1
|
Sentosa DD, Metcalfe RD, Sims NA, Putoczki TL, Griffin MDW. The structure of the IL-11 signalling complex provides insight into receptor variants associated with craniosynostosis. FEBS J 2024. [PMID: 39462650 DOI: 10.1111/febs.17307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/25/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
Interleukin 11 (IL-11), a member of the IL-6 family of cytokines, has roles in haematopoiesis, inflammation, bone metabolism, and craniofacial development. IL-11 also has pathological roles in chronic inflammatory diseases, fibrosis, and cancer. In this structural snapshot, we explore our recently published cryo-EM structure of the human IL-11 signalling complex to understand the molecular mechanisms of complex formation and disease-associated mutations. IL-11 signals by binding to its cell surface receptors, the IL-11 receptor α subunit (IL-11Rα) and glycoprotein 130 (gp130), to form a hexameric signalling complex. We examine the locations within the complex of receptor sequence variants that are associated with craniosynostosis and craniosynostosis-like phenotypes and speculate on potential molecular mechanisms leading to defects in signalling function. While these causative amino acid sequence changes in IL-11Rα are generally distal to interfaces between components of the complex, important structural residues are highly represented, including proline residues, cysteine residues involved in disulfide bonds, and residues within or surrounding the tryptophan-arginine ladder. We also note the locations and potential effects of amino acid substitutions within the extracellular domains of gp130 that are associated with craniosynostosis. As focus on the physiological and pathological functions of IL-11 grows, the importance of high-resolution structural knowledge of IL-11 signalling to understand disease-associated mutations and to inform therapeutic strategies will only increase.
Collapse
Affiliation(s)
- Darlene D Sentosa
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
| | - Riley D Metcalfe
- Centre for Structural Biology, Centre for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Tracy L Putoczki
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Department of Surgery, University of Melbourne, Parkville, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
| |
Collapse
|
2
|
Xiang C, Chen L, Zhu S, Chen Y, Huang H, Yang C, Chi Y, Wang Y, Lei Y, Cai X. CRLF1 bridges AKT and mTORC2 through SIN1 to inhibit pyroptosis and enhance chemo-resistance in ovarian cancer. Cell Death Dis 2024; 15:662. [PMID: 39256356 PMCID: PMC11387770 DOI: 10.1038/s41419-024-07035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
Ovarian cancer, the second most leading cause of gynecologic cancer mortality worldwide, is challenged by chemotherapy resistance, presenting a significant hurdle. Pyroptosis, an inflammation-linked programmed cell death mediated by gasdermins, has been shown to impact chemoresistance when dysregulated. However, the mechanisms connecting pyroptosis to chemotherapy resistance in ovarian cancer are unclear. We found that cytokine receptor-like factor 1 (CRLF1) is a novel component of mTORC2, enhancing AKT Ser473 phosphorylation through strengthening the interaction between AKT and stress-activated protein kinase interacting protein 1 (SIN1), which in turn inhibits the mitogen-activated protein kinase kinase kinase 5 (ASK1)-JNK-caspase-3-gasdermin E pyroptotic pathway and ultimately confers chemoresistance. High CRLF1-expressing tumors showed sensitivity to AKT inhibition but tolerance to cisplatin. Remarkably, overexpression of binding-defective CRLF1 variants impaired AKT-SIN1 interaction, promoting pyroptosis and chemosensitization. Thus, CRLF1 critically regulates chemoresistance in ovarian cancer by modulating AKT/SIN1-dependent pyroptosis. Binding-defective CRLF1 variants could be developed as tumor-specific polypeptide drugs to enhance chemotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Cong Xiang
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, China
| | - Li Chen
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, China
| | - Shilei Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yue Chen
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, China
| | - Haodong Huang
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, China
| | - Chunmao Yang
- Department of Gynecology, Southwest Hospital, Chongqing, China
| | - Yugang Chi
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, China
| | - Yanzhou Wang
- Department of Gynecology, Southwest Hospital, Chongqing, China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Xiongwei Cai
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, China.
| |
Collapse
|
3
|
Albers MD, Tiemann B, Kaynert JT, Pich A, Bakker H. Conserved cysteines prevent C-mannosylation of mucin Cys domains. FEBS J 2024; 291:3539-3552. [PMID: 38708720 DOI: 10.1111/febs.17152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Mucins are major components of the mucus. Besides the highly O-glycosylated tandem repeat domains, mucins contain Cys domains (CysDs). CysDs contain conserved disulfide-forming cysteine residues as well as a WxxW motif. Since this is the consensus sequence for tryptophan C-mannosylation, mucin CysDs have been suggested to be targets for C-mannosyltransferases, but this has never been directly shown. Here, we recombinantly expressed human mucin CysDs in Chinese hamster ovary (CHO) cells and analyzed the C-mannosylation status. Mass spectrometric analysis revealed that the putative C-mannose site is not or only barely C-mannosylated. However, mutation of the adjacent cysteine residues enabled C-mannosylation to occur. In contrast to mucin CysDs, the homologous CysD of human cartilage intermediate layer protein 1 (CILP1) lacks these cysteine residues preceding the WxxW motif. We show that CILP1 CysD is C-mannosylated, but introducing a cysteine at the -2 position causes this modification to be lost. We thus conclude that the presence of cysteine residues prevents the modification of the WxxW motif in CysDs.
Collapse
Affiliation(s)
| | - Birgit Tiemann
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| | | | - Andreas Pich
- Research Core Unit Proteomics and Institute of Toxicology, Hannover Medical School, Germany
| | - Hans Bakker
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| |
Collapse
|
4
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
5
|
Minakata S, Manabe S, Inai Y, Ikezaki M, Nishitsuji K, Ito Y, Ihara Y. Protein C-Mannosylation and C-Mannosyl Tryptophan in Chemical Biology and Medicine. Molecules 2021; 26:molecules26175258. [PMID: 34500691 PMCID: PMC8433626 DOI: 10.3390/molecules26175258] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
C-Mannosylation is a post-translational modification of proteins in the endoplasmic reticulum. Monomeric α-mannose is attached to specific Trp residues at the first Trp in the Trp-x-x-Trp/Cys (W-x-x-W/C) motif of substrate proteins, by the action of C-mannosyltransferases, DPY19-related gene products. The acceptor substrate proteins are included in the thrombospondin type I repeat (TSR) superfamily, cytokine receptor type I family, and others. Previous studies demonstrated that C-mannosylation plays critical roles in the folding, sorting, and/or secretion of substrate proteins. A C-mannosylation-defective gene mutation was identified in humans as the disease-associated variant affecting a C-mannosylation motif of W-x-x-W of ADAMTSL1, which suggests the involvement of defects in protein C-mannosylation in human diseases such as developmental glaucoma, myopia, and/or retinal defects. On the other hand, monomeric C-mannosyl Trp (C-Man-Trp), a deduced degradation product of C-mannosylated proteins, occurs in cells and extracellular fluids. Several studies showed that the level of C-Man-Trp is upregulated in blood of patients with renal dysfunction, suggesting that the metabolism of C-Man-Trp may be involved in human kidney diseases. Together, protein C-mannosylation is considered to play important roles in the biosynthesis and functions of substrate proteins, and the altered regulation of protein C-manosylation may be involved in the pathophysiology of human diseases. In this review, we consider the biochemical and biomedical knowledge of protein C-mannosylation and C-Man-Trp, and introduce recent studies concerning their significance in biology and medicine.
