal domain, suggesting that this feature, not known in any other sulfurtransferase, is a characteristic of trypanosomatid parasites. Short truncations of the C-terminal domain resulted in misfolded inactive proteins, demonstrating that the domain plays some key role in facilitating correct folding of the enzymes. The leishmanial recombinant enzymes exhibited high activity toward 3-mercaptopyruvate and catalyzed the transfer of sulfane sulfur to cyanide to form thiocyanate. They also used thiosulfate as a substrate and reduced thioredoxin as the accepting nucleophile, the latter being oxidized. The enzymes were expressed in all life cycle stages, and the expression level was increased under peroxide or hypo-sulfur stress. The results are consistent with the enzymes having an involvement in the synthesis of sulfur amino acids per se or iron-sulfur centers of proteins and the parasite's management of oxidative stress.
Collapse
Affiliation(s)
- Roderick A M Williams
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | |
Collapse
|
7
|
Fisher MT. Promotion of the in vitro renaturation of dodecameric glutamine synthetase from Escherichia coli in the presence of GroEL (chaperonin-60) and ATP. Biochemistry 2002; 31:3955-63. [PMID: 1348957 DOI: 10.1021/bi00131a010] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The folding and assembly of dodecameric glutamine synthetase (GS) from Escherichia coli was examined in the absence and presence of the E. coli heat shock protein, GroEL (chaperonin-60). At nonphysiological temperatures (15-20 degrees C), unfolded GS spontaneously renatured to 80-90% of its original activity in the absence of GroEL. At near-physiological temperatures (37 degrees C), only 20-40% of the original activity returns. Under the latter solution conditions, GroEL and ATP enhance the extent of GS renaturation to 70-80% of the original activity at 37 degrees C. In the absence of ATP, GroEL arrests the renaturation of unfolded GS by forming a stable binary complex. The addition of ATP to this complex resulted in the release of GS subunits and formation of active dodecameric GS. The order of addition of ATP or unfolded GS to GroEL results in differences in the t1/2 values where half-maximal GS activity is attained. At a constant GS concentration, the formation of the GroEL.GS complex followed by ATP addition resulted in approximately a 2-fold increase in the observed t1/2 value compared to that observed when GroEL was preincubated with ATP before the GS renaturation reaction was initiated. These differences in renaturation rates may be related to binding affinity differences between the ATP-free and -bound GroEL conformer for unfolded or partially folded protein substrates [Badcoe, I. G., Smith, C. J., Wood, S., Halsall, D. J., Holbrook, J. J., Lund, P., & Clarke, A. R. (1991) Biochemistry 30, 9195-9200].(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M T Fisher
- Laboratory of Biochemistry, National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, Maryland 20892
| |
Collapse
|
8
|
Evers ME, Langer T, Harder W, Hartl FU, Veenhuis M. Formation and quantification of protein complexes between peroxisomal alcohol oxidase and GroEL. FEBS Lett 2002; 305:51-4. [PMID: 1353025 DOI: 10.1016/0014-5793(92)80653-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have studied the use of yeast peroxisomal alcohol oxidase (AO) as a model protein for in vitro binding by GroEL. Dilution of denatured AO in neutral buffer leads to aggregation of the protein, which is prevented by the addition of GroEL. Formation of complexes between GroEL and denatured AO was demonstrated by a gel-shift assay using non-denaturing polyacrylamide gel electrophoresis, and quantified by laser-densitometry of the gels. In the presence of MgAMP-PNP or MgADP the affinity of GroEL for AO was enhanced. Under these conditions up to 70% of the purified GroEL formed a complex with this protein. Release was stimulated at room temperature by MgATP, and was further enhanced by addition of GroES.
Collapse
Affiliation(s)
- M E Evers
- Laboratory for Electron Microscopy, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Abstract
Many proteins display complex folding kinetics, which represent multiple parallel folding pathways emanating from multiple unfolded forms and converging to the unique native form. The small protein thioredoxin from Escherichia coli is one such protein. The effect of the chaperonin GroEL on modulating the complex energy landscape that separates the unfolded ensemble from the native state of thioredoxin has been studied. It is shown that while the fluorescence change accompanying folding occurs in five kinetic phases in the absence of GroEL, only the two slowest kinetic phases are discernible in the presence of saturating concentrations of GroEL. This result is shown to be consistent with only one out of several available folding routes being operational in the presence of GroEL. It is shown that native protein, which forms via fast as well as slow routes in the absence of GroEL, forms only via a slow route in its presence. The effect of GroEL on the folding of thioredoxin is shown to be the consequence of it binding differentially to the many folding-competent forms. While some of these forms can continue folding when bound to GroEL, others cannot. All molecules are then drawn into the operational folding route by the law of mass action. This observation indicates a new role for GroEL, which is to bias the energy landscape of a folding polypeptide towards fewer available pathways. It is suggested that such channeling might be a mechanism to avoid possible aggregation-prone routes available to a refolding polypeptide in vivo.
Collapse
Affiliation(s)
- N Bhutani
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore 560065, India
| | | |
Collapse
|
10
|
Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, Vierling E. Exceptional sensitivity of Rubisco activase to thermal denaturation in vitro and in vivo. PLANT PHYSIOLOGY 2001; 127:1053-1064. [PMID: 11706186 DOI: 10.1104/pp.010357] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Heat stress inhibits photosynthesis by reducing the activation of Rubisco by Rubisco activase. To determine if loss of activase function is caused by protein denaturation, the thermal stability of activase was examined in vitro and in vivo and compared with the stabilities of two other soluble chloroplast proteins. Isolated activase exhibited a temperature optimum for ATP hydrolysis of 44 degrees C compared with > or =60 degrees C for carboxylation by Rubisco. Light scattering showed that unfolding/aggregation occurred at 45 degrees C and 37 degrees C for activase in the presence and absence of ATPgammaS, respectively, and at 65 degrees C for Rubisco. Addition of chemically denatured rhodanese to heat-treated activase trapped partially folded activase in an insoluble complex at treatment temperatures that were similar to those that caused increased light scattering and loss of activity. To examine thermal stability in vivo, heat-treated tobacco (Nicotiana rustica cv Pulmila) protoplasts and chloroplasts were lysed with detergent in the presence of rhodanese and the amount of target protein that aggregated was determined by immunoblotting. The results of these experiments showed that thermal denaturation of activase in vivo occurred at temperatures similar to those that denatured isolated activase and far below those required to denature Rubisco or phosphoribulokinase. Edman degradation analysis of aggregated proteins from tobacco and pea (Pisum sativum cv "Little Marvel") chloroplasts showed that activase was the major protein that denatured in response to heat stress. Thus, loss of activase activity during heat stress is caused by an exceptional sensitivity of the protein to thermal denaturation and is responsible, in part, for deactivation of Rubisco.
