1
|
Ye Z, Liu Y, Jin X, Wu Y, Zhao H, Gao T, Deng Q, Cheng J, Lin J, Tong Z. Aβ-binding with alcohol dehydrogenase drives Alzheimer's disease pathogenesis: A review. Int J Biol Macromol 2024; 264:130580. [PMID: 38432266 DOI: 10.1016/j.ijbiomac.2024.130580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Although Alzheimer's disease (AD) characterized with senile plaques and neurofibrillary tangles has been found for over 100 years, its molecular mechanisms are ambiguous. More worsely, the developed medicines targeting amyloid-beta (Aβ) and/or tau hyperphosphorylation did not approach the clinical expectations in patients with moderate or severe AD until now. This review unveils the role of a vicious cycle between Aβ-derived formaldehyde (FA) and FA-induced Aβ aggregation in the onset course of AD. Document evidence has shown that Aβ can bind with alcohol dehydrogenase (ADH) to form the complex of Aβ/ADH (ABAD) and result in the generation of reactive oxygen species (ROS) and aldehydes including malondialdehyde, hydroxynonenal and FA; in turn, ROS-derived H2O2 and FA promotes Aβ self-aggregation; subsequently, this vicious cycle accelerates neuron death and AD occurrence. Especially, FA can directly induce neuron death by stimulating ROS generation and tau hyper hyperphosphorylation, and impair memory by inhibiting NMDA-receptor. Recently, some new therapeutical methods including inhibition of ABAD activity by small molecules/synthetic polypeptides, degradation of FA by phototherapy or FA scavengers, have been developed and achieved positive effects in AD transgenic models. Thus, breaking the vicious loop may be promising interventions for halting AD progression.
Collapse
Affiliation(s)
- Zuting Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanming Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingjiang Jin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiqing Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hang Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tingting Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiangfeng Deng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianhua Cheng
- Department of neurology, the first affiliated hospital of Wenzhou medical University, Wenzhou 325035. China
| | - Jing Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhiqian Tong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
He XY, Frackowiak J, Dobkin C, Brown WT, Yang SY. Involvement of Type 10 17β-Hydroxysteroid Dehydrogenase in the Pathogenesis of Infantile Neurodegeneration and Alzheimer's Disease. Int J Mol Sci 2023; 24:17604. [PMID: 38139430 PMCID: PMC10743717 DOI: 10.3390/ijms242417604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Type 10 17β-hydroxysteroid dehydrogenase (17β-HSD10) is the HSD17B10 gene product playing an appreciable role in cognitive functions. It is the main hub of exercise-upregulated mitochondrial proteins and is involved in a variety of metabolic pathways including neurosteroid metabolism to regulate allopregnanolone homeostasis. Deacetylation of 17β-HSD10 by sirtuins helps regulate its catalytic activities. 17β-HSD10 may also play a critical role in the control of mitochondrial structure, morphology and dynamics by acting as a member of the Parkin/PINK1 pathway, and by binding to cyclophilin D to open mitochondrial permeability pore. 17β-HSD10 also serves as a component of RNase P necessary for mitochondrial tRNA maturation. This dehydrogenase can bind with the Aβ peptide thereby enhancing neurotoxicity to brain cells. Even in the absence of Aβ, its quantitative and qualitative variations can result in neurodegeneration. Since elevated levels of 17β-HSD10 were found in brain cells of Alzheimer's disease (AD) patients and mouse AD models, it is considered to be a key factor in AD pathogenesis. Since data underlying Aβ-binding-alcohol dehydrogenase (ABAD) were not secured from reported experiments, ABAD appears to be a fabricated alternative term for the HSD17B10 gene product. Results of this study would encourage researchers to solve the question why elevated levels of 17β-HSD10 are present in brains of AD patients and mouse AD models. Searching specific inhibitors of 17β-HSD10 may find candidates to reduce senile neurodegeneration and open new approaches for the treatment of AD.
Collapse
Affiliation(s)
- Xue-Ying He
- Department of Molecular Biology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Jannusz Frackowiak
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Carl Dobkin
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - William Ted Brown
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Song-Yu Yang
- Department of Molecular Biology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
- Ph.D. Program in Biology-Neuroscience, Graduate Center of the City, University of New York, New York, NY 10016, USA
| |
Collapse
|
3
|
Hanzlova M, Miskerikova MS, Rotterova A, Chalupova K, Jurkova K, Hamsikova M, Andrys R, Haleckova A, Svobodova J, Schmidt M, Benek O, Musilek K. Nanomolar Benzothiazole-Based Inhibitors of 17β-HSD10 with Cellular Bioactivity. ACS Med Chem Lett 2023; 14:1724-1732. [PMID: 38116418 PMCID: PMC10726454 DOI: 10.1021/acsmedchemlett.3c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
Multifunctional mitochondrial enzyme 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) is a potential drug target for the treatment of various pathologies. The most discussed is the pathology associated with Alzheimer's disease (AD), where 17β-HSD10 overexpression and its interaction with amyloid-β peptide contribute to mitochondrial dysfunction and neuronal stress. In this work, a series of new benzothiazole-derived 17β-HSD10 inhibitors were designed based on the structure-activity relationship analysis of formerly published inhibitors. A set of enzyme-based and cell-based methods were used to evaluate the inhibitory potency of new compounds, their interaction with the enzyme, and their cytotoxicity. Most compounds exhibited significantly a higher inhibitory potential compared to published benzothiazolyl ureas and good target engagement in a cellular environment accompanied by low cytotoxicity. The best hits displayed mixed-type inhibition with half maximal inhibitory concentration (IC50) values in the nanomolar range for the purified enzyme (3-7, 15) and/or low micromolar IC50 values in the cell-based assay (6, 13-16).
