1
|
Guo H, Wei J, Zhang Y, Wang L, Wan J, Wang W, Gao L, Li J, Sun T, Ma L. Protein ubiquitination in ovarian cancer immunotherapy: The progress and therapeutic strategy. Genes Dis 2024; 11:101158. [PMID: 39253578 PMCID: PMC11382211 DOI: 10.1016/j.gendis.2023.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 09/11/2024] Open
Abstract
Ovarian cancer is a common cancer for females, and the incidence and mortality rates are on the rise. Many treatment strategies have been developed for ovarian cancer, including chemotherapy and immunotherapy, but they are often ineffective and prone to drug resistance. Protein ubiquitination is an important class of post-translation modifications that have been found to be associated with various human diseases and cancer development. Recent studies have revealed that protein ubiquitination is involved in the progression of ovarian cancer and plays an important role in the tumor immune process. Moreover, the combination of ubiquitinase/deubiquitinase inhibitors and cancer immunotherapy approaches can effectively reduce treatment resistance and improve treatment efficacy, which provides new ideas for cancer treatment. Herein, we review the role of protein ubiquitination in relation to ovarian cancer immunotherapy and recent advances in the use of ubiquitinase/deubiquitinase inhibitors in combination with cancer immunotherapy.
Collapse
Affiliation(s)
- Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Li Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ling Gao
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450052, China
| | - Jiajing Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| |
Collapse
|
2
|
O'Leary B, Skinner H, Schoenfeld JD, Licitra L, Le Tourneau C, Esdar C, Schroeder A, Salmio S, Psyrri A. Evasion of apoptosis and treatment resistance in squamous cell carcinoma of the head and neck. Cancer Treat Rev 2024; 129:102773. [PMID: 38878677 DOI: 10.1016/j.ctrv.2024.102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 08/18/2024]
Abstract
Combinations of surgery, radiotherapy and chemotherapy can eradicate tumors in patients with locally advanced squamous cell carcinoma of the head and neck (LA SCCHN), but a significant proportion of tumors progress, recur, or do not respond to therapy due to treatment resistance. The prognosis for these patients is poor, thus new approaches are needed to improve outcomes. Key resistance mechanisms to chemoradiotherapy (CRT) in patients with LA SCCHN are alterations to the pathways that mediate apoptosis, a form of programmed cell death. Targeting dysregulation of apoptotic pathways represents a rational therapeutic strategy in many types of cancer, with a number of proteins, including the pro-survival B-cell lymphoma 2 family and inhibitors of apoptosis proteins (IAPs), having been identified as druggable targets. This review discusses the mechanisms by which apoptosis occurs under physiological conditions, and how this process is abnormally restrained in LA SCCHN tumor cells, with treatment strategies aimed at re-enabling apoptosis in LA SCCHN also considered. In particular, the development of, and future opportunities for, IAP inhibitors in LA SCCHN are discussed, in light of recent encouraging proof-of-concept clinical trial data.
Collapse
Affiliation(s)
| | | | | | - Lisa Licitra
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan and University of Milan, Italy
| | | | | | | | | | - Amanda Psyrri
- Attikon University Hospital, National Kapodistrian University of Athens, Greece
| |
Collapse
|
3
|
Su CW, Kao SH, Chen YT, Hsieh YH, Yang WE, Tsai MY, Lin CW, Yang SF. Curcumin Analog L48H37 Induces Apoptosis in Human Oral Cancer Cells by Activating Caspase Cascades and Downregulating the Inhibitor of Apoptosis Proteins through JNK/p38 Signaling. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:565-581. [PMID: 38480502 DOI: 10.1142/s0192415x24500241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
L48H37 is a synthetic curcumin analog that has anticancer potentials. Here, we further explored the anticancer effect of L48H37 on oral cancer cells and its mechanistic acts. Cell cycle distribution was assessed using flow cytometric analysis. Apoptosis was elucidated by staining with PI/Annexin V and activation of the caspase cascade. Cellular signaling was explored using apoptotic protein profiling, Western blotting, and specific inhibitors. Our findings showed that L48H37 significantly reduced the cell viability of SCC-9 and HSC-3 cells, resulting in sub-G1 phase accumulation and increased apoptotic cells. Apoptotic protein profiling revealed that L48H37 increased cleaved caspase-3, and downregulated cellular inhibitor of apoptosis protein 1 (cIAP1) and X-linked inhibitor of apoptosis protein (XIAP) in SCC-9 cells, and the downregulated cIAP1 and XIAP in both oral cancer cells were also demonstrated by Western blotting. Meanwhile, L48H37 triggered the activation of caspases and mitogen-activated protein kinases (MAPKs). The involvement of c-Jun N-terminal kinase (JNK) and p38 MAPK (p38) in the L48H37-triggered apoptotic cascade in oral cancer cells was also elucidated by specific inhibitors. Collectively, these findings indicate that L48H37 has potent anticancer activity against oral cancer cells, which may be attributed to JNK/p38-mediated caspase activation and the resulting apoptosis. This suggests a potential benefit for L48H37 for the treatment of oral cancer.
Collapse
Affiliation(s)
- Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shao-Hsuan Kao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Tzu Chen
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Meng-Ying Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Sahoo G, Samal D, Khandayataray P, Murthy MK. A Review on Caspases: Key Regulators of Biological Activities and Apoptosis. Mol Neurobiol 2023; 60:5805-5837. [PMID: 37349620 DOI: 10.1007/s12035-023-03433-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Caspases are proteolytic enzymes that belong to the cysteine protease family and play a crucial role in homeostasis and programmed cell death. Caspases have been broadly classified by their known roles in apoptosis (caspase-3, caspase-6, caspase-7, caspase-8, and caspase-9 in mammals) and in inflammation (caspase-1, caspase-4, caspase-5, and caspase-12 in humans, and caspase-1, caspase-11, and caspase-12 in mice). Caspases involved in apoptosis have been subclassified by their mechanism of action as either initiator caspases (caspase-8 and caspase-9) or executioner caspases (caspase-3, caspase-6, and caspase-7). Caspases that participate in apoptosis are inhibited by proteins known as inhibitors of apoptosis (IAPs). In addition to apoptosis, caspases play a role in necroptosis, pyroptosis, and autophagy, which are non-apoptotic cell death processes. Dysregulation of caspases features prominently in many human diseases, including cancer, autoimmunity, and neurodegenerative disorders, and increasing evidence shows that altering caspase activity can confer therapeutic benefits. This review covers the different types of caspases, their functions, and their physiological and biological activities and roles in different organisms.
Collapse
Affiliation(s)
- Gayatri Sahoo
- Department of Zoology, PSSJ College, Banarpal, 759128, Odisha, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Academy of Management and Information Technology (AMIT, affiliated to Utkal University), Khurda, 752057, Odisha, India
| | | | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
5
|
Thorne A, Bansal A, Necker-Brown A, Mostafa MM, Gao A, Georgescu A, Kooi C, Leigh R, Newton R. Differential regulation of BIRC2 and BIRC3 expression by inflammatory cytokines and glucocorticoids in pulmonary epithelial cells. PLoS One 2023; 18:e0286783. [PMID: 37289679 PMCID: PMC10249814 DOI: 10.1371/journal.pone.0286783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Roles for the baculoviral inhibitor of apoptosis repeat-containing (BIRC) genes, BIRC2 and BIRC3, may include signaling to the inflammatory transcription factor, nuclear factor-κB (NF-κB) and protection from cell death. However, distinct functions for each BIRC are not well-delineated. Given roles for the epithelium in barrier function and host defence, BIRC2 and BIRC3 expression was characterized in pulmonary epithelial cell lines and primary human bronchial epithelial cells (pHBECs) grown as undifferentiated cells in submersion culture (SC) or as highly differentiated cells at air-liquid interface (ALI). In A549 cells, interleukin-1β (IL1B) and tumor necrosis factor α (TNF) induced BIRC3 mRNA (~20-50-fold), with maximal protein expression from 6-24 h. Similar effects occurred in BEAS-2B and Calu-3 cells, as well as SC and ALI pHBECs. BIRC2 protein was readily detected in unstimulated cells, but was not markedly modulated by IL1B or TNF. Glucocorticoids (dexamethasone, budesonide) modestly increased BIRC3 mRNA and protein, but showed little effect on BIRC2 expression. In A549 cells, BIRC3 mRNA induced by IL1B was unchanged by glucocorticoids and showed supra-additivity with TNF-plus-glucocorticoid. Supra-additivity was also evident for IL1B-plus-budesonide induced-BIRC3 in SC and ALI pHBECs. Using A549 cells, IL1B- and TNF-induced BIRC3 expression, and to a lesser extent, BIRC2, was prevented by NF-κB inhibition. Glucocorticoid-induced BIRC3 expression was prevented by silencing and antagonism of the glucocorticoid receptor. Whereas TNF, but not IL1B, induced degradation of basal BIRC2 and BIRC3 protein, IL1B- and TNF-induced BIRC3 protein remained stable. Differential regulation by cytokines and glucocorticoids shows BIRC2 protein expression to be consistent with roles in rapid signaling events, whereas cytokine-induced BIRC3 may be more important in later effects. While TNF-induced degradation of both BIRCs may restrict their activity, cytokine-enhanced BIRC3 expression could prime for its function. Finally, shielding from glucocorticoid repression, or further enhancement by glucocorticoid, may indicate a key protective role for BIRC3.
Collapse
Affiliation(s)
- Andrew Thorne
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Akanksha Bansal
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amandah Necker-Brown
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M. Mostafa
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alex Gao
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrei Georgescu
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cora Kooi
- Department of Medicine, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard Leigh
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Imbaby S, Elkholy SE, Faisal S, Abdelmaogood AKK, Mehana AE, Mansour BSA, Abd El-Moneam SM, Elaidy SM. The GSTP1/MAPKs/BIM/SMAC modulatory actions of nitazoxanide: Bioinformatics and experimental evidence in subcutaneous solid Ehrlich carcinoma-inoculated mice. Life Sci 2023; 319:121496. [PMID: 36822315 DOI: 10.1016/j.lfs.2023.121496] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
AIMS Ehrlich ascites carcinoma and its subcutaneous inoculated solid tumour form (SEC) are reliable models for chemotherapeutic molecular targets exploration. Novel chemotherapeutic approaches are identified as molecular targets for intrinsic apoptosis, like the modulation of the second mitochondria-derived activator of caspases (SMAC). SMAC is a physiological substrate of mitogen-activated protein kinases (MAPKs). Glutathione-S-transferase P1 (GSTP1) and its close association with MAPKs play an important role in malignant cell proliferation, metastasis, and resistance to chemotherapeutics. Nitazoxanide (NTZ) is an emerging cancer therapy and its targeted GSTP1 evidence remains a knowledge need. MAIN METHODS In the present mice-established SEC, the chemotherapeutic roles of oral NTZ (200 mg/kg/day) and 5-fluorouracil (5-FU; 20 mg/kg/day, intraperitoneally) regimens were evaluated by measuring changes in tumour mass, the tumour MAPKs, cytochrome c, Bcl-2 interacting mediator of cell death (BIM), and SMAC signalling pathway in addition to its molecular downstream; caspases 3 and 9. KEY FINDINGS Computational analysis for these target protein interactions showed direct-ordered interactions. After individual therapy with NTZ and 5-FU regimens, the histological architecture of the extracted tumour discs revealed decreases in viable tumour regions with significant necrosis surrounds. These findings were consistent with gross tumour sizes. Each separate regimen lowered the remarkable GSTP1 and elevated the low MAPKs expressions, cytochrome c, BIM, SMAC, and caspases 3, and 9 in EST tissues. SIGNIFICANCE The chemotherapeutic activity of NTZ in SEC was proven. Additionally, NTZ possesses a SMAC modulatory activity that, following thorough research, should be taken into consideration as a chemotherapeutic approach in solid tumours.
