1
|
Zhao X, Wu X, Xiao J, Zhang L, Hao Y, Xiao C, Zhang B, Li J, Jiang X. A large-scale genome-wide cross-trait analysis for the effect of COVID-19 on female-specific cancers. iScience 2023; 26:107497. [PMID: 37636041 PMCID: PMC10450412 DOI: 10.1016/j.isci.2023.107497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/24/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Little is known regarding the long-term adverse effects of COVID-19 on female-specific cancers, nor the shared genetic influences underlying these conditions. We performed a comprehensive genome-wide cross-trait analysis to investigate the shared genetic architecture between COVID-19 (infection, hospitalization, and critical illness) with three female-specific cancers (breast cancer (BC), epithelial ovarian cancer (EOC), and endometrial cancer (EC)). We identified significant genome-wide genetic correlations with EC for both hospitalization (r g = 0.19, p = 0.01) and critical illness (r g = 0.29, p = 3.00 × 10-4). Mendelian randomization demonstrated no valid association of COVID-19 with any cancer of interest, except for suggestive associations of genetically predicted hospitalization (ORIVW = 1.09, p = 0.04) and critical illness (ORIVW = 1.06, p = 0.04) with EC risk, none withstanding multiple correction. Cross-trait meta-analysis identified 20 SNPs shared between COVID-19 with BC, 15 with EOC, and 5 with EC; and transcriptome-wide association studies revealed multiple shared genes. Findings support intrinsic links underlying these complex traits, highlighting shared mechanisms rather than causal associations.
Collapse
Affiliation(s)
- Xunying Zhao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xueyao Wu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jinyu Xiao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yu Hao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chenghan Xiao
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ben Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiayuan Li
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
2
|
Saadalla A, Seheult J, Pruthi RK, Chen D. Von Willebrand Factor Multimer Analysis and Classification: A Comprehensive Review and Updates. Semin Thromb Hemost 2023; 49:580-591. [PMID: 36174612 DOI: 10.1055/s-0042-1757183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Von Willebrand factor (VWF) is a multimeric glycoprotein with essential roles in primary hemostasis. Patients with von Willebrand disease (VWD), due to quantitative and/or qualitative defects of VWF usually experience mucocutaneous bleeding. Based on the laboratory results of VWF antigen, various VWF activities, factor VIII activity, and VWF multimer patterns, VWD can be categorized as type 1, 2, and 3 VWD. VWF multimer analysis by either manual or semi-automated electrophoresis and immunoblotting is a critical part of the laboratory testing to differentiate type 1, type 2 VWD, and subtypes of type 1 or 2 VWD. The multimer distribution patterns can also help to understand the underlying molecular mechanism of VWF synthesis, multimerization, and clearance defects in VWD. This review will cover VWF synthesis, multimerization, secretion, VWF multimer analysis, and VWF multimer interpretation of various types and subtypes of VWD.
Collapse
Affiliation(s)
- Abdulrahman Saadalla
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Jansen Seheult
- Division of Hematopathology, Special Coagulation Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Rajiv K Pruthi
- Division of Hematopathology, Special Coagulation Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Dong Chen
- Division of Hematopathology, Special Coagulation Laboratory, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
3
|
Sarafanov AG. Plasma Clearance of Coagulation Factor VIII and Extension of Its Half-Life for the Therapy of Hemophilia A: A Critical Review of the Current State of Research and Practice. Int J Mol Sci 2023; 24:ijms24108584. [PMID: 37239930 DOI: 10.3390/ijms24108584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Factor VIII (FVIII) is an important component of blood coagulation as its congenital deficiency results in life-threatening bleeding. Current prophylactic therapy of the disease (hemophilia A) is based on 3-4 intravenous infusions of therapeutic FVIII per week. This poses a burden on patients, demanding reduction of infusion frequency by using FVIII with extended plasma half-life (EHL). Development of these products requires understanding FVIII plasma clearance mechanisms. This paper overviews (i) an up-to-date state of the research in this field and (ii) current EHL FVIII products, including recently approved efanesoctocog alfa, for which the plasma half-life exceeds a biochemical barrier posed by von Willebrand factor, complexed with FVIII in plasma, which results in ~1 per week infusion frequency. We focus on the EHL FVIII products' structure and function, in particular related to the known discrepancy in results of one-stage clotting (OC) and chromogenic substrate (CS) assays used to assign the products' potency, dosing, and for clinical monitoring in plasma. We suggest a possible root cause of these assays' discrepancy that is also pertinent to EHL factor IX variants used to treat hemophilia B. Finally, we discuss approaches in designing future EHL FVIII variants, including those to be used for hemophilia A gene therapy.
Collapse
Affiliation(s)
- Andrey G Sarafanov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
4
|
Galectin-3 and Blood Group: Binding Properties, Effects on Plasma Levels, and Consequences for Prognostic Performance. Int J Mol Sci 2023; 24:ijms24054415. [PMID: 36901846 PMCID: PMC10002292 DOI: 10.3390/ijms24054415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Previous studies have reported an association between ABO type blood group and cardiovascular (CV) events and outcomes. The precise mechanisms underpinning this striking observation remain unknown, although differences in von Willebrand factor (VWF) plasma levels have been proposed as an explanation. Recently, galectin-3 was identified as an endogenous ligand of VWF and red blood cells (RBCs) and, therefore, we aimed to explore the role of galectin-3 in different blood groups. Two in vitro assays were used to assess the binding capacity of galectin-3 to RBCs and VWF in different blood groups. Additionally, plasma levels of galectin-3 were measured in different blood groups in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study (2571 patients hospitalized for coronary angiography) and validated in a community-based cohort of the Prevention of Renal and Vascular End-stage Disease (PREVEND) study (3552 participants). To determine the prognostic value of galectin-3 in different blood groups, logistic regression and cox regression models were used with all-cause mortality as the primary outcome. First, we demonstrated that galectin-3 has a higher binding capacity for RBCs and VWF in non-O blood groups, compared to blood group O. Additionally, LURIC patients with non-O blood groups had substantially lower plasma levels of galectin-3 (15.0, 14.9, and 14.0 μg/L in blood groups A, B, and AB, respectively, compared to 17.1 μg/L in blood group O, p < 0.0001). Finally, the independent prognostic value of galectin-3 for all-cause mortality showed a non-significant trend towards higher mortality in non-O blood groups. Although plasma galectin-3 levels are lower in non-O blood groups, the prognostic value of galectin-3 is also present in subjects with a non-O blood group. We conclude that physical interaction between galectin-3 and blood group epitopes may modulate galectin-3, which may affect its performance as a biomarker and its biological activity.
Collapse
|
5
|
Okamoto S, Tamura S, Sanda N, Odaira K, Hayakawa Y, Mukaide M, Suzuki A, Kanematsu T, Hayakawa F, Katsumi A, Kiyoi H, Kojima T, Matsushita T, Suzuki N. VWF-Gly2752Ser, a novel non-cysteine substitution variant in the CK domain, exhibits severe secretory impairment by hampering C-terminal dimer formation. J Thromb Haemost 2022; 20:1784-1796. [PMID: 35491445 DOI: 10.1111/jth.15746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/11/2022] [Accepted: 04/22/2022] [Indexed: 08/31/2023]
Abstract
BACKGROUND Von Willebrand factor (VWF) is a multimeric glycoprotein that plays important roles in hemostasis and thrombosis. C-terminal interchain-disulfide bonds in the cystine knot (CK) domain are essential for VWF dimerization. Previous studies have reported that missense variants of cysteine in the CK domain disrupt the intrachain-disulfide bond and cause type 3 von Willebrand disease (VWD). However, type 3 VWD-associated noncysteine substitution variants in the CK domain have not been reported. OBJECTIVE To investigate the molecular mechanism of a novel non-cysteine variant in the CK domain, VWF c.8254 G>A (p.Gly2752Ser), which was identified in a patient with type 3 VWD as homozygous. METHODS Genetic analysis was performed by whole exome sequencing and Sanger sequencing. VWF multimer analysis was performed using SDS-agarose electrophoresis. VWF production and subcellular localization were analyzed using ex vivo endothelial colony forming cells (ECFCs) and an in vitro recombinant VWF (rVWF) expression system. RESULTS The patient was homozygous for VWF-Gly2752Ser. Plasma VWF enzyme-linked immunosorbent assay showed that the VWF antigen level of the patient was 1.2% compared with healthy subjects. A tiny amount of VWF was identified in the patient's ECFC. Multimer analysis revealed that the circulating VWF-Gly2752Ser presented only low molecular weight multimers. Subcellular localization analysis of VWF-Gly2752Ser-transfected cell lines showed that rVWF-Gly2752Ser was severely impaired in its ER-to-Golgi trafficking. CONCLUSION VWF-Gly2752Ser causes severe secretory impairment because of its dimerization failure. This is the first report of a VWF variant with a noncysteine substitution in the CK domain that causes type 3 VWD.
Collapse
Affiliation(s)
- Shuichi Okamoto
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shogo Tamura
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naomi Sanda
- Department of Medical Technique, Nagoya University Hospital, Nagoya, Japan
| | - Koya Odaira
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuri Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Mukaide
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsuo Suzuki
- Department of Medical Technique, Nagoya University Hospital, Nagoya, Japan
| | - Takeshi Kanematsu
- Department of Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Katsumi
- Department of Hematology, National Center for Geriatrics and Gerontology, Obu City, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuhito Kojima
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Aichi Health Promotion Foundation, Nagoya, Japan
| | - Tadashi Matsushita
- Department of Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Nobuaki Suzuki
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
6
|
Ye Z, Wu Y, Tu Y, Chen M, Gao Y, Shi L, Li P, Xie E, Guo Z, Li Q, Yu X, Li Y, Niu W, Ren J, Zheng J. Blood Group O Protect End-Stage Renal Disease Patients With Dialysis From Coronary Artery Disease. Front Cardiovasc Med 2022; 8:821540. [PMID: 35155621 PMCID: PMC8837269 DOI: 10.3389/fcvm.2021.821540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Our study aims to investigate the role of the ABO blood group in the development and severity of coronary artery disease (CAD) in end-stage renal disease (ESRD) patients with dialysis. Methods A total of 408 ESRD patients with dialysis between January 2010 and December 2020 were enrolled including 204 patients diagnosed with CAD undergoing coronary angiography for the first time, and baseline characteristics as well as Gensini score (GS) were collected. Logistic regression analysis and linear regression analysis were performed to evaluate the relation of ABO blood types to the risk and severity of CAD, respectively. Results Blood group O frequency was significantly low in dialysis ESRD patients with CAD (25 vs. 38.24%) compared with the non-CAD patients and multivariable logistic regression showed blood group O was negatively associated with the risk of CAD [adjusted odds ratio (OR) = 0.33, 95% CI = 0.19–0.60, p < 0.001] as well as the GS tertiles (adjusted OR = 0.23, 95% CI = 0.11–0.49, p < 0.001) compared with A blood group. Blood group A, B, and AB were positively associated with the high Gensini tertile compared with O blood group (adjusted OR = 4.26, 95% CI = 2.03–8.93, p < 0.001; adjusted OR = 2.39, 95% CI = 1.11–5.13, p < 0.05; adjusted OR = 4.33, 95% CI = 1.40–13.35, P < 0.05). Similarly, multivariable linear regression results revealed O blood type was negatively associated with the GS (β = −26.129, 95% CI = −40.094 to −12.164, p < 0.001). Conclusion This case-control study demonstrated that blood group O was a potential independent protective factor for the risk and severity of CAD in ESRD patients with dialysis.
