1
|
Kim M, Zheng Z. Walking the VLDL tightrope in cardiometabolic diseases. Trends Endocrinol Metab 2024:S1043-2760(24)00201-7. [PMID: 39191606 DOI: 10.1016/j.tem.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Very-low-density lipoprotein (VLDL), a triglyceride-rich lipoprotein secreted by hepatocytes, is pivotal for supplying peripheral tissues with fatty acids for energy production. As if walking on a tightrope, perturbations in the balance of VLDL metabolism contribute to cardiometabolic dysfunction, promoting pathologies such as cardiovascular disease (CVD) or metabolic dysfunction-associated steatotic liver disease (MASLD). Despite the advent of lipid-lowering therapies, including statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, risks for cardiovascular events persist. With limitations to currently available CVD therapeutics and no US Food and Drug Administration (FDA)-approved treatment for MASLD, this review summarizes the current understanding of VLDL metabolism that sheds light on novel therapeutic avenues to pursue for cardiometabolic disorders.
Collapse
Affiliation(s)
- Mindy Kim
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA.
| | - Ze Zheng
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226, USA; Thrombosis & Hemostasis Program, Versiti Blood Research Institute, Milwaukee, 53226, USA.
| |
Collapse
|
2
|
Levy E. Insights from human congenital disorders of intestinal lipid metabolism. J Lipid Res 2014; 56:945-62. [PMID: 25387865 DOI: 10.1194/jlr.r052415] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Indexed: 12/24/2022] Open
Abstract
The intestine must challenge the profuse daily flux of dietary fat that serves as a vital source of energy and as an essential component of cell membranes. The fat absorption process takes place in a series of orderly and interrelated steps, including the uptake and translocation of lipolytic products from the brush border membrane to the endoplasmic reticulum, lipid esterification, Apo synthesis, and ultimately the packaging of lipid and Apo components into chylomicrons (CMs). Deciphering inherited disorders of intracellular CM elaboration afforded new insight into the key functions of crucial intracellular proteins, such as Apo B, microsomal TG transfer protein, and Sar1b GTPase, the defects of which lead to hypobetalipoproteinemia, abetalipoproteinemia, and CM retention disease, respectively. These "experiments of nature" are characterized by fat malabsorption, steatorrhea, failure to thrive, low plasma levels of TGs and cholesterol, and deficiency of liposoluble vitamins and essential FAs. After summarizing and discussing the functions and regulation of these proteins for reader's comprehension, the current review focuses on their specific roles in malabsorptions and dyslipidemia-related intestinal fat hyperabsorption while dissecting the spectrum of clinical manifestations and managements. The influence of newly discovered proteins (proprotein convertase subtilisin/kexin type 9 and angiopoietin-like 3 protein) on fat absorption has also been provided. Finally, it is stressed how the overexpression or polymorphism status of the critical intracellular proteins promotes dyslipidemia and cardiometabolic disorders.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, CHU Sainte-Justine and Department of Nutrition, Université de Montréal, Montreal, Quebec H3T 1C5, Canada
| |
Collapse
|
3
|
Moon BC, Hernandez-Ono A, Stiles B, Wu H, Ginsberg HN. Apolipoprotein B secretion is regulated by hepatic triglyceride, and not insulin, in a model of increased hepatic insulin signaling. Arterioscler Thromb Vasc Biol 2011; 32:236-46. [PMID: 22155452 DOI: 10.1161/atvbaha.111.241356] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE States of insulin resistance, hyperinsulinemia, and hepatic steatosis are associated with increased secretion of triglycerides (TG) and apolipoprotein B (apoB), even though insulin targets apoB for degradation. We used hepatic-specific "phosphatase and tensin homologue deleted on chromosome 10" (Pten) knockout (hPten-ko) mice, with increased hepatic insulin signaling, to determine the relative roles of insulin signaling and hepatic TG in regulating apoB secretion. METHODS AND RESULTS TG and apoB secretion was elevated in hPten-ko mice. When hepatic TG was reduced by inhibition of diacylglycerol acyltransferase 1/diacylglycerol acyltransferase 2 or sterol regulatory element-binding protein-1c, both TG secretion and apoB secretion fell without changes in hepatic insulin signaling. Acute reconstitution of hPten reduced hepatic TG content, and both TG and apoB secretion fell within 4 days despite decreased hepatic insulin signaling. Acute depletion of hepatic Pten by adenoviral introduction of Cre into Pten floxed mice caused steatosis within 4 days, and secretion of both TG and apoB increased despite increased hepatic insulin signaling. Even when steatosis after acute Pten depletion was prevented by pretreatment with SREBP-1c antisense oligonucleotides, apoB secretion was not reduced after 4 days. Ex vivo results were in primary hepatocytes were similar. CONCLUSIONS Either hepatic TG is the dominant regulator of apoB secretion or any inhibitory effects of hepatic insulin signaling on apoB secretion is very short-lived.