Collapse
Affiliation(s)
- M E Salvucci
- Western Cotton Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 4135 East Broadway Road, Phoenix, AZ 85040-8803, USA.
| | | | | | | |
Collapse
|
11
|
Bhattacharyya AM, Horowitz PM. The aggregation state of rhodanese during folding influences the ability of GroEL to assist reactivation. J Biol Chem 2001; 276:28739-43. [PMID: 11397797 DOI: 10.1074/jbc.m102500200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The in vitro folding of rhodanese involves a competition between formation of properly folded enzyme and off-pathway inactive species. Co-solvents like glycerol or low temperature, e.g. refolding at 10 degrees C, successfully retard the off-pathway formation of large inactive aggregates, but the process does not yield 100% active enzyme. These data suggest that mis-folded species are formed from early folding intermediates. GroEL can capture early folding intermediates, and it loses the ability to capture and reactivate rhodanese if the enzyme is allowed first to spontaneously fold for longer times before it is presented to GroEL, a process that leads to the formation of unproductive intermediates. In addition, GroEL cannot reverse large aggregates once they are formed, but it could capture some folding intermediates and activate them, even though they are not capable of forming active enzyme if left to spontaneous refolding. The interaction between GroEL and rhodanese substantially but not completely inhibits intra-protein inactivation, which is responsible for incomplete activation during unassisted refolding. Thus, GroEL not only decreases aggregation, but it gives the highest reactivation of any method of assistance. The results are interpreted using a previously suggested model based on studies of the spontaneous folding of rhodanese (Gorovits, B. M., McGee, W. A., and Horowitz, P. M. (1998) Biochim. Biophys. Acta 1382, 120--128 and Panda, M., Gorovits, B. M., and Horowitz, P. M. (2000) J. Biol. Chem. 275, 63--70).
Collapse
Affiliation(s)
- A M Bhattacharyya
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
12
|
Galan A, Sot B, Llorca O, Carrascosa JL, Valpuesta JM, Muga A. Excluded volume effects on the refolding and assembly of an oligomeric protein. GroEL, a case study. J Biol Chem 2001; 276:957-64. [PMID: 11020386 DOI: 10.1074/jbc.m006861200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the effect of macromolecular crowding reagents, such as polysaccharides and bovine serum albumin, on the refolding of tetradecameric GroEL from urea-denatured protein monomers. The results show that productive refolding and assembly strongly depends on the presence of nucleotides (ATP or ADP) and background macromolecules. Nucleotides are required to generate an assembly-competent monomeric conformation, suggesting that proper folding of the equatorial domain of the protein subunits into a native-like structure is essential for productive assembly. Crowding modulates GroEL oligomerization in two different ways. First, it increases the tendency of refolded, monomeric GroEL to undergo self-association at equilibrium. Second, crowding can modify the relative rates of the two competing self-association reactions, namely, productive assembly into a native tetradecameric structure and unproductive aggregation. This kinetic effect is most likely exerted by modifications of the diffusion coefficient of the refolded monomers, which in turn determine the conformational properties of the interacting subunits. If they are allowed to become assembly-competent before self-association, productive oligomerization occurs; otherwise, unproductive aggregation takes place. Our data demonstrate that the spontaneous refolding and assembly of homo-oligomeric proteins, such as GroEL, can occur efficiently (70%) under crowding conditions similar to those expected in vivo.
Collapse
Affiliation(s)
- A Galan
- Unidad de Biofisica (Consejo Superior de Investigaciones Cientificas-Universidad del Pais Vasco (CSIC-UPV)) y Departamento de Bioquimica y Biologia Molecular, Universidad del Pais Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Mendoza JA, Dulin P, Warren T. The lower hydrolysis of ATP by the stress protein GroEL is a major factor responsible for the diminished chaperonin activity at low temperature. Cryobiology 2000; 41:319-23. [PMID: 11222029 DOI: 10.1006/cryo.2000.2287] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chaperonins GroEL and GroES were shown to facilitate the refolding of urea-unfolded rhodanese in an ATP-dependent process at 25 or 37 degrees C. A diminished chaperonin activity was observed at 10 degrees C, however. At low temperature, GroEL retains its ability to form a complex with urea-unfolded rhodanese or with GroES. GroEL is also able to bind ATP at 10 degrees C. Interestingly, the ATPase activity of GroEL was highly decreased at low temperatures. Hydrolysis of ATP by GroEL was 60% less at 10 degrees C than at 25 degrees C. We conclude that the reduced hydrolysis of ATP by GroEL is a major but perhaps not the only factor responsible for the diminished chaperonin activity at 10 degrees C. GroEL may function primarily at higher temperatures in which the ability of GroEL to hydrolyze ATP is not compromised.
Collapse
Affiliation(s)
- J A Mendoza
- Department of Chemistry, California State University at San Marcos, San Marcos, California 92096-0001, U.S.A.
| | | | | |
Collapse
|
14
|
Panda M, Gorovits BM, Horowitz PM. Productive and nonproductive intermediates in the folding of denatured rhodanese. J Biol Chem 2000; 275:63-70. [PMID: 10617586 DOI: 10.1074/jbc.275.1.63] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The competition between protein aggregation and folding has been investigated using rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) as a model. During folding from a urea-denatured state, rhodanese rapidly forms associated species or intermediates, some of which are large and/or sticky. The early removal of such particles by filtration results in a decreased refolding yield. With time, a portion of the smaller aggregates can partition back first to intermediates and then to refolded protein, while a fraction of these irreversibly form unproductive higher aggregates. Dynamic light scattering measurements indicate that the average sizes of the aggregates formed during rhodanese folding increase from 225 to 325 nm over 45 min and they become increasingly heterogeneous. Glycerol addition or the application of high hydrostatic pressure improved the final refolding yields by stabilizing smaller particles. Although addition of glycerol into the refolding mixture blocks the formation of unproductive aggregates, it cannot dissociate them back to productive intermediates. The presence of 3.9 M urea keeps the aggregates small, and they can be dissociated to monomers by high hydrostatic pressure even after 1 h of incubation. These studies suggest that early associated intermediates formed during folding can be reversed to give active species.