Collapse
Affiliation(s)
| | | | | | - Katarina Chalupova
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Katarina Jurkova
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Marie Hamsikova
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Rudolf Andrys
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Annamaria Haleckova
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Jana Svobodova
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Monika Schmidt
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Ondrej Benek
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
He XY, Dobkin C, Brown WT, Yang SY. Infantile Neurodegeneration Results from Mutants of 17β-Hydroxysteroid Dehydrogenase Type 10 Rather Than Aβ-Binding Alcohol Dehydrogenase. Int J Mol Sci 2023; 24:ijms24108487. [PMID: 37239833 DOI: 10.3390/ijms24108487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Type 10 17β-hydroxysteroid dehydrogenase (17β-HSD10), a homo-tetrameric multifunctional protein with 1044 residues encoded by the HSD17B10 gene, is necessary for brain cognitive function. Missense mutations result in infantile neurodegeneration, an inborn error in isoleucine metabolism. A 5-methylcytosine hotspot underlying a 388-T transition leads to the HSD10 (p.R130C) mutant to be responsible for approximately half of all cases suffering with this mitochondrial disease. Fewer females suffer with this disease due to X-inactivation. The binding capability of this dehydrogenase to Aβ-peptide may play a role in Alzheimer's disease, but it appears unrelated to infantile neurodegeneration. Research on this enzyme was complicated by reports of a purported Aβ-peptide-binding alcohol dehydrogenase (ABAD), formerly referred to as endoplasmic-reticulum-associated Aβ-binding protein (ERAB). Reports concerning both ABAD and ERAB in the literature reflect features inconsistent with the known functions of 17β-HSD10. It is clarified here that ERAB is reportedly a longer subunit of 17β-HSD10 (262 residues). 17β-HSD10 exhibits L-3-hydroxyacyl-CoA dehydrogenase activity and is thus also referred to in the literature as short-chain 3-hydorxyacyl-CoA dehydrogenase or type II 3-hydorxyacyl-CoA dehydrogenase. However, 17β-HSD10 is not involved in ketone body metabolism, as reported in the literature for ABAD. Reports in the literature referring to ABAD (i.e., 17β-HSD10) as a generalized alcohol dehydrogenase, relying on data underlying ABAD's activities, were found to be unreproducible. Furthermore, the rediscovery of ABAD/ERAB's mitochondrial localization did not cite any published research on 17β-HSD10. Clarification of the purported ABAD/ERAB function derived from these reports on ABAD/ERAB may invigorate this research field and encourage new approaches to the understanding and treatment of HSD17B10-gene-related disorders. We establish here that infantile neurodegeneration is caused by mutants of 17β-HSD10 but not ABAD, and so we conclude that ABAD represents a misnomer employed in high-impact journals.
Collapse
Affiliation(s)
- Xue-Ying He
- Department of Molecular Biology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Carl Dobkin
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - William Ted Brown
- Central Clinical School, University of Sydney, Sydney 2006, Australia
| | - Song-Yu Yang
- Department of Molecular Biology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
- Ph.D. Program in Biology-Neuroscience, Graduate Center, City University of New York, New York, NY 10016, USA
| |
Collapse
|
5
|
He XY, Dobkin C, Brown W, Yang SY. 3-Hydroxyacyl-CoA and Alcohol Dehydrogenase Activities of Mitochondrial Type 10 17β-Hydroxysteroid Dehydrogenase in Neurodegeneration Study. J Alzheimers Dis 2022; 88:1487-1497. [PMID: 35786658 PMCID: PMC9484088 DOI: 10.3233/jad-220481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mitochondrial 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) is necessary for brain cognitive function, but its studies were confounded by reports of Aβ-peptide binding alcohol dehydrogenase (ABAD), formerly endoplasmic reticulum-associated Aβ-peptide binding protein (ERAB), for two decades so long as ABAD serves as the alternative term of 17β-HSD10. OBJECTIVE To determine whether those ABAD reports are true or false, even if they were published in prestigious journals. METHODS 6xHis-tagged 17β-HSD10 was prepared and characterized by well-established experimental procedures. RESULTS The N-terminal 6xHis tag did not significantly interfere with the dehydrogenase activities of 17β-HSD10, but the kinetic constants of its 3-hydroxyacyl-CoA dehydrogenase activity are drastically distinct from those of ABAD, and it was not involved in ketone body metabolism as previously reported for ABAD. Furthermore, it was impossible to measure its generalized alcohol dehydrogenase activities underlying the concept of ABAD because the experimental procedures described in ABAD reports violated basic chemical and/or biochemical principles. More incredibly, both authors and journals had not yet agreed to make any corrigenda of ABAD reports. CONCLUSION Brain 17β-HSD10 plays a key role in neurosteroid metabolism and further studies in this area may lead to potential treatments of neurodegeneration including AD.
Collapse
Affiliation(s)
- Xue-Ying He
- Department of Molecular Biology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Carl Dobkin
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - W.Ted Brown
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
- Central Clinical School, University of Sydney, Sydney, Australia
| | - Song-Yu Yang
- Department of Molecular Biology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
- Ph.D. Program in Biology-Neuroscience, Graduate Center of the City University of New York, New York, NY, USA
| |
Collapse
|
6
|
Guo Y, Wang Q, Chen S, Xu C. Functions of amyloid precursor protein in metabolic diseases. Metabolism 2021; 115:154454. [PMID: 33248065 DOI: 10.1016/j.metabol.2020.154454] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Amyloid precursor protein (APP) is a transmembrane precursor protein that is widely expressed in the central nervous system and peripheral tissues in the liver and pancreas, adipose tissue, and myotubes. APP can be cleaved by proteases in two different ways to produce a variety of short peptides, each with different physiological properties and functions. APP peptides generated by non-amyloidogenic processing can positively influence metabolism, while the peptides produced by amyloidogenic processing have the opposite effects. Here, we summarize the regulatory effects of APP and its cleavage peptides on metabolism in the central nervous system and peripheral tissues. In addition, abnormal expression and function of APP and APP-derived peptides are associated with metabolic diseases, such as type 2 diabetes, obesity, non-alcoholic fatty liver disease, and cardiovascular disease, and cancers. Pharmacological intervention of APP function or reduction of the production of peptides derived from amyloidogenic processing may be effective strategies for the prevention and treatment of Alzheimer's disease, and they may also provide new guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qinqiu Wang
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shenghui Chen
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chengfu Xu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
7
|
Vinklarova L, Schmidt M, Benek O, Kuca K, Gunn-Moore F, Musilek K. Friend or enemy? Review of 17β-HSD10 and its role in human health or disease. J Neurochem 2020; 155:231-249. [PMID: 32306391 DOI: 10.1111/jnc.15027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/26/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022]
Abstract
17β-hydroxysteroid dehydrogenase (17β-HSD10) is a multifunctional human enzyme with important roles both as a structural component and also as a catalyst of many metabolic pathways. This mitochondrial enzyme has important functions in the metabolism, development and aging of the neural system, where it is involved in the homeostasis of neurosteroids, especially in regard to estradiol, changes in which make it an essential part of neurodegenerative pathology. These roles therefore, indicate that 17β-HSD10 may be a possible druggable target for neurodegenerative diseases including Alzheimer's disease (AD), and in hormone-dependent cancer. The objective of this review was to provide a summary about physiological functions and pathological roles of 17β-HSD10 and the modulators of its activity.