Collapse
Affiliation(s)
- Samar Imbaby
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt.
| | - Shereen E Elkholy
- Department of Clinical Pharmacology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Salwa Faisal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Asmaa K K Abdelmaogood
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Amir E Mehana
- Department of Zoology, Faculty of Science, Suez Canal University, 41522 Ismailia, Egypt
| | - Basma S A Mansour
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Samar M Abd El-Moneam
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Samah M Elaidy
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt.
| |
Collapse
|
7
|
Dietz L, Ellison CJ, Riechmann C, Cassidy CK, Felfoldi FD, Pinto-Fernández A, Kessler BM, Elliott PR. Structural basis for SMAC-mediated antagonism of caspase inhibition by the giant ubiquitin ligase BIRC6. Science 2023; 379:1112-1117. [PMID: 36758106 DOI: 10.1126/science.ade8840] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Certain inhibitor of apoptosis (IAP) family members are sentinel proteins that prevent untimely cell death by inhibiting caspases. Antagonists, including second mitochondria-derived activator of caspases (SMAC), regulate IAPs and drive cell death. Baculoviral IAP repeat-containing protein 6 (BIRC6), a giant IAP with dual E2 and E3 ubiquitin ligase activity, regulates programmed cell death through unknown mechanisms. We show that BIRC6 directly restricts executioner caspase-3 and -7 and ubiquitinates caspase-3, -7, and -9, working exclusively with noncanonical E1, UBA6. Notably, we show that SMAC suppresses both mechanisms. Cryo-electron microscopy structures of BIRC6 alone and in complex with SMAC reveal that BIRC6 is an antiparallel dimer juxtaposing the substrate-binding module against the catalytic domain. Furthermore, we discover that SMAC multisite binding to BIRC6 results in a subnanomolar affinity interaction, enabling SMAC to competitively displace caspases, thus antagonizing BIRC6 anticaspase function.
Collapse
Affiliation(s)
- Larissa Dietz
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Cara J Ellison
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Carlos Riechmann
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - C Keith Cassidy
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - F Daniel Felfoldi
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Adán Pinto-Fernández
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7FZ, UK
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7FZ, UK
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Paul R Elliott
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
8
|
Sampson C, Wang Q, Otkur W, Zhao H, Lu Y, Liu X, Piao H. The roles of E3 ubiquitin ligases in cancer progression and targeted therapy. Clin Transl Med 2023; 13:e1204. [PMID: 36881608 PMCID: PMC9991012 DOI: 10.1002/ctm2.1204] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Ubiquitination is one of the most important post-translational modifications which plays a significant role in conserving the homeostasis of cellular proteins. In the ubiquitination process, ubiquitin is conjugated to target protein substrates for degradation, translocation or activation, dysregulation of which is linked to several diseases including various types of cancers. E3 ubiquitin ligases are regarded as the most influential ubiquitin enzyme owing to their ability to select, bind and recruit target substrates for ubiquitination. In particular, E3 ligases are pivotal in the cancer hallmarks pathways where they serve as tumour promoters or suppressors. The specificity of E3 ligases coupled with their implication in cancer hallmarks engendered the development of compounds that specifically target E3 ligases for cancer therapy. In this review, we highlight the role of E3 ligases in cancer hallmarks such as sustained proliferation via cell cycle progression, immune evasion and tumour promoting inflammation, and in the evasion of apoptosis. In addition, we summarise the application and the role of small compounds that target E3 ligases for cancer treatment along with the significance of targeting E3 ligases as potential cancer therapy.
Collapse
Affiliation(s)
- Chibuzo Sampson
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qiuping Wang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Wuxiyar Otkur
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Haifeng Zhao
- Department of OrthopedicsDalian Second People's HospitalDalianChina
| | - Yun Lu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- Department of StomatologyDalian Medical UniversityDalianChina
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Hai‐long Piao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
9
|
Unnisa A, Greig NH, Kamal MA. Inhibition of Caspase 3 and Caspase 9 Mediated Apoptosis: A Multimodal Therapeutic Target in Traumatic Brain Injury. Curr Neuropharmacol 2023; 21:1001-1012. [PMID: 35339178 PMCID: PMC10227914 DOI: 10.2174/1570159x20666220327222921] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/17/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the significant causes of death and morbidity, and it is hence a focus of translational research. Apoptosis plays an essential part in the pathophysiology of TBI, and its inhibition may help overcome TBI's negative consequences and improve functional recovery. Although physiological neuronal death is necessary for appropriate embryologic development and adult cell turnover, it can also drive neurodegeneration. Caspases are principal mediators of cell death due to apoptosis and are critical for the required cleavage of intracellular proteins of cells committed to die. Caspase-3 is the major executioner Caspase of apoptosis and is regulated by a range of cellular components during physiological and pathological conditions. Activation of Caspase-3 causes proteolyzation of DNA repair proteins, cytoskeletal proteins, and the inhibitor of Caspase-activated DNase (ICAD) during programmed cell death, resulting in morphological alterations and DNA damage that define apoptosis. Caspase-9 is an additional crucial part of the intrinsic pathway, activated in response to several stimuli. Caspases can be altered post-translationally or by modulatory elements interacting with the zymogenic or active form of a Caspase, preventing their activation. The necessity of Caspase-9 and -3 in diverse apoptotic situations suggests that mammalian cells have at least four distinct apoptotic pathways. Continued investigation of these processes is anticipated to disclose new Caspase regulatory mechanisms with consequences far beyond apoptotic cell death control. The present review discusses various Caspase-dependent apoptotic pathways and the treatment strategies to inhibit the Caspases potentially.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail, KSA;
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, NSW, Australia
| |
Collapse
|
10
|
Liu X, Yao JJ, Chen Z, Lei W, Duan R, Yao Z. Lipopolysaccharide sensitizes the therapeutic response of breast cancer to IAP antagonist. Front Immunol 2022; 13:906357. [PMID: 36119107 PMCID: PMC9471085 DOI: 10.3389/fimmu.2022.906357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Inhibitor of apoptosis protein (IAP) is a class of E3 ubiquitin ligases functioning to support cancer survival and growth. Many small-molecule IAP antagonists have been developed, aiming to degrade IAP proteins to kill cancer. We have evaluated the effect of lipopolysaccharide (LPS), a component of the bacterial outer membrane, on IAP antagonists in treating breast cancer in a mouse model to guide future clinical trials. We show that LPS promotes IAP antagonist-induced regression of triple-negative breast cancer (TNBC) from MDA-MB-231 cells in immunodeficient mice. IAP antagonists such as SM-164, AT-406, and BV6, do not kill MDA-MB-231 cells alone, but allow LPS to induce cancer cell apoptosis rapidly. The apoptosis caused by LPS plus SM-164 is blocked by toll-like receptor 4 (TLR4) or MyD88 inhibitor, which inhibits LPS-induced TNFα production by the cancer cells. Consistent with this, MDA-MB-231 cell apoptosis induced by LPS plus SM-164 is also blocked by the TNF inhibitor. LPS alone does not kill MDA-MB-231 cells because it markedly increases the protein level of cIAP1/2, which is directly associated with and stabilized by MyD88, an adaptor protein of TLR4. ER+ MCF7 breast cancer cells expressing low levels of cIAP1/2 undergo apoptosis in response to SM-164 combined with TNFα but not with LPS. Furthermore, TNFα but not LPS alone inhibits MCF7 cell growth in vitro. Consistent with these, LPS combined with SM-164, but not either of them alone, causes regression of ER+ breast cancer from MCF7 cells in immunodeficient mice. In summary, LPS sensitizes the therapeutic response of both triple-negative and ER+ breast cancer to IAP antagonist therapy by inducing rapid apoptosis of the cancer cells through TLR4- and MyD88-mediated production of TNFα. We conclude that antibiotics that can reduce microbiota-derived LPS should not be used together with an IAP antagonist for cancer therapy.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Jimmy J. Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- School of Engineering, University of Rochester, Rochester, NY, United States
| | - Zhongxuan Chen
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- School of Engineering, University of Rochester, Rochester, NY, United States
| | - Wei Lei
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medical Imaging, Henan University First Affiliated Hospital, Kaifeng, China
| | - Rong Duan
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Zhenqiang Yao,
| |
Collapse
|
11
|
Yuan L, Li P, Zheng Q, Wang H, Xiao H. The Ubiquitin-Proteasome System in Apoptosis and Apoptotic Cell Clearance. Front Cell Dev Biol 2022; 10:914288. [PMID: 35874820 PMCID: PMC9300945 DOI: 10.3389/fcell.2022.914288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/16/2022] [Indexed: 12/30/2022] Open
Abstract
Ubiquitination, a critical post-translational modification of proteins, refers to the covalent attachment of ubiquitin to the substrate and is involved in various biological processes such as protein stability regulation, DNA damage repair, and apoptosis, among others. E3 ubiquitin ligases are essential enzymes of the ubiquitin pathway with high substrate specificity and precisely regulate specific proteins’ turnover. As one of the most well-studied forms of programmed cell death, apoptosis is substantially conserved across the evolutionary tree. The final critical stage in apoptosis is the removal of apoptotic cells by professional and non-professional phagocytes. Apoptosis and apoptotic cell clearance are crucial for the normal development, differentiation, and growth of multicellular organisms, as well as their association with a variety of inflammatory and immune diseases. In this review, we discuss the role of ubiquitination and deubiquitination in apoptosis and apoptotic cell clearance.