Collapse
Affiliation(s)
- M Panda
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78284, USA
| | | | | |
Collapse
|
15
|
Muchowski PJ, Hays LG, Yates JR, Clark JI. ATP and the core "alpha-Crystallin" domain of the small heat-shock protein alphaB-crystallin. J Biol Chem 1999; 274:30190-5. [PMID: 10514509 DOI: 10.1074/jbc.274.42.30190] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Electrospray ionization mass spectrometry (ESI-LC/MS) of tryptic digests of human alphaB-crystallin in the presence and absence of ATP identified four residues located within the core "alpha-crystallin" domain, Lys(82), Lys(103), Arg(116), and Arg(123), that were shielded from the action of trypsin in the presence of ATP. In control experiments, chymotrypsin was used in place of trypsin. The chymotryptic fragments of human alphaB-crystallin produced in the presence and absence of ATP were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Seven chymotryptic cleavage sites, Trp(60), Phe(61), Phe(75), Phe(84), Phe(113), Phe(118), and Tyr(122), located near or within the core alpha-crystallin domain, were shielded from the action of chymotrypsin in the presence of ATP. Chemically similar analogs of ATP were less protective than ATP against proteolysis by trypsin or chymotrypsin. ATP had no effect on the enzymatic activity of trypsin and the K(m) for trypsin was 0.031 mM in the presence of ATP and 0.029 mM in the absence of ATP. The results demonstrated an ATP-dependent structural modification in the core alpha-crystallin domain conserved in nearly all identified small heat-shock proteins that act as molecular chaperones.
Collapse
Affiliation(s)
- P J Muchowski
- Department of Biological Structure, University of Washington, Seattle, Washington 98195-7420, USA
| | | | | | | |
Collapse
|
16
|
Wang JD, Michelitsch MD, Weissman JS. GroEL-GroES-mediated protein folding requires an intact central cavity. Proc Natl Acad Sci U S A 1998; 95:12163-8. [PMID: 9770457 PMCID: PMC22802 DOI: 10.1073/pnas.95.21.12163] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chaperonin GroEL is an oligomeric double ring structure that, together with the cochaperonin GroES, assists protein folding. Biochemical analyses indicate that folding occurs in a cis ternary complex in which substrate is sequestered within the GroEL central cavity underneath GroES. Recently, however, studies of GroEL "minichaperones" containing only the apical substrate binding subdomain have questioned the functional importance of substrate encapsulation within GroEL-GroES complexes. Minichaperones were reported to assist folding despite the fact that they are monomeric and therefore cannot form a central cavity. Here we compare directly the folding activity of minichaperones with that of the full GroEL-GroES system. In agreement with earlier studies, minichaperones assist folding of some proteins. However, this effect is observed only under conditions where substantial spontaneous folding is also observed and is indistinguishable from that resulting from addition of the nonchaperone protein alpha-casein. By contrast, the full GroE system efficiently promotes folding of several substrates under conditions where essentially no spontaneous folding is observed. These data argue that the full GroEL folding activity requires the intact GroEL-GroES complex, and in light of previous studies, underscore the importance of substrate encapsulation for providing a folding environment distinct from the bulk solution.
Collapse
Affiliation(s)
- J D Wang
- Department of Pharmacology, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0450, USA
| | | | | |
Collapse
|
17
|
Farewell A, Neidhardt FC. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J Bacteriol 1998; 180:4704-10. [PMID: 9721314 PMCID: PMC107486 DOI: 10.1128/jb.180.17.4704-4710.1998] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report, we examine the effect of temperature on protein synthesis. The rate of protein accumulation is determined by three factors: the number of working ribosomes, the rate at which ribosomes are working, and the rate of protein degradation. Measurements of RNA/protein ratios and the levels of individual ribosomal proteins and rRNA show that the cellular amount of ribosomal machinery in Escherichia coli is constant between 25 and 37 degreesC. Within this range, in a given medium, temperature affects ribosomal function the same as it affects overall growth. Two independent methodologies show that the peptide chain elongation rate increases as a function of temperature identically to growth rate up to 37 degreesC. Unlike the growth rate, however, the elongation rate continues to increase up to 44 degreesC at the same rate as between 25 and 37 degreesC. Our results show that the peptide elongation rate is not rate limiting for growth at high temperature. Taking into consideration the number of ribosomes per unit of cell mass, there is an apparent excess of protein synthetic capacity in these cells, indicating a dramatic increase in protein degradation at high temperature. Temperature shift experiments show that peptide chain elongation rate increases immediately, which supports a mechanism of heat shock response induction in which an increase in unfolded, newly translated protein induces this response. In addition, we find that at low temperature (15 degreesC), cells contain a pool of nontranslating ribosomes which do not contribute to cell growth, supporting the idea that there is a defect in initiation at low temperature.
Collapse
Affiliation(s)
- A Farewell
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
18
|
Affiliation(s)
- H Taguchi
- Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Yokohama, Japan
| | | |
Collapse
|
19
|
Ewalt KL, Hendrick JP, Houry WA, Hartl FU. In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 1997; 90:491-500. [PMID: 9267029 DOI: 10.1016/s0092-8674(00)80509-7] [Citation(s) in RCA: 255] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The quantitative contribution of chaperonin GroEL to protein folding in E. coli was analyzed. A diverse set of newly synthesized polypeptides, predominantly between 10-55 kDa, interacts with GroEL, accounting for 10%-15% of all cytoplasmic protein under normal growth conditions, and for 30% or more upon exposure to heat stress. Most proteins leave GroEL rapidly within 10-30 s. We distinguish three classes of substrate proteins: (I) proteins with a chaperonin-independent folding pathway; (II) proteins, more than 50% of total, with an intermediate chaperonin dependence for which normally only a small fraction transits GroEL; and (III) a set of highly chaperonin-dependent proteins, many of which dissociate slowly from GroEL and probably require sequestration of aggregation-sensitive intermediates within the GroEL cavity for successful folding.