Collapse
Affiliation(s)
- Shiho Minakata
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Shino Manabe
- Pharmaceutical Department, The Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan;
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Science & Faculty of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Sendai, Miyagi 980-8578, Japan
| | - Yoko Inai
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Midori Ikezaki
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Yukishige Ito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan;
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
- Correspondence: ; Tel.: +81-73-441-0628
| |
Collapse
|
6
|
Metcalfe RD, Putoczki TL, Griffin MDW. Structural Understanding of Interleukin 6 Family Cytokine Signaling and Targeted Therapies: Focus on Interleukin 11. Front Immunol 2020; 11:1424. [PMID: 32765502 PMCID: PMC7378365 DOI: 10.3389/fimmu.2020.01424] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cytokines are small signaling proteins that have central roles in inflammation and cell survival. In the half-century since the discovery of the first cytokines, the interferons, over fifty cytokines have been identified. Amongst these is interleukin (IL)-6, the first and prototypical member of the IL-6 family of cytokines, nearly all of which utilize the common signaling receptor, gp130. In the last decade, there have been numerous advances in our understanding of the structural mechanisms of IL-6 family signaling, particularly for IL-6 itself. However, our understanding of the detailed structural mechanisms underlying signaling by most IL-6 family members remains limited. With the emergence of new roles for IL-6 family cytokines in disease and, in particular, roles of IL-11 in cardiovascular disease, lung disease, and cancer, there is an emerging need to develop therapeutics that can progress to clinical use. Here we outline our current knowledge of the structural mechanism of signaling by the IL-6 family of cytokines. We discuss how this knowledge allows us to understand the mechanism of action of currently available inhibitors targeting IL-6 family cytokine signaling, and most importantly how it allows for improved opportunities to pharmacologically disrupt cytokine signaling. We focus specifically on the need to develop and understand inhibitors that disrupt IL-11 signaling.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Tracy L Putoczki
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Fernandez IZ, Baxter RM, Garcia-Perez JE, Vendrame E, Ranganath T, Kong DS, Lundquist K, Nguyen T, Ogolla S, Black J, Galambos C, Gumbart JC, Dawany N, Kelsen JR, de Zoeten EF, Quinones R, Eissa H, Verneris MR, Sullivan KE, Rochford R, Blish CA, Kedl RM, Dutmer CM, Hsieh EWY. A novel human IL2RB mutation results in T and NK cell-driven immune dysregulation. J Exp Med 2019; 216:1255-1267. [PMID: 31040184 PMCID: PMC6547857 DOI: 10.1084/jem.20182015] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/24/2019] [Accepted: 04/04/2019] [Indexed: 11/13/2022] Open
Abstract
A novel homozygous mutation in human IL2RB results in decreased IL-2Rβ protein expression and dysregulated IL-2/15 signaling. This hypomorphic mutation leads to decreased regulatory T cell frequency and an abnormal NK cell compartment, with clinical manifestations of autoimmunity and susceptibility to CMV. The pleiotropic actions of interleukin-2 (IL-2) are essential for regulation of immune responses and maintenance of immune tolerance. The IL-2 receptor (IL-2R) is composed of IL-2Rα, IL-2Rβ, and IL-2Rγ subunits, with defects in IL-2Rα and IL-2Rγ and their downstream signaling effectors resulting in known primary immunodeficiency disorders. Here, we report the first human defect in IL-2Rβ, occurring in two infant siblings with a homozygous IL2RB mutation in the WSXWS motif, manifesting as multisystem autoimmunity and susceptibility to CMV infection. The hypomorphic mutation results in diminished IL-2Rβ surface expression and dysregulated IL-2/15 signaling, with an anticipated reduction in regulatory T cells. However, in contrast to the IL-2Rβ−/− animal model, which lacks NK cells, these siblings demonstrate an expansion of NK cells, particularly the CD56bright subset, and a lack of terminally differentiated NK cells. Thus, the early-onset autoimmunity and immunodeficiency are linked to functional deficits arising from altered IL-2Rβ expression and signaling in T and NK cells.
Collapse
Affiliation(s)
- Isabel Z Fernandez
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Ryan M Baxter
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Josselyn E Garcia-Perez
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Elena Vendrame
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Thanmayi Ranganath
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Daniel S Kong
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Karl Lundquist
- School of Physics, Georgia Institute of Technology, Atlanta, GA
| | - Tom Nguyen
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Digestive Health Institute, Children's Hospital Colorado, Aurora, CO
| | - Sidney Ogolla
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Jennifer Black
- Department of Pathology and Laboratory Medicine, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| | - Csaba Galambos
- Department of Pathology and Laboratory Medicine, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA
| | - Noor Dawany
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Judith R Kelsen
- Department of Pediatrics, Division of Gastroenterology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Edwin F de Zoeten
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Digestive Health Institute, Children's Hospital Colorado, Aurora, CO
| | - Ralph Quinones
- Department of Pediatrics, Division of Hematology/Oncology and Blood and Marrow Transplantation, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| | - Hesham Eissa
- Department of Pediatrics, Division of Hematology/Oncology and Blood and Marrow Transplantation, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| | - Michael R Verneris
- Department of Pediatrics, Division of Hematology/Oncology and Blood and Marrow Transplantation, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| | - Kathleen E Sullivan
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA.,Immunology Program, School of Medicine, Stanford University, Stanford, CA
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Cullen M Dutmer
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| | - Elena W Y Hsieh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO .,Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| |
Collapse
|
8
|
Agthe M, Brügge J, Garbers Y, Wandel M, Kespohl B, Arnold P, Flynn CM, Lokau J, Aparicio-Siegmund S, Bretscher C, Rose-John S, Waetzig GH, Putoczki T, Grötzinger J, Garbers C. Mutations in Craniosynostosis Patients Cause Defective Interleukin-11 Receptor Maturation and Drive Craniosynostosis-like Disease in Mice. Cell Rep 2018; 25:10-18.e5. [DOI: 10.1016/j.celrep.2018.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/19/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022] Open
|
9
|
C-mannosylation of thrombopoietin receptor (c-Mpl) regulates thrombopoietin-dependent JAK-STAT signaling. Biochem Biophys Res Commun 2015; 468:262-8. [DOI: 10.1016/j.bbrc.2015.10.116] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 11/22/2022]
|
10
|
C. elegans DPY-19 is a C-mannosyltransferase glycosylating thrombospondin repeats. Mol Cell 2013; 50:295-302. [PMID: 23562325 DOI: 10.1016/j.molcel.2013.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/22/2013] [Accepted: 03/01/2013] [Indexed: 11/20/2022]
Abstract
Among the different types of protein glycosylation, C-mannosylation of tryptophan residues stands out because of the unique linkage formed between sugar and protein. Instead of the typical O- or N-glycosidic linkage, a C-C bond is used for attachment of a single mannose. C-mannose is characteristically found in thrombospondin type 1 repeats and in the WSXWS motif of type I cytokine receptors. The genetic base of the enzymatic activity catalyzing C-mannosylation was not known. Here we demonstrate that Caenorhabditis elegans DPY-19 is a C-mannosyltransferase. DPY-19 exhibits topological and sequential homology to the N-glycan oligosaccharyltransferase, highlighting an evolutionary link between N- and C-glycosylation. We show that the C. elegans surface receptors MIG-21 and UNC-5 are acceptor substrates of DPY-19 and that C-mannosylation is essential for the secretion of soluble MIG-21. Thereby, our data provide an explanation for the previously described identical Q neuroblast migration phenotypes of dpy-19 and mig-21 mutants.
Collapse
|
11
|
The WSXWS motif in cytokine receptors is a molecular switch involved in receptor activation: insight from structures of the prolactin receptor. Structure 2012; 20:270-82. [PMID: 22325776 DOI: 10.1016/j.str.2011.12.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/17/2011] [Accepted: 12/12/2011] [Indexed: 11/20/2022]
Abstract
The prolactin receptor (PRLR) is activated by binding of prolactin in a 2:1 complex, but the activation mechanism is poorly understood. PRLR has a conserved WSXWS motif generic to cytokine class I receptors. We have determined the nuclear magnetic resonance solution structure of the membrane proximal domain of the human PRLR and find that the tryptophans of the motif adopt a T-stack conformation in the unbound state. By contrast, in the hormone bound state, a Trp/Arg-ladder is formed. The conformational change is hormone-dependent and influences the receptor-receptor dimerization site 3. In the constitutively active, breast cancer-related receptor mutant PRLR(I146L), we observed a stabilization of the dimeric state and a change in the dynamics of the motif. Here we demonstrate a structural link between the WSXWS motif, hormone binding, and receptor dimerization and propose it as a general mechanism for class 1 receptor activation.
Collapse
|
12
|
Cytosolic lysine residues enhance anterograde transport and activation of the erythropoietin receptor. Biochem J 2011; 435:509-18. [PMID: 21291419 DOI: 10.1042/bj20101876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lysine residues are key residues in many cellular processes, in part due to their ability to accept a wide variety of post-translational modifications. In the present study, we identify the EPO-R [EPO (erythropoietin) receptor] cytosolic lysine residues as enhancers of receptor function. EPO-R drives survival, proliferation and differentiation of erythroid progenitor cells via binding of its ligand EPO. We mutated the five EPO-R cytosolic lysine residues to arginine residues (5KR EPO-R), eliminating putative lysine-dependent modifications. Overexpressed 5KR EPO-R displayed impaired ubiquitination and improved stability compared with wt (wild-type) EPO-R. Unexpectedly, fusion proteins consisting of VSVGtsO45 (vesicular stomatitis virus glycoprotein temperature-sensitive folding mutant) with wt or 5KR EPO-R cytosolic domains demonstrated delayed glycan maturation kinetics upon substitution of the lysine residues. Moreover, VSVG-wt EPO-R, but not VSVG-5KR EPO-R, displayed endoplasmic reticulum-associated ubiquitination. Despite similar cell-surface EPO-binding levels of both receptors and the lack of EPO-induced ubiquitination by 5KR EPO-R, the lysine-less mutant produced weaker receptor activation and signalling than the wt receptor. We thus propose that EPO-R cytosolic lysine residues enhance receptor function, most probably through ubiquitination and/or other post-translational modifications.
Collapse
|
13
|
Sayadi A, Briganti L, Tramontano A, Via A. Exploiting publicly available biological and biochemical information for the discovery of novel short linear motifs. PLoS One 2011; 6:e22270. [PMID: 21799808 PMCID: PMC3140502 DOI: 10.1371/journal.pone.0022270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 06/22/2011] [Indexed: 11/25/2022] Open
Abstract
The function of proteins is often mediated by short linear segments of their amino acid sequence, called Short Linear Motifs or SLiMs, the identification of which can provide important information about a protein function. However, the short length of the motifs and their variable degree of conservation makes their identification hard since it is difficult to correctly estimate the statistical significance of their occurrence. Consequently, only a small fraction of them have been discovered so far. We describe here an approach for the discovery of SLiMs based on their occurrence in evolutionarily unrelated proteins belonging to the same biological, signalling or metabolic pathway and give specific examples of its effectiveness in both rediscovering known motifs and in discovering novel ones. An automatic implementation of the procedure, available for download, allows significant motifs to be identified, automatically annotated with functional, evolutionary and structural information and organized in a database that can be inspected and queried. An instance of the database populated with pre-computed data on seven organisms is accessible through a publicly available server and we believe it constitutes by itself a useful resource for the life sciences (http://www.biocomputing.it/modipath).