Collapse
Affiliation(s)
- Lei Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Peiyao Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qian Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hui Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
12
|
Biswas DD, Martin RK, Brown LN, Mockenhaupt K, Gupta AS, Surace MJ, Tharakan A, Yester JW, Bhardwaj R, Conrad DH, Kordula T. Cellular inhibitor of apoptosis 2 (cIAP2) restricts neuroinflammation during experimental autoimmune encephalomyelitis. J Neuroinflammation 2022; 19:158. [PMID: 35718775 PMCID: PMC9208101 DOI: 10.1186/s12974-022-02527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Immune activation, neuroinflammation, and cell death are the hallmarks of multiple sclerosis (MS), which is an autoimmune demyelinating disease of the central nervous system (CNS). It is well-documented that the cellular inhibitor of apoptosis 2 (cIAP2) is induced by inflammatory stimuli and regulates adaptive and innate immune responses, cell death, and the production of inflammatory mediators. However, the impact of cIAP2 on neuroinflammation associated with MS and disease severity remains unknown.
Methods We used experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of MS, to assess the effect of cIAP2 deletion on disease outcomes. We performed a detailed analysis on the histological, cellular, and molecular levels. We generated and examined bone-marrow chimeras to identify the cIAP2-deficient cells that are critical to the disease outcomes. Results cIAP2−/− mice exhibited increased EAE severity, increased CD4+ T cell infiltration, enhanced proinflammatory cytokine/chemokine expression, and augmented demyelination. This phenotype was driven by cIAP2-deficient non-hematopoietic cells. cIAP2 protected oligodendrocytes from cell death during EAE by limiting proliferation and activation of brain microglia. This protective role was likely exerted by cIAP2-mediated inhibition of the non-canonical NLRP3/caspase-8-dependent myeloid cell activation during EAE. Conclusions Our findings suggest that cIAP2 is needed to modulate neuroinflammation, cell death, and survival during EAE. Significantly, our data demonstrate the critical role of cIAP2 in limiting the activation of microglia during EAE, which could be explored for developing MS therapeutics in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02527-6.
Collapse
Affiliation(s)
- Debolina D Biswas
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - LaShardai N Brown
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Karli Mockenhaupt
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Angela S Gupta
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Michael J Surace
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Anuj Tharakan
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jessie W Yester
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Reetika Bhardwaj
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Daniel H Conrad
- Department of Microbiology and Immunology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
13
|
Killing by Degradation: Regulation of Apoptosis by the Ubiquitin-Proteasome-System. Cells 2021; 10:cells10123465. [PMID: 34943974 PMCID: PMC8700063 DOI: 10.3390/cells10123465] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a cell suicide process that is essential for development, tissue homeostasis and human health. Impaired apoptosis is associated with a variety of human diseases, including neurodegenerative disorders, autoimmunity and cancer. As the levels of pro- and anti-apoptotic proteins can determine the life or death of cells, tight regulation of these proteins is critical. The ubiquitin proteasome system (UPS) is essential for maintaining protein turnover, which can either trigger or inhibit apoptosis. In this review, we will describe the E3 ligases that regulate the levels of pro- and anti-apoptotic proteins and assisting proteins that regulate the levels of these E3 ligases. We will provide examples of apoptotic cell death modulations using the UPS, determined by positive and negative feedback loop reactions. Specifically, we will review how the stability of p53, Bcl-2 family members and IAPs (Inhibitor of Apoptosis proteins) are regulated upon initiation of apoptosis. As increased levels of oncogenes and decreased levels of tumor suppressor proteins can promote tumorigenesis, targeting these pathways offers opportunities to develop novel anti-cancer therapies, which act by recruiting the UPS for the effective and selective killing of cancer cells.
Collapse
|
14
|
Hyeon SJ, Park J, Yoo J, Kim SH, Hwang YJ, Kim SC, Liu T, Shim HS, Kim Y, Cho Y, Woo J, Kim KS, Myers RH, Ryu HL, Kowall NW, Song EJ, Hwang EM, Seo H, Lee J, Ryu H. Dysfunction of X-linked inhibitor of apoptosis protein (XIAP) triggers neuropathological processes via altered p53 activity in Huntington's disease. Prog Neurobiol 2021; 204:102110. [PMID: 34166773 PMCID: PMC8364511 DOI: 10.1016/j.pneurobio.2021.102110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/24/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022]
Abstract
Mitochondrial dysfunction is associated with neuronal damage in Huntington's disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is not understood yet. Herein, we found that colocalization of XIAP and p53 was prominent in the cytosolic compartments of normal subjects but reduced in HD patients and HD transgenic animal models. Overexpression of mutant Huntingtin (mHTT) reduced XIAP levels and elevated mitochondrial localization of p53 in striatal cells in vitro and in vivo. Interestingly, XIAP interacted directly with the C-terminal domain of p53 and decreased its stability via autophagy. Overexpression of XIAP prevented mitochondrially targeted-p53 (Mito-p53)-induced mitochondrial oxidative stress and striatal cell death, whereas, knockdown of XIAP exacerbated Mito-p53-induced neuronal damage in vitro. In vivo transduction of AAV-shRNA XIAP in the dorsal striatum induced rapid onset of disease and reduced the lifespan of HD transgenic (N171-82Q) mice compared to WT littermate mice. XIAP dysfunction led to ultrastructural changes of the mitochondrial cristae and nucleus morphology in striatal cells. Knockdown of XIAP exacerbated neuropathology and motor dysfunctions in N171-82Q mice. In contrast, XIAP overexpression improved neuropathology and motor behaviors in both AAV-mHTT-transduced mice and N171-82Q mice. Our data provides a molecular and pathological mechanism that deregulation of XIAP triggers mitochondria dysfunction and other neuropathological processes via the neurotoxic effect of p53 in HD. Together, the XIAP-p53 pathway is a novel pathological marker and can be a therapeutic target for improving the symptoms in HD.
Collapse
Affiliation(s)
- Seung Jae Hyeon
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
| | - Jinyoung Park
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Junsang Yoo
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Su-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yu Jin Hwang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Seung-Chan Kim
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Tian Liu
- USF Health Byrd Alzheimer's Institute and Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33613, USA
| | - Hyun Soo Shim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yunha Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yakdol Cho
- KIST Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Jiwan Woo
- KIST Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Key-Sun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; KIST Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Richard H Myers
- Boston University Genome Science Institute and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hannah L Ryu
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Neil W Kowall
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; VA Boston Healthcare System, Boston, MA 02130, USA
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Hyemyung Seo
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea.
| | - Junghee Lee
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; VA Boston Healthcare System, Boston, MA 02130, USA.
| | - Hoon Ryu
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
15
|
Role of Extrinsic Apoptotic Signaling Pathway during Definitive Erythropoiesis in Normal Patients and in Patients with β-Thalassemia. Int J Mol Sci 2020; 21:ijms21093325. [PMID: 32397135 PMCID: PMC7246929 DOI: 10.3390/ijms21093325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Apoptosis is a process of programmed cell death which has an important role in tissue homeostasis and in the control of organism development. Here, we focus on information concerning the role of the extrinsic apoptotic pathway in the control of human erythropoiesis. We discuss the role of tumor necrosis factor α (TNFα), tumor necrosis factor ligand superfamily member 6 (FasL), tumor necrosis factor-related apoptosis-inducing (TRAIL) and caspases in normal erythroid maturation. We also attempt to initiate a discussion on the observations that mature erythrocytes contain most components of the receptor-dependent apoptotic pathway. Finally, we point to the role of the extrinsic apoptotic pathway in ineffective erythropoiesis of different types of β-thalassemia.
Collapse
|
16
|
Carusone TM, Cardiero G, Cerreta M, Mandrich L, Moran O, Porzio E, Catara G, Lacerra G, Manco G. WTAP and BIRC3 are involved in the posttranscriptional mechanisms that impact on the expression and activity of the human lactonase PON2. Cell Death Dis 2020; 11:324. [PMID: 32382056 PMCID: PMC7206036 DOI: 10.1038/s41419-020-2504-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
The activity of human paraoxonase 2 (PON2) is rapidly reduced in cells incubated with the bacterial quorormone 3-Oxo-dodecanoyl Homoserine Lactone (3OC12HSL), an observation that led to hypothesize a fast PON2 post-translational modification (PTM). Recently, we detected a 3OC12HSL-induced PTM in a cell-free system in which a crude extract from 3OC12HSL-treated HeLa cells was able to inactivate and ubiquitinate at position 144 a recombinant PON2. Here we show the occurrence of this and new PTMs on PON2 in HeLa cells. PTMs were found to gather nearby the two SNPs, A148G, and S311C, that are related to type-2 diabetes and its complications. Furthermore, we detected a PTM nearby a 12 amino acids region that is deleted in PON2 Isoform 2. An in vitro mutation analysis showed that the SNPs and the deletion are involved in PON2 activity and suggested a role of PTMs on its modulation, while a SAXS analysis pointed to Isoform 2 as being largely unstructured, compared to the wild type. Besides, we discovered a control of PON2 expression via a putative mRNA operon involving the Wilms tumor 1 associated protein (WTAP) and the E3 ubiquitin ligase (E3UbL) baculoviral IAP repeat-containing 3 (BIRC3).
Collapse
Affiliation(s)
- Teresa Maria Carusone
- Institute of Biochemistry and Cell Biology (IBBC, CNR), National Research Council, Naples, Italy
| | - Giovanna Cardiero
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", (IGB-ABT, CNR), National Research Council, Naples, Italy
| | - Mariangela Cerreta
- Institute of Biochemistry and Cell Biology (IBBC, CNR), National Research Council, Naples, Italy
| | - Luigi Mandrich
- Institute of Biochemistry and Cell Biology (IBBC, CNR), National Research Council, Naples, Italy
| | - Oscar Moran
- Institute of Biophysics (IBF, CNR), National Research Council, Genoa, Italy
| | - Elena Porzio
- Institute of Biochemistry and Cell Biology (IBBC, CNR), National Research Council, Naples, Italy
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology (IBBC, CNR), National Research Council, Naples, Italy
| | - Giuseppina Lacerra
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", (IGB-ABT, CNR), National Research Council, Naples, Italy.
| | - Giuseppe Manco
- Institute of Biochemistry and Cell Biology (IBBC, CNR), National Research Council, Naples, Italy.
| |
Collapse
|
17
|
IAP-Mediated Protein Ubiquitination in Regulating Cell Signaling. Cells 2020; 9:cells9051118. [PMID: 32365919 PMCID: PMC7290580 DOI: 10.3390/cells9051118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, the E3-ubiquitine ligases from IAP (Inhibitor of Apoptosis) family have emerged as potent regulators of immune response. In immune cells, they control signaling pathways driving differentiation and inflammation in response to stimulation of tumor necrosis factor receptor (TNFR) family, pattern-recognition receptors (PRRs), and some cytokine receptors. They are able to control the activity, the cellular fate, or the stability of actors of signaling pathways, acting at different levels from components of receptor-associated multiprotein complexes to signaling effectors and transcription factors, as well as cytoskeleton regulators. Much less is known about ubiquitination substrates involved in non-immune signaling pathways. This review aimed to present IAP ubiquitination substrates and the role of IAP-mediated ubiquitination in regulating signaling pathways.