Collapse
Affiliation(s)
- K L Ewalt
- Howard Hughes Medical Institute and Cellular Biochemistry and Biophysics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
20
|
Herbst R, Schäfer U, Seckler R. Equilibrium intermediates in the reversible unfolding of firefly (Photinus pyralis) luciferase. J Biol Chem 1997; 272:7099-105. [PMID: 9054403 DOI: 10.1074/jbc.272.11.7099] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Firefly luciferase has been used as a model protein to study cotranslational and chaperone-assisted protein folding. We found conditions for reversible unfolding of luciferase in the absence of cellular factors, and we characterized denaturant-induced equilibrium unfolding transitions and refolding kinetics of the enzyme. Luciferase unfolding induced by guanidinium chloride at 10 degrees C can be described as a four-state equilibrium with two inactive intermediates highly populated around 1 and 3 M denaturant. The transitions occur around 0.3, 1.7, and 3.8 M denaturant. The free energy of denaturation to the first inactive intermediate (DeltaG0N <==> I1 = 15 +/- 3 kJ.mol-1) is small for a protein of 60 kDa. Fluorescence and circular dichroism spectra of the intermediates indicate that I1 has a compact conformation, whereas aromatic side chains are highly exposed in the second intermediate, I2, despite its high content of secondary structure. In the presence of a hydrophilic detergent, significant reactivation of luciferase is observed up to temperatures at which the native protein is unstable. Reactivation kinetics of luciferase are exceedingly slow and probably not limited by proline isomerization, as suggested by their independence from the time spent in the unfolded state.
Collapse
Affiliation(s)
- R Herbst
- Universität Regensburg, Institut für Biophysik und Physikalische Biochemie, D-93040 Regensburg, Germany
| | | | | |
Collapse
|
21
|
Mendoza JA, Campo GD. Ligand-induced conformational changes of GroEL are dependent on the bound substrate polypeptide. J Biol Chem 1996; 271:16344-9. [PMID: 8663187 DOI: 10.1074/jbc.271.27.16344] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ligand-induced conformational changes of GroEL alone and with bound rhodanese, citrate synthase, or dihydrofolate reductase were studied by limited proteolysis. Similar digestion patterns of GroEL, with or without bound substrate polypeptide, were obtained in the absence and presence of the chaperonin ligands, K+, Mg2+, or ATP. The rates of formation and degradation of the six produced proteolytic fragments were significantly different, however. Strikingly, only with Mg2+/ATP or K+/Mg2+/ATP an additional fragment of approximately 25 kDa was generated during digestion of GroEL alone or with bound rhodanese or dihydrofolate reductase, but not with bound citrate synthase. Most of the trypsin-sensitive sites in GroEL were localized in the flexible apical domain, which contains the putative polypeptide-binding region. Our data indicate that subtle structural changes in the trypsin-sensitive regions of GroEL occur as a result of the binding of the chaperonin ligands. However, these structural changes are influenced by the GroEL substrate polypeptides.
Collapse
Affiliation(s)
- J A Mendoza
- Department of Chemistry, California State University, San Marcos, California 92096-0001, USA
| | | |
Collapse
|
22
|
Thiyagarajan P, Henderson SJ, Joachimiak A. Solution structures of GroEL and its complex with rhodanese from small-angle neutron scattering. Structure 1996; 4:79-88. [PMID: 8805508 DOI: 10.1016/s0969-2126(96)00011-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Molecular chaperonins 60 are cylindrical oligomeric complexes which bind to unfolded proteins and assist in their folding. Studies to identify the location of the protein substrate have produced contradictory results: some suggest that the substrate-binding site is buried within the interior of the complex, whereas others indicate an external (polar) location. RESULTS Small-angle neutron scattering (SANS) measurements were made on GroEL chaperonin and on a complex of GroEL with rhodanese. The radius of gyration and the molecular weight determined from SANS measurements of GroEL agree well with those from its crystal structure. The positions of residues which were unresolved in the crystal structure have been confirmed. In addition, through model fitting of the SANS data, conformational changes in solution have been assessed and the location of bound rhodanese has been determined. CONCLUSIONS The overall structure of GroEL in solution is similar to the crystal structure. In GroEL the N-terminal and C-terminal residues are organized compactly near the equator of the cylinder and the apical domains are flared by about 5 degrees. The best fit of SANS data suggests the existence of an equilibrium between the complex and single rings and monomers. SANS data for the GroEL-rhodanese complex are consistent with a model wherein one rhodanese molecule binds across the opening to the chaperonin cavity, rather than within it.
Collapse
|
23
|
Smith KE, Fisher MT. Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding. J Biol Chem 1995; 270:21517-23. [PMID: 7665563 DOI: 10.1074/jbc.270.37.21517] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Efficient renaturation of urea-denatured rhodanese using the chaperonin GroE system requires GroEL, GroES, and ATP. At high concentrations this renaturation also requires the substrate thiosulfate to have been present during GroEL-rhodanese complex formation. When thiosulfate is present the GroEL-rhodanese complex can be concentrated to greater than 1 mg/ml rhodanese with little effect on the efficiency of renaturation. However, if complex is formed in the absence of thiosulfate, renaturation of rhodanese in the presence of thiosulfate shows a critical concentration of approximately 0.4 mg/ml, above which renaturation yields drop dramatically. This critical concentration appears to be related to an aggregation event in the refolding of rhodanese. The nucleotide free or ADP-bound form of GroEL also binds to rhodanese that has been either already renatured or never denatured. The bound rhodanese has no activity but can be released from GroEL with ATP recovering 90% of control activity. The data presented herein support a release and rebinding mechanism for the GroE-assisted refolding of rhodanese. It also suggests GroEL binds several protein folding intermediates along the entire refolding pathway.