Collapse
Affiliation(s)
- Ahmed Sayadi
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Leonardo Briganti
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Anna Tramontano
- Department of Physics, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Allegra Via
- Department of Physics, Sapienza University of Rome, Rome, Italy
- * E-mail:
| |
Collapse
|
14
|
Insertion of an NPVY sequence into the cytosolic domain of the erythropoietin receptor selectively affects erythropoietin-mediated signalling and function. Biochem J 2010; 427:305-12. [DOI: 10.1042/bj20091951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
EPO (erythropoietin), the major hormone regulating erythropoiesis, functions via activation of its cell-surface receptor (EPO-R) present on erythroid progenitor cells. One of the most striking properties of EPO-R is its low expression on the cell surface, as opposed to its high intracellular levels. The low cell-surface expression of EPO-R may thus limit the efficacy of EPO that is routinely used to treat primary and secondary anaemia. In a recent study [Nahari, Barzilay, Hirschberg and Neumann (2008) Biochem. J. 410, 409–416] we have shown that insertion of an NPVY sequence into the intracellular domain of EPO-R increases its cell-surface expression. In the present study we demonstrate that this NPVY EPO-R insert has a selective effect on EPO-mediated downstream signalling in Ba/F3 cells expressing this receptor (NPVY-EPO-R). This is monitored by increased phosphorylation of the NPVY-EPO-R (on Tyr479), Akt, JAK2 (Janus kinase 2) and ERK1/2 (extracellular-signal-regulated kinase 1/2), but not STAT5 (signal transducer and activator of transcription 5), as compared with cells expressing wild-type EPO-R. This enhanced signalling is reflected in augmented proliferation at low EPO levels (0.05 units/ml) and protection against etoposide-induced apoptosis. Increased cell-surface levels of NPVY-EPO-R are most probably not sufficient to mediate these effects as the A234E-EPO-R mutant that is expressed at high cell-surface levels does not confer an augmented response to EPO. Taken together, we demonstrate that insertion of an NPVY sequence into the cytosolic domain of the EPO-R confers not only improved maturation, but also selectively affects EPO-mediated signalling resulting in an improved responsiveness to EPO reflected in cell proliferation and protection against apoptosis.
Collapse
|
15
|
Abstract
Since the isolation and purification of erythropoietin (EPO) in 1977, the essential role of EPO for mature red blood cell production has been well established. The cloning of the EPO gene and production of recombinant human EPO led to the widespread use of EPO in treating patients with anaemia. However, the biological activity of EPO is not restricted to regulation of erythropoiesis. EPO receptor (EPOR) expression is also found in endothelial, brain, cardiovascular and other tissues, although at levels considerably lower than that of erythroid progenitor cells. This review discusses the survival and proliferative activity of EPO that extends beyond erythroid progenitor cells. Loss of EpoR expression in mouse models provides evidence for the role of endogenous EPO signalling in nonhaematopoietic tissue during development or for tissue maintenance and/or repair. Determining the extent and distribution of receptor expression provides insights into the potential protective activity of EPO in brain, heart and other nonhaematopoietic tissues.
Collapse
|
16
|
Jorge AADL. [Short stature investigation: clinical, laboratorial and genetic aspects concerning the growth hormone insensitivity (GHI)]. ARQUIVOS BRASILEIROS DE ENDOCRINOLOGIA E METABOLOGIA 2008; 52:1056-65. [PMID: 18820818 DOI: 10.1590/s0004-27302008000600018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 04/28/2008] [Indexed: 11/22/2022]
Abstract
It is reported in this study the clinical, laboratory and genetic aspects of short stature investigation with emphasis to the diagnostic approach of growth hormone insensitivity (GHI). This patient in case presented typical clinical features of GHI and his laboratory findings at prepubertal age were typical of those observed in GHI patients (low IGF-1 and IGFBP-3 levels, with high basal and stimulated GH levels). However, during the puberty, he presented normal IGFBP-3 and IGF-1 levels that hindered the diagnosis. The molecular study disclosed a mutation in exon 7 of growth hormone receptor gene (S226I). The steps that demonstrated the causative effect of this mutation are shown here, and also a review of Brazilian GHI cases is given and new molecular defects in this field are discussed as well.
Collapse
Affiliation(s)
- Alexander Augusto de Lima Jorge
- Laboratório de Hormônios e Genética Molecular- LIM/42, Disciplina de Endocrinologia do Departamento de Clínica Médica do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, SP, Brasil.
| |
Collapse
|
17
|
Jelkmann W, Bohlius J, Hallek M, Sytkowski AJ. The erythropoietin receptor in normal and cancer tissues. Crit Rev Oncol Hematol 2008; 67:39-61. [PMID: 18434185 DOI: 10.1016/j.critrevonc.2008.03.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 02/25/2008] [Accepted: 03/19/2008] [Indexed: 01/27/2023] Open
Abstract
The hormone erythropoietin (EPO) is essential for the survival, proliferation and differentiation of the erythrocytic progenitors. The EPO receptor (EPO-R) of erythrocytic cells belongs to the cytokine class I receptor family and signals through various protein kinases and STAT transcription factors. The EPO-R is also expressed in many organs outside the bone marrow, suggesting that EPO is a pleiotropic anti-apoptotic factor. The controversial issue as to whether the EPO-R is functional in tumor tissue is critically reviewed. Importantly, most studies of EPO-R detection in tumor tissue have provided falsely positive results because of the lack of EPO-R specific antibodies. However, endogenous EPO appears to be necessary to maintain the viability of endothelial cells and to promote tumor angiogenesis. Although there is no clinical proof that the administration of erythropoiesis stimulating agents (ESAs) promotes tumor growth and mortality, present recommendations are that (i) ESAs should be administered at the lowest dose sufficient to avoid the need for red blood cell transfusions, (ii) ESAs should not be used in patients with active malignant disease not receiving chemotherapy or radiotherapy, (iii) ESAs should be discontinued following the completion of a chemotherapy course, (iv) the target Hb should be 12 g/dL and not higher and (v) the risks of shortened survival and tumor progression have not been excluded when ESAs are dosed to target Hb <12 g/dL.
Collapse
Affiliation(s)
- Wolfgang Jelkmann
- Institute of Physiology, University of Luebeck, Ratzeburger Allee 160, D-23538 Luebeck, Germany.
| | | | | | | |
Collapse
|
18
|
A transplanted NPVY sequence in the cytosolic domain of the erythropoietin receptor enhances maturation. Biochem J 2008; 410:409-16. [PMID: 17995455 DOI: 10.1042/bj20071297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Activation of the EPO-R [EPO (erythropoietin) receptor] by its ligand EPO promotes erythropoiesis. Low cell surface EPO-R levels are traditionally attributed to inefficient folding mediated by the receptor extracellular domain. In the present study, we addressed the role of the EPO-R intracellular domain in exit from the ER (endoplasmic reticulum) and surface expression. A fusion protein between the thermo-reversible folding mutant of VSVG (vesicular-stomatitis-virus glycoprotein) (VSVGtsO45) and the EPO-R cytosolic domain [VSVG-WT (wild-type)] displayed delayed intracellular trafficking as compared with the parental VSVGtsO45, suggesting that the EPO-R cytosolic domain can hamper ER exit. Although NPXY-based motifs were originally associated with clathrin binding and endocytosis, they may also function in other contexts of the secretory pathway. A fusion protein between VSVGtsO45 and the cytosolic portion of EPO-R containing an NPVY insert (VSVG-NPVY) displayed enhanced glycan maturation and surface expression as compared with VSVG-WT. Notably, the NPVY insert also conferred improved maturation and augmented cell surface EPO-R. Our findings highlight three major concepts: (i) the EPO-R cytosolic domain is involved in ER exit of the receptor. (ii) Sequence motifs that participate in endocytosis can also modulate transport along the secretory pathway. (iii) VSVG-fusion proteins may be employed to screen for intracellular sequences that regulate transport.