Collapse
Affiliation(s)
- Zixiang Ye
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yaxin Wu
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yimin Tu
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mulei Chen
- Department of Cardiology, Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yanxiang Gao
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Linying Shi
- Department of Cardiology, Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Peizhao Li
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Enmin Xie
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziyu Guo
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Qing Li
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xiaozhai Yu
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yike Li
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenquan Niu
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Jingyi Ren
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
- Jingyi Ren
| | - Jingang Zheng
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Jingang Zheng
| |
Collapse
|
7
|
Yu L, Peng J, Mineo C. Lipoprotein sialylation in atherosclerosis: Lessons from mice. Front Endocrinol (Lausanne) 2022; 13:953165. [PMID: 36157440 PMCID: PMC9498574 DOI: 10.3389/fendo.2022.953165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Sialylation is a dynamically regulated modification, which commonly occurs at the terminal of glycan chains in glycoproteins and glycolipids in eukaryotic cells. Sialylation plays a key role in a wide array of biological processes through the regulation of protein-protein interactions, intracellular localization, vesicular trafficking, and signal transduction. A majority of the proteins involved in lipoprotein metabolism and atherogenesis, such as apolipoproteins and lipoprotein receptors, are sialylated in their glycan structures. Earlier studies in humans and in preclinical models found a positive correlation between low sialylation of lipoproteins and atherosclerosis. More recent works using loss- and gain-of-function approaches in mice have revealed molecular and cellular mechanisms by which protein sialylation modulates causally the process of atherosclerosis. The purpose of this concise review is to summarize these findings in mouse models and to provide mechanistic insights into lipoprotein sialylation and atherosclerosis.
Collapse
Affiliation(s)
- Liming Yu
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jun Peng
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Chieko Mineo,
| |
Collapse
|
8
|
Ward S, O'Sullivan JM, O'Donnell JS. The Biological Significance of von Willebrand Factor O-Linked Glycosylation. Semin Thromb Hemost 2021; 47:855-861. [PMID: 34130346 DOI: 10.1055/s-0041-1726373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glycosylation is a key posttranslational modification, known to occur on more than half of all secreted proteins in man. As such, the role of N- and O-linked glycan structures in modulating various aspects of protein biology is an area of much research. Given their prevalence, it is perhaps unsurprising that variations in glycan structures have been demonstrated to play critical roles in modulating protein function and have been implicated in the pathophysiology of human diseases. von Willebrand factor (VWF), a plasma glycoprotein that is essential for normal hemostasis, is heavily glycosylated, containing 13 N-linked and 10 O-linked glycans. Together, these carbohydrate chains account for 20% of VWF monomeric mass, and have been shown to modulate VWF structure, function, and half-life. In this review, we focus on the specific role played by O-linked glycans in modulating VWF biology. Specifically, VWF O-linked glycans have been shown to modulate tertiary protein structure, susceptibility to ADAMTS13 proteolysis, platelet tethering, and VWF circulatory half-life.
Collapse
Affiliation(s)
- Soracha Ward
- Haemostasis Research Group, Irish Centre for Vascular Biology, School of Pharmacy and Bimolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jamie M O'Sullivan
- Haemostasis Research Group, Irish Centre for Vascular Biology, School of Pharmacy and Bimolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James S O'Donnell
- Haemostasis Research Group, Irish Centre for Vascular Biology, School of Pharmacy and Bimolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Coagulation Centre, St James's Hospital, Dublin, Ireland
| |
Collapse
|
9
|
Wang L, Balmat TJ, Antonia AL, Constantine FJ, Henao R, Burke TW, Ingham A, McClain MT, Tsalik EL, Ko ER, Ginsburg GS, DeLong MR, Shen X, Woods CW, Hauser ER, Ko DC. An atlas connecting shared genetic architecture of human diseases and molecular phenotypes provides insight into COVID-19 susceptibility. Genome Med 2021; 13:83. [PMID: 34001247 PMCID: PMC8127495 DOI: 10.1186/s13073-021-00904-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND While genome-wide associations studies (GWAS) have successfully elucidated the genetic architecture of complex human traits and diseases, understanding mechanisms that lead from genetic variation to pathophysiology remains an important challenge. Methods are needed to systematically bridge this crucial gap to facilitate experimental testing of hypotheses and translation to clinical utility. RESULTS Here, we leveraged cross-phenotype associations to identify traits with shared genetic architecture, using linkage disequilibrium (LD) information to accurately capture shared SNPs by proxy, and calculate significance of enrichment. This shared genetic architecture was examined across differing biological scales through incorporating data from catalogs of clinical, cellular, and molecular GWAS. We have created an interactive web database (interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb)) to facilitate exploration and allow rapid analysis of user-uploaded GWAS summary statistics. This database revealed well-known relationships among phenotypes, as well as the generation of novel hypotheses to explain the pathophysiology of common diseases. Application of iCPAGdb to a recent GWAS of severe COVID-19 demonstrated unexpected overlap of GWAS signals between COVID-19 and human diseases, including with idiopathic pulmonary fibrosis driven by the DPP9 locus. Transcriptomics from peripheral blood of COVID-19 patients demonstrated that DPP9 was induced in SARS-CoV-2 compared to healthy controls or those with bacterial infection. Further investigation of cross-phenotype SNPs associated with both severe COVID-19 and other human traits demonstrated colocalization of the GWAS signal at the ABO locus with plasma protein levels of a reported receptor of SARS-CoV-2, CD209 (DC-SIGN). This finding points to a possible mechanism whereby glycosylation of CD209 by ABO may regulate COVID-19 disease severity. CONCLUSIONS Thus, connecting genetically related traits across phenotypic scales links human diseases to molecular and cellular measurements that can reveal mechanisms and lead to novel biomarkers and therapeutic approaches. The iCPAGdb web portal is accessible at http://cpag.oit.duke.edu and the software code at https://github.com/tbalmat/iCPAGdb .
Collapse
Affiliation(s)
- Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
| | - Thomas J Balmat
- Duke Research Computing, Duke University, Durham, NC, 27710, USA
| | - Alejandro L Antonia
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
| | - Florica J Constantine
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Ricardo Henao
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Thomas W Burke
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Andy Ingham
- Duke Research Computing, Duke University, Durham, NC, 27710, USA
| | - Micah T McClain
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC, 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ephraim L Tsalik
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC, 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Emily R Ko
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
- Department of Hospital Medicine, Duke Regional Hospital, Durham, NC, 27705, USA
| | - Geoffrey S Ginsburg
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Mark R DeLong
- Duke Research Computing, Duke University, Durham, NC, 27710, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Woo Center for Big Data and Precision Health, Duke University, Durham, NC, 27710, USA
| | - Christopher W Woods
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC, 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC, 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Elizabeth R Hauser
- Duke Molecular Physiology Institute and Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, 27710, USA
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, NC, 27705, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA.
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
10
|
The relationship between ABO blood group, von Willebrand factor, and primary hemostasis. Blood 2021; 136:2864-2874. [PMID: 32785650 DOI: 10.1182/blood.2020005843] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Numerous studies have reported significant associations between ABO blood group and risk of cardiovascular disease. These studies have consistently demonstrated that thrombotic risk is significantly reduced in individuals in blood group O. Nevertheless, the biological mechanisms through which ABO influences hemostasis have remained poorly understood. Exciting recent data have provided novel insights into how these ABO effects are modulated and have highlighted that ABO group significantly influences platelet plug formation at sites of vascular injury (primary hemostasis). In particular, ABO affects multiple aspects of von Willebrand factor (VWF) biology. In keeping with their reduced thrombotic risk, plasma VWF levels are ∼25% lower in healthy group O compared with healthy group non-O individuals. In addition, blood group O VWF demonstrates enhanced susceptibility to ADAMTS13 proteolysis. Finally, preliminary findings suggest that the interaction of group O VWF with platelets may also be reduced. Although the molecular mechanisms underlying these ABO effects on VWF have not been fully elucidated, it seems likely that they are mediated in large part by the ABO(H) carbohydrate structures that are carried on both the N- and O-linked glycans of VWF. Interestingly, ABO(H) determinants are also expressed on several different platelet surface glycoprotein receptors. Recent studies support the hypothesis that ABO group not only exerts major quantitative and qualitative effects on VWF, but also affect specific aspects of platelet function. Given the severe morbidity and the mortality associated with thrombotic disorders, defining the mechanisms underlying these ABO effects is not only of scientific interest, but also of direct clinical importance.
Collapse
|
11
|
Takahashi Y, Hayakawa A, Sano R, Fukuda H, Harada M, Kubo R, Okawa T, Kominato Y. Histone deacetylase inhibitors suppress ACE2 and ABO simultaneously, suggesting a preventive potential against COVID-19. Sci Rep 2021; 11:3379. [PMID: 33564039 PMCID: PMC7873266 DOI: 10.1038/s41598-021-82970-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/27/2021] [Indexed: 01/21/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide as a pandemic throughout 2020. Since the virus uses angiotensin-converting enzyme 2 (ACE2) as a receptor for cellular entry, increment of ACE2 would lead to an increased risk of SARS-CoV-2 infection. At the same time, an association of the ABO blood group system with COVID-19 has also been highlighted: there is increasing evidence to suggest that non-O individuals are at higher risk of severe COVID-19 than O individuals. These findings imply that simultaneous suppression of ACE2 and ABO would be a promising approach for prevention or treatment of COVID-19. Notably, we have previously clarified that histone deacetylase inhibitors (HDACIs) are able to suppress ABO expression in vitro. Against this background, we further evaluated the effect of HDACIs on cultured epithelial cell lines, and found that HDACIs suppress both ACE2 and ABO expression simultaneously. Furthermore, the amount of ACE2 protein was shown to be decreased by one of the clinically-used HDACIs, panobinostat, which has been reported to reduce B-antigens on cell surfaces. On the basis of these findings, we conclude that panobinostat could have the potential to serve as a preventive drug against COVID-19.
Collapse
Affiliation(s)
- Yoichiro Takahashi
- Department of Legal Medicine, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan.