Collapse
Affiliation(s)
- K E Smith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66160, USA
| | | |
Collapse
|
24
|
White ZW, Fisher KE, Eisenstein E. A monomeric variant of GroEL binds nucleotides but is inactive as a molecular chaperone. J Biol Chem 1995; 270:20404-9. [PMID: 7657615 DOI: 10.1074/jbc.270.35.20404] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The heat shock protein GroEL from Escherichia coli is a tetradecameric oligomer that facilitates the refolding of nonnative polypeptides in an ATP-hydrolysis dependent reaction. A mutant in GroEL was prepared in which lysine 3 was substituted with glutamate, which destabilizes the oligomeric structure of GroEL (Horovitz, A., Bochkareva, E.S., and Girshovich, A.S. (1993) J. Biol. Chem. 268, 9957-9959). The highly expressed and purified GroELK3E was judged to be monomeric by sedimentation equilibrium, yielding a molecular weight of 54,500, despite a weak tendency of the mutant to reversibly form higher order aggregates above 4 mg ml-1. The monomeric variant appears to be folded based on the far UV circular dichroism spectrum, which shows significant alpha-helical content, but with slight differences in conformation relative to wild-type GroEL. The increase in exposed hydrophobic surface of the monomer was probed with the dye 4,4'-bis-1-anilino-3-naphthalenesulfonate (bis-ANS). The fluorescence of bis-ANS increases approximately 150-fold in the presence of the mutant, and about 4 mol of bis-ANS bind per mol of monomer, with a binding constant of 1.6 microM. Adenosine nucleotide binding to monomeric GroELK3E resulted in considerable quenching of bis-ANS fluorescence, correlating with significant structural changes as seen in the far UV circular dichroism, and permitted the measurement of binding isotherms for ATP and ADP. Hyperbolic ATP binding isotherms yield a dissociation constant of 82 microM, about 4-fold weaker than the K0.5 for ATP seen in steady-state kinetics assays of the wild-type GroEL ATPase.A similar difference was seen for ADP binding. These results suggest that the mutation disrupts the native tetradecameric quaternary structure through conformational changes that may also weaken nucleotide binding. The monomeric mutant exhibited no chaperone activity as evidenced by a filure to inhibit or facilitate the refolding of chemically denatured enolase, an inability to refold denatured rhodanese above spontaneous levels, and a lack of binding to alpha-casein, a competitor in many chaperonin-promoted refolding reactions. Thus, the formation of assembly incompetent monomers by the lysine 3 to glutamate mutation results in a dramatic decrease in the affinity for nonnative polypeptide chains and suggests that the oligomeric nature of GroEL is crucial for its molecular chaperone function.
Collapse
Affiliation(s)
- Z W White
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville 20850, USA
| | | | | |
Collapse
|
25
|
Taguchi H, Yoshida M. Chaperonin releases the substrate protein in a form with tendency to aggregate and ability to rebind to chaperonin. FEBS Lett 1995; 359:195-8. [PMID: 7867798 DOI: 10.1016/0014-5793(95)00041-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To know whether the protein released from chaperonin GroEL/ES is in a form committed to the native state or still an aggregatable non-native one, two experiments were carried out. Dilution of the [GroEL-substrate protein] binary complex prior to ATP addition significantly improved the yield of folding, suggesting that the released protein has a tendency to aggregate. When N-ethylmaleimide treated GroEL, which can form the binary complex but not release the bound protein, was added to the binary complex prior to ATP addition, productive folding was severely inhibited, indicating that the protein released from GroEL/ES can bind to N-ethylmaleimide treated chaperonin. These data favor the 'reservoir' or 'reversion' model, in which GroEL/ES acts as a buffer of folding intermediate or mediates reversion of a misfolded protein to a less folded primitive form, rather than the 'marsupium' model in which folding of the substrate protein proceeds in chaperonin.
Collapse
Affiliation(s)
- H Taguchi
- Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Yokohama, Japan
| | | |
Collapse
|
26
|
Affiliation(s)
- F Baneyx
- Department of Chemical Engineering, University of Washington, Seattle 98195
| |
Collapse
|
27
|
Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 1994; 371:578-86. [PMID: 7935790 DOI: 10.1038/371578a0] [Citation(s) in RCA: 1033] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The crystal structure of Escherichia coli GroEL shows a porous cylinder of 14 subunits made of two nearly 7-fold rotationally symmetrical rings stacked back-to-back with dyad symmetry. The subunits consist of three domains: a large equatorial domain that forms the foundation of the assembly at its waist and holds the rings together; a large loosely structured apical domain that forms the ends of the cylinder; and a small slender intermediate domain that connects the two, creating side windows. The three-dimensional structure places most of the mutationally defined functional sites on the channel walls and its outward invaginations, and at the ends of the cylinder.
Collapse
Affiliation(s)
- K Braig
- Department of Genetics, Yale University School of Medicine, Boyer Center, New Haven, Connecticut 06510
| | | | | | | | | | | | | |
Collapse
|
28
|
Chen S, Roseman AM, Hunter AS, Wood SP, Burston SG, Ranson NA, Clarke AR, Saibil HR. Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy. Nature 1994; 371:261-4. [PMID: 7915827 DOI: 10.1038/371261a0] [Citation(s) in RCA: 268] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Protein folding mediated by the molecular chaperone GroEL occurs by its binding to non-native polypeptide substrates and is driven by ATP hydrolysis. Both of these processes are influenced by the reversible association of the co-protein, GroES (refs 2-4). GroEL and other chaperonin 60 molecules are large, cylindrical oligomers consisting of two stacked heptameric rings of subunits; each ring forms a cage-like structure thought to bind polypeptides in a central cavity. Chaperonins play a passive role in folding by binding or sequestering folding proteins to prevent their aggregation, but they may also actively unfold substrate proteins trapped in misfolded forms, enabling them to assume productive folding conformations. Biochemical studies show that GroES improves the efficiency of GroEL function, but the structural basis for this is unknown. Here we report the first direct visualization, by cryo-electron microscopy, of a non-native protein substrate (malate dehydrogenase) bound to the mobile, outer domains at one end of GroEL. Addition of GroES to GroEL in the presence of ATP causes a dramatic hinge opening of about 60 degrees. GroES binds to the equivalent surface of the GroEL outer domains, but on the opposite end of the GroEL oligomer to the protein substrate.
Collapse
Affiliation(s)
- S Chen
- Department of Crystallography, Birkbeck College London, UK
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Guagliardi A, Cerchia L, Bartolucci S, Rossi M. The chaperonin from the archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro. Protein Sci 1994; 3:1436-43. [PMID: 7833806 PMCID: PMC2142953 DOI: 10.1002/pro.5560030910] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have isolated a chaperonin from the hyperthermophilic archaeon Sulfolobus solfataricus based on its ability to inhibit the spontaneous refolding at 50 degrees C of dimeric S. solfataricus malic enzyme. The chaperonin, a 920-kDa oligomer of 57-kDa subunits, displays a potassium-dependent ATPase activity with an optimum temperature at 80 degrees C. S. solfataricus chaperonin promotes correct refoldings of several guanidine hydrochloride-denatured enzymes from thermophilic and mesophilic sources. At a molar ratio of chaperonin oligomer to single polypeptide chain of 1:1, S. solfataricus chaperonin completely inhibits spontaneous refoldings and suppresses aggregation upon dilution of the denaturant; refoldings resume upon ATP hydrolysis, with yields of active molecules and rates of folding notably higher than in spontaneous processes. S. solfataricus chaperonin prevents the irreversible inactivations at 90 degrees C of several thermophilic enzymes by the binding of the denaturation intermediate; the time-courses of inactivations are unaffected and most activity is regained upon hydrolysis of ATP. S. solfataricus chaperonin completely prevents the formation of aggregates during thermal inactivation of chicken egg white lysozyme at 70 degrees C, without affecting the rate of activity loss; ATP hydrolysis results in the recovery of most lytic activity. Tryptophan fluorescence measurements provide evidence that S. solfataricus chaperonin undergoes a dramatic conformational rearrangement in the presence of ATP/Mg, and that the hydrolysis of ATP is not required for the conformational change. The ATP/Mg-induced conformation of the chaperonin is fully unable to bind the protein substrates, probably due to disappearance or modification of the substrate binding sites. This is the first archaeal chaperonin whose involvement in protein folding has been demonstrated.