Collapse
|
19
|
Ai J, Druhan LJ, Hunter MG, Loveland MJ, Avalos BR. LRG-accelerated differentiation defines unique G-CSFR signaling pathways downstream of PU.1 and C/EBPepsilon that modulate neutrophil activation. J Leukoc Biol 2008; 83:1277-85. [PMID: 18272588 DOI: 10.1189/jlb.1107751] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Expression of leucine-rich alpha2 glycoprotein (LRG), a member of the leucine-rich repeat family of proteins, was recently shown to be up-regulated during neutrophil differentiation. Its precise role in granulopoiesis, however, remains unknown. In this paper, we show that the transcription factors PU.1 and C/EBPepsilon that regulate the expression of multiple myeloid-specific genes also bind to the LRG promoter. We also demonstrate that LRG localizes to the same cytoplasmic compartment as myeloperoxidase and that G-CSF treatment of the 32Dcl3 myeloid cell line induces nuclear translocation of LRG. Stable transfection of LRG into 32Dcl3 cells resulted in accelerated, G-CSF-mediated neutrophil differentiation and induction of CD11b expression. In contrast, constitutive expression of LRG in 32Dwt18 cells, expressing a chimeric erythropoietin (Epo)/G-CSFR consisting of the EpoR extracellular domain fused to the G-CSFR transmembrane and cytoplasmic domains, failed to induce accelerated neutrophil differentiation and CD11b expression in response to Epo stimulation. LRG-mediated accelerated differentiation and CD11b expression were found to correlate with an increased level of phospho-Stat3 but not with PU.1 or p27(kip1) levels. Hence, similar to other genes involved in neutrophil differentiation, the expression of LRG also appears to be regulated by PU.1 and C/EBPepsilon. Collectively, these findings suggest a role for LRG in modulating neutrophil differentiation and expression of CD11b via nonredundant G-CSFR signals.
Collapse
Affiliation(s)
- Jing Ai
- Davis Heart and Lung Research Institute and Division of Hematology/Oncology, The Ohio State University College of Medicine, Columbus, OH 43210-1240, USA
| | | | | | | | | |
Collapse
|
20
|
Ravid O, Shams I, Ben Califa N, Nevo E, Avivi A, Neumann D. An extracellular region of the erythropoietin receptor of the subterranean blind mole rat Spalax enhances receptor maturation. Proc Natl Acad Sci U S A 2007; 104:14360-5. [PMID: 17724331 PMCID: PMC1964849 DOI: 10.1073/pnas.0706777104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Erythropoietic functions of erythropoietin (EPO) are mediated by its receptor (EPO-R), which is present on the cell surface of erythroid progenitors and induced by hypoxia. We focused on EPO-R from Spalax galili (sEPO-R), one of the four Israeli species of the subterranean blind mole rat, Spalax ehrenbergi superspecies, as a special natural animal model of high tolerance to hypoxia. Led by the intriguing observation that most of the mouse EPO-R (mEPO-R) is retained in the endoplasmic reticulum (ER), we hypothesized that sEPO-R is expressed at higher levels on the cell surface, thus maximizing the response to elevated EPO, which has been reported in this species. Indeed, we found increased cell-surface levels of sEPO-R as compared with mEPO-R by using flow cytometry analysis of BOSC cells transiently expressing HA-tagged EPO-Rs (full length or truncated). We then postulated that unique extracellular sEPO-R sequence features contribute to its processing and cell-surface expression. To map these domains of the sEPO-R that augment receptor maturation, we generated EPO-R derivatives in which parts of the extracellular region of mEPO-R were replaced with the corresponding fragments of sEPO-R. We found that an extracellular portion of sEPO-R, harboring the N-glycosylation site, conferred enhanced maturation and increased transport to the cell surface of the respective chimeric receptor. Taken together, we demonstrate higher surface expression of sEPO-R, attributed at least in part to increased ER exit, mediated by an extracellular region of this receptor. We speculate that these sEPO-R sequence features play a role in the adaptation of Spalax to extreme hypoxia.
Collapse
Affiliation(s)
- Orly Ravid
- *Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel Aviv, Israel; and
| | - Imad Shams
- Laboratory for Animal Molecular Evolution, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Nathalie Ben Califa
- *Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel Aviv, Israel; and
| | - Eviatar Nevo
- Laboratory for Animal Molecular Evolution, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
- To whom correspondence may be addressed. E-mail: , , or
| | - Aaron Avivi
- *Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel Aviv, Israel; and
- To whom correspondence may be addressed. E-mail: , , or
| | - Drorit Neumann
- *Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel Aviv, Israel; and
- To whom correspondence may be addressed. E-mail: , , or
| |
Collapse
|
21
|
Fang J, Menon M, Kapelle W, Bogacheva O, Bogachev O, Houde E, Browne S, Sathyanarayana P, Wojchowski DM. EPO modulation of cell-cycle regulatory genes, and cell division, in primary bone marrow erythroblasts. Blood 2007; 110:2361-70. [PMID: 17548578 PMCID: PMC1988929 DOI: 10.1182/blood-2006-12-063503] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Erythropoietin (EPO's) actions on erythroblasts are ascribed largely to survival effects. Certain studies, however, point to EPO-regulated proliferation. To investigate this problem in a primary system, Kit(pos)CD71(high) erythroblasts were prepared from murine bone marrow, and were first used in the array-based discovery of EPO-modulated cell-cycle regulators. Five cell-cycle progression factors were rapidly up-modulated: nuclear protein 1 (Nupr1), G1 to S phase transition 1 (Gspt1), early growth response 1 (Egr1), Ngfi-A binding protein 2 (Nab2), and cyclin D2. In contrast, inhibitory cyclin G2, p27/Cdkn1b, and B-cell leukemia/lymphoma 6 (Bcl6) were sharply down-modulated. For CYCLIN G2, ectopic expression also proved to selectively attenuate EPO-dependent UT7epo cell-cycle progression at S-phase. As analyzed in primary erythroblasts expressing minimal EPO receptor alleles, EPO repression of cyclin G2 and Bcl6, and induction of cyclin D2, were determined to depend on PY343 (and Stat5) signals. Furthermore, erythroblasts expressing a on PY-null EPOR-HM allele were abnormally distributed in G0/G1. During differentiation divisions, EPOR-HM Ter119(pos) erythroblasts conversely accumulated in S-phase and faltered in an apparent EPO-directed transition to G0/G1. EPO/EPOR signals therefore control the expression of select cell-cycle regulatory genes that are proposed to modulate stage-specific decisions for erythroblast cell-cycle progression.
Collapse
Affiliation(s)
- Jing Fang
- Program in Stem and Progenitor Cell Biology, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Weidemann T, Höfinger S, Müller K, Auer M. Beyond dimerization: a membrane-dependent activation model for interleukin-4 receptor-mediated signalling. J Mol Biol 2006; 366:1365-73. [PMID: 17223132 DOI: 10.1016/j.jmb.2006.11.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/27/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Class I cytokine receptors efficiently transfer activation signals from the extracellular space to the cytoplasm and play a dominant role in growth control and differentiation of human tissues. Although a significant body of literature is devoted to this topic, a consistent mechanistic picture for receptor activation in the membrane environment is still missing. Using the interleukin-4 receptor (IL-4R) as an example, we propose that the membrane-proximal stem-loop of the extracellular domains contains pivotal elements of a rotational switch. Interfacial energies of amino acid side-chains contained in the highly conserved WSXWS at the surface of the lipid bilayer suggest a new functional role for this motif. A generic activation mechanism for this receptor class is presented, which may impact the design of a new generation of biophysical assay systems.
Collapse
Affiliation(s)
- Thomas Weidemann
- Innovative Screening Technologies, Novartis Institutes for BioMedical Research, Brunnerstr 59, A-1235 Vienna, Austria.
| | | | | | | |
Collapse
|
23
|
McInnes CJ, Deane D, Haig D, Percival A, Thomson J, Wood AR. Glycosylation, disulfide bond formation, and the presence of a WSXWS-like motif in the orf virus GIF protein are critical for maintaining the integrity of Binding to ovine granulocyte-macrophage colony-stimulating factor and interleukin-2. J Virol 2005; 79:11205-13. [PMID: 16103172 PMCID: PMC1193636 DOI: 10.1128/jvi.79.17.11205-11213.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Orf virus (ORFV), the type species of the family Parapoxviridae, encodes a protein (GIF) that binds and inhibits the ovine cytokines granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-2 (IL-2). There is no obvious sequence homology between the ORFV protein and any known mammalian GM-CSF- or IL-2-binding proteins. We demonstrate here that many of the biochemical properties of mammalian GM-CSF receptors that are required for efficient binding of GM-CSF are also critical to the GIF protein for binding to ovine GM-CSF (ovGM-CSF). Site-directed mutagenesis of the GIF protein demonstrated, first, the importance of disulfide bonds, and second, that a sequence motif (WDPWV), related to the WSXWS motif of the type 1 cytokine receptor superfamily, was necessary for biological activity. Finally, glycosylation of the GIF protein was also critical for binding to GM-CSF.
Collapse
Affiliation(s)
- C J McInnes
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Shams I, Nevo E, Avivi A. Erythropoietin receptor spliced forms differentially expressed in blind subterranean mole rats. FASEB J 2005; 19:1749-51. [PMID: 16081499 DOI: 10.1096/fj.05-3975fje] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Erythropoietin (Epo) is the primary regulator of erythropoiesis, controlling the proliferation, maturation, and survival of erythroid progenitor cells. The functions of Epo are mediated through its specific receptor (EpoR) expressed mainly on the surface of erythroid progenitor cells, and the expression of both responds to hypoxia. The subterranean mole rat (Spalax) is a unique model system to study the molecular mechanisms for adaptation to hypoxia. Here, we cloned two forms of Spalax EpoR: a complete EpoR cDNA as well as a novel truncated bone marrow specific EpoR form. In the full-length Spalax EpoR (sEpoR), two out of the eight conserved tyrosine- phosphorylation sites were substituted (Y481F and Y499G), suggesting that Spalax Epo signaling pathways may be modulated. The level of the sEpoR mRNA in the spleen and in bone marrow was relatively low and similar in Spalax newborns and adults, with no significant response to hypoxia. The truncated sEpoR was not detected in the spleen and comprised only approximately 1% of the sEpoR expressed in the bone marrow. In Rattus, the truncated EpoR form was approximately 15% of the total expressed receptor. The level of Rattus EpoR in newborn spleens was three- to fourfold higher than in Spalax newborns and decreased toward adulthood. Severe hypoxia induces a significant increase in adult Rattus EpoR. Our data provide further insight into the adaptive mechanisms of Spalax to the extreme conditions of hypoxia in its subterranean environment.