Collapse
Affiliation(s)
- Byoung C Moon
- Irving Institute for Clinical and Translational Research, PH10-305, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
4
|
Adeli K. Translational control mechanisms in metabolic regulation: critical role of RNA binding proteins, microRNAs, and cytoplasmic RNA granules. Am J Physiol Endocrinol Metab 2011; 301:E1051-64. [PMID: 21971522 DOI: 10.1152/ajpendo.00399.2011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regulated cell metabolism involves acute and chronic regulation of gene expression by various nutritional and endocrine stimuli. To respond effectively to endogenous and exogenous signals, cells require rapid response mechanisms to modulate transcript expression and protein synthesis and cannot, in most cases, rely on control of transcriptional initiation that requires hours to take effect. Thus, co- and posttranslational mechanisms have been increasingly recognized as key modulators of metabolic function. This review highlights the critical role of mRNA translational control in modulation of global protein synthesis as well as specific protein factors that regulate metabolic function. First, the complex lifecycle of eukaryotic mRNAs will be reviewed, including our current understanding of translational control mechanisms, regulation by RNA binding proteins and microRNAs, and the role of RNA granules, including processing bodies and stress granules. Second, the current evidence linking regulation of mRNA translation with normal physiological and metabolic pathways and the associated disease states are reviewed. A growing body of evidence supports a key role of translational control in metabolic regulation and implicates translational mechanisms in the pathogenesis of metabolic disorders such as type 2 diabetes. The review also highlights translational control of apolipoprotein B (apoB) mRNA by insulin as a clear example of endocrine modulation of mRNA translation to bring about changes in specific metabolic pathways. Recent findings made on the role of 5'-untranslated regions (5'-UTR), 3'-UTR, RNA binding proteins, and RNA granules in mediating insulin regulation of apoB mRNA translation, apoB protein synthesis, and hepatic lipoprotein production are discussed.
Collapse
Affiliation(s)
- Khosrow Adeli
- Program in Molecular Structure & Function, Research Institute, The Hospital for Sick Children, Atrium 3653, 555 University Ave., Toronto, ON, M5G 1X8 Canada.
| |
Collapse
|
5
|
Karimian Pour N, Adeli K. Insulin silences apolipoprotein B mRNA translation by inducing intracellular traffic into cytoplasmic RNA granules. Biochemistry 2011; 50:6942-50. [PMID: 21721546 DOI: 10.1021/bi200711v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Insulin is a potent inducer of global mRNA translation and protein synthesis, yet it negatively regulates apolipoprotein B (apoB) mRNA translation, via an unknown mechanism. ApoB mRNA has a long half-life of 16 h, suggesting intracellular storage as mRNPs likely in the form of RNA granules. The availability of apoB mRNA for translation may be regulated by the rate of release from translationally silenced mRNPs within cytoplasmic foci called processing bodies (P bodies). In this report, we directly imaged intracellular apoB mRNA traffic and determined whether insulin silences apoB mRNA translation by entering cytoplasmic P bodies. We assessed the colocalization of apoB mRNA and β-globin mRNA (as a control) with P body (PB) markers using a strong interaction between the bacteriophage capsid protein MS2 and a sequence specific RNA stem-loop structure. We observed statistically significant increases in the localization of apoB mRNA into P bodies 4-16 h after insulin treatment (by 72-89%). The movement of apoB mRNA into cytoplasmic P bodies correlated with reduced translational efficiency as assessed by polysomal profiling and measurement of apoB mRNA abundance. PB localization of β-globin mRNA was insensitive to insulin treatment, suggesting selective regulation of apoB mRNA by insulin. Overall, our data suggest that insulin may specifically silence apoB mRNA translation by reprogramming its mRNA into P bodies and reducing the size of translationally competent mRNA pools. Translational control via traffic into cytoplasmic RNA granules may be an important mechanism for controlling the rate of apoB synthesis and hepatic lipoprotein production.