Collapse
Affiliation(s)
- A Guagliardi
- Dipartimento di Chimica Organica e Biologica, Università di Napoli, Italy
| | | | | | | |
Collapse
|
30
|
Weissman JS, Kashi Y, Fenton WA, Horwich AL. GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell 1994; 78:693-702. [PMID: 7915201 DOI: 10.1016/0092-8674(94)90533-9] [Citation(s) in RCA: 287] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The chaperonin GroEL is a ribosome-sized double-ring structure that assists in folding a diverse set of polypeptides. We have examined the fate of a polypeptide during a chaperonin-mediated folding reaction. Strikingly, we find that, upon addition of ATP and the cochaperonin GroES, polypeptide is released rapidly from GroEL in a predominantly nonnative conformation that can be trapped by mutant forms of GroEL that are capable of binding but not releasing substrate. Released polypeptide undergoes kinetic partitioning: a fraction completes folding while the remainder is rebound rapidly by other GroEL molecules. Folding appears to occur in an all-or-none manner, as proteolysis and tryptophan fluorescence indicate that after rebinding, polypeptide has the same structure as in the original complex. These observations suggest that GroEL functions by carrying out multiple rounds of binding aggregation-prone or kinetically trapped intermediates, maintaining them in an unfolded state, and releasing them to attempt to fold in solution.
Collapse
Affiliation(s)
- J S Weissman
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | |
Collapse
|
31
|
Monomeric chaperonin-60 and its 50-kDa fragment possess the ability to interact with non-native proteins, to suppress aggregation, and to promote protein folding. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37227-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
32
|
Peralta D, Hartman DJ, Hoogenraad NJ, Høj PB. Generation of a stable folding intermediate which can be rescued by the chaperonins GroEL and GroES. FEBS Lett 1994; 339:45-9. [PMID: 7906229 DOI: 10.1016/0014-5793(94)80381-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pig heart mitochondrial malate dehydrogenase was chemically denatured in guanidine HCl. Upon 50-fold dilution of the denaturant spontaneous refolding could be observed in the temperature range 12-32 degrees C. At 36 degrees C spontaneous refolding was not observed but a stable folding intermediate that is fairly resistant to aggregation was formed. This intermediate is readily refolded by the chaperonins GroEL and GroES and may prove useful in future attempts to describe several aspects of chaperonin action at physiological temperatures.
Collapse
Affiliation(s)
- D Peralta
- Department of Biochemistry, La Trobe University, Bundoora, Victoria, Australia
| | | | | | | |
Collapse
|
33
|
Mendoza JA, Horowitz PM. The chaperonin assisted and unassisted refolding of rhodanese can be modulated by its N-terminal peptide. JOURNAL OF PROTEIN CHEMISTRY 1994; 13:15-22. [PMID: 8011067 DOI: 10.1007/bf01891988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The in vitro refolding of the monomeric, mitochondrial enzyme rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1), which is assisted by the E. coli chaperonins, is modulated by the 23 amino acid peptide (VHQVLYRALVSTKWLAESVRAGK) corresponding to the amino terminal sequence (1-23) of rhodanese. In the absence of the peptide, a maximum recovery of active enzyme of about 65% is achieved after 90 min of initiation of the chaperonin assisted folding reaction. In contrast, this process is substantially inhibited in the presence of the peptide. The maximum recovery of active enzyme is peptide concentration-dependent. The peptide, however, does not prevent the interaction of rhodanese with the chaperonin 60 (cpn60), which leads to the formation of the cpn60-rhodanese complex. In addition, the peptide does not affect the rate of recovery of active enzyme, although it does affect the extent of recovery. Further, the unassisted refolding of rhodanese is also inhibited by the peptide. Thus, the peptide interferes with the folding of rhodanese in either the chaperonin assisted or the unassisted refolding of the enzyme. A 13 amino acid peptide (STKWLAESVRAGK) corresponding to the amino terminal sequence (11-23) of rhodanese does not show any significant effect on the chaperonin assisted or unassisted refolding of the enzyme. The results suggest that other sequences of rhodanese, in addition to the N-terminus, may be required for the binding of cpn60, in accord with a model in which cpn60 interacts with polypeptides through multiple binding sites.
Collapse
Affiliation(s)
- J A Mendoza
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760
| | | |
Collapse
|
34
|
Mendoza J, Demeler B, Horowitz P. Alteration of the quaternary structure of cpn60 modulates chaperonin-assisted folding. Implications for the mechanism of chaperonin action. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41966-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
35
|
Makino Y, Taguchi H, Yoshida M. Truncated GroEL monomer has the ability to promote folding of rhodanese without GroES and ATP. FEBS Lett 1993; 336:363-7. [PMID: 7903258 DOI: 10.1016/0014-5793(93)80838-l] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Similar to chaperonins from other sources, intact chaperonin from Escherichia coli (GroEL) exists as a tetradecamer, and the ability to promote folding of other proteins has been considered to be dependent on this oligomeric structure. However, the peptide fragments of GroEL of molecular size 34-50 kDa, which are produced by limited proteolysis of monomeric GroEL and are unable to assemble into an oligomer, retain the ability to promote folding of rhodanese even though the yield of productive folding is lower than the intact GroEL/GroES/ATP system. This promotion by truncated GroEL obeys rapid kinetics and does not require GroES and ATP.