| | - Akira Hayakawa
- Department of Legal Medicine, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Rie Sano
- Department of Legal Medicine, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Haruki Fukuda
- Department of Legal Medicine, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Megumi Harada
- Department of Legal Medicine, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Rieko Kubo
- Department of Legal Medicine, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Takafumi Okawa
- Department of Legal Medicine, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Yoshihiko Kominato
- Department of Legal Medicine, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| |
Collapse
|
12
|
Wang L, Balmat TJ, Antonia AL, Constantine FJ, Henao R, Burke TW, Ingham A, McClain MT, Tsalik EL, Ko ER, Ginsburg GS, DeLong MR, Shen X, Woods CW, Hauser ER, Ko DC. An atlas connecting shared genetic architecture of human diseases and molecular phenotypes provides insight into COVID-19 susceptibility. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.12.20.20248572. [PMID: 33398303 PMCID: PMC7781346 DOI: 10.1101/2020.12.20.20248572] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
While genome-wide associations studies (GWAS) have successfully elucidated the genetic architecture of complex human traits and diseases, understanding mechanisms that lead from genetic variation to pathophysiology remains an important challenge. Methods are needed to systematically bridge this crucial gap to facilitate experimental testing of hypotheses and translation to clinical utility. Here, we leveraged cross-phenotype associations to identify traits with shared genetic architecture, using linkage disequilibrium (LD) information to accurately capture shared SNPs by proxy, and calculate significance of enrichment. This shared genetic architecture was examined across differing biological scales through incorporating data from catalogs of clinical, cellular, and molecular GWAS. We have created an interactive web database (interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb); http://cpag.oit.duke.edu) to facilitate exploration and allow rapid analysis of user-uploaded GWAS summary statistics. This database revealed well-known relationships among phenotypes, as well as the generation of novel hypotheses to explain the pathophysiology of common diseases. Application of iCPAGdb to a recent GWAS of severe COVID-19 demonstrated unexpected overlap of GWAS signals between COVID-19 and human diseases, including with idiopathic pulmonary fibrosis driven by the DPP9 locus. Transcriptomics from peripheral blood of COVID-19 patients demonstrated that DPP9 was induced in SARS-CoV-2 compared to healthy controls or those with bacterial infection. Further investigation of cross-phenotype SNPs with severe COVID-19 demonstrated colocalization of the GWAS signal of the ABO locus with plasma protein levels of a reported receptor of SARS-CoV-2, CD209 (DC-SIGN), pointing to a possible mechanism whereby glycosylation of CD209 by ABO may regulate COVID-19 disease severity. Thus, connecting genetically related traits across phenotypic scales links human diseases to molecular and cellular measurements that can reveal mechanisms and lead to novel biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | | | - Alejandro L. Antonia
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Florica J. Constantine
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Ricardo Henao
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Thomas W. Burke
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Andy Ingham
- Duke Research Computing, Duke University, Durham, NC 27710, USA
| | - Micah T. McClain
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Ephraim L. Tsalik
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Emily R. Ko
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Department of Hospital Medicine, Duke Regional Hospital, Durham, NC, 27705, USA
| | - Geoffrey S. Ginsburg
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Mark R. DeLong
- Duke Research Computing, Duke University, Durham, NC 27710, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Woo Center for Big Data and Precision Health, Duke University, Durham, NC 27710, USA
| | - Christopher W. Woods
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Elizabeth R. Hauser
- Duke Molecular Physiology Institute and Department of Biostatistics and Bioinformatics, Duke University Medical Center Durham, NC 27710, USA
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, NC 27705, USA
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Lead contact
| |
Collapse
|
13
|
Negrini R, Villanacci V, Poiesi C, Savio A. Anti-Glycan Autoantibodies Induced by Helicobacter pylori as a Potential Risk Factor for Myocardial Infarction. Front Immunol 2020; 11:597. [PMID: 32322255 PMCID: PMC7158853 DOI: 10.3389/fimmu.2020.00597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
A number of epidemiological studies have evaluated the potential association between H. pylori and cardiovascular disease, but with contrasting results. We have previously shown that Helicobacter pylori infection is able to induce in mice and humans autoantibodies cross-reacting with histo–blood group Lewis antigens, expressed in different organs and in plasma glycoproteins and glycolipids. The aim of this study was to assess whether immunization of animals with H. pylori might induce myocardial histopathological changes. We have retrospectively examined, in detail, the histology of archived organs from mice and rabbits immunized with H. pylori in our previous studies. Human sera and cross-reacting monoclonal antibodies were also tested against bacterial preparations and tissue sections. Areas of myocardial necrosis, associated with coronary thrombotic occlusion, were found in 5 of 20 mice and 2 of 5 rabbits previously immunized with suspensions of H. pylori. No similar lesions were found in control animals, suggesting a causal link with H. pylori immunization. The animals bearing myocardial lesions had not been infected but only immunized months earlier with parenteral injections of dead H. pylori cells. This strongly suggests that immunization, by itself, might play a causative role. We propose that the cross-reactive autoimmune response induced by H. pylori could promote thrombotic occlusion through direct endothelial damage or by perturbing the coagulation process.
Collapse
Affiliation(s)
- Riccardo Negrini
- Department of Laboratory Medicine, Presidio di Gardone VT-ASST Spedali Civili, Brescia, Italy
| | | | - Claudio Poiesi
- Institute of Microbiology and Virology, ASST Spedali Civili, Brescia, Italy
| | - Antonella Savio
- Histopathology and Cytology Department, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
14
|
Zhong GC, Liu S, Wu YL, Xia M, Zhu JX, Hao FB, Wan L. ABO blood group and risk of newly diagnosed nonalcoholic fatty liver disease: A case-control study in Han Chinese population. PLoS One 2019; 14:e0225792. [PMID: 31800606 PMCID: PMC6892526 DOI: 10.1371/journal.pone.0225792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/12/2019] [Indexed: 01/02/2023] Open
Abstract
Background ABO blood group has been associated with cardiovascular disease and cancer. However, whether ABO blood group is associated with nonalcoholic fatty liver disease (NAFLD) remains unknown. The present study aimed to clarify this issue. Methods A hospital-based case-control study was performed in southwestern China. A total of 583 newly ultrasound-diagnosed NAFLD cases and 2068 controls were included. The adjusted odds ratios (ORs) and 95% confidence intervals (CIs) of developing NAFLD were calculated by multivariate logistic regression. A propensity score was developed for adjustment and matching. Results The proportions of blood groups A, B, AB and O were 31%, 26%, 8% and 35%, respectively. Non-O blood groups were found to be significantly associated with an increased risk of NAFLD (the fully adjusted OR = 1.51, 95% CI: 1.19, 1.91); moreover, compared with blood group O, the fully adjusted ORs of developing NAFLD were 1.50 (95% CI: 1.13, 1.99) for blood group A, 1.59 (95% CI: 1.19, 2.14) for blood group B, and 1.37 (95% CI: 0.86, 2.18) for blood group AB. Similar results were obtained in both propensity-score-adjusted and propensity-score-matched analyses. No evidence of significant effect modification for the association of ABO blood group with the risk of NAFLD was found (all Pinteraction>0.05). Conclusions Non-O blood groups are significantly associated with an increased risk of NAFLD. Our findings provide some epidemiological evidence for a possible role of ABO glycosyltransferase in the pathogenesis of NAFLD. However, these findings need to be validated by future studies.
Collapse
Affiliation(s)
- Guo-Chao Zhong
- Graduate School, Chongqing Medical University, Chongqing, China
| | - Shan Liu
- Department of Pediatrics, the People’s Hospital of Dazu District, Chongqing, China
| | - Yi-Lin Wu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mei Xia
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin-Xian Zhu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fa-Bao Hao
- Pediatric Surgery Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Lun Wan
- Department of Hepatobiliary Surgery, the People’s Hospital of Dazu District, Chongqing, China
- * E-mail:
| |
Collapse
|
15
|
Murray GP, Post SR, Post GR. ABO blood group is a determinant of von Willebrand factor protein levels in human pulmonary endothelial cells. J Clin Pathol 2019; 73:347-349. [PMID: 31662441 PMCID: PMC7279561 DOI: 10.1136/jclinpath-2019-206182] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 11/04/2022]
Abstract
ABO blood group antigens are expressed on von Willebrand factor (VWF) and glycosylation patterns influence circulating VWF levels. The aim of this study was to examine the effect of ABO blood type on tissue-associated VWF protein levels. We selected 35 formalin-fixed paraffin-embedded pulmonary tissue blocks obtained at autopsy from decedents who died from pulmonary embolism with known ABO blood groups (O, A, B and AB phenotypes), prepared tissue microarrays (TMAs) and stained TMAs with antibodies to VWF and platelet/endothelial cell adhesion marker-1 (PECAM-1) as a marker of endothelial cells. A pixel count scoring algorithm was used to quantify VWF and PECAM-1 staining intensity in pulmonary arterioles in digitised images. Compared with type O, non-O individuals have a significantly higher amount of endothelial cell-associated VWF protein expression. VWF protein levels associated with pulmonary vascular endothelial cells is influenced by ABO antigenic determinants.
Collapse
Affiliation(s)
- Glenn P Murray
- Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Steven R Post
- Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ginell R Post
- Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
16
|
Takagi H. Blood group and abdominal aortic aneurysm. Eur J Prev Cardiol 2019; 27:2195-2199. [PMID: 31514518 DOI: 10.1177/2047487319876044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hisato Takagi
- Department of Cardiovascular Surgery, Shizuoka Medical Center, Shizuoka, Japan.,Department of Cardiovascular Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | | |
Collapse
|
17
|
Stakišaitis D, Juknevičienė M, Ulys A, Žaliūnienė D, Stanislovaitienė D, Šepetienė R, Slavinska A, Sužiedėlis K, Lesauskaitė V. ABO blood group polymorphism has an impact on prostate, kidney and bladder cancer in association with longevity. Oncol Lett 2018; 16:1321-1331. [PMID: 30061952 PMCID: PMC6063046 DOI: 10.3892/ol.2018.8749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to assess the ABO blood group polymorphism association with prostate, bladder and kidney cancer, and longevity. The following data groups were analyzed: Prostate cancer (n=2,200), bladder cancer (n=1,530), renal cell cancer (n=2,650), oldest-old (n=166) and blood donors (n=994) groups. The data on the ABO blood type frequency and odds ratio in prostate cancer patients revealed a significantly higher blood group B frequency (P<0.05); the pooled men and women, separate men bladder cancer risk was significantly associated with the blood group B (P<0.04); however, no such association was identified in the female patients. The blood group O was observed to have a significantly decreased risk of bladder cancer for females (P<0.05). No significance for the ABO blood group type in the studied kidney cancer patients was identified. A comparison of the oldest-old and blood donor groups revealed that blood group A was significantly more frequent and blood type B was significantly rarer in the oldest-olds (P<0.05). The results of the present study indicated that blood type B was associated with the risk of prostate and bladder cancer, and could be evaluated as a determinant in the negative assocation with longevity. Blood types O and A may be positive factors for increasing the oldest-old age likelihood. The clustering analysis by the ABO type frequency demonstrated that the oldest-olds comprised a separate cluster of the studied groups.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Laboratory of Molecular Oncology, National Cancer Institute, LT-08660 Vilnius, Lithuania
| | - Milda Juknevičienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| | - Albertas Ulys
- Oncosurgery Clinics, National Cancer Institute, LT-08660 Vilnius, Lithuania
| | - Dalia Žaliūnienė
- Department of Ophtalmology, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| | - Daiva Stanislovaitienė
- Department of Ophtalmology, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| | - Ramunė Šepetienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| | | | - Kęstutis Sužiedėlis
- Laboratory of Molecular Oncology, National Cancer Institute, LT-08660 Vilnius, Lithuania
| | - Vita Lesauskaitė
- Department of Geriatrics, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| |
Collapse
|
18
|
Bhanvadia S, Kazerouni K, Bazargani ST, Miranda G, Cai J, Daneshmand S, Djaladat H. Validating the role of ABO blood type in risk of perioperative venous thromboembolism after radical cystectomy. World J Urol 2018; 37:173-179. [PMID: 29876671 DOI: 10.1007/s00345-018-2351-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/25/2018] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To validate the relationship between ABO blood type and risk of VTE post-RC in a large retrospective database. METHODS Patients with urothelial bladder cancer (UBC) who underwent RC (intent-to-cure) for whom ABO blood type was available between 2003 and 2015 were identified from our IRB-approved database. VTE was defined as deep vein thrombosis (DVT) or pulmonary embolism (PE) within 90 days of surgery. VTE prophylaxis consisted of immediate postoperative Coumadin (2003-2009), unfractionated heparin (UFH) during hospitalization (2009-2015), and UFH during hospitalization plus 4 weeks of enoxaparin after discharge (2013-2015). Univariable and multivariable analyses of the association of ABO blood type with postoperative, symptomatic VTE and oncologic outcomes were performed. RESULTS Of 1341 patients, 595 (44.4%) were ABO type O and 746 (55.6%) were non-O (A, B and AB). 90 patients were diagnosed with VTE within 90 days of surgery (6.7%) (43% DVT-only, 57% PE ± DVT). On multivariable analysis non-O blood type was associated with a nearly twofold increased risk of VTE (OR = 1.94, 95% CI 1.215-3.098, p = 0.004). No difference in recurrence-free survival or overall survival was seen between ABO groups. CONCLUSION Non-O blood type is an independent, non-modifiable risk factor for postoperative VTE after RC. More comprehensive counseling and thromboprophylaxis should be considered in this high-risk group.
Collapse
Affiliation(s)
- Sumeet Bhanvadia
- Norris Comprehensive Cancer Center, USC Institute of Urology, Los Angeles, CA, USA
| | - Kayvan Kazerouni
- USC School of Medicine, Norris Comprehensive Cancer Center, USC Institute of Urology, Los Angeles, CA, USA
| | - Soroush T Bazargani
- Norris Comprehensive Cancer Center, USC Institute of Urology, Los Angeles, CA, USA
| | - Gus Miranda
- Norris Comprehensive Cancer Center, USC Institute of Urology, Los Angeles, CA, USA
| | - Jie Cai
- Norris Comprehensive Cancer Center, USC Institute of Urology, Los Angeles, CA, USA
| | - Siamak Daneshmand
- Norris Comprehensive Cancer Center, USC Institute of Urology, Los Angeles, CA, USA
| | - Hooman Djaladat
- Norris Comprehensive Cancer Center, USC Institute of Urology, Los Angeles, CA, USA.