Collapse
Affiliation(s)
- Lucie Vinklarova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Monika Schmidt
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Benek
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | | | - Kamil Musilek
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
8
|
Morsy A, Trippier PC. Amyloid-Binding Alcohol Dehydrogenase (ABAD) Inhibitors for the Treatment of Alzheimer’s Disease. J Med Chem 2018; 62:4252-4264. [DOI: 10.1021/acs.jmedchem.8b01530] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ahmed Morsy
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Paul C. Trippier
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
- Center for Chemical Biology, Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
9
|
Aitken L, Quinn SD, Perez-Gonzalez C, Samuel IDW, Penedo JC, Gunn-Moore FJ. Morphology-Specific Inhibition of β-Amyloid Aggregates by 17β-Hydroxysteroid Dehydrogenase Type 10. Chembiochem 2016; 17:1029-37. [PMID: 26991863 DOI: 10.1002/cbic.201600081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 11/08/2022]
Abstract
A major hallmark of Alzheimer's disease (AD) is the formation of toxic aggregates of the β-amyloid peptide (Aβ). Given that Aβ peptides are known to localise within mitochondria and interact with 17β-HSD10, a mitochondrial protein expressed at high levels in AD brains, we investigated the inhibitory potential of 17β-HSD10 against Aβ aggregation under a range of physiological conditions. Fluorescence self-quenching (FSQ) of Aβ(1-42) labelled with HiLyte Fluor 555 was used to evaluate the inhibitory effect under conditions established to grow distinct Aβ morphologies. 17β-HSD10 preferentially inhibits the formation of globular and fibrillar-like structures but has no effect on the growth of amorphous plaque-like aggregates at endosomal pH 6. This work provides insights into the dependence of the Aβ-17β-HSD10 interaction with the morphology of Aβ aggregates and how this impacts enzymatic function.
Collapse
Affiliation(s)
- Laura Aitken
- School of Biology, University of St. Andrews, Medical and Biological Sciences Building, North Haugh, St. Andrews, Fife, KY16 9TF, UK
| | - Steven D Quinn
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS, UK.,SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS, UK.,WestCHEM, School of Chemistry, Joseph Black Building, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Cibran Perez-Gonzalez
- SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS, UK.,Biomedical Sciences Research Complex, University of St. Andrews, Biomolecular Sciences Building, North Haugh, St. Andrews, Fife, KY16 9ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS, UK
| | - J Carlos Penedo
- SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS, UK. .,Biomedical Sciences Research Complex, University of St. Andrews, Biomolecular Sciences Building, North Haugh, St. Andrews, Fife, KY16 9ST, UK.
| | - Frank J Gunn-Moore
- School of Biology, University of St. Andrews, Medical and Biological Sciences Building, North Haugh, St. Andrews, Fife, KY16 9TF, UK.
| |
Collapse
|
10
|
Carlson EA, Marquez RT, Du F, Wang Y, Xu L, Yan SS. Overexpression of 17β-hydroxysteroid dehydrogenase type 10 increases pheochromocytoma cell growth and resistance to cell death. BMC Cancer 2015; 15:166. [PMID: 25879199 PMCID: PMC4384325 DOI: 10.1186/s12885-015-1173-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 03/06/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND 17β-hydroxysteroid dehydrogenase type 10 (HSD10) has been shown to play a protective role in cells undergoing stress. Upregulation of HSD10 under nutrient-limiting conditions leads to recovery of a homeostatic state. Across disease states, increased HSD10 levels can have a profound and varied impact, such as beneficial in Parkinson's disease and harmful in Alzheimer's disease. Recently, HSD10 overexpression has been observed in some prostate and bone cancers, consistently correlating with poor patient prognosis. As the role of HSD10 in cancer remains underexplored, we propose that cancer cells utilize this enzyme to promote cancer cell survival under cell death conditions. METHODS The proliferative effect of HSD10 was examined in transfected pheochromocytoma cells by growth curve analysis and a xenograft model. Fluctuations in mitochondrial bioenergetics were evaluated by electron transport chain complex enzyme activity assays and energy production. Additionally, the effect of HSD10 on pheochromocytoma resistance to cell death was investigated using TUNEL staining, MTT, and complex IV enzyme activity assays. RESULTS In this study, we examined the tumor-promoting effect of HSD10 in pheochromocytoma cells. Overexpression of HSD10 increased pheochromocytoma cell growth in both in vitro cell culture and an in vivo xenograft mouse model. The increases in respiratory enzymes and energy generation observed in HSD10-overexpressing cells likely supported the accelerated growth rate observed. Furthermore, cells overexpressing HSD10 were more resistant to oxidative stress-induced perturbation. CONCLUSIONS Our findings demonstrate that overexpression of HSD10 accelerates pheochromocytoma cell growth, enhances cell respiration, and increases cellular resistance to cell death induction. This suggests that blockade of HSD10 may halt and/or prevent cancer growth, thus providing a promising novel target for cancer patients as a screening or therapeutic option.
Collapse
Affiliation(s)
- Emily A Carlson
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, 66047, USA. .,Higuchi Biosciences Center, University of Kansas, Lawrence, KS, 66047, USA.
| | - Rebecca T Marquez
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA.
| | - Fang Du
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, 66047, USA. .,Higuchi Biosciences Center, University of Kansas, Lawrence, KS, 66047, USA.
| | - Yongfu Wang
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, 66047, USA. .,Higuchi Biosciences Center, University of Kansas, Lawrence, KS, 66047, USA.
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA.
| | - Shirley ShiDu Yan
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, 66047, USA. .,Higuchi Biosciences Center, University of Kansas, Lawrence, KS, 66047, USA.
| |
Collapse
|
11
|
Yang SY, He XY, Isaacs C, Dobkin C, Miller D, Philipp M. Roles of 17β-hydroxysteroid dehydrogenase type 10 in neurodegenerative disorders. J Steroid Biochem Mol Biol 2014; 143:460-72. [PMID: 25007702 DOI: 10.1016/j.jsbmb.2014.07.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 01/24/2023]
Abstract
17β-Hydroxysteroid dehydrogenase type 10 (17β-HSD10) is encoded by the HSD17B10 gene mapping at Xp11.2. This homotetrameric mitochondrial multifunctional enzyme catalyzes the oxidation of neuroactive steroids and the degradation of isoleucine. This enzyme is capable of binding to other peptides, such as estrogen receptor α, amyloid-β, and tRNA methyltransferase 10C. Missense mutations of the HSD17B10 gene result in 17β-HSD10 deficiency, an infantile neurodegeneration characterized by progressive psychomotor regression and alteration of mitochondria morphology. 17β-HSD10 exhibits only a negligible alcohol dehydrogenase activity, and is not localized in the endoplasmic reticulum or plasma membrane. Its alternate name - Aβ binding alcohol dehydrogenase (ABAD) - is a misnomer predicated on the mistaken belief that this enzyme is an alcohol dehydrogenase. Misconceptions about the localization and function of 17β-HSD10 abound. 17β-HSD10's proven location and function must be accurately identified to properly assess this enzyme's important role in brain metabolism, especially the metabolism of allopregnanolone. The brains of individuals with Alzheimer's disease (AD) and of animals in an AD mouse model exhibit abnormally elevated levels of 17β-HSD10. Abnormal expression, as well as mutations of the HSD17B10 gene leads to impairment of the structure, function, and dynamics of mitochondria. This may underlie the pathogenesis of the synaptic and neuronal deficiency exhibited in 17β-HSD10 related diseases, including 17β-HSD10 deficiency and AD. Restoration of steroid homeostasis could be achieved by the supplementation of neuroactive steroids with a proper dosing and treatment regimen or by the adjustment of 17β-HSD10 activity to protect neurons. The discovery of this enzyme's true function has opened a new therapeutic avenue for treating AD.