Collapse
|
18
|
Shu B, Zhang J, Veeran S, Zhong G. Pro-Apoptotic Function Analysis of the Reaper Homologue IBM1 in Spodoptera frugiperda. Int J Mol Sci 2020; 21:ijms21082729. [PMID: 32326478 PMCID: PMC7215429 DOI: 10.3390/ijms21082729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022] Open
Abstract
As an important type of programmed cell death, apoptosis plays a critical role in lepidopteran insects in response to various internal and external stresses. It is controlled by a network of genes such as those encoding the inhibitor of apoptosis proteins. However, there are few studies on apoptosis-related genes in Spodoptera frugiperda. In this study, an orthologue to the Drosophila reaper gene, named Sf-IBM1, was identified from S. frugiperda, and a full-length sequence was obtained by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends PCR (RACE-PCR). The expression pattern of Sf-IBM1 was determined in different developmental stages and various tissues. Apoptotic stimuli including azadirachtin, camptothecin, and ultraviolet radiation (UV) induced the expression of Sf-IBM1 at both transcript and protein levels. Overexpression of Sf-IBM1 induced apoptosis in Sf9 cells, and the Sf-IBM1 protein was localized in mitochondria. The apoptosis induced by Sf-IBM1 could be blocked by the caspase universal inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK) and Sf-IAP1. Our results provide valuable information that should contribute to a better understanding of the molecular events that lead to apoptosis in lepidopterans.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Sethuraman Veeran
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-8528-0308; Fax: +86-20-8528-0203
| |
Collapse
|
19
|
Cullin-4B E3 ubiquitin ligase mediates Apaf-1 ubiquitination to regulate caspase-9 activity. PLoS One 2019; 14:e0219782. [PMID: 31329620 PMCID: PMC6645535 DOI: 10.1371/journal.pone.0219782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/01/2019] [Indexed: 11/25/2022] Open
Abstract
Apoptotic protease-activating factor 1 (Apaf-1) is a component of apoptosome, which regulates caspase-9 activity. In addition to apoptosis, Apaf-1 plays critical roles in the intra-S-phase checkpoint; therefore, impaired expression of Apaf-1 has been demonstrated in chemotherapy-resistant malignant melanoma and nuclear translocation of Apaf-1 has represented a favorable prognosis of patients with non-small cell lung cancer. In contrast, increased levels of Apaf-1 protein are observed in the brain in Huntington’s disease. The regulation of Apaf-1 protein is not yet fully understood. In this study, we show that etoposide triggers the interaction of Apaf-1 with Cullin-4B, resulting in enhanced Apaf-1 ubiquitination. Ubiquitinated Apaf-1, which was degraded in healthy cells, binds p62 and forms aggregates in the cytosol. This complex of ubiquitinated Apaf-1 and p62 induces caspase-9 activation following MG132 treatment of HEK293T cells that stably express bcl-xl. These results show that ubiquitinated Apaf-1 may activate caspase-9 under conditions of proteasome impairment.
Collapse
|
20
|
Shukla SK, Rafiq K. Proteasome biology and therapeutics in cardiac diseases. Transl Res 2019; 205:64-76. [PMID: 30342797 PMCID: PMC6372329 DOI: 10.1016/j.trsl.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/30/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
The ubiquitin proteasome system (UPS) is the major pathway for intracellular protein degradation in most organs, including the heart. UPS controls many fundamental biological processes such as cell cycle, cell division, immune responses, antigen presentation, apoptosis, and cell signaling. The UPS not only degrades substrates but also regulates activity of gene transcription at the post-transcription level. Emerging evidence suggests that impairment of UPS function is sufficient to cause a number of cardiac diseases, including heart failure, cardiomyopathies, hypertrophy, atrophy, ischemia-reperfusion, and atherosclerosis. Alterations in the expression of UPS components, changes in proteasomal peptidase activities and increased ubiquitinated and oxidized proteins have also been detected in diabetic cardiomyopathy (DCM). However, the pathophysiological role of the UPS in DCM has not been examined. Recently, in vitro and in vivo studies have proven highly valuable in assessing effects of various stressors on the UPS and, in some cases, suggesting a causal link between defective protein clearance and disease phenotypes in different cardiac diseases, including DCM. Translation of these findings to human disease can be greatly strengthened by corroboration of discoveries from experimental model systems using human heart tissue from well-defined patient populations. This review will summarize the general role of the UPS in different cardiac diseases, with major focus on DCM, and on recent advances in therapeutic development.
Collapse
Affiliation(s)
- Sanket Kumar Shukla
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Khadija Rafiq
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
21
|
Liu J, Giri BR, Chen Y, Cheng G. 14-3-3 protein and ubiquitin C acting as SjIAP interaction partners facilitate tegumental integrity in Schistosoma japonicum. Int J Parasitol 2019; 49:355-364. [PMID: 30797771 DOI: 10.1016/j.ijpara.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022]
Abstract
Schistosomiasis, caused by trematodes of the genus Schistosoma, remains an important public health issue. Adult schistosomes can survive in the definitive host for several decades, although they are subject to the host immune response. Consequently, understanding the mechanism underlying worm survival in the definitive hosts could aid in developing novel strategies against schistosomiasis. We previously found that an inhibitor of apoptosis in Schistosoma japonicum (SjIAP) could negatively regulate apoptosis by inhibiting caspase activity, which plays a critical role in maintaining tegument integrity. The current study aimed to further analyze the mechanism related to SjIAP governing worm tegument integrity; therefore, we used a yeast two-hybrid screen and identified a series of putative interacting partners of SjIAP, including 14-3-3 (Sj14-3-3) and ubiquitin C (SjUBC). Quantitative real time PCR (qRT-PCR) analysis indicated that transcript profiles of Sj14-3-3 and SjUBC increased together with worm development in definitive hosts, which corresponds to those of SjIAP in S. japonicum. Immunohistochemical analysis showed Sj14-3-3 and SjUBC were located in the tegument of adult parasites while they were also ubiquitously distributed in the bodies of worms. Silencing of Sj14-3-3/SjUBC expression led to increased caspase activity and induced worm death. Inhibition of Sj14-3-3 or SjUBC resulted in significant morphological alterations in the schistosome tegument. Overall, our findings indicated that Sj14-3-3 and SjUBC interacting with SjIAP may belong to another strategy of S. japonicum to maintain the tegument integrity.
Collapse
Affiliation(s)
- Juntao Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, 200241, China
| | - Bikash Ranjan Giri
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, 200241, China
| | - Yongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, 200241, China
| | - Guofeng Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, 200241, China.
| |
Collapse
|
22
|
Caspases orchestrate microglia instrumental functions. Prog Neurobiol 2018; 171:50-71. [DOI: 10.1016/j.pneurobio.2018.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 09/21/2018] [Accepted: 09/29/2018] [Indexed: 12/16/2022]
|
23
|
Atkin-Smith GK, Duan M, Chen W, Poon IKH. The induction and consequences of Influenza A virus-induced cell death. Cell Death Dis 2018; 9:1002. [PMID: 30254192 PMCID: PMC6156503 DOI: 10.1038/s41419-018-1035-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 12/27/2022]
Abstract
Infection with Influenza A virus (IAV) causes significant cell death within the upper and lower respiratory tract and lung parenchyma. In severe infections, high levels of cell death can exacerbate inflammation and comprise the integrity of the epithelial cell barrier leading to respiratory failure. IAV infection of airway and alveolar epithelial cells promotes immune cell infiltration into the lung and therefore, immune cell types such as macrophages, monocytes and neutrophils are readily exposed to IAV and infection-induced death. Although the induction of cell death through apoptosis and necrosis following IAV infection is a well-known phenomenon, the molecular determinants responsible for inducing cell death is not fully understood. Here, we review the current understanding of IAV-induced cell death and critically evaluate the consequences of cell death in aiding either the restoration of lung homoeostasis or the progression of IAV-induced lung pathologies.
Collapse
Affiliation(s)
- Georgia K Atkin-Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Mubing Duan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
24
|
Abstract
Inhibitor of apoptosis (IAP) family comprises a group of endogenous proteins that function as main regulators of caspase activity and cell death. They are considered the main culprits in evasion of apoptosis, which is a fundamental hallmark of carcinogenesis. Overexpression of IAP proteins has been documented in various solid and hematological malignancies, rendering them resistant to standard chemotherapeutics and radiation therapy and conferring poor prognosis. This observation has urged their exploitation as therapeutic targets in cancer with promising pre-clinical outcomes. This review describes the structural and functional features of IAP proteins to elucidate the mechanism of their anti-apoptotic activity. We also provide an update on patterns of IAP expression in different tumors, their impact on treatment response and prognosis, as well as the emerging investigational drugs targeting them. This aims at shedding the light on the advances in IAP targeting achieved to date, and encourage further development of clinically applicable therapeutic approaches.
Collapse
Affiliation(s)
- Mervat S Mohamed
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
- Department of Chemistry, Biochemistry Speciality, Faculty of Science, Cairo University, Giza, Egypt.
- , Tabuk, Kingdom of Saudi Arabia.
| | - Mai K Bishr
- Department of Radiotherapy, Children's Cancer Hospital Egypt (CCHE), Cairo, Egypt
| | - Fahad M Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Ayat G Ali
- Department of Biochemistry, El Sahel Teaching Hospital, Cairo, Egypt
| |
Collapse
|
25
|
Resistance to apoptosis in Leishmania infantum-infected human macrophages: a critical role for anti-apoptotic Bcl-2 protein and cellular IAP1/2. Clin Exp Med 2017; 18:251-261. [PMID: 29218444 DOI: 10.1007/s10238-017-0482-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/30/2017] [Indexed: 12/18/2022]
Abstract
Apoptosis is essential for maintaining tissue homoeostasis in multi-cellular organisms, also occurring as a defence mechanism against a number of infectious agents, such as parasites. Among intracellular protozoan parasites reported to interfere with the apoptotic machinery of the host cell, Leishmania (L.) sp. have been described, although the various species might activate different pathways in their host cells. Since until now it is not yet well clarified the signalling pathway involved in the apoptosis modulation by L. infantum, the aim of this work was to investigate the role of the anti-apoptotic protein, Bcl-2, and the inhibitors of apoptosis IAP1/2 (cIAP1/2) in cell death resistance showed in L. infantum-infected human macrophages. We observed that actinomycin D-induced apoptosis in U-937 cells, evaluated by Annexin V-CY3, DNA fragmentation and caspase-3, caspase-8, caspase-9 activation assays, was inhibited in the presence of L. infantum promastigotes and that, in these conditions, Bcl-2 protein expression resulted significantly upregulated. Interestingly, L. infantum infection in combination with the Bcl-2 inhibitor, ABT-737, significantly increased the apoptotic process in actinomycin D-treated cells, suggesting a role for Bcl-2 in the anti-apoptotic regulation of human macrophages induced by L. infantum infection. Moreover, Western blotting analysis demonstrated not only a significantly upregulation of cIAP1/2 in infected U-937 cells, but also that the inhibition of cIAPs, employing specific siRNAs, restored the apoptotic effect of actinomycin in infected macrophages. These results clearly support the hypothesis that Bcl-2 and cIAPs are strongly involved in the anti-apoptotic action played by L. infantum in human macrophages.