Collapse
Affiliation(s)
- Imad Shams
- Laboratory of Animal Molecular Evolution, Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel
| | | | | |
Collapse
|
25
|
Druhan LJ, Ai J, Massullo P, Kindwall-Keller T, Ranalli MA, Avalos BR. Novel mechanism of G-CSF refractoriness in patients with severe congenital neutropenia. Blood 2004; 105:584-91. [PMID: 15353486 DOI: 10.1182/blood-2004-07-2613] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe congenital neutropenia (SCN) is a rare disease diagnosed at or soon after birth, characterized by a myeloid maturation arrest in the bone marrow, ineffective neutrophil production, and recurrent infections. Most patients respond to treatment with granulocyte colony-stimulating factor (G-CSF), and the majority harbor mutations in the neutrophil elastase gene. In the subset of patients with SCN transforming to acute myeloid leukemia (AML), mutations that truncate the cytoplasmic tail of the G-CSF receptor (G-CSFR) have been detected. Here, we report a novel mutation in the extracellular portion of the G-CSFR within the WSXWS motif in a patient with SCN without AML who was refractory to G-CSF treatment. The mutation affected a single allele and introduced a premature stop codon that deletes the distal extracellular region and the entire transmembrane and cytoplasmic portions of the G-CSFR. Expression of the mutant receptor in either myeloid or lymphoid cells was shown to alter subcellular trafficking of the wild-type (WT) G-CSFR by constitutively heterodimerizing with it. WT/mutant G-CSFR heterodimers appeared to be retained in the endoplasmic reticulum and/or Golgi and accumulate intracellularly. These findings together with 2 previous case reports of extracellular mutations in the G-CSFR in patients with SCN unresponsive to G-CSF suggest a common mechanism underlying G-CSF refractoriness.
Collapse
Affiliation(s)
- Lawrence J Druhan
- Bone Marrow Transplant Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
26
|
Jorge AAL, Souza SCAL, Arnhold IJP, Mendonca BB. The first homozygous mutation (S226I) in the highly-conserved WSXWS-like motif of the GH receptor causing Laron syndrome: supression of GH secretion by GnRH analogue therapy not restored by dihydrotestosterone administration. Clin Endocrinol (Oxf) 2004; 60:36-40. [PMID: 14678285 DOI: 10.1111/j.1365-2265.2004.01930.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The study describes for the first time, a homozygous mutation in the WSXWS-like motif of the human GH receptor (GHR) in a patient with Laron syndrome and describe laboratory data during treatment with GnRHa to suppress puberty and dihydrotestosterone (DHT). PATIENTS A 16-year-old boy at Tanner puberty stage 2 with Laron syndrome was born SGA to consanguineous parents, presented severe growth retardation, obesity and micropenis. METHODS AND MEASUREMENTS GHR coding region was sequenced. GH, GHBP, IGF-I and IGFBP-3 were determined before, during and after GnRHa and DHT treatment. RESULTS A homozygous mutation in exon 7, replacing serine by isoleucine in codon 226 was identified. S226 is the last serine belonging to the WSXWS-like motif in GHR. No specific effect of S226I mutation in heterozygous state was observed. Laboratory data at the prepubertal age showed markedly high GH, low GHBP, IGF-I and IGFBP-3 levels. Re-evaluation at pubertal age showed normal basal serum IGFBP-3 levels and low but near normal IGF-I levels. We also noticed a sustained decrease in GH, IGF-I and IGFBP-3 levels after blocking puberty, which was not affected by short- and long-term DHT treatment. Pubertal hormonal profile was re-established after the GnRHa therapy was discontinued to allow the reactivation of the gonadal axis. CONCLUSION The homozygous mutation S226I in WSXWS-like motif of GHR causes GH insensitivity. The decrease in IGF-I and IGFBP-3 levels after GnRHa therapy, which was not reversed with DHT administration, suggests that sex steroids have, through oestradiol, a GH-independent action on IGF-I and IGFBP-3 levels. A direct effect of GnRHa on GH secretion cannot be excluded.
Collapse
Affiliation(s)
- Alexander A L Jorge
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clinicas, Sao Paulo, Brazil.
| | | | | | | |
Collapse
|
27
|
Furmanek A, Hess D, Rogniaux H, Hofsteenge J. The WSAWS motif is C-hexosylated in a soluble form of the erythropoietin receptor. Biochemistry 2003; 42:8452-8. [PMID: 12859190 DOI: 10.1021/bi034112p] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The WSXWS motif is a highly conserved structural feature of the type I cytokine receptor family. It has previously been demonstrated that mutations in the (232)WSAWS(236) motif in the erythropoietin receptor (EPOR) can result in strongly inhibited surface expression, due to defective intracellular transport [Hilton, D. J., et al. (1996) J. Biol. Chem. 271, 4699-4708]. Here we report that the first tryptophan in the motif of the recombinant extracellular domain of EPOR (sEPOR) expressed in HEK-EBNA cells carries a C-linked hexosyl residue. The S233A mutation completely abolished secretion of sEPOR, whereas the A234E mutation resulted in enhanced secretion. Comparison of the level of C-hexosylation in the wild-type protein and in the mutant proteins isolated from the conditioned medium and/or the cells suggested that C-hexosylation of the motif did not play a role in the correct intracellular transport of sEPOR.
Collapse
Affiliation(s)
- Aleksandra Furmanek
- Friedrich Miescher Institute, Novartis Research Foundation, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | | | |
Collapse
|
28
|
Haddad JJ. Pharmaco-redox regulation of cytokine-related pathways: from receptor signaling to pharmacogenomics. Free Radic Biol Med 2002; 33:907-26. [PMID: 12361802 DOI: 10.1016/s0891-5849(02)00985-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokines represent a multi-diverse family of polypeptide regulators; they are relatively low molecular weight (< 30 kDa), pharmacologically active proteins that are secreted by one cell for the purpose of altering either its own functions (autocrine effect) or those of adjacent cells (paracrine effect). Cytokines are small, nonenzymatic glycoproteins whose actions are both diverse and overlapping (specificity/redundancy) and may affect diverse and overlapping target cell populations. In many instances, individual cytokines have multiple biological activities. Different cytokines can also have the same activity, which provides for functional redundancy (network) within the inflammatory and immune systems. As biological cofactors that are released by specific cells, cytokines have specific effects on cell-cell interaction, communication, and behavior of other cells. As a result, it is infrequent that loss or neutralization of one cytokine will markedly interfere with either of these systems. The biological effect of one cytokine is often modified or augmented by another. Because an interdigitating, redundant network of cytokines is involved in the production of most biological effects, both under physiologic and pathologic conditions, it usually requires more than a single defect in the network to alter drastically the outcome of the process. This fact, therefore, may have crucial significance in the development of therapeutic strategies for biopharmacologic intervention in cytokine-mediated inflammatory processes and infections.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Labs, Molecular Neuroscience Research Division, Dept of Anesthesia and Perioperative Care, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0542, USA.
| |
Collapse
|
29
|
Sakamoto H, Kitamura T, Yoshimura A. Mitogen-activated protein kinase plays an essential role in the erythropoietin-dependent proliferation of CTLL-2 cells. J Biol Chem 2000; 275:35857-62. [PMID: 10960479 DOI: 10.1074/jbc.m006317200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (EPO) and its receptor (EPOR) are required for development of erythrocytes. It has been shown that the ectopic expression of EPOR confers EPO-dependent proliferation on an interleukin 3 (IL3)-dependent cell line, Ba/F3, whereas the IL2-dependent T cell line, CTLL-2 expressing the EPOR (T-ER), fails to proliferate in response to EPO. However, the molecular basis of the EPO unresponsiveness in CTLL-2 has not been clarified. We found that the expression level of JAK2 in T-ER cells was much lower than that in Ba/F3 cells. Therefore, we examined the effects of forced expression of JAK2 in T-ER cells. In T-ER transformants expressing JAK2 (T-JER), EPO induced tyrosine phosphorylation of the EPOR, JAK2, and STAT5, and consequently STAT5-responsive genes including bcl-X and cis1 were normally induced. Furthermore, T-JER cells were resistant to apoptosis until at least 72 h after switching from IL2 to EPO. Although T-JER cells could not continuously proliferate in the presence of EPO, additional expression of JAK2 in T-JER (T-JJER) to a level similar to that in Ba/F3 cells supported long term proliferation in response to EPO. JAK2 was equally co-immunoprecipitated with the EPOR among T-JER, T-JJER, and Ba/F3 cells expressing the EPOR (BF-ER). However, EPO-dependent mitogen-activated protein (MAP) kinase activation was observed in T-JJER and BF-ER cells but not in T-JER cells. EPO-dependent long term proliferation of T-JER cells was conferred by expression of the constitutively activated form of MEK1. Our results suggest that MAP kinase activation is, at least in part, an important component for mitotic signal from the EPOR, and CTLL-2 cells probably lack signaling molecule(s) in JAK2 and the Ras-MAP kinase pathway.