- University of Southern California, 1441 Eastlake Ave, Suite 7416, Los Angeles, CA, 90089, USA.
| |
Collapse
|
19
|
Effects of plasma glycosyltransferase on the ABO(H) blood group antigens of human von Willebrand factor. Int J Hematol 2018; 108:139-144. [PMID: 29619625 DOI: 10.1007/s12185-018-2452-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
Von Willebrand factor (VWF) is one of the plasma protein carrying ABO(H) blood group antigens, but the combining process of these antigens is not clear. In the present study, we examined whether plasma glycosyltransferase affects the blood group antigens on VWF. VWF expressing H-antigen (H-VWF) from blood group O and bovine serum albumin conjugated with H-antigen (H-BSA) were incubated with recombinant α1-3-N-acetylgalactosaminyltransferase (rA-transferase) and A-plasma with or without an additional UDP-GalNAc. Transformed antigens were detected by western blotting and ELISA, using an anti-A antibody. Both H-VWF and H-BSA acquired the A-antigen after incubation with rA-transferase and UDP-GalNAc. Incubation with A-plasma very weakly converted the H-antigen on BSA and VWF to A-antigen only in the presence of supplemented UDP-GalNAc. This conversion was enhanced on desialylation of H-VWF. These results indicate that sugar chains of plasma VWF can be modified by the external glycosyltransferase, but that plasma glycosyltransferase has no effect on the blood group antigens of VWF due to its low activity and the lack of donor sugars. Further, sialic acid residues of VWF may exert a protective effect against post-translational glycosylation. Our results clearly exclude the possibility that blood group antigens of VWF are constructed extracellularly in plasma.
Collapse
|
20
|
Kokame K, Matsumoto M, Fujimura Y, Miyata T. ADAMTS13 activity and genetic mutations in Japan. Hamostaseologie 2018; 33:131-7. [DOI: 10.5482/hamo-12-11-0017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 03/13/2013] [Indexed: 11/05/2022] Open
Abstract
SummaryThrombotic thrombocytopenic purpura (TTP), a life threatening disease, can be induced by congenital or acquired deficiency of plasma metalloprotease ADAMTS13. Since the publication of the first genetic analysis in patients with congenital ADAMTS13 deficiency in 2001, more than 100 genetic defects in the ADAMTS13 gene have been reported worldwide. Genetic analysis in patients with ADAMTS13 deficiency has greatly contributed to the understanding of the etiology of TTP. A rapid and quantitative assay method for the plasma ADAMTS13 activity was developed recently in 2005 and opened a new area of TTP research – namely genetic research using a general population to evaluate age and gender differences of ADAMTS13 activity as well as phenotype – genotype correlations of genetic polymorphisms and estimation of a homozygote or a compound heterozygote ADAMTS13 deficiencies. The Japanese general population study included 3616 individuals with an age between 30 – 80 years confirming other studies that while ADAMTS13 activity decreased with age, VWF antigen increased and VWF antigen levels are lowest in blood group O indviduals, whereas ADAMTS13 activity levels were not associated with the AB0 blood group. 25 polymorphisms with a minor allele frequency of more than 0.01 were found, among them 6 missense mutations and 19 synonymous mutations, except P475S missense polymorphisms that was only idenitified in an East Asian population, characterized by reduced ADAMTS13 activity. Prevalence of congenital ADAMTS13 deficiency in the Japanese population was estimated about one individual in 1.1 × 106 to be homozygote or compound heterozygote for ADAMTS13 deficiency. So far more than 40 mutations in Japanese congenital TTP patients were found, but R193W, Q449*, C754Afs*24 (c.2259delA) and C908Y were identified in more than four patients suggesting the precipitaion of these mutations in the Japanese population.
Collapse
|
21
|
Reitsma PH. Genetics in thrombophilia. Hamostaseologie 2017; 35:47-51. [DOI: 10.5482/hamo-14-11-0062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 01/05/2023] Open
Abstract
SummaryVenous thromboembolism (VTE) poses a worldwide health burden affecting millions of people each year. The annual incidence of symptomatic VTE, the collective term used here for deep venous thrombosis, pulmonary embolism or both, is 2–3 per thousand inhabitants. The one-year mortality is 20% after a first VTE. Of the surviving patients 15–25% will experience a recurrent episode of VTE in the three years after the first event. Primary and secondary prevention is key to reducing death and disability from VTE. How to make use of our current knowledge of inherited risk of VTE for primary and secondary disease prevention is not straightforward. This despite the fact that in the past two or three decades we have made major strides in enlarging our understanding of inherited VTE risk, and that new inherited risk factors continue to be identified.For primary prevention of VTE genetic testing is not likely to play a role in the future. Genetic variations also determine recurrence risk, albeit that the effect sizes for individual genetic variations are invariably lower than those for first VTE events. Multilocus genetic risk scores improve risk classification, and it is now possible to stratify patients who have had a first venous thrombosis, into subgroups with a high and low risk of recurrence. Whether this approach can be used to tailor intensity and duration of treatment remains to be established.
Collapse
|
22
|
Gashash EA, Aloor A, Li D, Zhu H, Xu XQ, Xiao C, Zhang J, Parameswaran A, Song J, Ma C, Xiao W, Wang PG. An Insight into Glyco-Microheterogeneity of Plasma von Willebrand Factor by Mass Spectrometry. J Proteome Res 2017; 16:3348-3362. [PMID: 28696719 PMCID: PMC6309539 DOI: 10.1021/acs.jproteome.7b00359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human plasma von Willebrand Factor (VWF) plays essential roles in primary hemostasis in cooperation with other coagulations factors. There is ample indication that glycosylation affects many biological phases during the protein life cycle. However, comprehensive characterization of all probable N-glycosites simultaneous with O-glycosites is still not fully revealed. Thus, the intention of this exploration was to estimate the occupancy of all canonical N-glycosites besides simultaneous characterization of N- and O-glycoforms. An RP-LC-MS/MS system functionalized with CID and HCD tandem mass was utilized to analyze VWF. N-Glycosite occupancy varied along the protein backbone chain. Out of 257 HCD spectra, 181 characterized glycoforms were specified as either N- or O-glycosites. Sequential cleavage of glycosidic bonds along with Human Database mass matching have confirmed the glycoform structures. A total of 173 glycoforms represented most commonly biantennary and infrequently tri- and tetra-antennary N-glycans beside high mannose, hybrid, ABH antigen-terminated, and sulfated N-glycans. Many glycoforms were common across all N-sites. Noteworthy, previously unreported N-glycosites within domain D'(TIL'-E') showed glycosylation. Moreover, sialylated core 1 and core 2 O-glycans were detected on 2298T. Given subtle characterization of site-specific glycoforms, we can attain a profound understanding of the biological roles of VWF as well as facilitate the production of VWF-based therapeutics.
Collapse
Affiliation(s)
- Ebtesam A. Gashash
- Center for Diagnostics & Therapeutics and Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
- Department of Chemistry, College of Science, Albaha University, Baljurashi, Albaha 65635, Saudi Arabia
| | - Arya Aloor
- Center for Diagnostics & Therapeutics and Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Dong Li
- Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, 200065 Shanghai, China
| | - He Zhu
- Center for Diagnostics & Therapeutics and Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Xiao-Qian Xu
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Cong Xiao
- Center for Diagnostics & Therapeutics and Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Junping Zhang
- Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Aishwarya Parameswaran
- Center for Diagnostics & Therapeutics and Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Jing Song
- Center for Diagnostics & Therapeutics and Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Cheng Ma
- Center for Diagnostics & Therapeutics and Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Weidong Xiao
- Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Peng George Wang
- Center for Diagnostics & Therapeutics and Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
23
|
A common polymorphism decreases LRP1 mRNA stability and is associated with increased plasma factor VIII levels. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1690-1698. [DOI: 10.1016/j.bbadis.2017.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/31/2017] [Accepted: 04/17/2017] [Indexed: 11/18/2022]
|
24
|
Cozzi GD, Levinson RT, Toole H, Snyder MR, Deng A, Crispens MA, Khabele D, Beeghly-Fadiel A. Blood type, ABO genetic variants, and ovarian cancer survival. PLoS One 2017; 12:e0175119. [PMID: 28448592 PMCID: PMC5407760 DOI: 10.1371/journal.pone.0175119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/21/2017] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Blood type A and the A1 allele have been associated with increased ovarian cancer risk. With only two small studies published to date, evidence for an association between ABO blood type and ovarian cancer survival is limited. METHODS We conducted a retrospective cohort study of Tumor Registry confirmed ovarian cancer cases from the Vanderbilt University Medical Center with blood type from linked laboratory reports and ABO variants from linked Illumina Exome BeadChip data. Associations with overall survival (OS) were quantified by hazard ratios (HR) and confidence intervals (CI) from proportional hazards regression models; covariates included age, race, stage, grade, histologic subtype, and year of diagnosis. RESULTS ABO phenotype (N = 694) and/or genotype (N = 154) data were available for 713 predominantly Caucasian (89.3%) cases. In multivariable models, blood type A had significantly better OS compared to either O (HR: 0.75, 95% CI: 0.60-0.93) or all non-A (HR: 0.77, 95% CI: 0.63-0.94) cases. Similarly, missense rs1053878 minor allele carriers (A2) had better OS (HR: 0.50, 95% CI: 0.25-0.99). Among Caucasians, this phenotype association was strengthened, but the genotype association was attenuated; instead, four variants sharing moderate linkage disequilibrium with the O variant were associated with better OS (HR: 0.62, 95% CI: 0.39-0.99) in unadjusted models. CONCLUSIONS Blood type A was significantly associated with longer ovarian cancer survival in the largest such study to date. This finding was supported by genetic analysis, which implicated the A2 allele, although O related variants also had suggestive associations. Further research on ABO and ovarian cancer survival is warranted.
Collapse
Affiliation(s)
- Gabriella D. Cozzi
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN, United States of America
| | - Rebecca T. Levinson
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - Hilary Toole
- Meharry Medical College, Nashville TN, United States of America
| | - Malcolm-Robert Snyder
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN, United States of America
| | - Angie Deng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN, United States of America
| | - Marta A. Crispens
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville TN, United States of America
- Vanderbilt-Ingram Cancer Center, Nashville TN, United States of America
| | - Dineo Khabele
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville TN, United States of America
- Vanderbilt-Ingram Cancer Center, Nashville TN, United States of America
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN, United States of America
- Vanderbilt-Ingram Cancer Center, Nashville TN, United States of America
| |
Collapse
|
25
|
Löf A, Müller JP, Benoit M, Brehm MA. Biophysical approaches promote advances in the understanding of von Willebrand factor processing and function. Adv Biol Regul 2017; 63:81-91. [PMID: 27717713 DOI: 10.1016/j.jbior.2016.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
The large multimeric plasma glycoprotein von Willebrand factor (VWF) is essential for primary hemostasis by recruiting platelets to sites of vascular injury. VWF multimers respond to elevated hydrodynamic forces by elongation, thereby increasing their adhesiveness to platelets. Thus, the activation of VWF is force-induced, as is its inactivation. Due to these attributes, VWF is a highly interesting system from a biophysical point of view, and is well suited for investigation using biophysical approaches. Here, we give an overview on recent studies that predominantly employed biophysical methods to gain novel insights into multiple aspects of VWF: Electron microscopy was used to shed light on the domain structure of VWF and the mechanism of VWF secretion. High-resolution stochastic optical reconstruction microscopy, atomic force microscopy (AFM), microscale thermophoresis and fluorescence correlation spectroscopy allowed identification of protein disulfide isomerase isoform A1 as the VWF dimerizing enzyme and, together with molecular dynamics simulations, postulation of the dimerization mechanism. Advanced mass spectrometry led to detailed identification of the glycan structures carried by VWF. Microfluidics was used to illustrate the interplay of force and VWF function. Results from optical tweezers measurements explained mechanisms of the force-dependent functions of VWF's domains A1 and A2 and, together with thermodynamic approaches, increased our understanding of mutation-induced dysfunctions of platelet-binding. AFM-based force measurements and AFM imaging enabled exploration of intermonomer interactions and their dependence on pH and divalent cations. These advances would not have been possible by the use of biochemical methods alone and show the benefit of interdisciplinary research approaches.