Collapse
Affiliation(s)
- Song-Yu Yang
- Department of Developmental Biochemistry, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA; Neuroscience Doctoral Program, Graduate Center of the City University of New York, 365 Fifth Avenue, NY 10016, USA.
| | - Xue-Ying He
- Department of Developmental Biochemistry, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Charles Isaacs
- Department of Developmental Biochemistry, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Carl Dobkin
- Department of Molecular Genetics, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA; Neuroscience Doctoral Program, Graduate Center of the City University of New York, 365 Fifth Avenue, NY 10016, USA
| | - David Miller
- Department of Molecular Biology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Manfred Philipp
- Department of Chemistry, Lehman College of CUNY, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; Biochemistry Doctoral Program, Graduate Center of the City University of New York, 365 Fifth Avenue, NY 10016, USA
| |
Collapse
|
12
|
Vilardo E, Rossmanith W. The amyloid-β-SDR5C1(ABAD) interaction does not mediate a specific inhibition of mitochondrial RNase P. PLoS One 2013; 8:e65609. [PMID: 23755257 PMCID: PMC3673994 DOI: 10.1371/journal.pone.0065609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/01/2013] [Indexed: 01/30/2023] Open
Abstract
The amyloid-β peptide (Aβ) is suggested to cause mitochondrial dysfunction in Alzheimer's disease. The mitochondrial dehydrogenase SDR5C1 (also known as ABAD) was shown to bind Aβ and was proposed to thereby mediate mitochondrial toxicity, but the molecular mechanism has not been clarified. We recently identified SDR5C1 as an essential component of human mitochondrial RNase P and its associated tRNA:m¹R9 methyltransferase, the enzymes responsible for tRNA 5'-end processing and methylation of purines at tRNA position 9, respectively. With this work we investigated whether SDR5C1's role as a subunit of these two tRNA-maturation activities represents the mechanistic link between Aβ and mitochondrial dysfunction. Using recombinant enzyme components, we tested RNase P and methyltransferase activity upon titration of Aβ. Micromolar concentrations of monomeric or oligomerized Aβ were required to inhibit tRNA 5'-end processing and position 9 methylation catalyzed by the SDR5C1-containing enzymes, yet similar concentrations of Aβ also inhibited related RNase P and methyltransferase activities, which do not contain an SDR5C1 homolog. In conclusion, the proposed deleterious effect of Aβ on mitochondrial function cannot be explained by a specific inhibition of mitochondrial RNase P or its tRNA:m¹R9 methyltransferase subcomplex, and the molecular mechanism of SDR5C1-mediated Aβ toxicity remains unclear.
Collapse
Affiliation(s)
- Elisa Vilardo
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Walter Rossmanith
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
13
|
Yang SY, He XY, Miller D. Hydroxysteroid (17β) dehydrogenase X in human health and disease. Mol Cell Endocrinol 2011; 343:1-6. [PMID: 21708223 DOI: 10.1016/j.mce.2011.06.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/13/2011] [Indexed: 12/24/2022]
Abstract
Hydroxysteroid (17β) dehydrogenase 10 (HSD10), the HSD17B10 gene product, is a mitochondrial NAD(+)-dependent dehydrogenase. There are two outstanding features of this vital enzyme: (a) the versatility of its catalytic endowment is attributed to the flexibility of its active site to accommodate diverse substrates such as steroids, fatty acids, bile acid, and xenobiotics; (b) its capacity to bind other proteins and peptides. For example, it tightly binds with three identical subunits to compose a homotetramer. The homotetramer then binds with two other proteins, namely, RNA (guanine-9-)methyl-transferase domain containing-1 and KIAA0391, to form mitochondrial RNase P. Furthermore, various HSD10 functions are inhibited when the enzyme is bound by amyloid-β peptide or estrogen receptor alpha. Missense mutations of HSD10 may cause neurodegeneration related to HSD10 deficiency, whereas a silent mutation of HSD10 results in mental retardation, choreoathetosis and abnormal behavior (MRXS10). The clinical condition of some HSD10 patients mimics mitochondrial disorders. Since normal HSD10 function is essential for brain cognitive activity, elevated levels of HSD10 found in brains of Alzheimer disease (AD) patients and mouse AD model might counterbalance the inhibition of HSD10 by amyloid-β peptide. The investigation of HSD10 may lead to a better understanding of AD pathogenesis.
Collapse
Affiliation(s)
- Song-Yu Yang
- Department of Neurochemistry, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| | | | | |
Collapse
|
14
|
Abstract
It is well established that the intracellular accumulation of Aβ (amyloid β-peptide) is associated with AD (Alzheimer's disease) and that this accumulation is toxic to neurons. The precise mechanism by which this toxicity occurs is not well understood; however, identifying the causes of this toxicity is an essential step towards developing treatments for AD. One intracellular location where the accumulation of Aβ can have a major effect is within mitochondria, where mitochondrial proteins have been identified that act as binding sites for Aβ, and when binding occurs, a toxic response results. At one of these identified sites, an enzyme known as ABAD (amyloid-binding alcohol dehydrogenase), we have identified changes in gene expression in the brain cortex, following Aβ accumulation within mitochondria. Specifically, we have identified two proteins that are up-regulated not only in the brains of transgenic animal models of AD but also in those of human sufferers. The increased expression of these proteins demonstrates the complex and counteracting pathways that are activated in AD. Previous studies have identified approximate contact sites between ABAD and Aβ; on basis of these observations, we have shown that by using a modified peptide approach it is possible to reverse the expression of these two proteins in living transgenic animals and also to recover mitochondrial and behavioural deficits. This indicates that the ABAD–Aβ interaction is potentially an interesting target for therapeutic intervention. To explore this further we used a fluorescing substrate mimic to measure the activity of ABAD within living cells, and in addition we have identified chemical fragments that bind to ABAD, using a thermal shift assay.
Collapse
|
15
|
Marchais-Oberwinkler S, Henn C, Möller G, Klein T, Negri M, Oster A, Spadaro A, Werth R, Wetzel M, Xu K, Frotscher M, Hartmann RW, Adamski J. 17β-Hydroxysteroid dehydrogenases (17β-HSDs) as therapeutic targets: protein structures, functions, and recent progress in inhibitor development. J Steroid Biochem Mol Biol 2011; 125:66-82. [PMID: 21193039 DOI: 10.1016/j.jsbmb.2010.12.013] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 12/03/2010] [Accepted: 12/20/2010] [Indexed: 01/18/2023]
Abstract
17β-Hydroxysteroid dehydrogenases (17β-HSDs) are oxidoreductases, which play a key role in estrogen and androgen steroid metabolism by catalyzing final steps of the steroid biosynthesis. Up to now, 14 different subtypes have been identified in mammals, which catalyze NAD(P)H or NAD(P)(+) dependent reductions/oxidations at the 17-position of the steroid. Depending on their reductive or oxidative activities, they modulate the intracellular concentration of inactive and active steroids. As the genomic mechanism of steroid action involves binding to a steroid nuclear receptor, 17β-HSDs act like pre-receptor molecular switches. 17β-HSDs are thus key enzymes implicated in the different functions of the reproductive tissues in both males and females. The crucial role of estrogens and androgens in the genesis and development of hormone dependent diseases is well recognized. Considering the pivotal role of 17β-HSDs in steroid hormone modulation and their substrate specificity, these proteins are promising therapeutic targets for diseases like breast cancer, endometriosis, osteoporosis, and prostate cancer. The selective inhibition of the concerned enzymes might provide an effective treatment and a good alternative to the existing endocrine therapies. Herein, we give an overview of functional and structural aspects for the different 17β-HSDs. We focus on steroidal and non-steroidal inhibitors recently published for each subtype and report on existing animal models for the different 17β-HSDs and the respective diseases. Article from the Special issue on Targeted Inhibitors.