Collapse
Affiliation(s)
- H Sakamoto
- Institute of Life Science, Kurume University, Aikawa-machi 2432-3, Kurume 839-0861, Japan
| | | | | |
Collapse
|
30
|
Abstract
The proliferation and differentiation of erythroid cells is a highly regulated process that is controlled primarily at the level of interaction of erythropoietin (Epo) with its specific cell surface receptor (EpoR). However, this process is deregulated in mice infected with the Friend spleen focus-forming virus (SFFV). Unlike normal erythroid cells, erythroid cells from SFFV-infected mice are able to proliferate and differentiate in the absence of Epo, resulting in erythroid hyperplasia and leukemia. Over the past 20 years, studies have been carried out to identify the viral genes responsible for the pathogenicity of SFFV and to understand how expression of these genes leads to the deregulation of erythropoiesis in infected animals. The studies have revealed that SFFV encodes a unique envelope glycoprotein which interacts specifically with the EpoR at the cell surface, resulting in activation of the receptor and subsequent activation of erythroid signal transduction pathways. This leads to the proliferation and differentiation of erythroid precursor cells in the absence of Epo. Although the precise mechanism by which the viral protein activates the EpoR is not yet known, it has been proposed that it causes dimerization of the receptor, resulting in constitutive activation of Epo signal transduction pathways. While interaction of the SFFV envelope glycoprotein with the EpoR leads to Epo-independent erythroid hyperplasia, this is not sufficient to transform these cells. Transformation requires the viral activation of the cellular gene Sfpi-1, whose product is thought to block erythroid cell differentiation. By understanding how SFFV can deregulate erythropoiesis, we may gain insights into the causes and treatment of related diseases in man.
Collapse
Affiliation(s)
- S K Ruscetti
- National Cancer Institute, Frederick Cancer Research and Development Center, MD 21702-1201, USA.
| |
Collapse
|
31
|
Suliman HB, Logan-Henfrey L, Majiwa PA, ole-Moiyoi O, Feldman BF. Analysis of erythropoietin and erythropoietin receptor genes expression in cattle during acute infection with Trypanosoma congolense. Exp Hematol 1999; 27:37-45. [PMID: 9923442 DOI: 10.1016/s0301-472x(98)00019-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acute Trypanosoma congolense infection induced moderate, transient anemia in N'Dama cattle (trypanotolerant) and severe anemia in Boran cattle (trypanosusceptible). Erythropoietin receptor (EpoR) was cloned and sequenced from the two breeds of cattle. A single position mutation of Tyr in the Boran to His in the N'Dama predicted amino acid sequence was revealed. The mRNA transcription of erythropoietin (Epo) in kidneys and EpoR in the bone marrow of infected cattle was determined by competitive reverse transcription and the polymerase chain reaction (RT-PCR). Though Epo mRNA transcription increased in the kidneys during infection, the increase was not significantly different (p>0.05) between the two breeds of infected cattle. The level of EpoR transcripts in the bone marrow of infected N'Damas was significantly higher (p<0.05) than that detected in the marrows from infected Boran cattle. While infection seem to increase levels of transcription of IL-1alpha and beta, and TNFalpha in kidneys from both Boran and N'Dama cattle, no significant difference was detected in the level of mRNAs of these cytokines in the kidney from the two breed of cattle. The amount of IFNgamma mRNA transcripts were not changed with infection in N'Dama cattle, while on the contrary a significant higher levels of IFNgamma was found in kidneys from infected Boran cattle as compared to the other groups. A significant (p<0.05) increase in the levels of IL-1alpha and beta, and IFNgamma mRNA transcripts were detected in the marrows of infected Borans as compared to the infected N'Dama cattle. In this study the increase in the level of TNFalpha mRNA in the marrows of the two infected breeds was not different. This implies there is no negative effect of TNFalpha on hematopoiesis during acute infection. These findings suggest that the levels of Epo and EpoR in the infected Boran cattle were inadequate for their degree of anemia, which might be due in part to high expression of IFNgamma during acute infection with T. congolense.
Collapse
Affiliation(s)
- H B Suliman
- Department of Medicine, Duke Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
32
|
Syed RS, Reid SW, Li C, Cheetham JC, Aoki KH, Liu B, Zhan H, Osslund TD, Chirino AJ, Zhang J, Finer-Moore J, Elliott S, Sitney K, Katz BA, Matthews DJ, Wendoloski JJ, Egrie J, Stroud RM. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature 1998; 395:511-6. [PMID: 9774108 DOI: 10.1038/26773] [Citation(s) in RCA: 418] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human erythropoietin is a haematopoietic cytokine required for the differentiation and proliferation of precursor cells into red blood cells. It activates cells by binding and orientating two cell-surface erythropoietin receptors (EPORs) which trigger an intracellular phosphorylation cascade. The half-maximal response in a cellular proliferation assay is evoked at an erythropoietin concentration of 10 pM, 10(-2) of its Kd value for erythropoietin-EPOR binding site 1 (Kd approximately equal to nM), and 10(-5) of the Kd for erythropoietin-EPOR binding site 2 (Kd approximately equal to 1 microM). Overall half-maximal binding (IC50) of cell-surface receptors is produced with approximately 0.18 nM erythropoietin, indicating that only approximately 6% of the receptors would be bound in the presence of 10 pM erythropoietin. Other effective erythropoietin-mimetic ligands that dimerize receptors can evoke the same cellular responses but much less efficiently, requiring concentrations close to their Kd values (approximately 0.1 microM). The crystal structure of erythropoietin complexed to the extracellular ligand-binding domains of the erythropoietin receptor, determined at 1.9 A from two crystal forms, shows that erythropoietin imposes a unique 120 degrees angular relationship and orientation that is responsible for optimal signalling through intracellular kinase pathways.
Collapse
Affiliation(s)
- R S Syed
- Amgen Inc., Thousand Oaks, California 91320-1789, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Migliaccio AR, Migliaccio G. The making of an erythroid cell. Molecular control of hematopoiesis. BIOTHERAPY (DORDRECHT, NETHERLANDS) 1998; 10:251-68. [PMID: 9592014 DOI: 10.1007/bf02678546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The number of circulating red cells is regulated by the daily balance between two processes: the destruction of the old red cells in the liver and the generation of new cells in the bone marrow. The process during which hematopoietic stem cells generate new red cells is called erythropoiesis. This manuscript will describe the molecular mechanisms involved in the process of erythroid differentiation as we understand them today. In particular it will review how erythroid specific growth factor-receptor interactions activate specific transcription factors to turn on the expression of the genes responsible for the establishment of the erythroid phenotype.
Collapse
Affiliation(s)
- A R Migliaccio
- Laboratorio di Biologia Cellulare, Istituto Superiore di Sanitá, Rome, Italy
| | | |
Collapse
|
34
|
Muszynski KW, Ohashi T, Hanson C, Ruscetti SK. Both the polycythemia- and anemia-inducing strains of Friend spleen focus-forming virus induce constitutive activation of the Raf-1/mitogen-activated protein kinase signal transduction pathway. J Virol 1998; 72:919-25. [PMID: 9444983 PMCID: PMC124561 DOI: 10.1128/jvi.72.2.919-925.1998] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The erythroleukemia-inducing Friend spleen focus-forming virus (SFFV) encodes a unique envelope glycoprotein which allows erythroid cells to proliferate and differentiate in the absence of erythropoietin (Epo). In an attempt to understand how the virus causes Epo independence, we have been studying signal transduction pathways activated by Epo to determine if SFFV exerts its biological effects by constitutively activating any of these pathways in the absence of Epo. We previously demonstrated that Stat proteins, the downstream components of the Epo-induced Jak-Stat pathway, are constitutively activated in SFFV-infected cells. In this study, we demonstrate that SFFV also activates Raf-1, MEK and mitogen-activated protein (MAP) kinase, the downstream components of the Raf-1/MAP kinase pathway. This pathway was activated in cells infected with the polycythemia-inducing strain of SFFV, which induces both proliferation and differentiation of erythroid cells in the absence of Epo, as well as in cells infected with the anemia-inducing strain of the virus, which still require Epo for differentiation. Inhibition of Raf-1 by using antisense oligonucleotides led to a partial inhibition of the Epo-independent proliferation of SFFV-infected cells. Expression of the transcription factors c-Jun and JunB, but not c-Fos, was induced in SFFV-infected cells in the absence of Epo, suggesting that constitutive activation of the Raf-1/MAP kinase pathway by the virus may result in deregulation of AP-1 activity. We conclude from our studies that infection of erythroid cells with SFFV leads to the constitutive activation of signal transduction molecules in both the Jak-Stat and Raf-1/MAP kinase pathways and that both of these pathways must be activated to achieve maximum proliferation and differentiation of erythroid cells in the absence of Epo.