Collapse
Affiliation(s)
- Achim Löf
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany
| | - Jochen P Müller
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany
| | - Martin Benoit
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany
| | - Maria A Brehm
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
26
|
O'Sullivan JM, Aguila S, McRae E, Ward SE, Rawley O, Fallon PG, Brophy TM, Preston RJS, Brady L, Sheils O, Chion A, O'Donnell JS. N-linked glycan truncation causes enhanced clearance of plasma-derived von Willebrand factor. J Thromb Haemost 2016; 14:2446-2457. [PMID: 27732771 DOI: 10.1111/jth.13537] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 12/31/2022]
Abstract
Essentials von Willebrands factor (VWF) glycosylation plays a key role in modulating in vivo clearance. VWF glycoforms were used to examine the role of specific glycan moieties in regulating clearance. Reduction in sialylation resulted in enhanced VWF clearance through asialoglycoprotein receptor. Progressive VWF N-linked glycan trimming resulted in increased macrophage-mediated clearance. Click to hear Dr Denis discuss clearance of von Willebrand factor in a free presentation from the ISTH Academy SUMMARY: Background Enhanced von Willebrand factor (VWF) clearance is important in the etiology of both type 1 and type 2 von Willebrand disease (VWD). In addition, previous studies have demonstrated that VWF glycans play a key role in regulating in vivo clearance. However, the molecular mechanisms underlying VWF clearance remain poorly understood. Objective To define the molecular mechanisms through which VWF N-linked glycan structures influence in vivo clearance. Methods By use of a series of exoglycosidases, different plasma-derived VWF (pd-VWF) glycoforms were generated. In vivo clearance of these glycoforms was then assessed in VWF-/- mice in the presence or absence of inhibitors of asialoglycoprotein receptor (ASGPR), or following clodronate-induced macrophage depletion. Results Reduced amounts of N-linked and O-linked sialylation resulted in enhanced pd-VWF clearance modulated via ASGPR. In addition to this role of terminal sialylation, we further observed that progressive N-linked glycan trimming also resulted in markedly enhanced VWF clearance. Furthermore, these additional N-linked glycan effects on clearance were ASGPR-independent, and instead involved enhanced macrophage clearance that was mediated, at least in part, through LDL receptor-related protein 1. Conclusion The carbohydrate determinants expressed on VWF regulate susceptibility to proteolysis by ADAMTS-13. In addition, our findings now further demonstrate that non-sialic acid carbohydrate determinants expressed on VWF also play an unexpectedly important role in modulating in vivo clearance through both hepatic ASGPR-dependent and macrophage-dependent pathways. In addition, these data further support the hypothesis that variation in VWF glycosylation may be important in the pathophysiology underlying type 1C VWD.
Collapse
Affiliation(s)
- J M O'Sullivan
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - S Aguila
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - E McRae
- Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - S E Ward
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - O Rawley
- Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - P G Fallon
- Inflammation and Immunity Research Group, Institute of Molecular Medicine, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - T M Brophy
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - R J S Preston
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - L Brady
- Department of Histopathology, Sir Patrick Dun Research Laboratory, Trinity College Dublin, St James's Hospital Dublin, Dublin, Ireland
| | - O Sheils
- Department of Histopathology, Sir Patrick Dun Research Laboratory, Trinity College Dublin, St James's Hospital Dublin, Dublin, Ireland
| | - A Chion
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - J S O'Donnell
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Haemostasis Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Trinity College Dublin, Dublin, Ireland
- National Centre for Hereditary Coagulation Disorders, St James's Hospital, Dublin, Ireland
| |
Collapse
|
27
|
Brehm MA. Von Willebrand factor processing. Hamostaseologie 2016; 37:59-72. [PMID: 28139814 DOI: 10.5482/hamo-16-06-0018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/03/2016] [Indexed: 11/05/2022] Open
Abstract
Von Willebrand factor (VWF) is a multimeric glycoprotein essential for primary haemostasis that is produced only in endothelial cells and megakaryocytes. Key to VWF's function in recruitment of platelets to the site of vascular injury is its multimeric structure. The individual steps of VWF multimer biosynthesis rely on distinct posttranslational modifications at specific pH conditions, which are realized by spatial separation of the involved processes to different cell organelles. Production of multimers starts with translocation and modification of the VWF prepropolypeptide in the endoplasmic reticulum to produce dimers primed for glycosylation. In the Golgi apparatus they are further processed to multimers that carry more than 300 complex glycan structures functionalized by sialylation, sulfation and blood group determinants. Of special importance is the sequential formation of disulfide bonds with different functions in structural support of VWF multimers, which are packaged, stored and further processed after secretion. Here, all these processes are being reviewed in detail including background information on the occurring biochemical reactions.
Collapse
Affiliation(s)
- Maria A Brehm
- PD Dr. Maria A. Brehm, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 22399 Hamburg, Germany, Tel.: +49 40 7410 58523, Fax: +49 40 7410 54601, E-Mail:
| |
Collapse
|
28
|
Song J, Xue C, Preisser JS, Cramer DW, Houck KL, Liu G, Folsom AR, Couper D, Yu F, Dong JF. Association of Single Nucleotide Polymorphisms in the ST3GAL4 Gene with VWF Antigen and Factor VIII Activity. PLoS One 2016; 11:e0160757. [PMID: 27584569 PMCID: PMC5008807 DOI: 10.1371/journal.pone.0160757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/25/2016] [Indexed: 02/05/2023] Open
Abstract
VWF is extensively glycosylated with biantennary core fucosylated glycans. Most N-linked and O-linked glycans on VWF are sialylated. FVIII is also glycosylated, with a glycan structure similar to that of VWF. ST3GAL sialyltransferases catalyze the transfer of sialic acids in the α2,3 linkage to termini of N- and O-glycans. This sialic acid modification is critical for VWF synthesis and activity. We analyzed genetic and phenotypic data from the Atherosclerosis Risk in Communities (ARIC) study for the association of single nucleotide polymorphisms (SNPs) in the ST3GAL4 gene with plasma VWF levels and FVIII activity in 12,117 subjects. We also analyzed ST3GAL4 SNPs found in 2,535 subjects of 26 ethnicities from the 1000 Genomes (1000G) project for ethnic diversity, SNP imputation, and ST3GAL4 haplotypes. We identified 14 and 1,714 ST3GAL4 variants in the ARIC GWAS and 1000G databases respectively, with 46% being ethnically diverse in their allele frequencies. Among the 14 ST3GAL4 SNPs found in ARIC GWAS, the intronic rs2186717, rs7928391, and rs11220465 were associated with VWF levels and with FVIII activity after adjustment for age, BMI, hypertension, diabetes, ever-smoking status, and ABO. This study illustrates the power of next-generation sequencing in the discovery of new genetic variants and a significant ethnic diversity in the ST3GAL4 gene. We discuss potential mechanisms through which these intronic SNPs regulate ST3GAL4 biosynthesis and the activity that affects VWF and FVIII.
Collapse
Affiliation(s)
- Jaewoo Song
- BloodWorks Northwest Research Institute, Seattle, WA, United States of America
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Cheng Xue
- Human Genome Sequencing Center, Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, 77030, United States of America
| | - John S. Preisser
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States of America
| | - Drake W. Cramer
- BloodWorks Northwest Research Institute, Seattle, WA, United States of America
| | - Katie L. Houck
- BloodWorks Northwest Research Institute, Seattle, WA, United States of America
| | - Guo Liu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Aaron R. Folsom
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States of America
| | - David Couper
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States of America
| | - Fuli Yu
- Human Genome Sequencing Center, Molecular and Human Genetics Department, Baylor College of Medicine, Houston, TX, 77030, United States of America
- Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
- * E-mail: (JFD); (FY)
| | - Jing-fei Dong
- BloodWorks Northwest Research Institute, Seattle, WA, United States of America
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States of America
- * E-mail: (JFD); (FY)
| |
Collapse
|
29
|
N-linked glycans within the A2 domain of von Willebrand factor modulate macrophage-mediated clearance. Blood 2016; 128:1959-1968. [PMID: 27554083 DOI: 10.1182/blood-2016-04-709436] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 08/16/2016] [Indexed: 12/11/2022] Open
Abstract
Enhanced von Willebrand factor (VWF) clearance is important in the etiology of von Willebrand disease. However, the molecular mechanisms underlying VWF clearance remain poorly understood. In this study, we investigated the role of VWF domains and specific glycan moieties in regulating in vivo clearance. Our findings demonstrate that the A1 domain of VWF contains a receptor-recognition site that plays a key role in regulating the interaction of VWF with macrophages. In A1-A2-A3 and full-length VWF, this macrophage-binding site is cryptic but becomes exposed following exposure to shear or ristocetin. Previous studies have demonstrated that the N-linked glycans within the A2 domain play an important role in modulating susceptibility to ADAMTS13 proteolysis. We further demonstrate that these glycans presented at N1515 and N1574 also play a critical role in protecting VWF against macrophage binding and clearance. Indeed, loss of the N-glycan at N1515 resulted in markedly enhanced VWF clearance that was significantly faster than that observed with any previously described VWF mutations. In addition, A1-A2-A3 fragments containing the N1515Q or N1574Q substitutions also demonstrated significantly enhanced clearance. Importantly, clodronate-induced macrophage depletion significantly attenuated the increased clearance observed with N1515Q and N1574Q in both full-length VWF and A1-A2-A3. Finally, we further demonstrate that loss of these N-linked glycans does not enhance clearance in VWF in the presence of a structurally constrained A2 domain. Collectively, these novel findings support the hypothesis that conformation of the VWF A domains plays a critical role in modulating macrophage-mediated clearance of VWF in vivo.
Collapse
|
30
|
Albánez S, Ogiwara K, Michels A, Hopman W, Grabell J, James P, Lillicrap D. Aging and ABO blood type influence von Willebrand factor and factor VIII levels through interrelated mechanisms. J Thromb Haemost 2016; 14:953-63. [PMID: 26875505 PMCID: PMC5949873 DOI: 10.1111/jth.13294] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/07/2016] [Indexed: 02/05/2023]
Abstract
UNLABELLED Essentials von Willebrand factor (VWF) and factor VIII (FVIII) levels are modulated by age and ABO status. The effect of aging and ABO blood type on VWF and FVIII was assessed in 207 normal individuals. Aging and ABO blood type showed combined and bidirectional influences on VWF and FVIII levels. Aging and ABO blood type influence VWF levels through both secretion and clearance mechanisms. SUMMARY Background The effect of aging and ABO blood type on plasma levels of von Willebrand factor (VWF) and factor VIII (FVIII) have been widely reported; however, a comprehensive analysis of their combined effect has not been performed and the mechanisms responsible for the age-related changes have not been determined. Objectives To assess the influence of aging and ABO blood type on VWF and FVIII levels, and to evaluate the contribution of VWF secretion and clearance to the age-related changes. Methods A cross-sectional observational study was performed in a cohort of 207 normal individuals, whose levels of VWF, FVIII, VWF propeptide (VWFpp), VWFpp/VWF:Ag ratio and blood type A antigen content on VWF (A-VWF) were quantified. Results Aging and ABO blood type exerted interrelated effects on VWF and FVIII plasma levels, because the age-related increase in both proteins was significantly higher in type non-O individuals (β = 0.011 vs. 0.005). This increase with age in non-O subjects drove the differences between blood types in VWF levels, as the mean difference increased from 0.13 U/mL in the young to 0.57 U/mL in the old. Moreover, A-VWF was associated with both VWF antigen (β = 0.29; 95% confidence interval [CI], 0.09, 0.50) and VWF clearance (β = -0.15; 95% CI, -0.25, -0.06). We also documented an effect of ABO blood type on VWF secretion with aging, as old individuals with blood type non-O showed higher levels of VWFpp (mean difference 0.29 U/mL). Conclusions Aging and ABO blood type have an interrelated effect on VWF and FVIII levels, where the effect of one is significantly influenced by the presence of the other.