Collapse
|
16
|
Cornille E, Abou-Hamdan M, Khrestchatisky M, Nieoullon A, de Reggi M, Gharib B. Enhancement of L-3-hydroxybutyryl-CoA dehydrogenase activity and circulating ketone body levels by pantethine. Relevance to dopaminergic injury. BMC Neurosci 2010; 11:51. [PMID: 20416081 PMCID: PMC2880308 DOI: 10.1186/1471-2202-11-51] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 04/23/2010] [Indexed: 01/16/2023] Open
Abstract
Background The administration of the ketone bodies hydroxybutyrate and acetoacetate is known to exert a protective effect against metabolic disorders associated with cerebral pathologies. This suggests that the enhancement of their endogenous production might be a rational therapeutic approach. Ketone bodies are generated by fatty acid beta-oxidation, a process involving a mitochondrial oxido-reductase superfamily, with fatty acid-CoA thioesters as substrates. In this report, emphasis is on the penultimate step of the process, i.e. L-3-hydroxybutyryl-CoA dehydrogenase activity. We determined changes in enzyme activity and in circulating ketone body levels in the MPTP mouse model of Parkinson's disease. Since the active moiety of CoA is pantetheine, mice were treated with pantethine, its naturally-occurring form. Pantethine has the advantage of being known as an anti-inflammatory and hypolipidemic agent with very few side effects. Results We found that dehydrogenase activity and circulating ketone body levels were drastically reduced by the neurotoxin MPTP, whereas treatment with pantethine overcame these adverse effects. Pantethine prevented dopaminergic neuron loss and motility disorders. In vivo and in vitro experiments showed that the protection was associated with enhancement of glutathione (GSH) production as well as restoration of respiratory chain complex I activity and mitochondrial ATP levels. Remarkably, pantethine treatment boosted the circulating ketone body levels in MPTP-intoxicated mice, but not in normal animals. Conclusions These finding demonstrate the feasibility of the enhancement of endogenous ketone body production and provide a promising therapeutic approach to Parkinson's disease as well as, conceivably, to other neurodegenerative disorders.
Collapse
Affiliation(s)
- Emilie Cornille
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, UMR CNRS 6184, Université de la Méditerranée, 13015 Marseille, France
| | | | | | | | | | | |
Collapse
|
17
|
Muirhead KEA, Borger E, Aitken L, Conway SJ, Gunn-Moore FJ. The consequences of mitochondrial amyloid beta-peptide in Alzheimer's disease. Biochem J 2010; 426:255-70. [PMID: 20175748 DOI: 10.1042/bj20091941] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Abeta (amyloid-beta peptide) has long been associated with Alzheimer's disease, originally in the form of extracellular plaques. However, in the present paper we review the growing evidence for the role of soluble intracellular Abeta in the disease progression, with particular reference to Abeta found within the mitochondria. Once inside the cell, Abeta is able to interact with a number of targets, including the mitochondrial proteins ABAD (amyloid-binding alcohol dehydrogenase) and CypD (cyclophilin D), which is a component of the mitochondrial permeability transition pore. Interference with the normal functions of these proteins results in disruption of cell homoeostasis and ultimately cell death. The present review explores the possible mechanisms by which cell death occurs, considering the evidence presented on a molecular, cellular and in vivo level.
Collapse
Affiliation(s)
- Kirsty E A Muirhead
- School of Biology, Bute Medical Building, University of St Andrews, Westburn Lane, St Andrews, Fife KY16 9TS, UK.
| | | | | | | | | |
Collapse
|
18
|
Korol’ TY, Korol’ SV, Kostyuk EP, Kostyuk PG. Disruption of Calcium Homeostasis in Alzheimer’s Disease. NEUROPHYSIOLOGY+ 2009. [DOI: 10.1007/s11062-009-9064-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Moeller G, Adamski J. Integrated view on 17beta-hydroxysteroid dehydrogenases. Mol Cell Endocrinol 2009; 301:7-19. [PMID: 19027824 DOI: 10.1016/j.mce.2008.10.040] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/27/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
17beta-Hydroxysteroid dehydrogenases (17beta-HSDs) are important enzymes in steroid metabolism. Long known members of the protein family seemed to be well characterised concerning their role in the regulation of the biological potency of steroid hormones, but today more and more evidence points to pivotal contributions of these enzymes in a variety of other metabolic pathways. Therefore, studies on 17beta-HSDs develop towards metabolomic survey. Latest research results give new insights into the complex metabolic interconnectivity of the 17beta-HSDs. In this paper metabolic activities of 17beta-HSDs will be compared, their interplay with endogenous substrates summarised, and interlacing pathways depicted. Strategies on deciphering the physiological role of 17beta-HSDs and the genetic predisposition for associated diseases will be presented.
Collapse
Affiliation(s)
- Gabriele Moeller
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany.
| | | |
Collapse
|
20
|
Meier M, Möller G, Adamski J. Perspectives in Understanding the Role of Human 17β-Hydroxysteroid Dehydrogenases in Health and Disease. Ann N Y Acad Sci 2009; 1155:15-24. [DOI: 10.1111/j.1749-6632.2009.03702.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Ovariectomy increases neuronal amyloid-beta binding alcohol dehydrogenase level in the mouse hippocampus. Neurochem Int 2008; 52:1358-64. [PMID: 18387708 DOI: 10.1016/j.neuint.2008.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 01/30/2008] [Accepted: 02/14/2008] [Indexed: 01/11/2023]
Abstract
Ovarian hormone decline after menopause may influence cognitive performance and increase the risk for Alzheimer's disease (AD) in women. Amyloid-beta peptide (Abeta) has been proposed to be the primary cause of AD. In this study, we examined whether ovariectomy (OVX) could affect the levels of cofactors Abeta-binding alcohol dehydrogenase (ABAD) and receptor for advanced glycation endproducts (RAGE), which have been reported to potentiate Abeta-mediated neuronal perturbation, in mouse hippocampus, correlating with estrogen and Abeta levels. Female ICR mice were randomly divided into ovariectomized or sham-operated groups, and biochemical analyses were carried out at 5 weeks after the operation. OVX for 5 weeks significantly decreased hippocampal 17beta-estradiol level, while it tended to reduce the hormone level in serum, compared with the sham-operated control. In contrast, OVX did not affect hippocampal Abeta(1-40) level, although it significantly increased serum Abeta(1-40) level. Furthermore, we demonstrated that OVX increased hippocampal ABAD level in neurons, but not astrocytes, while it did not affect RAGE level. These findings suggest that the expression of neuronal ABAD depends on estrogen level in the hippocampus and the increase in serum Abeta and hippocampal ABAD induced by ovarian hormone decline may be associated with pre-stage of memory deficit in postmenopausal women and Abeta-mediated AD pathology.