Collapse
Affiliation(s)
- K W Muszynski
- Intramural Research Support Program, SAIC Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|
35
|
Yamasaki K, Naito S, Anaguchi H, Ohkubo T, Ota Y. Solution structure of an extracellular domain containing the WSxWS motif of the granulocyte colony-stimulating factor receptor and its interaction with ligand. NATURE STRUCTURAL BIOLOGY 1997; 4:498-504. [PMID: 9187659 DOI: 10.1038/nsb0697-498] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have determined the NMR structure of a ligand-binding domain of the granulocyte colony-stimulating factor (G-CSF) receptor, containing the highly conserved WSxWS motif. The domain consists of seven beta-strands with the fibronectin type III-like topology seen in several cytokine receptors. Comparisons between the spectra of the 15N-labelled domain with and without G-CSF indicate that the major ligand-recognition site is on the FG loop just upstream of the WSxWS sequence, and not on the BC loop which is mainly used in the growth hormone system. The WSxWS residues are suggested to contribute to ligand-recognition and to the protein architecture of the G-CSF receptor.
Collapse
Affiliation(s)
- K Yamasaki
- Protein Engineering Research Institute, Osaka, Japan.
| | | | | | | | | |
Collapse
|
36
|
The Structural and Functional Basis of Cytokine Receptor Activation: Lessons From the Common β Subunit of the Granulocyte-Macrophage Colony-Stimulating Factor, Interleukin-3 (IL-3), and IL-5 Receptors. Blood 1997. [DOI: 10.1182/blood.v89.5.1471] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
The Structural and Functional Basis of Cytokine Receptor Activation: Lessons From the Common β Subunit of the Granulocyte-Macrophage Colony-Stimulating Factor, Interleukin-3 (IL-3), and IL-5 Receptors. Blood 1997. [DOI: 10.1182/blood.v89.5.1471.1471_1471_1482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Barbone FP, Middleton SA, Johnson DL, McMahon FJ, Tullai J, Gruninger RH, Schilling AE, Jolliffe LK, Mulcahy LS. Mutagenesis studies of the human erythropoietin receptor. Establishment of structure-function relationships. J Biol Chem 1997; 272:4985-92. [PMID: 9030560 DOI: 10.1074/jbc.272.8.4985] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mutagenesis of the erythropoietin receptor (EPOR) permits analysis of the contribution that individual amino acid residues make to erythropoietin (EPO) binding. We employed both random and site-specific mutagenesis to determine the function of amino acid residues in the extracellular domain (referred to as EPO binding protein, EBP) of the EPOR. Residues were chosen for site-specific alanine substitution based on the results of the random mutagenesis or on their homology to residues that are conserved or have been reported to be involved in ligand binding in other receptors of the cytokine receptor family. Site-specific mutants were expressed in Escherichia coli as soluble EBP and analyzed for EPO binding in several different assay formats. In addition, selected mutant proteins were expressed as full-length EPOR on the surface of COS cells and analyzed for 125I-EPO binding in receptor binding assays. Using these methods, we have identified residues that appear to be involved in EPO binding as well as other residues, most of which are conserved in receptors of the cytokine receptor family, that appear to be necessary for the proper folding and/or stability of the EPOR. We present correlations between these mutagenesis data and the recently solved crystal structure of the EBP with a peptide ligand.
Collapse
Affiliation(s)
- F P Barbone
- The R. W. Johnson Pharmaceutical Research Institute, Drug Discovery Research, Raritan, New Jersey 08869, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Activating Mutations in Cytokine Receptors: Implications for Receptor Function and Role in Disease. Blood 1997. [DOI: 10.1182/blood.v89.2.355] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Ratcliffe PJ, Eckardt K, Bauer C. Hypoxia, Erythropoietin Gene Expression, and Erythropoiesis. Compr Physiol 1996. [DOI: 10.1002/cphy.cp040249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Watowich SS, Wu H, Socolovsky M, Klingmuller U, Constantinescu SN, Lodish HF. Cytokine receptor signal transduction and the control of hematopoietic cell development. Annu Rev Cell Dev Biol 1996; 12:91-128. [PMID: 8970723 DOI: 10.1146/annurev.cellbio.12.1.91] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cytokine receptor superfamily is characterized by structural motifs in the exoplasmic domain and by the absence of catalytic activity in the cytosolic segment. Activated by ligand-triggered multimerization, these receptors in turn activate a number of cytosolic signal transduction proteins, including protein tyrosine kinases and phosphatases, and affect an array of cellular functions that include proliferation and differentiation. Molecular study of these receptors is revealing the roles they play in the control of normal hematopoiesis and in the development of disease.
Collapse
Affiliation(s)
- S S Watowich
- Department of Immunology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
42
|
Woodcock JM, Bagley CJ, Zacharakis B, Lopez AF. A single tyrosine residue in the membrane-proximal domain of the granulocyte-macrophage colony-stimulating factor, interleukin (IL)-3, and IL-5 receptor common beta-chain is necessary and sufficient for high affinity binding and signaling by all three ligands. J Biol Chem 1996; 271:25999-6006. [PMID: 8824238 DOI: 10.1074/jbc.271.42.25999] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The beta-chain of the granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and interleukin-5 (IL-5) receptors functions as a communal receptor subunit and is often referred to as beta common (betac). Analogous to other shared receptor subunits including gp130 and the IL-2R gamma chain, betac mediates high affinity binding and signal transduction of all of its ligands. It is not clear, however, how these common receptor subunits can recognize several ligands and indeed whether they exhibit a common binding pocket to accomplish this. We have performed molecular modeling of betac based on the known structures of the growth hormone and prolactin receptors and targeted the putative F'-G' loop for mutagenesis. Substitution of this whole predicted loop region with alanines completely abrogated high affinity binding of GM-CSF, IL-3, and IL-5. Individual alanine substitutions across the loop revealed that a single residue, Tyr421, is critical for high affinity binding of GM-CSF, IL-3, and IL-5, whereas alanine substitution of adjacent residues has little or no effect on high affinity binding. Significantly, reintroducing Tyr421 into the polyalanine-substituted mutant restored high affinity ligand binding of GM-CSF, IL-3, and IL-5, indicating that within this region the tyrosine residue alone is sufficient for high affinity ligand interaction. Functional studies measuring STAT5 activation revealed that alanine substitution of Tyr421 severely impaired the ability of betac to signal. These results show for the first time that a single residue in a shared receptor subunit acts as a binding determinant for different ligands and may have implications for other receptor systems where communal receptor subunits exhibit hydrophobic residues in their putative F'-G' loops. These results also raise the possibility that a single compound targeted to this region may simultaneously inhibit the binding and function of multiple cytokines.
Collapse
Affiliation(s)
- J M Woodcock
- Division of Human Immunology, Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Frome Road, Adelaide, South Australia 5000, Australia
| | | | | | | |
Collapse
|
43
|
Wasik MA, Seldin DC, Butmarc JR, Gertz R, Marti R, Maslinski W, Kadin ME. Analysis of IL-2, IL-4 and their receptors in clonally-related cell lines derived from a patient with a progressive cutaneous T-cell lymphoproliferative disorder. Leuk Lymphoma 1996; 23:125-36. [PMID: 9021695 DOI: 10.3109/10428199609054811] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three clonally related T-cell lymphoma lines (PB-1, 2A, and 2B) were examined for expression of IL-2, IL-4, and their receptors. All three lines were derived from a single patient who had an atypical, progressive T-cell lymphoproliferative disorder involving primarily skin (Davis, T.H. et al. 1992, N. Engl. J. Med. 326:1115). The PB-1 cell line was obtained from a relatively early, clinically indolent stage of the cutaneous lymphoma, whereas the 2A and 2B lines were established from a late, aggressive stage of the lymphoma. Reverse-transcriptase PCR performed with primer pairs specific for IL-2 and IL-4 showed that no mRNA coding for these cytokines was present in any of the lines with the exception of IL-4 mRNA in the 2A line. No IL-4 protein, however, was found in any of the cell lines including 2A by immunocytochemical staining with anti-IL-4 mAb. Accordingly, no bioactive IL-4 was present in the supernatants of these lines. In contrast, all three T-cell lymphoma lines contained mRNA for IL-2R alpha, IL-2R beta, IL-4R and common gamma chain. Immunocytochemical analysis revealed that only the PB-1 line stained strongly with mAbs specific for IL-2R alpha, IL-2R beta, and IL-4R whereas the 2A and 2B lines showed only limited staining with these mAbs. In contrast to expression of IL-2R alpha and IL-4R primarily on the cell surface, IL-2R beta was localized mainly in the cell cytoplasm. Testing supernatants of the cell lines by ELISA for the presence of soluble alpha chain of the IL-2R (sIL-2R) has shown that only PB-1 secreted a large amount of sIL-2R, whereas the 2A and 2B lines secreted lesser amounts. Furthermore, the PB-1 cells expressed a relatively large number of IL-4R as determined by IL-4 binding studies using an IL-4-alkaline phosphatase fusion protein. The remaining two lines displayed only limited binding of IL-4. Addition of IL-2 and/or IL-4 to the culture medium did not modulate growth of PB-1 and the other two lines. These findings may indicate that at least some types of T-cell lymphoma evolve from cells which lose the capacity to synthesize T-cell autocrine growth factors such as IL-2 and IL-4, and show progressive loss of receptors for these cytokines.