Collapse
Affiliation(s)
- S Albánez
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - K Ogiwara
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - A Michels
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - W Hopman
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada
| | - J Grabell
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - P James
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - D Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
31
|
Kremers RMW, Mohamed ABO, Pelkmans L, Hindawi S, Hemker HC, de Laat HB, Huskens D, Al Dieri R. Thrombin Generating Capacity and Phenotypic Association in ABO Blood Groups. PLoS One 2015; 10:e0141491. [PMID: 26509437 PMCID: PMC4624869 DOI: 10.1371/journal.pone.0141491] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/07/2015] [Indexed: 01/28/2023] Open
Abstract
Individuals with blood group O have a higher bleeding risk than non-O blood groups. This could be explained by the lower levels of FVIII and von Willebrand Factor (VWF) levels in O individuals. We investigated the relationship between blood groups, thrombin generation (TG), prothrombin activation and thrombin inactivation. Plasma levels of VWF, FVIII, antithrombin, fibrinogen, prothrombin and α2Macroglobulin (α2M) levels were determined. TG was measured in platelet rich (PRP) and platelet poor plasma (PPP) of 217 healthy donors and prothrombin conversion and thrombin inactivation were calculated. VWF and FVIII levels were lower (75% and 78%) and α2M levels were higher (125%) in the O group. TG is 10% lower in the O group in PPP and PRP. Less prothrombin was converted in the O group (86%) and the thrombin decay capacity was lower as well. In the O group, α2M plays a significantly larger role in the inhibition of thrombin (126%). In conclusion, TG is lower in the O group due to lower prothrombin conversion, and a larger contribution of α2M to thrombin inactivation. The former is unrelated to platelet function because it is similar in PRP and PPP, but can be explained by the lower levels of FVIII.
Collapse
Affiliation(s)
- Romy M. W. Kremers
- Synapse, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
- * E-mail:
| | - Abdulrahman B. O. Mohamed
- Synapse, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
- Department of Pharmacology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Leonie Pelkmans
- Synapse, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Salwa Hindawi
- Department of Haematology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - H. Coenraad Hemker
- Synapse, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - H. Bas de Laat
- Synapse, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Dana Huskens
- Synapse, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Raed Al Dieri
- Synapse, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
32
|
Takagi H, Umemoto T. Meta-Analysis of Non-O Blood Group as an Independent Risk Factor for Coronary Artery Disease. Am J Cardiol 2015; 116:699-704. [PMID: 26116991 DOI: 10.1016/j.amjcard.2015.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/28/2015] [Accepted: 05/28/2015] [Indexed: 01/27/2023]
Abstract
To determine whether non-O blood group is an independent risk factor for coronary artery disease (CAD), we performed a meta-analysis of contemporary studies reporting adjusted relative risk estimates using multivariable logistic regression and multivariable Cox proportional hazards regression. MEDLINE and EMBASE were searched from January 2001 to March 2015 using Web-based search engines (PubMed and OVID). Search terms included blood group/type and coronary (artery/heart) disease, ischemic/ischaemic heart disease, acute coronary syndrome, myocardial infarction, or angina. Eligible were case-control, cross-sectional, or cohort studies reporting adjusted odds ratios (ORs) and hazard ratios (HRs) for CAD in subjects with non-O versus O blood group using multivariable logistic regression/multivariable Cox proportional hazards regression. Study-specific estimates were combined using inverse variance-weighted averages of logarithmic ORs/HRs in the random-effects model. Of 117 potentially relevant articles screened initially, 12 relative risk estimates in 10 eligible studies were identified and included. Pooled analysis of all the 12 ORs/HRs demonstrated that non-O blood group was associated with a statistically significant 14% increase in CAD incidence relative to O blood group (OR/HR 1.14, 95% confidence interval 1.04 to 1.25, p = 0.006). There was no evidence of significant publication bias. Combining 8 studies reporting data regarding (acute) myocardial infarction also generated a statistically significant result unfavoring non-O blood group (OR/HR 1.16, 95% confidence interval 1.02 to 1.31, p = 0.02). In conclusion, we found that based on a meta-analysis of 10 studies enrolling a total of 174,945 participants, non-O blood group appears to be an independent risk factor for CAD and myocardial infarction.
Collapse
|
33
|
Song J, Chen F, Campos M, Bolgiano D, Houck K, Chambless LE, Wu KK, Folsom AR, Couper D, Boerwinkle E, Dong JF. Quantitative Influence of ABO Blood Groups on Factor VIII and Its Ratio to von Willebrand Factor, Novel Observations from an ARIC Study of 11,673 Subjects. PLoS One 2015; 10:e0132626. [PMID: 26244499 PMCID: PMC4526567 DOI: 10.1371/journal.pone.0132626] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 06/16/2015] [Indexed: 11/30/2022] Open
Abstract
ABO blood groups are known to influence the plasma level of von Willebrand factor (VWF), but little is known about the relationship between ABO and coagulation factor VIII (FVIII). We analyzed the influence of ABO genotypes on VWF antigen, FVIII activity, and their quantitative relationship in 11,673 participants in the Atherosclerosis Risk in Communities (ARIC) study. VWF, FVIII, and FVIII/VWF levels varied significantly among O, A (A1 and A2), B and AB subjects, and the extent of which varied between Americans of European (EA) and African (AA) descent. We validated a strong influence of ABO blood type on VWF levels (15.2%), but also detected a direct ABO influence on FVIII activity (0.6%) and FVIII/VWF ratio (3.8%) after adjustment for VWF. We determined that FVIII activity changed 0.54% for every 1% change in VWF antigen level. This VWF-FVIII relationship differed between subjects with O and B blood types in EA, AA, and in male, but not female subjects. Variations in FVIII activity were primarily detected at low VWF levels. These new quantitative influences on VWF, FVIII and the FVIII/VWF ratio help understand how ABO genotypes differentially influence VWF, FVIII and their ratio, particularly in racial and gender specific manners.
Collapse
Affiliation(s)
- Jaewoo Song
- Puget Sound Blood Center Research Institute, Puget Sound Blood Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine, Yonsei University, College of Medicine, Seoul, Korea
| | - Fengju Chen
- Human Genetic Center, University of Texas School of Public Health, Houston, Texas, United States of America
| | - Marco Campos
- Cardiology Section, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Doug Bolgiano
- Puget Sound Blood Center Research Institute, Puget Sound Blood Center, Seattle, Washington, United States of America
| | - Katie Houck
- Puget Sound Blood Center Research Institute, Puget Sound Blood Center, Seattle, Washington, United States of America
| | - Lloyd E. Chambless
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | | | - Aaron R. Folsom
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - David Couper
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Eric Boerwinkle
- Human Genetic Center, University of Texas School of Public Health, Houston, Texas, United States of America
| | - Jing-fei Dong
- Puget Sound Blood Center Research Institute, Puget Sound Blood Center, Seattle, Washington, United States of America
- Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
34
|
Aponte-Santamaría C, Huck V, Posch S, Bronowska AK, Grässle S, Brehm MA, Obser T, Schneppenheim R, Hinterdorfer P, Schneider SW, Baldauf C, Gräter F. Force-sensitive autoinhibition of the von Willebrand factor is mediated by interdomain interactions. Biophys J 2015; 108:2312-21. [PMID: 25954888 PMCID: PMC4423058 DOI: 10.1016/j.bpj.2015.03.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 01/07/2023] Open
Abstract
Von Willebrand factor (VWF) plays a central role in hemostasis. Triggered by shear-stress, it adheres to platelets at sites of vascular injury. Inactivation of VWF has been associated to the shielding of its adhesion sites and proteolytic cleavage. However, the molecular nature of this shielding and its coupling to cleavage under shear-forces in flowing blood remain unknown. In this study, we describe, to our knowledge, a new force-sensory mechanism for VWF-platelet binding, which addresses these questions, based on a combination of molecular dynamics (MD) simulations, atomic force microscopy (AFM), and microfluidic experiments. Our MD simulations demonstrate that the VWF A2 domain targets a specific region at the VWF A1 domain, corresponding to the binding site of the platelet glycoprotein Ibα (GPIbα) receptor, thereby causing its blockage. This implies autoinhibition of the VWF for the binding of platelets mediated by the A1-A2 protein-protein interaction. During force-probe MD simulations, a stretching force dissociated the A1A2 complex, thereby unblocking the GPIbα binding site. Dissociation was found to be coupled to the unfolding of the A2 domain, with dissociation predominantly occurring before exposure of the cleavage site in A2, an observation that is supported by our AFM experiments. This suggests that the A2 domain prevents platelet binding in a force-dependent manner, ensuring that VWF initiates hemostasis before inactivation by proteolytic cleavage. Microfluidic experiments with an A2-deletion VWF mutant resulted in increased platelet binding, corroborating the key autoinhibitory role of the A2 domain within VWF multimers. Overall, autoinhibition of VWF mediated by force-dependent interdomain interactions offers the molecular basis for the shear-sensitive growth of VWF-platelet aggregates, and might be similarly involved in shear-induced VWF self-aggregation and other force-sensing functions in hemostasis.
Collapse
Affiliation(s)
| | - Volker Huck
- Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sandra Posch
- Department of Applied Experimental Biophysics, Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Agnieszka K Bronowska
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Sandra Grässle
- Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maria A Brehm
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Obser
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reinhard Schneppenheim
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Hinterdorfer
- Department of Applied Experimental Biophysics, Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Stefan W Schneider
- Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Baldauf
- Theory Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany.
| | - Frauke Gräter
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.
| |
Collapse
|
35
|
Weiss FU, Schurmann C, Guenther A, Ernst F, Teumer A, Mayerle J, Simon P, Völzke H, Radke D, Greinacher A, Kuehn JP, Zenker M, Völker U, Homuth G, Lerch MM. Fucosyltransferase 2 (FUT2) non-secretor status and blood group B are associated with elevated serum lipase activity in asymptomatic subjects, and an increased risk for chronic pancreatitis: a genetic association study. Gut 2015; 64:646-56. [PMID: 25028398 DOI: 10.1136/gutjnl-2014-306930] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Serum lipase activities above the threefold upper reference limit indicate acute pancreatitis. We investigated whether high lipase activity-within the reference range and in the absence of pancreatitis-are associated with genetic single nucleotide polymorphisms (SNP), and whether these identified SNPs are also associated with clinical pancreatitis. METHODS Genome-wide association studies (GWAS) on phenotypes 'serum lipase activity' and 'high serum lipase activity' were conducted including 3966 German volunteers from the population-based Study-of-Health-in-Pomerania (SHIP). Lead SNPs associated on a genome-wide significance level were replicated in two cohorts, 1444 blood donors and 1042 pancreatitis patients. RESULTS Initial discovery GWAS detected SNPs within or near genes encoding the ABO blood group specifying transferases A/B (ABO), Fucosyltransferase-2 (FUT2), and Chymotrypsinogen-B2 (CTRB2), to be significantly associated with lipase activity levels in asymptomatic subjects. Replication analyses in blood donors confirmed the association of FUT-2 non-secretor status (OR=1.49; p=0.012) and ABO blood-type-B (OR=2.48; p=7.29×10(-8)) with high lipase activity levels. In pancreatitis patients, significant associations were found for FUT-2 non-secretor status (OR=1.53; p=8.56×10(-4)) and ABO-B (OR=1.69, p=1.0×10(-4)) with chronic pancreatitis, but not with acute pancreatitis. Conversely, carriers of blood group O were less frequently affected by chronic pancreatitis (OR=0.62; p=1.22×10(-05)) and less likely to have high lipase activity levels (OR=0.59; p=8.14×10(-05)). CONCLUSIONS These are the first results indicating that ABO blood type-B as well as FUT2 non-secretor status are common population-wide risk factors for developing chronic pancreatitis. They also imply that, even within the reference range, elevated lipase activities may indicate subclinical pancreatic injury in asymptomatic subjects.