Collapse
Affiliation(s)
- Y Makino
- Research Laboratory of Resources Utilization, R-1, Tokyo Institute of Technology, Yokohama, Japan
| | | | | |
Collapse
|
36
|
Merrill G, Butler M, Horowitz P. Limited tryptic digestion near the amino terminus of bovine liver rhodanese produces active electrophoretic variants with altered refolding. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82300-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
37
|
Dungan JM, Horowitz PM. Thermally perturbed rhodanese can be protected from inactivation by self-association. JOURNAL OF PROTEIN CHEMISTRY 1993; 12:311-21. [PMID: 8397789 DOI: 10.1007/bf01028193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A fluorescence-detected structural transition occurs in the enzyme rhodanese between 30-40 degrees C that leads to inactivation and aggregation, which anomalously decrease with increasing protein concentration. Rhodanese at 8 micrograms/ml is inactivated at 40 degrees C after 50 min of incubation, but it is protected as its concentration is raised, such that above 200 micrograms/ml, there is only slight inactivation for at least 70 min. Inactivation is increased by lauryl maltoside, or by low concentrations of 2-mercaptoethanol. The enzyme is protected by high concentrations of 2-mercaptoethanol or by the substrate, thiosulfate. The fluorescence of 1,8-anilinonaphthalene sulfonate reports the appearance of hydrophobic sites between 30-40 degrees C. Light scattering kinetics at 40 degrees C shows three phases: an initial lag, a relatively rapid increase, and then a more gradual increase. The light scattering decreases under several conditions; at increased protein concentration; at high concentrations of 2-mercaptoethanol; with lauryl maltoside; or with thiosulfate. Aggregated enzyme is inactive, although enzyme can inactivate without significant aggregation. Glutaraldehyde cross-linking shows that rhodanese can form dimers, and that higher molecular weight species are formed at 40 degrees C but not at 23 degrees C. Precipitates formed at 40 degrees C contain monomers with disulfide bonds, dimers, and multimers. We propose that thermally perturbed rhodanese has increased hydrophobic exposure, and it can either: (a) aggregate after a rate-limiting inactivation; or (b) reversibly dimerize and protect itself from inactivation and the formation of large aggregates.
Collapse
Affiliation(s)
- J M Dungan
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760
| | | |
Collapse
|
38
|
Saibil HR, Zheng D, Roseman AM, Hunter AS, Watson GM, Chen S, Auf Der Mauer A, O'Hara BP, Wood SP, Mann NH, Barnett LK, Ellis RJ. ATP induces large quaternary rearrangements in a cage-like chaperonin structure. Curr Biol 1993; 3:265-73. [PMID: 15335746 DOI: 10.1016/0960-9822(93)90176-o] [Citation(s) in RCA: 183] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/1993] [Revised: 03/17/1993] [Accepted: 03/18/1993] [Indexed: 01/13/2023]
Abstract
BACKGROUND The chaperonins, a family of molecular chaperones, are large oligomeric proteins that bind nonnative intermediates of protein folding. They couple the release and correct folding of their ligands to the binding and hydrolysis of ATP. Chaperonin 60 (cpn60) is a decatetramer (14-mer) of 60 kD subunits. Folding of some ligands also requires the cooperation of cpn10, a heptamer of 10 kD subunits. RESULTS We have determined the three-dimensional arrangements of subunits in Rhodobacter sphaeroides cpn60 in the nucleotide-free and ATP-bound forms. Negative stain electron microscopy and tilt reconstruction show the cylindrical structure of the decatetramer comprising two rings of seven subunits. The decatetramer consists of two cages joined base-to-base without a continuous central channel. These cages appear to contain bound polypeptide with an asymmetric distribution between the two rings. The two major domains of each subunit are connected on the exterior of the cylinder by a narrower bridge of density that could be a hinge region. Binding of ATP to cpn60 causes a major rearrangement of the protein density, which is reversed upon the hydrolysis of the ATP. Cpn10 binds to only one end of the cpn60 structure and is visible as an additional layer of density forming a cap on one end of the cpn60 cylinder. CONCLUSIONS The observed rearrangement is consistent with an inward 5-10 degrees rotation of subunits, pivoting about the subunit contacts between the two heptamers, and thus bringing cpn60 domains towards the position occupied by the bound polypeptide. This change could explain the stimulation of ATPase activity by ligands, and the effects of ATP on lowering the affinity of cpn60 for ligands and on triggering the release of folding polypeptides.
Collapse
Affiliation(s)
- H R Saibil
- Department of Crystallography, Birkbeck College, Malet St, London WC1E 7HX, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tsalkova T, Zardeneta G, Kudlicki W, Kramer G, Horowitz PM, Hardesty B. GroEL and GroES increase the specific enzymatic activity of newly-synthesized rhodanese if present during in vitro transcription/translation. Biochemistry 1993; 32:3377-80. [PMID: 8096394 DOI: 10.1021/bi00064a022] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Enzymatically active mammalian rhodanese, a mitochondrial matrix enzyme, which has been found to require assistants for efficient refolding in vitro, has been synthesized from a plasmid in a cell-free, fractionated, coupled transcription/translation system derived from Escherichia coli. The bacterial chaperonins, GroEL and GroES, along with the rhodanese substrate thiosulfate greatly enhance the specific enzymatic activity of the rhodanese polypeptide that is formed. Indirect evidence suggests that the effect of the GroEL/ES chaperonins is on ribosome-bound nascent peptides. The in vitro transcription/translation system produces sufficient amounts of rhodanese to provide a system for studying factors that control the initial steps in folding of nascent proteins.
Collapse
Affiliation(s)
- T Tsalkova
- Department of Chemistry and Biochemistry, University of Texas, Austin 78712
| | | | | | | | | | | |
Collapse
|
40
|
Escher A, Szalay AA. GroE-mediated folding of bacterial luciferases in vivo. MOLECULAR & GENERAL GENETICS : MGG 1993; 238:65-73. [PMID: 8097558 DOI: 10.1007/bf00279532] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this study we present evidence indicating that GroE chaperonins mediate de novo protein folding of heterodimeric and monomeric luciferases under heat shock or sub-heat shock conditions in vivo. The effects of additional groESL and groEL genes on the bioluminescence of Escherichia coli cells expressing different bacterial luciferase genes at various temperatures were directly studied in cells growing in liquid culture. Data indicate that at 42 degrees C GroESL chaperonins are required for the folding of the beta subunit polypeptide of the heterodimeric alpha beta luciferase from the mesophilic bacterium Vibrio harveyi MAV (B392). In contrast, the small number of amino acid substitutions present in the luciferase beta subunit polypeptide from the thermotolerant V. harveyi CTP5 suppresses this requirement for GroE chaperonins, and greatly reduces interaction between the beta subunit polypeptide and GroEL chaperonin. In addition, GroESL are required for the de novo folding at 37 degrees C of a MAV alpha beta luciferase fusion polypeptide that is functional as a monomer. No such requirement for luciferase activity is observed at that temperature with a fusion of the CTP5 alpha and beta subunit polypeptides, although GroE chaperonins can still mediate folding of the CTP5 fusion luciferase. Bacterial luciferases provide a unique system for direct observation of the effects of GroE chaperonins on protein folding and enzyme assembly in living cells. Furthermore, they offer a sensitive and simple assay system for the identification of polypeptide domains required for GroEL protein binding.