Collapse
|
26
|
Burgon PG, Megeney LA. Caspase signaling, a conserved inductive cue for metazoan cell differentiation. Semin Cell Dev Biol 2017; 82:96-104. [PMID: 29129746 DOI: 10.1016/j.semcdb.2017.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
Caspase signaling pathways were originally discovered as conveyors of programmed cell death, yet a compendium of research over the past two decades have demonstrated that these same conduits have a plethora of physiologic functions. Arguably the most extensive non-death activity that has been attributed to this protease clade is the capacity to induce cell differentiation. Caspase control of differentiation is conserved across diverse metazoan organisms from flies to humans, suggesting an ancient origin for this form of cell fate control. Here we discuss the mechanisms by which caspase enzymes manage differentiation, the targeted substrates that may be common across cell lineages, and the countervailing signals that may be essential for these proteases to 'execute' this non-death cell fate.
Collapse
Affiliation(s)
- Patrick G Burgon
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Medicine, Division of Cardiology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Lynn A Megeney
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Medicine, Division of Cardiology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
27
|
Modulation of apoptotic response by LAR family phosphatases-cIAP1 signaling during urinary tract morphogenesis. Proc Natl Acad Sci U S A 2017; 114:E9016-E9025. [PMID: 29073098 DOI: 10.1073/pnas.1707229114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The elimination of unwanted cells by apoptosis is necessary for tissue morphogenesis. However, the cellular control of morphogenetic apoptosis is poorly understood, notably the modulation of cell sensitivity to apoptotic stimuli. Ureter maturation, the process by which the ureter is displaced to the bladder wall, represents an exquisite example of morphogenetic apoptosis, requiring the receptor protein tyrosine phosphatases (RPTPs): LAR and RPTPσ. Here we show that LAR-RPTPs act through cellular inhibitor of apoptosis protein 1 (cIAP1) to modulate caspase 3,7-mediated ureter maturation. Pharmacologic or genetic inactivation of cIAP1 reverts the apoptotic deficit of LAR-RPTP-deficient embryos. Moreover, Birc2 (cIAP1) inactivation generates excessive apoptosis leading to vesicoureteral reflux in newborns, which underscores the importance of apoptotic modulation during urinary tract morphogenesis. We finally demonstrate that LAR-RPTP deficiency increases cIAP1 stability during apoptotic cell death. Together these results identify a mode of cIAP1 regulation playing a critical role in the cellular response to apoptotic pathway activation in the embryo.
Collapse
|
28
|
Nayyar N, Kaur I, Malhotra P, Bhatnagar RK. Quantitative proteomics of Sf21 cells during Baculovirus infection reveals progressive host proteome changes and its regulation by viral miRNA. Sci Rep 2017; 7:10902. [PMID: 28883418 PMCID: PMC5589936 DOI: 10.1038/s41598-017-10787-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/11/2017] [Indexed: 11/09/2022] Open
Abstract
System level knowledge of alterations in host is crucial to elucidate the molecular events of viral pathogenesis and to develop strategies to block viral establishment and amplification. Here, we applied quantitative proteomics approach to study global proteome changes in the host; Spodoptera frugiperda upon infection by a baculovirus, Spodoptera litura NPV at two stages i.e. 12 h and 72 h post infection. At 12 hpi, >95% of host proteins remained stable, however at 72 hpi, 52% host proteins exhibited downregulation of 2-fold or more. Functional analysis revealed significant upregulation of transposition and proteasomal machinery while translation, transcription, protein export and oxidative phosphorylation pathways were adversely affected. An assessment of perturbed proteome after viral infection and viral miRNA expression led to the identification of 117 genes that are potential targets of 10 viral miRNAs. Using miRNA mimics, we confirmed the down regulation of 9 host genes. The results comprehensively show dynamics of host responses after viral infection.
Collapse
Affiliation(s)
- Nishtha Nayyar
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.,Institute of Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, GKVK, Bellary Road, Bangalore, 560065, India
| | - Inderjeet Kaur
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Raj K Bhatnagar
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
29
|
He M, Zhou Z, Wu G, Chen Q, Wan Y. Emerging role of DUBs in tumor metastasis and apoptosis: Therapeutic implication. Pharmacol Ther 2017; 177:96-107. [PMID: 28279784 PMCID: PMC5565705 DOI: 10.1016/j.pharmthera.2017.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Malfunction of ubiquitin-proteasome system is tightly linked to tumor formation and tumor metastasis. Targeting the ubiquitin-pathway provides a new strategy for anti-cancer therapy. Despite the parts played by ubiquitin modifiers, removal of ubiquitin from the functional proteins by the deubiquitinating enzymes (DUBs) plays an important role in governing the multiple steps of the metastatic cascade, including local invasion, dissemination, and eventual colonization of the tumor to distant organs. Both deregulated ubiquitination and deubiquitination could lead to dysregulation of various critical events and pathways such as apoptosis and epithelial-mesenchymal transition (EMT). Recent TCGA study has further revealed the connection between mutations of DUBs and various types of tumors. In addition, emerging drug design targeting DUBs provides a new strategy for anti-cancer therapy. In this review, we will summarize the role of deubiquitination and highlight the recent discoveries of DUBs with regards to multiple metastatic events including anti-apoptosis pathway and EMT. We will further discuss the regulation of deubiquitination as a novel strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Mingjing He
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Zhuan Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - George Wu
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Yong Wan
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
30
|
Alves J, Garay-Malpartida M, Occhiucci JM, Belizário JE. Modulation of procaspase-7 self-activation by PEST amino acid residues of the N-terminal prodomain and intersubunit linker. Biochem Cell Biol 2017; 95:634-643. [PMID: 28658581 DOI: 10.1139/bcb-2016-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Procaspase-7 zymogen polypeptide is composed of a short prodomain, a large subunit (p20), and a small subunit (p10) connected to an intersubunit linker. Caspase-7 is activated by an initiator caspase-8 and -9, or by autocatalysis after specific cleavage at IQAD198↓S located at the intersubunit linker. Previously, we identified that PEST regions made of amino acid residues Pro (P), Glu (E), Asp (D), Ser (S), Thr (T), Asn (N), and Gln (Q) are conserved flanking amino acid residues in the cleavage sites within a prodomain and intersubunit linker of all caspase family members. Here we tested the impact of alanine substitution of PEST amino acid residues on procaspase-7 proteolytic self-activation directly in Escherichia coli. The p20 and p10 subunit cleavage were significantly delayed in double caspase-7 mutants in the prodomain (N18A/P26A) and intersubunit linker (S199A/P201A), compared with the wild-type caspase-7. The S199A/P201A mutants effectively inhibited the p10 small subunit cleavage. However, the mutations did not change the kinetic parameters (kcat/KM) and optimal tetrapeptide specificity (DEVD) of the purified mutant enzymes. The results suggest a role of PEST-amino acid residues in the molecular mechanism for prodomain and intersubunit cleavage and caspase-7 self-activation.
Collapse
Affiliation(s)
- Juliano Alves
- a Department of Pharmacology, Institute of Biomedical Sciences, Avenida Lineu Prestes, 1524, São Paulo, SP, 05508-900, Brazil
| | - Miguel Garay-Malpartida
- b School of Arts, Communication and Humanity, University of São Paulo, Rua Arlindo Béttio, 1000, São Paulo, SP, 03828-000, Brazil
| | - João M Occhiucci
- a Department of Pharmacology, Institute of Biomedical Sciences, Avenida Lineu Prestes, 1524, São Paulo, SP, 05508-900, Brazil
| | - José E Belizário
- a Department of Pharmacology, Institute of Biomedical Sciences, Avenida Lineu Prestes, 1524, São Paulo, SP, 05508-900, Brazil
| |
Collapse
|
31
|
Nicholson J, Jevons SJ, Groselj B, Ellermann S, Konietzny R, Kerr M, Kessler BM, Kiltie AE. E3 Ligase cIAP2 Mediates Downregulation of MRE11 and Radiosensitization in Response to HDAC Inhibition in Bladder Cancer. Cancer Res 2017; 77:3027-3039. [PMID: 28363998 DOI: 10.1158/0008-5472.can-16-3232] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/10/2017] [Accepted: 03/27/2017] [Indexed: 11/16/2022]
Abstract
The MRE11/RAD50/NBS1 (MRN) complex mediates DNA repair pathways, including double-strand breaks induced by radiotherapy. Meiotic recombination 11 homolog (MRE11) is downregulated by histone deacetylase inhibition (HDACi), resulting in reduced levels of DNA repair in bladder cancer cells and radiosensitization. In this study, we show that the mechanism of this downregulation is posttranslational and identify a C-terminally truncated MRE11, which is formed after HDAC inhibition as full-length MRE11 is downregulated. Truncated MRE11 was stabilized by proteasome inhibition, exhibited a decreased half-life after treatment with panobinostat, and therefore represents a newly identified intermediate induced and degraded in response to HDAC inhibition. The E3 ligase cellular inhibitor of apoptosis protein 2 (cIAP2) was upregulated in response to HDAC inhibition and was validated as a new MRE11 binding partner whose upregulation had similar effects to HDAC inhibition. cIAP2 overexpression resulted in downregulation and altered ubiquitination patterns of MRE11 and mediated radiosensitization in response to HDAC inhibition. These results highlight cIAP2 as a player in the DNA damage response as a posttranscriptional regulator of MRE11 and identify cIAP2 as a potential target for biomarker discovery or chemoradiation strategies in bladder cancer. Cancer Res; 77(11); 3027-39. ©2017 AACR.