Collapse
Affiliation(s)
- Navaz Karimian Pour
- Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
6
|
Rutledge AC, Su Q, Adeli K. Apolipoprotein B100 biogenesis: a complex array of intracellular mechanisms regulating folding, stability, and lipoprotein assemblyThis paper is one of a selection of papers published in this special issue entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases” and has undergone the Journal's usual peer review process. Biochem Cell Biol 2010; 88:251-67. [DOI: 10.1139/o09-168] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Apolipoprotein B100 (apoB) is a large amphipathic lipid-binding protein that is synthesized by hepatocytes and used to assemble and stabilize very low density lipoproteins (VLDL). It may have been derived through evolution from other lipid-associating proteins such as microsomal triglyceride transfer protein or vitellogenin. The correct folding of apoB requires assistance from chaperone proteins in co-translational lipidation, disulfide bond formation, and glycosylation. Any impairment in these processes results in co-translational targeting of the misfolded apoB molecule for proteasomal degradation. In fact, most of the regulation of apoB production is mediated by intracellular degradation. ApoB that misfolds post-translationally, perhaps as a result of oxidative stress, may be eliminated through autophagy. This review focuses on the proposed pentapartite domain structure of apoB, the role that each domain plays in the binding of lipid species and regulation of apoB synthesis, and the process of VLDL assembly. The factors involved in the recognition, ubiquitination, and proteasomal delivery of defective apoB molecules are also discussed.
Collapse
Affiliation(s)
- Angela C. Rutledge
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Room 3652, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6243, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Qiaozhu Su
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Room 3652, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6243, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Khosrow Adeli
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Room 3652, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6243, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
7
|
Qiu W, Su Q, Rutledge AC, Zhang J, Adeli K. Glucosamine-induced endoplasmic reticulum stress attenuates apolipoprotein B100 synthesis via PERK signaling. J Lipid Res 2009; 50:1814-23. [PMID: 19383982 DOI: 10.1194/jlr.m800343-jlr200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucosamine impairs hepatic apolipoprotein B100 (apoB100) production by inducing endoplasmic reticulum (ER) stress and enhancing cotranslational and posttranslational apoB100 degradation (Qiu, W., R. K. Avramoglu, A. C. Rutledge, J. Tsai, and K. Adeli. Mechanisms of glucosamine-induced suppression of the hepatic assembly and secretion of apolipoprotein B-100-containing lipoproteins. J. Lipid Res. 2006. 47: 1749-1761). Here, we report that glucosamine also regulates apoB100 protein synthesis via ER-stress-induced PERK activation. Short-term (4 h) glucosamine treatment of HepG2 cells reduced both cellular (by 62%) and secreted apoB100 (by 43%) without altering apoB100 mRNA. Treatment with proteasomal inhibitors only partially prevented the suppressive effects of glucosamine, suggesting that mechanisms other than proteasomal degradation may also be involved. Glucosamine-induced ER stress was associated with a significantly reduced apoB100 synthesis with no significant change in posttranslational decay rates, suggesting that glucosamine exerted its effect early during apoB biosynthesis. The role of PERK and its substrate, alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha), in the suppressive effects of glucosamine on apoB synthesis was then investigated. Coexpression of apoB15 (normally resistant to intracellular degradation) with wild-type double stranded (ds) RNA activated protein kinase (PKR)-like endoplasmic reticulum kinase (PERK) in COS-7 cells resulted in a dramatic reduction in the levels of newly synthesized apoB15. Interestingly, cotransfection with apoB15 and a kinase inactive PERK mutant (K618A) increased apoB15 expression. In addition, short-term glucosamine treatment stimulated an increase in phosphorylation of PERK and eIF2alpha. Taken together, these data suggest that in addition to the induction of ER-associated degradation and other degradative pathways, ER stress is associated with suppression of apoB synthesis via a PERK-dependent mechanism.
Collapse
Affiliation(s)
- Wei Qiu
- Molecular Structure and Function, Research Institute, The Hospital for Sick Children, University of Toronto, Ontario, M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
8
|
Ginsberg HN, Fisher EA. The ever-expanding role of degradation in the regulation of apolipoprotein B metabolism. J Lipid Res 2009; 50 Suppl:S162-S166. [PMID: 19050312 PMCID: PMC2674708 DOI: 10.1194/jlr.r800090-jlr200] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 12/02/2008] [Indexed: 11/17/2023] Open
Abstract
Apolipoprotein B (apoB) is the essential protein required for the assembly and secretion of chylomicrons from the small intestine and VLDLs from the liver. These lipoproteins, as well as their remnants and LDL, play key roles in the transport of dietary and endogenously synthesized lipids throughout the body. However, they can be involved in the initiation of atherosclerotic lesions in the vessel wall. Therefore, it is not surprising that the assembly of apoB-containing lipoproteins in the small intestine and liver is a highly regulated process. In particular, cotranslational and posttranslational targeting of apoB for degradation, regulated largely by the availability of the core lipids carried in the lipoprotein, by the types of dietary fatty acids consumed, and by the hormonal milieu, determines the number of chylomicrons or VLDL that are secreted. In this review, we summarize both older and more recent findings on the pathways of apoB degradation, focusing on events in the liver.