Collapse
Affiliation(s)
- A Escher
- Department of Plant Science, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
41
|
Brunschier R, Danner M, Seckler R. Interactions of phage P22 tailspike protein with GroE molecular chaperones during refolding in vitro. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53840-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
42
|
Schmid FX, Mayr LM, Mücke M, Schönbrunner ER. Prolyl isomerases: role in protein folding. ADVANCES IN PROTEIN CHEMISTRY 1993; 44:25-66. [PMID: 8317297 DOI: 10.1016/s0065-3233(08)60563-x] [Citation(s) in RCA: 215] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- F X Schmid
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| | | | | | | |
Collapse
|
43
|
Characterization of a stable, reactivatable complex between chaperonin 60 and mitochondrial rhodanese. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35813-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
44
|
Mendoza JA, Horowitz PM. Sulfhydryl modification ofE. coli cpn60 leads to loss of its ability to support refolding of rhodanese but not to form a binary complex. ACTA ACUST UNITED AC 1992; 11:589-94. [PMID: 1361328 DOI: 10.1007/bf01024958] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Differential chemical modification of E. coli chaperonin 60 (cpn60) was achieved by using one of several sulfhydryl-directed reagents. For native cpn60, the three cysteines were accessible for reaction with N-ethylmaleimide (NEM), while only two of them are accessible to the larger reagent 4,4'-dipyridyl disulfide (4-PDS). However, no sulfhydryl groups were modified when the even larger reagents 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) or 2-(4'-(iodoacetamido)anilino) naphthalene-6-sulfonic acid (IAANS), were employed, unless the chaperonin was unfolded. The cpn60 that had been covalently modified with NEM or IAANS, was not able to support the chaperonin-assisted refolding of the mitochondrial enzyme rhodanese, which also requires cpn10 and ATP hydrolysis. However, both modified forms of cpn60 were able to form binary complexes with rhodanese, as demonstrated by their ability to arrest the spontaneous refolding of the enzyme. That is, chemical modification with these sulfhydryl-directed reagents produced a species that was not prevented from interaction with partially folded rhodanese, but that was prevented from supporting a subsequent step(s) during the chaperonin-assisted refolding process.
Collapse
Affiliation(s)
- J A Mendoza
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760
| | | |
Collapse
|
45
|
|
46
|
|
47
|
Mendoza J, Lorimer G, Horowitz P. Chaperonin cpn60 from Escherichia coli protects the mitochondrial enzyme rhodanese against heat inactivation and supports folding at elevated temperatures. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)37089-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
Miller DM, Kurzban GP, Mendoza JA, Chirgwin JM, Hardies SC, Horowitz PM. Recombinant bovine rhodanese: purification and comparison with bovine liver rhodanese. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1121:286-92. [PMID: 1627606 DOI: 10.1016/0167-4838(92)90158-a] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recombinant bovine rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1) has been purified to homogeneity from Escherichia coli BL21(DE3) by cation-exchange chromatography. Recombinant and bovine liver rhodanese coelectrophorese under denaturing conditions, with an apparent subunit molecular weight of 33,000. The amino terminal seven residues of the recombinant protein are identical to those of the bovine enzyme, indicating that E. coli also removes the N-terminal methionine. The Km for thiosulfate is the same for the two proteins. The specific activity of the recombinant enzyme is 12% higher (816 IU/mg) than that of the bovine enzyme (730 IU/mg). The two proteins are indistinguishable as to their ultraviolet absorbance and their intrinsic fluorescence. The ability of the two proteins to refold from 8 M urea to enzymatically active species was similar both for unassisted refolding, and when folding was assisted either by the detergent, lauryl maltoside or by the E. coli chaperonin system composed of cpn60 and cpn10. Bovine rhodanese is known to have multiple electrophoretic forms under native conditions. In contrast, the recombinant protein has only one form, which comigrates with the least negatively charged of the bovine liver isoforms. This is consistent with the retention of the carboxy terminal residues in the recombinant protein that are frequently removed from the bovine liver protein.
Collapse
Affiliation(s)
- D M Miller
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760
| | | | | | | | | | | |
Collapse
|
49
|
Merrill GA, Miller D, Chirgwin J, Horowitz PM. Immunological evidence for a conformational difference between recombinant bovine rhodanese and rhodanese purified from bovine liver. JOURNAL OF PROTEIN CHEMISTRY 1992; 11:193-9. [PMID: 1382437 DOI: 10.1007/bf01025225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rhodanese has been utilized as a model enzyme for the study of protein structure-function relationships. The enzyme has recently been cloned and the recombinant enzyme is now available for investigation. However, prior to use in structure-function studies, the recombinant enzyme must be shown to have the same structure and activity as the bovine liver enzyme used in the previous studies. An immunological study of the conformations of these enzyme conformers is described. Three antibodies (two monoclonal and one polyclonal, site-directed antibody) were shown to detect distinct and nonoverlapping epitopes. The epitopes of the monoclonal antirhodanese antibodies (R207 and MAB11) were mapped to the same CNBr digest fragment of the amino terminal domain of rhodanese, and the epitope of the site-directed antibody prepared against the interdomain tether sequence of rhodanese (PAT-T1) was mapped to that region of rhodanese (residues 142-156). The rhodanese conformers were studied by monitoring the accessibility of the epitopes recognized by each antibody in each conformer using an indirect ELISA. None of the antibodies could detect its epitope on the purified liver enzyme. Two of the antibodies (R207 and PAT-T1) could also not detect their epitopes on the recombinant enzyme. However, MAB11 did detect a conformational difference between the natural and recombinant rhodanese conformers, indicating the conformational difference is localized in the first 73 amino acids of rhodanese. This difference presumably reflects the difference in the histories of the two enzymes and may be due to differences in enzyme folding, differences in the purification procedures, and differences in storage conditions--all of which could influence the final conformation of the enzyme.
Collapse
Affiliation(s)
- G A Merrill
- Brooke Army Medical Center, Department of Clinical Investigation, Fort Sam Houston, Texas 78234
| | | | | | | |
Collapse
|
50
|
|