Collapse
Affiliation(s)
- Judith Nicholson
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom.
| | - Sarah J Jevons
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Blaz Groselj
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Sophie Ellermann
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Rebecca Konietzny
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Martin Kerr
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Benedikt M Kessler
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anne E Kiltie
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
32
|
Gilda JE, Gomes AV. Proteasome dysfunction in cardiomyopathies. J Physiol 2017; 595:4051-4071. [PMID: 28181243 DOI: 10.1113/jp273607] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) plays a critical role in removing unwanted intracellular proteins and is involved in protein quality control, signalling and cell death. Because the heart is subject to continuous metabolic and mechanical stress, the proteasome plays a particularly important role in the heart, and proteasome dysfunction has been suggested as a causative factor in cardiac dysfunction. Proteasome impairment has been detected in cardiomyopathies, heart failure, myocardial ischaemia, and hypertrophy. Proteasome inhibition is also sufficient to cause cardiac dysfunction in healthy pigs, and patients using a proteasome inhibitor for cancer therapy have a higher incidence of heart failure. In this Topical Review we discuss the experimental data which suggest UPS dysfunction is a common feature of cardiomyopathies, with an emphasis on hypertrophic cardiomyopathy caused by sarcomeric mutations. We also propose potential mechanisms by which cardiomyopathy-causing mutations may lead to proteasome impairment, such as altered calcium handling and increased oxidative stress due to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jennifer E Gilda
- Department of Neurobiology, Physiology, and Behaviour, University of California, Davis, CA, 95616, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behaviour, University of California, Davis, CA, 95616, USA.,Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
33
|
Affiliation(s)
- Kristin White
- Cutaneous Biology Research Center, Massachusetts General Hospital Research Institute/ Harvard Medical School, Boston, Massachusetts, United Sates of America
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - J. Marie Hardwick
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
34
|
Kamber Kaya HE, Ditzel M, Meier P, Bergmann A. An inhibitory mono-ubiquitylation of the Drosophila initiator caspase Dronc functions in both apoptotic and non-apoptotic pathways. PLoS Genet 2017; 13:e1006438. [PMID: 28207763 PMCID: PMC5313150 DOI: 10.1371/journal.pgen.1006438] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/21/2016] [Indexed: 11/19/2022] Open
Abstract
Apoptosis is an evolutionary conserved cell death mechanism, which requires activation of initiator and effector caspases. The Drosophila initiator caspase Dronc, the ortholog of mammalian Caspase-2 and Caspase-9, has an N-terminal CARD domain that recruits Dronc into the apoptosome for activation. In addition to its role in apoptosis, Dronc also has non-apoptotic functions such as compensatory proliferation. One mechanism to control the activation of Dronc is ubiquitylation. However, the mechanistic details of ubiquitylation of Dronc are less clear. For example, monomeric inactive Dronc is subject to non-degradative ubiquitylation in living cells, while ubiquitylation of active apoptosome-bound Dronc triggers its proteolytic degradation in apoptotic cells. Here, we examined the role of non-degradative ubiquitylation of Dronc in living cells in vivo, i.e. in the context of a multi-cellular organism. Our in vivo data suggest that in living cells Dronc is mono-ubiquitylated on Lys78 (K78) in its CARD domain. This ubiquitylation prevents activation of Dronc in the apoptosome and protects cells from apoptosis. Furthermore, K78 ubiquitylation plays an inhibitory role for non-apoptotic functions of Dronc. We provide evidence that not all of the non-apoptotic functions of Dronc require its catalytic activity. In conclusion, we demonstrate a mechanism whereby Dronc’s apoptotic and non-apoptotic activities can be kept silenced in a non-degradative manner through a single ubiquitylation event in living cells. Apoptosis is a programmed cell death mechanism which is conserved from flies to humans. Apoptosis is mediated by proteases, termed caspases that cleave cellular proteins and trigger the death of the cell. Activation of caspases is regulated at various levels such as protein-protein interaction for initiator caspases and ubiquitylation. Caspase 9 in mammals and its Drosophila ortholog Dronc carry a protein-protein interaction domain (CARD) in their prodomain which interacts with scaffolding proteins to form the apoptosome, a cell-death platform. Here, we show that Dronc is mono-ubiquitylated at Lysine 78 in its CARD domain. This ubiquitylation interferes with the formation of the apoptosome, causing inhibition of apoptosis. In addition to its apoptotic function, Dronc also participates in events where caspase activity is not required for cell killing, but for regulating other functions, so-called non-apoptotic functions of caspases such as apoptosis-induced proliferation. We found that mono-ubiquitylation of Lysine 78 plays an inhibitory role for these non-apoptotic functions of Dronc. Interestingly, we demonstrate that the catalytic activity of Dronc is not strictly required in these processes. Our in vivo study sheds light on how a single mono-ubiquitylation event could inhibit both apoptotic and non-apoptotic functions of a caspase.
Collapse
Affiliation(s)
- Hatem Elif Kamber Kaya
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Mark Ditzel
- Institute for Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, London, United Kingdom
| | - Andreas Bergmann
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
35
|
Xu XM, Zhang ML, Zhang Y, Zhao L. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins. Oncol Lett 2016; 12:3779-3784. [PMID: 27895730 PMCID: PMC5104166 DOI: 10.3892/ol.2016.5170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/09/2016] [Indexed: 12/21/2022] Open
Abstract
In the present study, we investigated the effects and mechanisms of Osthole on the apoptosis of non-small cell lung cancer (NSCLC) cells and its synergistic effect with Embelin. Our results revealed that treatment with both Osthole and Embelin inhibited cell proliferation. Notably, combination treatment of Osthole and Embelin inhibited cell proliferation more significantly compared with monotherapy. In addition, morphological analysis and Annexin V/propidium iodide analysis revealed that the combination of Osthole and Embelin enhanced their effect on cell apoptosis. We further examined the effect of Osthole on the expression of inhibitor of apoptosis protein (IAP) family proteins. That treatment of A549 lung cancer cells with various concentrations of Osthole was observed to decrease the protein expression of X-chromosome-encoded IAP, c-IAP1, c-IAP2 and Survivin, and increase Smac expression in a dose-dependent manner. Furthermore, it was noted that Osthole or Embelin alone increased the expression of BAX, caspase-3, caspase-9, cleaved caspase-3 and cleaved caspase-9, and decreased Bcl-2 levels following treatment. Osthole and Embelin combination treatment had a synergistic effect on the regulation of these proteins. In conclusion, our study demonstrated that Osthole inhibited proliferation and induced the apoptosis of lung cancer cells via IAP family proteins in a dose-dependent manner. Osthole enhances the antitumor effect of Embelin, indicating that combination of Osthole and Embelin has potential clinical significance in the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiao-Man Xu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Man-Li Zhang
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yi Zhang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Li Zhao
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
36
|
Seidelin JB. Regulation of antiapoptotic and cytoprotective pathways in colonic epithelial cells in ulcerative colitis. Scand J Gastroenterol 2016; 50 Suppl 1:1-29. [PMID: 26513451 DOI: 10.3109/00365521.2016.1101245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ulcerative colitis is an inflammatory bowel disease involving the colon resulting in bloody diarrhea and increased risk of colorectal cancer in certain patient subgroups. Increased apoptosis in the epithelial cell layer causes increased permeability, especially during flares; this leads to translocation of luminal pathogens resulting in a continued inflammatory drive. The present work investigates how epithelial apoptosis is regulated in ulcerative colitis. The main results are that Fas mediated apoptosis is inhibited during flares of ulcerative colitis, probably by an upregulation of cellular inhibitor of apoptosis protein 2 (cIAP2) and cellular FLICE-like inhibitory protein. cIAP2 is upregulated in regenerative epithelial cells both in ulcerative colitis and in experimental intestinal wounds. Inhibition of cIAP2 decreases wound healing in vitro possibly through inhibition of migration. Altogether, it is shown that epithelial cells in ulcerative colitis responds to the hostile microenvironment by activation of cytoprotective pathways that tend to counteract the cytotoxic effects of inflammation. However, the present studies also show that epithelial cells produce increased amounts of reactive oxygen species during stimulation with tumor necrosis factor-α and interferon-γ resulting in DNA instability. The combined effect of increased DNA-instability and decreased apoptosis responses could lead to neoplasia.
Collapse
Affiliation(s)
- Jakob B Seidelin
- a Department of Gastroenterology, Medical Section , Herlev Hospital, University of Copenhagen , Herlev , Denmark
| |
Collapse
|
37
|
Increased resistance to proteasome inhibitors in multiple myeloma mediated by cIAP2--implications for a combinatorial treatment. Oncotarget 2016; 6:20621-35. [PMID: 26036313 PMCID: PMC4653030 DOI: 10.18632/oncotarget.4139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/23/2015] [Indexed: 11/25/2022] Open
Abstract
Despite the introduction of new treatment options for multiple myeloma (MM), a majority of patients relapse due to the development of resistance. Unraveling new mechanisms underlying resistance could lead to identification of possible targets for combinatorial treatment. Using TRAF3 deleted/mutated MM cell lines, we evaluated the role of the cellular inhibitor of apoptosis 2 (cIAP2) in drug resistance and uncovered the plausible mechanisms underlying this resistance and possible strategies to overcome this by combinatorial treatment. In MM, cIAP2 is part of the gene signature of aberrant NF-κB signaling and is heterogeneously expressed amongst MM patients. In cIAP2 overexpressing cells a decreased sensitivity to the proteasome inhibitors bortezomib, MG132 and carfilzomib was observed. Gene expression analysis revealed that 440 genes were differentially expressed due to cIAP2 overexpression. Importantly, the data imply that cIAPs are rational targets for combinatorial treatment in the population of MM with deleted/mutated TRAF3. Indeed, we found that treatment with the IAP inhibitor AT-406 enhanced the anti-MM effect of bortezomib in the investigated cell lines. Taken together, our results show that cIAP2 is an important factor mediating bortezomib resistance in MM cells harboring TRAF3 deletion/mutation and therefore should be considered as a target for combinatorial treatment.
Collapse
|
38
|
de Freitas AC, Gurgel AP, de Lima EG, de França São Marcos B, do Amaral CMM. Human papillomavirus and lung cancinogenesis: an overview. J Cancer Res Clin Oncol 2016; 142:2415-2427. [PMID: 27357515 DOI: 10.1007/s00432-016-2197-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/18/2016] [Indexed: 01/14/2023]
Abstract
Lung cancer is the most common cause of cancer deaths worldwide. Although tobacco smoking is considered to be the main risk factor and the most well-established risk factor for lung cancer, a number of patients who do not smoke have developed this disease. This number varies between 15 % to over one-half of lung cancer cases, and the deaths from lung cancer in non-smokers are increasing every year. There are many other agents that are thought to be etiological, including diesel exhaust exposure, metals, radiation, radon, hormonal factors, cooking oil, air pollution and infectious diseases, such as human papillomavirus (HPV). Studies in various parts of the world have detected HPV DNA at different rates in lung tumors. However, the role of HPV in lung cancer is still unclear. Thus, in this review, we investigated some molecular mechanisms of HPV protein activity in host cells, the entry of HPV into lung tissue and the possible route used by the virus to reach the lung cells.