Collapse
|
22
|
Ren Y, Xu HW, Davey F, Taylor M, Aiton J, Coote P, Fang F, Yao J, Chen D, Chen JX, Yan SD, Gunn-Moore FJ. Endophilin I expression is increased in the brains of Alzheimer disease patients. J Biol Chem 2007; 283:5685-91. [PMID: 18167351 DOI: 10.1074/jbc.m707932200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer patients have increased levels of both the 42 amyloid-beta-peptide (Abeta) and the amyloid binding alcohol dehydrogenase (ABAD), which is an intracellular binding site for Abeta. The overexpression of Abeta and ABAD in transgenic mice has shown that the binding of Abeta to ABAD results in amplified neuronal stress and impairment of learning and memory. From a proteomic analysis of the brains from these animals, we have identified for the first time that the protein endophilin I increases in Alzheimer diseased brain. The increase in endophilin I levels in neurons is linked to an increase in the activation of the stress kinase c-Jun N-terminal kinase with the subsequent death of the neurons. We also demonstrate in living animals that the expression level of endophilin I is an indicator for the interaction of ABAD and Abeta as its expression levels return to normal if this interaction is perturbed. Therefore this identifies endophilin I as a new indicator of the progression of Alzheimer disease.
Collapse
Affiliation(s)
- Yimin Ren
- Schools of Biology and Medicine, University of St. Andrews, Scotland KY16 9TS
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yang SY, He XY, Miller D. HSD17B10: a gene involved in cognitive function through metabolism of isoleucine and neuroactive steroids. Mol Genet Metab 2007; 92:36-42. [PMID: 17618155 DOI: 10.1016/j.ymgme.2007.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 06/06/2007] [Accepted: 06/06/2007] [Indexed: 12/20/2022]
Abstract
The HSD17B10 gene maps on chromosome Xp11.2, a region highly associated with X-linked mental retardation. This gene encodes HSD10, a mitochondrial multifunctional enzyme that plays a significant part in the metabolism of neuroactive steroids and the degradation of isoleucine. The HSD17B10 gene is composed of six exons and five introns. Its exon 5 is an alternative exon such that there are several HSD17B10 mRNA isoforms in brain. A silent mutation (c.605C-->A) and three missense mutations (c.395C-->G; c.419C-->T; c.771A-->G), respectively, cause the X-linked mental retardation, choreoathetosis, and abnormal behavior (MRXS10) and the hydroxyacyl-CoA dehydrogenase II deficiency. The latter condition seems to be a multifactorial disease due to the disturbance of more than one metabolic pathway by the HSD10 deficiency. HSD10 inactivates the positive modulators of GABAA receptors, and plays a role in the maintenance of GABAergic neuronal function. This working model may account for the mental retardation of these patients. The dehydrogenase activity is slightly inhibited by the binding of amyloid-beta peptide to the loop D of HSD10. Elevated levels of HSD10 were observed in hippocampi of Alzheimer disease patients so this multifunctional enzyme may be related to Alzheimer disease pathogenesis; however, the molecular mechanism of its involvement remains to be ascertained.
Collapse
Affiliation(s)
- Song-Yu Yang
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| | | | | |
Collapse
|
24
|
Yao J, Taylor M, Davey F, Ren Y, Aiton J, Coote P, Fang F, Chen JX, Yan SD, Gunn-Moore FJ. Interaction of amyloid binding alcohol dehydrogenase/Aβ mediates up-regulation of peroxiredoxin II in the brains of Alzheimer’s disease patients and a transgenic Alzheimer’s disease mouse model. Mol Cell Neurosci 2007; 35:377-82. [PMID: 17490890 DOI: 10.1016/j.mcn.2007.03.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 03/27/2007] [Accepted: 03/28/2007] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's patients have increased levels of both the 42 beta amyloid-beta-peptide (Abeta) and amyloid binding alcohol dehydrogenase (ABAD) which is an intracellular binding site for Abeta. The over-expression of Abeta and ABAD in transgenic mice has shown that the binding of Abeta to ABAD results in exaggerating neuronal stress and impairment of learning and memory. From a proteomic analysis of the brains from these animals we identified that peroxiredoxin II levels increase in Alzheimer's diseased brain. This increase in peroxiredoxin II levels protects neurons against Abeta induced toxicity. We also demonstrate, for the first time in living animals, that the expression level of peroxiredoxin II is an indicator for the interaction of ABAD and Abeta as its expression levels return to normal if this interaction is perturbed. Therefore this indicates the possibility of reversing changes observed in Alzheimer's disease and that the Abeta-ABAD interaction is a suitable drug target.
Collapse
Affiliation(s)
- Jun Yao
- Department of Pathology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Marques AT, Antunes A, Fernandes PA, Ramos MJ. Comparative evolutionary genomics of the HADH2 gene encoding Abeta-binding alcohol dehydrogenase/17beta-hydroxysteroid dehydrogenase type 10 (ABAD/HSD10). BMC Genomics 2006; 7:202. [PMID: 16899120 PMCID: PMC1559703 DOI: 10.1186/1471-2164-7-202] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Accepted: 08/09/2006] [Indexed: 11/17/2022] Open
Abstract
Background The Aβ-binding alcohol dehydrogenase/17β-hydroxysteroid dehydrogenase type 10 (ABAD/HSD10) is an enzyme involved in pivotal metabolic processes and in the mitochondrial dysfunction seen in the Alzheimer's disease. Here we use comparative genomic analyses to study the evolution of the HADH2 gene encoding ABAD/HSD10 across several eukaryotic species. Results Both vertebrate and nematode HADH2 genes showed a six-exon/five-intron organization while those of the insects had a reduced and varied number of exons (two to three). Eutherian mammal HADH2 genes revealed some highly conserved noncoding regions, which may indicate the presence of functional elements, namely in the upstream region about 1 kb of the transcription start site and in the first part of intron 1. These regions were also conserved between Tetraodon and Fugu fishes. We identified a conserved alternative splicing event between human and dog, which have a nine amino acid deletion, causing the removal of the strand βF. This strand is one of the seven strands that compose the core β-sheet of the Rossman fold dinucleotide-binding motif characteristic of the short chain dehydrogenase/reductase (SDR) family members. However, the fact that the substrate binding cleft residues are retained and the existence of a shared variant between human and dog suggest that it might be functional. Molecular adaptation analyses across eutherian mammal orthologues revealed the existence of sites under positive selection, some of which being localized in the substrate-binding cleft and in the insertion 1 region on loop D (an important region for the Aβ-binding to the enzyme). Interestingly, a higher than expected number of nonsynonymous substitutions were observed between human/chimpanzee and orangutan, with six out of the seven amino acid replacements being under molecular adaptation (including three in loop D and one in the substrate binding loop). Conclusion Our study revealed that HADH2 genes maintained a reasonable conserved organization across a large evolutionary distance. The conserved noncoding regions identified among mammals and between pufferfishes, the evidence of an alternative splicing variant conserved between human and dog, and the detection of positive selection across eutherian mammals, may be of importance for further research on ABAD/HSD10 function and its implication in the Alzheimer's disease.