Collapse
Affiliation(s)
- M A Wasik
- Department of Pathology, Beth Israel Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Livnah O, Stura EA, Johnson DL, Middleton SA, Mulcahy LS, Wrighton NC, Dower WJ, Jolliffe LK, Wilson IA. Functional mimicry of a protein hormone by a peptide agonist: the EPO receptor complex at 2.8 A. Science 1996; 273:464-71. [PMID: 8662530 DOI: 10.1126/science.273.5274.464] [Citation(s) in RCA: 501] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The functional mimicry of a protein by an unrelated small molecule has been a formidable challenge. Now, however, the biological activity of a 166-residue hematopoietic growth hormone, erythropoietin (EPO), with its class 1 cytokine receptor has been mimicked by a 20-residue cyclic peptide unrelated in sequence to the natural ligand. The crystal structure at 2.8 A resolution of a complex of this agonist peptide with the extracellular domain of EPO receptor reveals that a peptide dimer induces an almost perfect twofold dimerization of the receptor. The dimer assembly differs from that of the human growth hormone (hGH) receptor complex and suggests that more than one mode of dimerization may be able to induce signal transduction and cell proliferation. The EPO receptor binding site, defined by peptide interaction, corresponds to the smaller functional epitope identified for hGH receptor. Similarly, the EPO mimetic peptide ligand can be considered as a minimal hormone, and suggests the design of nonpeptidic small molecule mimetics for EPO and other cytokines may indeed be achievable.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Crystallography, X-Ray
- Drug Design
- Erythropoietin/chemistry
- Erythropoietin/metabolism
- Growth Hormone/chemistry
- Growth Hormone/metabolism
- Humans
- Hydrogen Bonding
- Models, Molecular
- Molecular Mimicry
- Molecular Sequence Data
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/metabolism
- Protein Conformation
- Protein Folding
- Protein Structure, Secondary
- Receptors, Erythropoietin/agonists
- Receptors, Erythropoietin/chemistry
- Receptors, Erythropoietin/metabolism
- Receptors, Somatotropin/chemistry
- Receptors, Somatotropin/metabolism
Collapse
Affiliation(s)
- O Livnah
- Department of Molecular Biology and the Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Middleton SA, Johnson DL, Jin R, McMahon FJ, Collins A, Tullai J, Gruninger RH, Jolliffe LK, Mulcahy LS. Identification of a critical ligand binding determinant of the human erythropoietin receptor. Evidence for common ligand binding motifs in the cytokine receptor family. J Biol Chem 1996; 271:14045-54. [PMID: 8662939 DOI: 10.1074/jbc.271.24.14045] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The erythropoietin receptor (EPOR) is a member of a family of cytokine and growth factor receptors that share conserved features in their extracellular and cytoplasmic domains. We have used site-specific mutagenesis within the extracellular domain of the EPOR to search for amino acid residues involved in erythropoietin (EPO) binding. Mutant proteins were expressed in bacteria as soluble EPO binding proteins (EBP) and characterized for EPO binding activity in a number of different assays. Substitution of phenylalanine at position 93 (Phe93) with alanine (F93A mutation) resulted in a drastic reduction in EPO binding in the EBP. More conservative tyrosine or tryptophan substitutions at Phe93 resulted in much less dramatic effects on EPO binding. Biophysical studies indicated that the F93A mutation does not result in gross structural alterations in the EBP. Furthermore, the F93A mutation in full-length EPOR expressed in COS cells abolished detectable EPO binding. This was not a result of processing or transport defects, since mutant receptor was present on the surface of the cells. Mutations in the region immediately around Phe93 and in residues homologous to other reported ligand binding determinants of the cytokine receptor family had small to moderate effects on EPO binding. These data indicate that Phe93 is a critical EPO binding determinant of the EPOR. Furthermore, since Phe93 aligns with critical ligand binding determinants in other receptors of the cytokine receptor family, these data suggest that receptors of this family may use common structural motifs to bind their cognate ligands.
Collapse
Affiliation(s)
- S A Middleton
- R. W. Johnson Pharmaceutical Research Institute, Raritan, New Jersey 08869, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mittelman M, Gardyn J, Carmel M, Malovani H, Barak Y, Nir U. Analysis of the erythropoietin receptor gene in patients with myeloproliferative and myelodysplastic syndromes. Leuk Res 1996; 20:459-66. [PMID: 8709617 DOI: 10.1016/0145-2126(96)00002-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The human erythropoietin receptor (EpoR) gene has been cloned and characterized. Very few EpoR genetic abnormalities have been reported so far. Polycythemia vera (PV) is characterized by low/normal serum erythropoietin (Epo) levels with proposed Epo hypersensitivity. Myelodysplastic syndromes (MDS) are characterized by refractory anemia with variable serum Epo levels. Several reports have suggested EpoR abnormalities in both types of stem cell disorders. We analyzed DNA obtained from peripheral blood mononuclear cells of seven healthy controls, 20 patients with myeloproliferative disorders (MPD, 11 patients with PV, five agnogenic myeloid metaplasia with myelofibrosis, four essential thrombocytosis) and eight patients with refractory anemia with ringed sideroblasts (RARS), an MDS variant. The DNA was digested with four restriction enzymes (BamHI, Bgl II, Sacl and HindIII), followed by Southern blot, using a 32P radiolabeled probe, containing 1.5 kb of the human EpoR cDNA. All 20 MPD patients and seven out of the eight MDS patients demonstrated a restriction pattern which was identical to the seven normal controls, as well as to the erythroid cell line K562, and also consistent with the expected restriction map, for all four enzymes tested. One RARS patient had a normal pattern with three enzymes but a different one with HindIII. The HindIII 12 kb large band was replaced by a faint 12 kb band and a new (about 9 kb) band appeared. The EpoR restriction map and the normal pattern obtained with the other three enzymes suggest that this patient has a 3 kb upstream deletion in one allelic EpoR gene. The same molecular pattern was detected in the patient's sister, who suffers from anemia with mild bone marrow (BM) dyserythropoiesis and plasmacytosis. Northern blot analysis showed that the patient's BM RNA carried normal EpoR message. This familial pattern may represent polymorphism. However, the patient's very high serum Epo level, her resistance to treatment with recombinant Epo, and the abnormally low growth rate of in vitro erythroid cultures, suggesting poor response to Epo in this MDS patient as well as the hematological abnormalities in her sister, support the speculation that the different EpoR gene might serve as a genetic predisposing marker and potentially could be involved (probably via post-transcriptional mechanisms and by an interaction with other factors or cytokines) in the pathogenesis. Our data suggest that the EpoR is intact in MPD and in most patients with RARS. One RARS patient had a familial different genetic structure, which could represent polymorphism. However, we can speculate also that it might be involved in the pathogenesis of the disease.
Collapse
Affiliation(s)
- M Mittelman
- Department of Medicine B, Hasharon Hospital, Petah-Tikva, Tel-Aviv University, Israel
| | | | | | | | | | | |
Collapse
|
47
|
Hilton DJ, Watowich SS, Katz L, Lodish HF. Saturation mutagenesis of the WSXWS motif of the erythropoietin receptor. J Biol Chem 1996; 271:4699-708. [PMID: 8617735 DOI: 10.1074/jbc.271.9.4699] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The WSXWS motif in the extracellular domain defines members of the cytokine receptor family, yet its role in receptor structure and function remains unresolved. To address this question we have generated a panel of 100 mutants within the WSXWS motif of the erythropoietin receptor, which represents all single amino acid substitutions of these five amino acids. All mutants were synthesized at the same level; however, their passage from the endoplasmic reticulum to the Golgi apparatus differed. Because of this, expression of mutant receptors at the cell surface varied more than 300-fold. The tolerance of the tryptophan and serine residues to substitution was quite narrow; as a result, most of these mutants were retained in the endoplasmic reticulum and showed no cell surface expression or reduced cell surface expression. Although many mutants with substitutions at the middle residue of the motif reached the cell surface, it was notable that one mutant, A234E, was processed more efficiently than the wild type receptor and was expressed in elevated numbers at the cell surface. Despite this variation, all mutant receptors that reached the cell surface appeared able to bind erythropoietin and transduce a proliferative signal normally. These results are discussed in terms of a general model for WSXWS function in which the motif contributes to efficient receptor folding.
Collapse
Affiliation(s)
- D J Hilton
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | |
Collapse
|
48
|
|
49
|
Ihle JN. Signaling by the cytokine receptor superfamily in normal and transformed hematopoietic cells. Adv Cancer Res 1996; 68:23-65. [PMID: 8712070 DOI: 10.1016/s0065-230x(08)60351-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- J N Ihle
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
50
|
Ohashi T, Masuda M, Ruscetti SK. Activation of stat-related DNA-binding factors by erythropoietin and the spleen focus-forming virus. Curr Top Microbiol Immunol 1996; 211:223-31. [PMID: 8585953 DOI: 10.1007/978-3-642-85232-9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- T Ohashi
- Laboratory of Molecular Oncology, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | | |
Collapse
|