Collapse
Affiliation(s)
- Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Cidade Universitária, Av Professor Moraes Rêgo S/N, Recife, Pernambuco, 50670-901, Brazil.
| | - Ana Pavla Gurgel
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Cidade Universitária, Av Professor Moraes Rêgo S/N, Recife, Pernambuco, 50670-901, Brazil
| | - Elyda Golçalves de Lima
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Cidade Universitária, Av Professor Moraes Rêgo S/N, Recife, Pernambuco, 50670-901, Brazil
| | - Bianca de França São Marcos
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Cidade Universitária, Av Professor Moraes Rêgo S/N, Recife, Pernambuco, 50670-901, Brazil
| | - Carolina Maria Medeiros do Amaral
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Cidade Universitária, Av Professor Moraes Rêgo S/N, Recife, Pernambuco, 50670-901, Brazil
| |
Collapse
|
39
|
Bai T, Wang F, Mellen N, Zheng Y, Cai L. Diabetic cardiomyopathy: role of the E3 ubiquitin ligase. Am J Physiol Endocrinol Metab 2016; 310:E473-83. [PMID: 26732687 DOI: 10.1152/ajpendo.00467.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/29/2015] [Indexed: 12/21/2022]
Abstract
Diabetic cardiomyopathy (DCM) is the leading cause of mortality in diabetes. As the number of cases of diabetes continues to rise, it is urgent to develop new strategies to protect against DCM, which is characterized by cardiac hypertrophy, increased apoptosis, fibrosis, and altered insulin metabolism. The E3 ubiquitin ligases (E3s), one component of the ubiquitin-proteasome system, play vital roles in all of the features of DCM listed above. They also modulate the activity of several transcription factors involved in the pathogenesis of DCM. In addition, the E3s degrade both insulin receptor and insulin receptor substrates and also regulate insulin gene transcription, leading to insulin resistance and insulin deficiency. Therefore, the E3s may be a driving force for DCM. This review summarizes currently available studies to analyze the roles of the E3s in DCM, enriches our knowledge of how DCM develops, and provides a novel strategy to protect heart from diabetes.
Collapse
Affiliation(s)
- Tao Bai
- Cardiovascular Center, First Hospital of Jilin University, Changchun, China; Kosair Children's Hospital Research Institute, Departments of Pediatrics and Radiation Oncology, University of Louisville, Louisville, Kentucky
| | - Fan Wang
- Internal Medicine, People's Hospital of Jilin Province, Changchun, China; and
| | - Nicholas Mellen
- Kosair Children's Hospital Research Institute, Departments of Pediatrics and Radiation Oncology, University of Louisville, Louisville, Kentucky
| | - Yang Zheng
- Cardiovascular Center, First Hospital of Jilin University, Changchun, China;
| | - Lu Cai
- Kosair Children's Hospital Research Institute, Departments of Pediatrics and Radiation Oncology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
40
|
Unsain N, Barker PA. New Views on the Misconstrued: Executioner Caspases and Their Diverse Non-apoptotic Roles. Neuron 2016; 88:461-74. [PMID: 26539888 DOI: 10.1016/j.neuron.2015.08.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Initially characterized for their roles in apoptosis, executioner caspases have emerged as important regulators of an array of cellular activities. This is especially true in the nervous system, where sublethal caspase activity has been implicated in axonal pathfinding and branching, axonal degeneration, dendrite pruning, regeneration, long-term depression, and metaplasticity. Here we examine the roles of sublethal executioner caspase activity in nervous system development and maintenance, consider the mechanisms that locally activate and restrain these potential killers, and discuss how their activity be subverted in neurodegenerative disease.
Collapse
Affiliation(s)
- Nicolas Unsain
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Instituto Nacional de Investigación Médica Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Friuli 2434, Córdoba (5016), Argentina
| | - Philip A Barker
- Irving K. Barber School of Arts and Sciences, University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
41
|
Abstract
OBJECTIVES The inhibitor of apoptosis (IAP) proteins are critical modulators of chemotherapeutic resistance in various cancers. To address the alarming emergence of chemotherapeutic resistance in pancreatic cancer, we investigated the efficacy of the turmeric derivative curcumin in reducing IAP protein and mRNA expression resulting in pancreatic cancer cell death. METHODS The pancreatic adenocarcinoma cell line PANC-1 was used to assess curcumin's effects in pancreatic cancer. Curcumin uptake was measured by spectral analysis and fluorescence microscopy. AlamarBlue and Trypan blue exclusion assays were used to determine PANC-1 cell viability after curcumin treatment. Visualization of PANC-1 cell death was performed using Hoffman Modulation Contrast microscopy. Western blot, and polymerase chain reaction analyses were used to evaluate curcumin's effects on IAP protein and mRNA expression. RESULTS Curcumin enters PANC-1 cells and is ubiquitously present within the cell after treatment. Furthermore, curcumin reduces cell viability and induces morphological changes characteristic of cell death. Additionally, curcumin decreases IAP protein and mRNA expression in PANC-1 cells. CONCLUSIONS These data demonstrate that PANC-1 cells are sensitive to curcumin treatment. Futthermore, curcumin is a potential therapeutic tool for overcoming chemotherapeutic resistance mediated by IAPs. Together, this data supports a role for curcumin as part of the therapeutic approach for the treatment of pancreatic cancer.
Collapse
|
42
|
Nakagawa T, Nakayama K. Protein monoubiquitylation: targets and diverse functions. Genes Cells 2015; 20:543-62. [PMID: 26085183 PMCID: PMC4744734 DOI: 10.1111/gtc.12250] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/19/2015] [Indexed: 12/14/2022]
Abstract
Ubiquitin is a 76-amino acid protein whose conjugation to protein targets is a form of post-translational modification. Protein ubiquitylation is characterized by the covalent attachment of the COOH-terminal carboxyl group of ubiquitin to an amino group of the substrate protein. Given that the NH2 -terminal amino group is usually masked, internal lysine residues are most often targeted for ubiquitylation. Polyubiquitylation refers to the formation of a polyubiquitin chain on the substrate as a result of the ubiquitylation of conjugated ubiquitin. The structures of such polyubiquitin chains depend on the specific lysine residues of ubiquitin targeted for ubiquitylation. Most of the polyubiquitin chains other than those linked via lysine-63 and methionine-1 of ubiquitin are recognized by the proteasome and serve as a trigger for substrate degradation. In contrast, polyubiquitin chains linked via lysine-63 and methionine-1 serve as a binding platform for proteins that function in immune signal transduction or DNA repair. With the exception of a few targets such as histones, the functions of protein monoubiquitylation have remained less clear. However, recent proteomics analysis has shown that monoubiquitylation occurs more frequently than polyubiquitylation, and studies are beginning to provide insight into its biologically important functions. Here, we summarize recent findings on protein monoubiquitylation to provide an overview of the targets and molecular functions of this modification.
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Miyagi, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Miyagi, Japan
| |
Collapse
|
43
|
Cao Z, Li X, Li J, Luo W, Huang C, Chen J. X-linked inhibitor of apoptosis protein (XIAP) lacking RING domain localizes to the nuclear and promotes cancer cell anchorage-independent growth by targeting the E2F1/Cyclin E axis. Oncotarget 2015; 5:7126-37. [PMID: 25216527 PMCID: PMC4196189 DOI: 10.18632/oncotarget.2227] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The inhibitor of apoptosis protein XIAP (X-linked inhibitor of apoptosis protein) is a well-documented protein that is located in cytoplasm acting as a potent regulator of cell apoptosis. Here, we showed that expressing XIAP with RING (Really Interesting New Gene) domain deletion (XIAPΔRING) in cancer cells promoted cancer cell anchorage-independent growth and G1/S phase transition companied with increasing cyclin e transcription activity and protein expression. Further studies revealed that XIAPΔRING was mainly localized in nuclear with increased binding with E2F1, whereas XIAP with BIR (Baculoviral IAP Repeat) domains deletion (XIAPΔBIRs) was entirely presented in cytoplasma with losing its binding with E2F1, suggesting that RING domain was able to inhibit BIR domains nuclear localization, by which impaired BIRs binding with E2F1 in cellular nucleus in intact cells. These studies identified a new function of XIAP protein in cellular nucleus is to regulate E2F1 transcriptional activity by binding with E2F1 in cancer cells. Our current finding of an effect of XIAPΔRING expression on cancer cell anchorage-independent growth suggests that overexpression of this protein may contribute to genetic instability associated with cell cycle and checkpoint perturbations, in addition to its impact on cellular apoptosis.
Collapse
Affiliation(s)
- Zipeng Cao
- Department of Occupational and Environmental Health and Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China. Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Xueyong Li
- Department of Plastic and Burn Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Wenjing Luo
- Department of Occupational and Environmental Health and Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Jingyuan Chen
- Department of Occupational and Environmental Health and Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
44
|
Budhidarmo R, Day CL. IAPs: Modular regulators of cell signalling. Semin Cell Dev Biol 2014; 39:80-90. [PMID: 25542341 DOI: 10.1016/j.semcdb.2014.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/17/2014] [Indexed: 01/30/2023]
Abstract
Members of the inhibitor of apoptosis (IAP) family are characterised by the presence of at least one baculoviral IAP repeat (BIR) domain. However, during the course of evolution, other globular modules have been adopted to perform distinct functions. Consequently, the IAP family is now recognised as consisting of members that perform critical functions in different aspects of cellular regulation. In this review, the structural diversity present within the IAP protein family is presented. Known structures of individual domains are discussed and their properties are described in light of recent data. In particular the plasticity of BIR domains and their ability to accommodate different binding partners is highlighted, as well as the importance of communication between the domains in regulating the covalent attachment of ubiquitin.