Collapse
Affiliation(s)
- Alexandra T Marques
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Maria J Ramos
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
26
|
Smigrodzki RM, Khan SM. Mitochondrial microheteroplasmy and a theory of aging and age-related disease. Rejuvenation Res 2005; 8:172-98. [PMID: 16144471 DOI: 10.1089/rej.2005.8.172] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We implicate a recently described form of mitochondrial mutation, mitochondrial microheteroplasmy, as a candidate for the principal component of aging. Microheteroplasmy is the presence of hundreds of independent mutations in one organism, with each mutation usually found in 1-2% of all mitochondrial genomes. Despite the low abundance of single mutations, the vast majority of mitochondrial genomes in all adults are mutated. This mutational burden includes inherited mutations, de novo germline mutations, as well as somatic mutations acquired either during early embryonic development or later in adult life. We postulate that microheteroplasmy is sufficient to explain the pathomechanism of several age-associated diseases, especially in conditions with known mitochondrial involvement, such as diabetes (DM), cardiovascular disease, Parkinson's disease (PD), and Alzheimer's disease (AD) and cancer. The genetic properties of microheteroplasmy reconcile the results of disease models (cybrids, hypermutable PolG variants and mitochondrial toxins), with the relatively low levels of maternal inheritance in the aforementioned diseases, and provide an explanation of their delayed, progressive course.
Collapse
|
27
|
Yan SD, Stern DM. Mitochondrial dysfunction and Alzheimer's disease: role of amyloid-beta peptide alcohol dehydrogenase (ABAD). Int J Exp Pathol 2005; 86:161-71. [PMID: 15910550 PMCID: PMC2517415 DOI: 10.1111/j.0959-9673.2005.00427.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An important means of determining how amyloid-beta peptide (Abeta) affects cells is to identify specific macromolecular targets and assess how Abeta interaction with such targets impacts on cellular functions. On the one hand, cell surface receptors interacting with extracellular Abeta have been identified, and their engagement by amyloid peptide can trigger intracellular signaling cascades. Recent evidence has indicated a potentially significant role for deposition of intracellular Abeta in cell stress associated with amyloidosis. Thus, specific intracellular targets of Abeta might also be of interest. Our review evaluates the potential significance of Abeta interaction with a mitochondrial enzyme termed Abeta-binding alcohol dehydrogenase (ABAD), a member of the short-chain dehydrogenase-reductase family concentrated in mitochondria of neurones. Binding of Abeta to ABAD distorts the enzyme's structure, rendering it inactive with respect to its metabolic properties, and promotes mitochondrial generation of free radicals. Double transgenic mice in which increased levels of ABAD are expressed in an Abeta-rich environment, the latter provided by a mutant amyloid precursor protein transgene, demonstrate accelerated decline in spatial learning/memory and pathologic changes. These data suggest that mitochondria ABAD, ordinarily a contributor to metabolic homeostasis, has the capacity to become a pathogenic factor in an Abeta-rich environment.
Collapse
Affiliation(s)
- Shi Du Yan
- Departments of Pathology, Surgery, Taub Institute for Research on Alzheimer's Disease and the Ageing Brain, College of Physicians & Surgeons of Columbia University, 650 West 168th Street, Black Building Rm. 17-01, New York, NY 10032, USA.
| | | |
Collapse
|
28
|
Abstract
Human 17beta-hydroxysteroid dehydrogenase type 10 (17beta-HSD10) is a mitochondrial enzyme encoded by the SCHAD gene, which escapes chromosome X inactivation. 17Beta-HSD10/SCHAD mutations cause a spectrum of clinical conditions, from mild mental retardation to progressive infantile neurodegeneration. 17Beta-HSD10/SCHAD is essential for the metabolism of isoleucine and branched-chain fatty acids. It can inactivate 17beta-estradiol and steroid modulators of GABA(A) receptors, and convert 5alpha-androstanediol into 5alpha-dihydrotestosterone (DHT). Certain malignant prostatic epithelial cells contain high levels of 17beta-HSD10, generating 5alpha-DHT in the absence of testosterone. 17Beta-HSD10 has an affinity for amyloid-beta peptide, and might be linked to the mitochondrial dysfunction seen in Alzheimer's disease. This versatile enzyme might provide a new drug target for neuronal excitability control and for intervention in Alzheimer's disease and certain cancers.
Collapse
Affiliation(s)
- Song-Yu Yang
- Department of Pharmacology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| | | | | |
Collapse
|
29
|
Takuma K, Yao J, Huang J, Xu H, Chen X, Luddy J, Trillat AC, Stern DM, Arancio O, Yan SS. ABAD enhances Abeta-induced cell stress via mitochondrial dysfunction. FASEB J 2005; 19:597-8. [PMID: 15665036 DOI: 10.1096/fj.04-2582fje] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amyloid-beta peptide (Abeta) binding alcohol dehydrogenase (ABAD), an enzyme present in neuronal mitochondria, is a cofactor facilitating Abeta-induced cell stress. We hypothesized that ABAD provides a direct link between Abeta and cytotoxicity via mitochondrial oxidant stress. Neurons cultured from transgenic (Tg) mice with targeted overexpression of a mutant form of amyloid precursor protein and ABAD (Tg mAPP/ABAD) displayed spontaneous generation of hydrogen peroxide and superoxide anion, and decreased ATP, as well as subsequent release of cytochrome c from mitochondria and induction of caspase-3-like activity followed by DNA fragmentation and loss of cell viability. Generation of reactive oxygen species (ROS) was associated with dysfunction at the level of mitochondrial complex IV (cytochrome c oxidase, or COX). In neurons cultured from Tg mAPP/ABAD mice, COX activity was selectively decreased, and cyanide, an inhibitor of complex IV, exacerbated leakage of ROS, induction of caspase-3-like activity, and DNA fragmentation. In vivo, Tg mAPP/ABAD mice displayed reduced levels of brain ATP and COX activity, diminished glucose utilization, as well as electrophysiological abnormalities in hippocampal slices compared with Tg mAPP mice. In contrast, neither Tg ABAD mice nor nontransgenic (non-TG) littermates showed similar changes in ATP, COX activity, glucose utilization or electrophysiological properties. Each of the genotypes (Tg ABAD, Tg mAPP and Tg mAPP/ABAD mice, and non-TG littermates) displayed normal reproductive fitness, development and lifespan (1) These findings link ABAD-induced oxidant stress to critical aspects of Alzheimer's disease (AD)-associated cellular dysfunction, suggesting a pivotal role for this enzyme in the pathogenesis of AD.