Collapse
Affiliation(s)
- Frank Ulrich Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Claudia Schurmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany The Charles Bronfman Institute for Personalized Medicine, Genetics of Obesity & Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Annett Guenther
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Florian Ernst
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Teumer
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Peter Simon
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Dörte Radke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Jens-Peter Kuehn
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke-Universität Magdeburg, University Hospital Magdeburg, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
36
|
Groeneveld DJ, van Bekkum T, Cheung KL, Dirven RJ, Castaman G, Reitsma PH, van Vlijmen B, Eikenboom J. No evidence for a direct effect of von Willebrand factor's ABH blood group antigens on von Willebrand factor clearance. J Thromb Haemost 2015; 13:592-600. [PMID: 25650553 DOI: 10.1111/jth.12867] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/24/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND One of the major determinants of von Willebrand factor (VWF) plasma levels is ABO blood group status, and individuals with blood group O have ~ 25% lower plasma levels. The exact mechanism behind this relationship remains unknown, although effects on clearance have been postulated. OBJECTIVES To determine whether clearance of VWF is directly dependent on the presence of ABH antigens on VWF. METHODS Three type 3 von Willebrand disease (VWD) patients were infused with Haemate-P, and the relative loading of VWF with ABH antigens at different time points was measured. VWF-deficient mice were injected with purified plasma-derived human VWF obtained from donors with either blood group A, blood group B, or blood group O. RESULTS In mice, we found no difference in clearance rate between plasma-derived blood group A, blood group B and blood group O VWF. Faster clearance of the blood group O VWF present in Haemate-P infused in type 3 VWD patients would have resulted in a relative increase in the loading of VWF with A and B antigens over time. However, we observed a two-fold decrease in the loading with A and B antigens in two out of three patients, and stable loading in the third patient. CONCLUSION There is no direct effect of ABH antigens on VWF in VWF clearance. We demonstrate that, in a direct comparison within one individual, blood group O VWF is not cleared faster than blood group A or blood group B VWF. Clearance differences between blood group O and non-blood group O individuals may therefore be related to the blood group status of the individual rather than the ABH antigen loading on VWF itself.
Collapse
Affiliation(s)
- D J Groeneveld
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
To understand the placement of a certain protein in a physiological system and the pathogenesis of related disorders, it is not only of interest to determine its function but also important to describe the sequential steps in its life cycle, from synthesis to secretion and ultimately its clearance. von Willebrand factor (VWF) is a particularly intriguing case in this regard because of its important auxiliary roles (both intra- and extracellular) that implicate a wide range of other proteins: its presence is required for the formation and regulated release of endothelial storage organelles, the Weibel-Palade bodies (WPBs), whereas VWF is also a key determinant in the clearance of coagulation factor VIII. Thus, understanding the molecular and cellular basis of the VWF life cycle will help us gain insight into the pathogenesis of von Willebrand disease, design alternative treatment options to prolong the factor VIII half-life, and delineate the role of VWF and coresidents of the WPBs in the prothrombotic and proinflammatory response of endothelial cells. In this review, an update on our current knowledge on VWF biosynthesis, secretion, and clearance is provided and we will discuss how they can be affected by the presence of protein defects.
Collapse
|
38
|
Rizzo C, Caruso C, Vasto S. Possible role of ABO system in age-related diseases and longevity: a narrative review. IMMUNITY & AGEING 2014; 11:16. [PMID: 25512760 PMCID: PMC4265994 DOI: 10.1186/1742-4933-11-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/18/2014] [Indexed: 01/17/2023]
Abstract
ABO blood group antigens are expressed either on the surface of red blood cells either on a variety of other cells. Based on the available knowledge of the genes involved in their biosynthesis and their tissue distribution, their polymorphism has been suggested to provide intraspecies diversity allowing to cope with diverse and rapidly evolving pathogens. Accordingly, the different prevalence of ABO group genotypes among the populations has been demonstrated to be driven by malaria selection. In the similar manner, a particular ABO blood group may contribute to favour life-extension via biological mechanisms important for surviving or eluding serious disease. In this review, we will suggest the possible association of ABO group with age-related diseases and longevity taking into account the biological role of the ABO glycosyltransferases on some inflammatory mediators as adhesion molecules.
Collapse
Affiliation(s)
- Claudia Rizzo
- Unit of Transfusion Medicine, University Hospital "Paolo Giaccone", Palermo, Italy ; Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Calogero Caruso
- Unit of Transfusion Medicine, University Hospital "Paolo Giaccone", Palermo, Italy ; Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Sonya Vasto
- National Center for Research, Institute of Biomedicine and Molecular Immunology, Palermo, Italy ; Department of Science and Biological, Chemical and Pharmaceutical Technologies, Institute of Biomedicine and Molecular Immunology, Palermo, Italy
| |
Collapse
|
39
|
Bryckaert M, Rosa JP, Denis CV, Lenting PJ. Of von Willebrand factor and platelets. Cell Mol Life Sci 2014; 72:307-26. [PMID: 25297919 PMCID: PMC4284388 DOI: 10.1007/s00018-014-1743-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/05/2014] [Accepted: 09/25/2014] [Indexed: 11/26/2022]
Abstract
Hemostasis and pathological thrombus formation are dynamic processes that require multiple adhesive receptor-ligand interactions, with blood platelets at the heart of such events. Many studies have contributed to shed light on the importance of von Willebrand factor (VWF) interaction with its platelet receptors, glycoprotein (GP) Ib-IX-V and αIIbβ3 integrin, in promoting primary platelet adhesion and aggregation following vessel injury. This review will recapitulate our current knowledge on the subject from the rheological aspect to the spatio-temporal development of thrombus formation. We will also discuss the signaling events generated by VWF/GPIb-IX-V interaction, leading to platelet activation. Additionally, we will review the growing body of evidence gathered from the recent development of pathological mouse models suggesting that VWF binding to GPIb-IX-V is a promising target in arterial and venous pathological thrombosis. Finally, the pathological aspects of VWF and its impact on platelets will be addressed.
Collapse
Affiliation(s)
- Marijke Bryckaert
- INSERM U770, Hôpital Bicêtre, 80 rue du Général Leclerc, 94276, Le Kremlin Bicêtre Cedex, France,
| | | | | | | |
Collapse
|
40
|
Franchini M, Mannucci PM. ABO blood group and thrombotic vascular disease. Thromb Haemost 2014; 112:1103-9. [PMID: 25187297 DOI: 10.1160/th14-05-0457] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/22/2014] [Indexed: 01/15/2023]
Abstract
ABO blood group antigens are complex carbohydrate molecules expressed on red blood cells and a variety of tissues. The ABO blood type is implicated in the development of a number of human diseases and there is increasing evidence regarding its involvement in the pathogenesis of cardiovascular disorders, mainly through its effect on von Willebrand factor levels. In this review, after a brief analysis of the potential molecular mechanisms by which the blood group influences haemostasis, we focus on the clinical implications of such interaction. Overall, the literature data document the close relationship between venous thromboembolism (VTE) and non-O blood type, which is associated with an approximately two-fold increased risk of venous thrombosis. A supra-additive effect on VTE risk is observed when an inherited thrombophilic condition is associated with non-O blood group. A weaker association exists between non-O blood type and arterial thrombosis, which needs to be further investigated.
Collapse
Affiliation(s)
- M Franchini
- Massimo Franchini, MD, Director, Dipartimento di Medicina Trasfusionale ed Ematologia, Azienda Ospedaliera Carlo Poma, Mantova, Italy, Tel.: +39 0376 201234, Fax: +39 0376 220144, E-mail:
| | | |
Collapse
|
41
|
Franchini M, Liumbruno GM. ABO blood group: old dogma, new perspectives. Clin Chem Lab Med 2014; 51:1545-53. [PMID: 23648637 DOI: 10.1515/cclm-2013-0168] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/08/2013] [Indexed: 12/20/2022]
Abstract
Human blood group antigens are glycoproteins and glycolipids expressed on the surface of red blood cells and a variety of human tissues, including the epithelium, sensory neurons, platelets and the vascular endothelium. Accumulating evidence indicate that ABO blood type is implicated in the development of a number of human diseases, including cardiovascular and neoplastic disorders. In this review, beside its physiologic role in immunohematology and transfusion medicine, we summarize the current knowledge on the association between the ABO blood group and the risk of developing thrombotic events and cancers.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Azienda Ospedaliera Carlo Poma, Mantova, Italy.
| | | |
Collapse
|
42
|
Casari C, Lenting PJ, Wohner N, Christophe OD, Denis CV. Clearance of von Willebrand factor. J Thromb Haemost 2013; 11 Suppl 1:202-11. [PMID: 23809124 DOI: 10.1111/jth.12226] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quantitative deficiencies in von Willebrand factor (VWF) are associated with abnormal hemostasis that can manifest in bleeding or thrombotic complications. Consequently, many studies have endeavored to elucidate the mechanisms underlying the regulation of VWF plasma levels. This review focuses on the role of VWF clearance pathways. A summary of recent developments are provided, including results from genetic studies, the relationship between glycosylation and VWF clearance, the contribution of increased VWF clearance to the pathogenesis of von Willebrand disease and the identification of VWF clearance receptors. These different studies converge in their conclusion that VWF clearance is a complex phenomenon that involves multiple mechanisms. Deciphering how such different mechanisms coordinate their role in this process is but one of the remaining challenges. Nevertheless, a better insight into the complex clearance pathways of VWF may help us to better understand the clinical implications of aberrant clearance in the pathogenesis of von Willebrand disease and perhaps other disorders as well as aid in developing alternative therapeutic approaches.
Collapse
Affiliation(s)
- C Casari
- Unit 770, INSERM, Le Kremlin-Bicêtre, France; UMR_S 770, Univ Paris-Sud, Le Kremlin-Bicêtre, France
| | | | | | | | | |
Collapse
|
43
|
Frisch E, Schwedler C, Kaup M, Iona Braicu E, Gröne J, Lauscher JC, Sehouli J, Zimmermann M, Tauber R, Berger M, Blanchard V. Endo-β-N-acetylglucosaminidase H de-N-glycosylation in a domestic microwave oven: Application to biomarker discovery. Anal Biochem 2013; 433:65-9. [DOI: 10.1016/j.ab.2012.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/05/2012] [Accepted: 10/11/2012] [Indexed: 11/29/2022]
|
44
|
Yin X, Bern M, Xing Q, Ho J, Viner R, Mayr M. Glycoproteomic analysis of the secretome of human endothelial cells. Mol Cell Proteomics 2013; 12:956-78. [PMID: 23345538 PMCID: PMC3617342 DOI: 10.1074/mcp.m112.024018] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Previous proteomics studies have partially unraveled the complexity of endothelial protein secretion but have not investigated glycosylation, a key modification of secreted and membrane proteins for cell communication. In this study, human umbilical vein endothelial cells were kept in serum-free medium before activation by phorbol-12-myristate-13 acetate, a commonly used secretagogue that induces exocytosis of endothelial vesicles. In addition to 123 secreted proteins, the secretome was particularly rich in membrane proteins. Glycopeptides were enriched by zwitterionic hydrophilic interaction liquid chromatography resins and were either treated with PNGase F and H218O or directly analyzed using a recently developed workflow combining higher-energy C-trap dissociation (HCD) with electron-transfer dissociation (ETD) for a hybrid linear ion trap–orbitrap mass spectrometer. After deglycosylation with PNGase F in the presence of H218O, 123 unique peptides displayed 18O-deamidation of asparagine, corresponding to 86 proteins with a total of 121 glycosylation sites. Direct glycopeptide analysis via HCD-ETD identified 131 glycopeptides from 59 proteins and 118 glycosylation sites, of which 41 were known, 51 were predicted, and 26 were novel. Two methods were compared: alternating HCD-ETD and HCD-product-dependent ETD. The former detected predominantly high-intensity, multiply charged glycopeptides, whereas the latter preferentially selected precursors with complex/hybrid glycans for fragmentation. Validation was performed by means of glycoprotein enrichment and analysis of the input, the flow-through, and the bound fraction. This study represents the most comprehensive characterization of endothelial protein secretion to date and demonstrates the potential of new HCD-ETD workflows for determining the glycosylation status of complex biological samples.