Collapse
Affiliation(s)
- Rhesa Budhidarmo
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Catherine L Day
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
45
|
Kavanagh E, Rodhe J, Burguillos MA, Venero JL, Joseph B. Regulation of caspase-3 processing by cIAP2 controls the switch between pro-inflammatory activation and cell death in microglia. Cell Death Dis 2014; 5:e1565. [PMID: 25501826 PMCID: PMC4454160 DOI: 10.1038/cddis.2014.514] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/13/2014] [Accepted: 10/28/2014] [Indexed: 12/21/2022]
Abstract
The activation of microglia, resident immune cells of the central nervous system, and inflammation-mediated neurotoxicity are typical features of neurodegenerative diseases, for example, Alzheimer's and Parkinson's diseases. An unexpected role of caspase-3, commonly known to have executioner role for apoptosis, was uncovered in the microglia activation process. A central question emerging from this finding is what prevents caspase-3 during the microglia activation from killing those cells? Caspase-3 activation occurs as a two-step process, where the zymogen is first cleaved by upstream caspases, such as caspase-8, to form intermediate, yet still active, p19/p12 complex; thereafter, autocatalytic processing generates the fully mature p17/p12 form of the enzyme. Here, we show that the induction of cellular inhibitor of apoptosis protein 2 (cIAP2) expression upon microglia activation prevents the conversion of caspase-3 p19 subunit to p17 subunit and is responsible for restraining caspase-3 in terms of activity and subcellular localization. We demonstrate that counteracting the repressive effect of cIAP2 on caspase-3 activation, using small interfering RNA targeting cIAP2 or a SMAC mimetic such as the BV6 compound, reduced the pro-inflammatory activation of microglia cells and promoted their death. We propose that the different caspase-3 functions in microglia, and potentially other cell types, reside in the active caspase-3 complexes formed. These results also could indicate cIAP2 as a possible therapeutic target to modulate microglia pro-inflammatory activation and associated neurotoxicity observed in neurodegenerative disorders.
Collapse
Affiliation(s)
- E Kavanagh
- Department of Oncology-Pathology, Cancer Centrum Karolinska, R8:03, Karolinska Institutet, Stockholm, Sweden
| | - J Rodhe
- Department of Oncology-Pathology, Cancer Centrum Karolinska, R8:03, Karolinska Institutet, Stockholm, Sweden
| | - M A Burguillos
- Department of Oncology-Pathology, Cancer Centrum Karolinska, R8:03, Karolinska Institutet, Stockholm, Sweden
| | - J L Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - B Joseph
- Department of Oncology-Pathology, Cancer Centrum Karolinska, R8:03, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Bisson JA, Mills B, Paul Helt JC, Zwaka TP, Cohen ED. Wnt5a and Wnt11 inhibit the canonical Wnt pathway and promote cardiac progenitor development via the Caspase-dependent degradation of AKT. Dev Biol 2014; 398:80-96. [PMID: 25482987 DOI: 10.1016/j.ydbio.2014.11.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 01/09/2023]
Abstract
Wnt proteins regulate cell behavior via a canonical signaling pathway that induces β-catenin dependent transcription. It is now appreciated that Wnt/β-catenin signaling promotes the expansion of the second heart field (SHF) progenitor cells that ultimately give-rise to the majority of cardiomyocytes. However, activating β-catenin can also cause the loss of SHF progenitors, highlighting the necessity of precise control over β-catenin signaling during heart development. We recently reported that two non-canonical Wnt ligands, Wnt5a and Wnt11, act cooperatively to attenuate canonical Wnt signaling that would otherwise disrupt the SHF. While these data reveal the essential role of this anti-canonical Wnt5a/Wnt11 signaling in SHF development, the mechanisms by which these ligands inhibit the canonical Wnt pathway are unclear. Wnt11 was previously shown to inhibit β-catenin and promote cardiomyocyte maturation by activating a novel apoptosis-independent function of Caspases. Consistent with these data, we now show that Wnt5a and Wnt11 are capable of inducing Caspase activity in differentiating embryonic stem (ES) cells and that hearts from Wnt5a(-/-); Wnt11(-/-) embryos have diminished Caspase 3 (Casp3) activity. Furthermore, SHF markers are reduced in Casp3 mutant ES cells while the treatment of wild type ES cells with Caspase inhibitors blocked the ability of Wnt5a and Wnt11 to promote SHF gene expression. This finding was in agreement with our in vivo studies in which injecting pregnant mice with Caspase inhibitors reduced SHF marker expression in their gestating embryos. Caspase inhibition also blocked other Wnt5a/Wnt11 induced effects, including the suppression of β-catenin protein expression and activity. Interestingly, Wnt5a/Wnt11 treatment of differentiating ES cells reduced both phosphorylated and total Akt through a Caspase-dependent mechanism and phosphorylated Akt levels were increased in the hearts Caspase inhibitor treated. Surprisingly, inhibition of either Akt or PI3K in ES cells was an equally effective means of increasing SHF markers compared to treatment with Wnt5a/Wnt11. Moreover, Akt inhibition restored SHF gene expression in Casp3 mutant ES cells. Taken together, these findings suggest that Wnt5a/Wnt11 inhibit β-catenin to promote SHF development through Caspase-dependent Akt degradation.
Collapse
Affiliation(s)
- Joseph A Bisson
- Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Bradley Mills
- Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jay-Christian Paul Helt
- Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Thomas P Zwaka
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethan David Cohen
- Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
47
|
Choi JS, Park BC, Chi SW, Bae KH, Kim S, Cho S, Son WC, Myung PK, Kim JH, Park SG. HAX1 regulates E3 ubiquitin ligase activity of cIAPs by promoting their dimerization. Oncotarget 2014; 5:10084-99. [PMID: 25275296 PMCID: PMC4259407 DOI: 10.18632/oncotarget.2459] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/06/2014] [Indexed: 12/03/2022] Open
Abstract
HS-1-associated protein X-1 (HAX1) is a multi-functional protein which was first identified as a Hematopoietic cell specific Lyn Substrate 1 (HS1)-binding protein. Although the roles of HAX1 in apoptosis have been unraveled and HAX1 has been proposed to be involved in several diseases, additional roles of HAX1 are still being identified. Here, we demonstrated that HAX1 directly interacted with cellular Inhibitor of Apoptosis Proteins (cIAPs), ubiquitin E3 ligases which regulate the abundance of cellular proteins, via ubiquitin-dependent proteasomal degradation. We showed that HAX1 promotes auto-ubiquitination and degradation of cIAPs by facilitating the intermolecular homodimerization of RING finger domain. Moreover, HAX1 regulates the non-canonical Nuclear Factor-κB (NF-κB) signaling pathway by modulating the stability of NF-κB-Inducing Kinase (NIK), which is one of the substrates of cIAPs. Taken together, these results unveil a novel role of HAX1 in the non-canonical NF-κB pathway, and provide an important clue that HAX1 is a potential therapeutic target for the treatment of cancer.
Collapse
Affiliation(s)
- Jin Sun Choi
- Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Byoung Chul Park
- Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Seung Wook Chi
- Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Cell Function Regulation Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sunhong Kim
- Targeted Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Woo-Chan Son
- Asan Institute for Life Sciences and Asan Medical Center, Seoul, Republic of Korea
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Pyung Keun Myung
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jeong-Hoon Kim
- Targeted Gene Regulation Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, Daejeon, Republic of Korea
| | - Sung Goo Park
- Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| |
Collapse
|
48
|
Yin J, Zhu JM, Shen XZ. The role and therapeutic implications of RING-finger E3 ubiquitin ligases in hepatocellular carcinoma. Int J Cancer 2014; 136:249-57. [PMID: 24420637 DOI: 10.1002/ijc.28717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/02/2014] [Indexed: 12/30/2022]
Abstract
Increasing evidence indicates that deregulation of RING-finger ubiquitin-protein ligases (E3s) involves in the development of hepatocellular carcinoma (HCC). These RING-finger E3s serve as oncoproteins or tumor suppressors in HCC under specific conditions. In this review, we summarize current knowledge about abnormal RING-finger E3s and their clinical significance in the development of HCC, and discuss parts of critical substrates for these RING-finger E3s in detail. Furthermore, in light of success of Bortezomib in treating hematological malignancies, we describe the preclinical and clinical studies of therapeutic approaches targeting aberrant RING-finger E3s in HCC.
Collapse
Affiliation(s)
- Jie Yin
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | | | | |
Collapse
|
49
|
The HECTD3 E3 ubiquitin ligase facilitates cancer cell survival by promoting K63-linked polyubiquitination of caspase-8. Cell Death Dis 2013; 4:e935. [PMID: 24287696 PMCID: PMC3847339 DOI: 10.1038/cddis.2013.464] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/07/2013] [Accepted: 10/23/2013] [Indexed: 02/02/2023]
Abstract
Apoptosis resistance is a hurdle for cancer treatment. HECTD3, a new E3 ubiquitin ligase, interacts with caspase-8 death effector domains and ubiquitinates caspase-8 with K63-linked polyubiquitin chains that do not target caspase-8 for degradation but decrease the caspase-8 activation. HECTD3 depletion can sensitize cancer cells to extrinsic apoptotic stimuli. In addition, HECTD3 inhibits TNF-related apoptosis-inducing ligand (TRAIL)-induced caspase-8 cleavage in an E3 ligase activity-dependent manner. Mutation of the caspase-8 ubiquitination site at K215 abolishes the HECTD3 protection from TRAIL-induced cleavage. Finally, HECTD3 is frequently overexpressed in breast carcinomas. These findings suggest that caspase-8 ubiquitination by HECTD3 confers cancer cell survival.
Collapse
|
50
|
Willis MS, Bevilacqua A, Pulinilkunnil T, Kienesberger P, Tannu M, Patterson C. The role of ubiquitin ligases in cardiac disease. J Mol Cell Cardiol 2013; 71:43-53. [PMID: 24262338 DOI: 10.1016/j.yjmcc.2013.11.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 01/13/2023]
Abstract
Rigorous surveillance of protein quality control is essential for the maintenance of normal cardiac function, while the dysregulation of protein turnover is present in a diverse array of common cardiac diseases. Central to the protein quality control found in all cells is the ubiquitin proteasome system (UPS). The UPS plays a critical role in protein trafficking, cellular signaling, and most prominently, protein degradation. As ubiquitin ligases (E3s) control the specificity of the UPS, their description in the cardiomyocyte has highlighted how ubiquitin ligases are critical to the turnover and function of the sarcomere complex, responsible for the heart's required continuous contraction. In this review, we provide an overview of the UPS, highlighting a comprehensive overview of the cardiac ubiquitin ligases identified to date. We then focus on recent studies of new cardiac ubiquitin ligases outlining their novel roles in protein turnover, cellular signaling, and the regulation of mitochondrial dynamics and receptor turnover in the pathophysiology of cardiac hypertrophy, cardiac atrophy, myocardial infarction, and heart failure. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".
Collapse
Affiliation(s)
- Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.
| | - Ariana Bevilacqua
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Dalhousie University, Saint John, NB, Canada
| | - Petra Kienesberger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Saint John, NB, Canada
| | - Manasi Tannu
- College of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cam Patterson
- Departments of Cell and Developmental Biology, Medicine (Cardiology), and Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|