Collapse
Affiliation(s)
- Kazuhiro Takuma
- Departments of Surgery, Pathology, and Neurology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tieu K, Perier C, Vila M, Caspersen C, Zhang HP, Teismann P, Jackson-Lewis V, Stern DM, Yan SD, Przedborski S. L-3-hydroxyacyl-CoA dehydrogenase II protects in a model of Parkinson's disease. Ann Neurol 2004; 56:51-60. [PMID: 15236401 DOI: 10.1002/ana.20133] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) impairs mitochondrial respiration and damages dopaminergic neurons as seen in Parkinson's disease (PD). Here, we report that L-3-hydroxyacyl-CoA dehydrogenase type II/amyloid binding alcohol dehydrogenase (HADH II/ABAD), a mitochondrial oxidoreductase enzyme involved in neuronal survival, is downregulated in PD patients and in MPTP-intoxicated mice. We also show that transgenic mice with increased expression of human HADH II/ABAD are significantly more resistant to MPTP than their wild-type littermates. This effect appears to be mediated by overexpression of HADH II/ABAD mitigating MPTP-induced impairment of oxidative phosphorylation and ATP production. This study demonstrates that HADH II/ABAD modulates MPTP neurotoxicity and suggests that HADH II/ABAD mimetics may provide protective benefit in the treatment of PD.
Collapse
Affiliation(s)
- Kim Tieu
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue LF, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease. Science 2004; 304:448-52. [PMID: 15087549 DOI: 10.1126/science.1091230] [Citation(s) in RCA: 999] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction is a hallmark of beta-amyloid (Abeta)-induced neuronal toxicity in Alzheimer's disease (AD). Here, we demonstrate that Abeta-binding alcohol dehydrogenase (ABAD) is a direct molecular link from Abeta to mitochondrial toxicity. Abeta interacts with ABAD in the mitochondria of AD patients and transgenic mice. The crystal structure of Abeta-bound ABAD shows substantial deformation of the active site that prevents nicotinamide adenine dinucleotide (NAD) binding. An ABAD peptide specifically inhibits ABAD-Abeta interaction and suppresses Abeta-induced apoptosis and free-radical generation in neurons. Transgenic mice overexpressing ABAD in an Abeta-rich environment manifest exaggerated neuronal oxidative stress and impaired memory. These data suggest that the ABAD-Abeta interaction may be a therapeutic target in AD.
Collapse
Affiliation(s)
- Joyce W Lustbader
- Center for Reproductive Sciences and Department of Obstetrics and Gynecology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tieu K, Perier C, Caspersen C, Teismann P, Wu DC, Yan SD, Naini A, Vila M, Jackson-Lewis V, Ramasamy R, Przedborski S. D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest 2003. [DOI: 10.1172/jci200318797] [Citation(s) in RCA: 302] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
33
|
Wen GY, Yang SY, Kaczmarski W, He XY, Pappas KS. Presence of hydroxysteroid dehydrogenase type 10 in amyloid plaques (APs) of Hsiao's APP-Sw transgenic mouse brains, but absence in APs of Alzheimer's disease brains. Brain Res 2002; 954:115-22. [PMID: 12393239 DOI: 10.1016/s0006-8993(02)03354-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This immunocytochemical study using two anti-amyloid beta-protein (Abeta) monoclonal antibodies, 4G8 and 6E10, revealed the presence of Abeta in both amyloid plaques (APs) and blood vessels of brains of Hsiao's APP-Sw transgenic mice (also known as Tg2576) and human Alzheimer's disease (AD) brains. Further study using both monoclonal (5F3) and polyclonal (R-228) antibodies to hydroxysteroid dehydrogenase type 10 (HSD-10) [formerly called SCHAD (short-chain L-3-hydroxyacyl-CoA dehydrogenase); also called ERAB (endoplasmic-reticulum-associated amyloid beta-peptide-binding protein)] indicated that HSD-10 was present in the APs of Tg2576 mice but was absent or immunocytochemically undetectable in the APs of AD brains. Our observations also revealed that HSD-10 was present in the blood vessels of both Tg2576 mice and AD brains. Immunogold electron microscopy also indicated that HSD-10 was present in the amyloid fibers (AFs), mitochondria, nuclear heterochromatin, and nucleolus of Tg2576 mouse brains but was absent in APs of AD brains. These results suggest that the human APP gene transferred to mice may induce overexpression of HSD-10 in mouse APs and in various other cellular components of mouse brains. It is also possible that the human APP gene responsible for HSD-10 deposition in APs of these Tg2576 mice brains is different from that of AD brains. Alternatively, the HSD-10 gene and APP gene may function independently in AD brains. Despite these differences, the Tg2576 mouse, as shown in this study, is a proper animal model for the study of AD and also for the investigation of HSD-10.
Collapse
Affiliation(s)
- G Y Wen
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| | | | | | | | | |
Collapse
|
34
|
He XY, Merz G, Yang YZ, Mehta P, Schulz H, Yang SY. Characterization and localization of human type10 17beta-hydroxysteroid dehydrogenase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4899-907. [PMID: 11559359 DOI: 10.1046/j.0014-2956.2001.02421.2421.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The tissue distribution, subcellular localization, and metabolic functions of human 17beta-hydroxysteroid dehydrogenase type 10/short chain L-3-hydroxyacyl-CoA dehydrogenase have been investigated. Human liver and gonads are abundant in this enzyme, but it is present in only negligible amounts in skeletal muscle. Its N-terminal sequence is a mitochondrial targeting sequence, but is not required for directing this protein to mitochondria. Immunocytochemical studies demonstrate that this protein, which has been referred to as ER-associated amyloid beta-binding protein (ERAB), is not detectable in the ER of normal tissues. We have established that protocols employed to investigate the subcellular distribution of ERAB yield ER fractions rich in mitochondria. Mitochondria-associated membrane fractions believed to be ER fractions were employed in ERAB/Abeta-binding alcohol dehydrogenase studies. The present studies establish that in normal tissues this protein is located in mitochondria. This feature distinguishes it from all known 17beta-hydroxysteroid dehydrogenases, and endows mitochondria with the capability of modulating intracellular levels of the active forms of sex steroids.
Collapse
Affiliation(s)
- X Y He
- Department of Pharmacology, New York State Institute for Basic Research in Developmental Disabilities, New York 10314, USA
| | | | | | | | | | | |
Collapse
|