Collapse
Affiliation(s)
- Xiaoke Yin
- The King's British Heart Foundation Centre, King's College London, London SE5 9NU, UK
| | | | | | | | | | | |
Collapse
|
45
|
Fallah MA, Huck V, Niemeyer V, Desch A, Angerer JI, McKinnon TAJ, Wixforth A, Schneider SW, Schneider MF. Circulating but not immobilized N-deglycosylated von Willebrand factor increases platelet adhesion under flow conditions. BIOMICROFLUIDICS 2013; 7:44124. [PMID: 24404057 PMCID: PMC3772935 DOI: 10.1063/1.4819746] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 08/13/2013] [Indexed: 05/10/2023]
Abstract
The role of von Willebrand factor (VWF) as a shear stress activated platelet adhesive has been related to a coiled-elongated shape conformation. The forces dominating this transition have been suggested to be controlled by the proteins polymeric architecture. However, the fact that 20% of VWF molecular weight originates from glycan moieties has so far been neglected in these calculations. In this study, we present a systematic experimental investigation on the role of N-glycosylation for VWF mediated platelet adhesion under flow. A microfluidic flow chamber with a stenotic compartment that allows one to mimic various physiological flow conditions was designed for the efficient analysis of the adhesion spectrum. Surprisingly, we found an increase in platelet adhesion with elevated shear rate, both qualitatively and quantitatively fully conserved when N-deglycosylated VWF (N-deg-VWF) instead of VWF was immobilized in the microfluidic channel. This has been demonstrated consistently over four orders of magnitude in shear rate. In contrast, when N-deg-VWF was added to the supernatant, an increase in adhesion rate by a factor of two was detected compared to the addition of wild-type VWF. It appears that once immobilized, the role of glycans is at least modified if not-as found here for the case of adhesion-negated. These findings strengthen the physical impact of the circulating polymer on shear dependent platelet adhesion events. At present, there is no theoretical explanation for an increase in platelet adhesion to VWF in the absence of its N-glycans. However, our data indicate that the effective solubility of the protein and hence its shape or conformation may be altered by the degree of glycosylation and is therefore a good candidate for modifying the forces required to uncoil this biopolymer.
Collapse
Affiliation(s)
- M A Fallah
- University of Augsburg, Chair of Experimental Physics I, 86159 Augsburg, Germany ; Department of Biophysical Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - V Huck
- Heidelberg University, Medical Faculty Mannheim, Experimental Dermatology, 68167 Mannheim, Germany
| | - V Niemeyer
- Heidelberg University, Medical Faculty Mannheim, Experimental Dermatology, 68167 Mannheim, Germany
| | - A Desch
- Heidelberg University, Medical Faculty Mannheim, Experimental Dermatology, 68167 Mannheim, Germany
| | - J I Angerer
- University of Augsburg, Chair of Experimental Physics I, 86159 Augsburg, Germany
| | - T A J McKinnon
- Imperial College London, Hammersmith Hospital Campus, Department of Medicine, London W12 0NN, United Kingdom
| | - A Wixforth
- University of Augsburg, Chair of Experimental Physics I, 86159 Augsburg, Germany
| | - S W Schneider
- Heidelberg University, Medical Faculty Mannheim, Experimental Dermatology, 68167 Mannheim, Germany
| | - M F Schneider
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
46
|
Abstract
vWF (von Willebrand factor) is a key component for maintenance of normal haemostasis, acting as the carrier protein of the coagulant Factor VIII and mediating platelet adhesion at sites of vascular injury. There is ample evidence that vWF glycan moieties are crucial determinants of its expression and function. Of particular clinical interest, ABH antigens influence vWF plasma levels according to the blood group of individuals, although the molecular mechanism underlying this phenomenon remains incompletely understood. The present paper reports analyses of the human plasma vWF N-glycan population using advanced MS. Glycomics analyses revealed approximately 100 distinct N-glycan compositions and identified a variety of structural features, including lactosaminic extensions, ABH antigens and sulfated antennae, as well as bisecting and terminal GlcNAc residues. We estimate that some 300 N-glycan structures are carried by human vWF. Glycoproteomics analyses mapped ten of the consensus sites known to carry N-glycans. Glycan populations were found to be distinct, although many structural features were shared across all sites. Notably, the H antigen is not restricted to particular N-glycosylation sites. Also, the Asn(2635) site, previously designated as unoccupied, was found to be highly glycosylated. The delineation of such varied glycan populations in conjunction with current models explaining vWF activity will facilitate research aimed at providing a better understanding of the influence of glycosylation on vWF function.
Collapse
|
47
|
Berntorp E, Peake I, Budde U, Laffan M, Montgomery R, Windyga J, Goodeve A, Petrini P, von Depka M, Miesbach W, Lillicrap D, Federici AB, Lassila R, White G. von Willebrand's disease: a report from a meeting in the Åland islands. Haemophilia 2012; 18 Suppl 6:1-13. [PMID: 22906074 DOI: 10.1111/j.1365-2516.2012.02925.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
von Willebrand's disease (VWD) is probably the most common bleeding disorder, with some studies indicating that up to 1% of the population may have the condition. Over recent years interest in VWD has fallen compared to that of haemophilia, partly the result of focus on blood-borne diseases such as HIV and hepatitis. Now the time has come to revisit VWD, and in view of this some 60 international physicians with clinical and scientific interest in VWD met over 4 days in 2010 in the Åland islands to discuss state-of-the-art issues in the disease. The Åland islands are where Erik von Willebrand had first observed a bleeding disorder in a number of members of a family from Föglö, and 2010 was also the 140th anniversary of his birth. This report summarizes the main papers presented at the symposium; topics ranged from genetics and biochemistry through to classification of VWD, pharmacokinetics and laboratory assays used in the diagnosis of the disease, inhibitors, treatment guidelines in different age groups including the elderly who often have comorbid conditions that present challenges, and prophylaxis. Other topics included managing surgeries in patients with VWD and the role of FVIII in VWF replacement, a controversial subject.
Collapse
Affiliation(s)
- E Berntorp
- Lund University, Department of Hematology and Coagulation Disorders Skåne University Hospital, Malmö, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Franchini M, Favaloro EJ, Targher G, Lippi G. ABO blood group, hypercoagulability, and cardiovascular and cancer risk. Crit Rev Clin Lab Sci 2012; 49:137-49. [PMID: 22856614 DOI: 10.3109/10408363.2012.708647] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The antigens of the ABO system (A, B, and H determinants, respectively) consist of complex carbohydrate molecules. It has been known for nearly half a century that the ABO blood group exerts a major influence on plasma levels of the von Willebrand factor (VWF)-factor VIII (FVIII) complex and that normal group O individuals have significantly lower levels of VWF and FVIII than do non-O individuals. As a consequence, several investigators have studied the association between ABO blood group and the risk of developing bleeding or thrombotic events. A number of epidemiological studies have also analyzed the biologic relevance of this interaction by assessing whether the ABO blood group could influence human longevity through the regulation of VWF-FVIII plasma levels. In this review, the molecular mechanisms by which the ABO blood group determines plasma VWF and consequently, FVIII levels, the possible clinical implications, and the current knowledge on the association between the ABO blood group and the risk of developing certain cancers will be reviewed.
Collapse
Affiliation(s)
- Massimo Franchini
- Dipartimento di Medicina Trasfusionale ed Ematologia, Azienda Ospedaliera Carlo Poma, Mantova, Italy.
| | | | | | | |
Collapse
|
49
|
Heit JA, Armasu SM, Asmann YW, Cunningham JM, Matsumoto ME, Petterson TM, De Andrade M. A genome-wide association study of venous thromboembolism identifies risk variants in chromosomes 1q24.2 and 9q. J Thromb Haemost 2012; 10:1521-31. [PMID: 22672568 PMCID: PMC3419811 DOI: 10.1111/j.1538-7836.2012.04810.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES To identify venous thromboembolism (VTE) disease-susceptibility genes. PATIENTS AND METHODS We performed in silico genome wide association scan (GWAS) analyses using genotype data imputed to approximately 2.5 million single-nucleotide polymorphisms (SNPs) from adults with objectively-diagnosed VTE (n=1503), and controls frequency matched on age and gender (n=1459; discovery population). Single-nucleotide polymorphisms exceeding genome-wide significance were replicated in a separate population (VTE cases, n=1407; controls, n=1418). Genes associated with VTE were re-sequenced. RESULTS Seven SNPs exceeded genome-wide significance (P<5×10(-8)): four on chromosome 1q24.2 (F5 rs6025 [factor V Leiden], BLZF1 rs7538157, NME7 rs16861990 and SLC19A2 rs2038024) and three on chromosome 9q34.2 (ABO rs2519093 [ABO intron 1], rs495828, rs8176719 [ABO blood type O allele]). The replication study confirmed a significant association of F5, NME7 and ABO with VTE. However, F5 was the main signal on 1q24.2 as only ABO SNPs remained significantly associated with VTE after adjusting for F5 rs6025. This 1q24.2 region was shown to be inherited as a haplotype block. ABO re-sequencing identified 15 novel single nucleotide variations (SNV) in ABO intron 6 and the ABO 3' UTR that were strongly associated with VTE (P<10(-4)) and belonged to three distinct linkage disequilibrium (LD) blocks; none were in LD with ABO rs8176719 or rs2519093. Our sample size provided 80% power to detect odds ratios (ORs)=2.0 and 1.51 for minor allele frequencies=0.05 and 0.5, respectively (α=1×10(-8); 1% VTE prevalence). CONCLUSIONS Apart from F5 rs6025, ABO rs8176719, rs2519093 and F2 rs1799963, additional common and high VTE-risk SNPs among whites are unlikely.
Collapse
Affiliation(s)
- J A Heit
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
James PD, Lillicrap D. von Willebrand disease: clinical and laboratory lessons learned from the large von Willebrand disease studies. Am J Hematol 2012; 87 Suppl 1:S4-11. [PMID: 22389132 DOI: 10.1002/ajh.23142] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/25/2012] [Accepted: 01/29/2012] [Indexed: 11/06/2022]
Abstract
During the past 25 years, our knowledge concerning the pathogenesis, diagnostic strategies, and treatment of von Willebrand disease (VWD) has increased significantly. Following the immunological differentiation of factor VIII (FVIII) and von Willebrand factor (VWF) in the 1970s and the cloning of the FVIII and VWF genes in the mid-1980s, substantial progress has been made in our understanding of this, the most common inherited bleeding disorder. We now recognize that VWD represents a range of genetic diseases all with the clinical endpoint of increased mucocutaneous bleeding. The molecular pathology of Type 2 and 3 VWD is now comprehensively documented and involves rare sequence variants at the VWF locus. In contrast, the genetic causation of Type 1 disease remains incompletely defined and in many cases appears to involve genetic determinants in addition to or instead of VWF. The diagnostic triad of a personal history of excessive mucocutaneous bleeding, laboratory tests for VWF that are consistent with VWD, and a family history of the condition remain the keystone to VWD identification. In the laboratory, measurement of VWF antigen and function continue to be the most important diagnostic studies, and while our understanding of the molecular genetic pathology of VWD has advanced considerably in the past decade, genetic testing as a component of diagnosis is limited to certain distinct subtypes of the disorder. Treatment of VWD has been relatively unchanged for the past decade and continues to involve either stimulation of the release of intrinsic VWF with desmopressin or the infusion of VWF concentrates.
Collapse
Affiliation(s)
- Paula D James
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|