Collapse
Affiliation(s)
- Henry N Ginsberg
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| | | |
Collapse
|
9
|
Ota T, Gayet C, Ginsberg HN. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest 2008; 118:316-32. [PMID: 18060040 PMCID: PMC2104481 DOI: 10.1172/jci32752] [Citation(s) in RCA: 289] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 10/03/2007] [Indexed: 12/30/2022] Open
Abstract
ER stress can cause hepatic insulin resistance and steatosis. Increased VLDL secretion could protect the liver from ER stress-induced steatosis, but the effect of lipid-induced ER stress on the secretion of VLDL is unknown. To determine the effect of lipids on hepatic ER stress and VLDL secretion, we treated McA-RH7777 liver cells with free fatty acids. Prolonged exposure increased cell triglycerides, induced steatosis, and increased ER stress. Effects on apoB100 secretion, which is required for VLDL assembly, were parabolic, with moderate free fatty acid exposure increasing apoB100 secretion, while greater lipid loading inhibited apoB100 secretion. This decreased secretion at higher lipid levels was due to increased protein degradation through both proteasomal and nonproteasomal pathways and was dependent on the induction of ER stress. These findings were supported in vivo, where intravenous infusion of oleic acid (OA) in mice increased ER stress in a duration-dependent manner. apoB secretion was again parabolic, stimulated by moderate, but not prolonged, OA infusion. Inhibition of ER stress was able to restore OA-stimulated apoB secretion after prolonged OA infusion. These results suggest that excessive ER stress in response to increased hepatic lipids may decrease the ability of the liver to secrete triglycerides by limiting apoB secretion, potentially worsening steatosis.
Collapse
Affiliation(s)
- Tsuguhito Ota
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
10
|
Abstract
Increased serum concentrations of low density lipoproteins represent a major cardiovascular risk factor. Low-density lipoproteins are derived from very low density lipoproteins secreted by the liver. Apolipoprotein (apo)B that constitutes the essential structural protein of these lipoproteins exists in two forms, the full length form apoB-100 and the carboxy-terminal truncated apoB-48. The generation of apoB-48 is due to editing of the apoB mRNA which generates a premature stop translation codon. The editing of apoB mRNA is an important regulatory event because apoB-48-containing lipoproteins cannot be converted into the atherogenic low density lipoproteins. The apoB gene is constitutively expressed in liver and intestine, and the rate of apoB secretion is regulated post-transcriptionally. The translocation of apoB into the endoplasmic reticulum is complicated by the hydrophobicity of the nascent polypeptide. The assembly and secretion of apoB-containing lipoproteins within the endoplasmic reticulum is strictly dependent on the microsomal tricylceride transfer protein which shuttles triglycerides onto the nascent lipoprotein particle. The overall synthesis of apoB lipoproteins is regulated by proteosomal and nonproteosomal degradation and is dependent on triglyceride availability. Noninsulin dependent diabetes mellitus, obesity and the metabolic syndrome are characterized by an increased hepatic synthesis of apoB-containing lipoproteins. Interventions aimed to reduce the hepatic secretion of apoB-containing lipoproteins are therefore of great clinical importance. Lead targets in these pathways are discussed.
Collapse
Affiliation(s)
- J Greeve
- Klinik für Allgemeine Innere Medizin, Inselspital-Universitätsspital Bern, Switzerland.
| |
Collapse
|
11
|
Qiu W, Kohen-Avramoglu R, Mhapsekar S, Tsai J, Austin RC, Adeli K. Glucosamine-induced endoplasmic reticulum stress promotes ApoB100 degradation: evidence for Grp78-mediated targeting to proteasomal degradation. Arterioscler Thromb Vasc Biol 2004; 25:571-7. [PMID: 15618547 DOI: 10.1161/01.atv.0000154142.61859.94] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the role of glucosamine-mediated endoplasmic reticulum (ER) stress and Grp78 (BiP) in the intracellular degradation of apolipoprotein B100 (apoB100) in cultured hepatocytes. METHODS AND RESULTS Glucosamine treatment (2.5 to 10 mmol/L) of HepG2 cells increased levels of the ER chaperones, 78-kDa glucose-regulated protein (Grp78) and Grp94, in a dose-dependent manner and led to significant decreases in both cellular and secreted apoB100 by up to 97% (P<0.01). In contrast, no changes were observed in ER resident (ER60, PTP-1B) or secretory (albumin, apoE) control proteins. Glucosamine-induced apoB degradation was similarly observed in primary hamster hepatocytes and McA-RH7777 cells. Glucosamine treatment led to reduced tranlocational efficiency of apoB100 in the ER and enhanced its ubiquitination and proteasomal degradation. Adenoviral overexpression of Grp78 also led to significantly decreased levels of newly synthesized apoB100 in a dose-dependent manner (P<0.01). Grp78-induced downregulation of apoB100 was sensitive to inhibition by the proteasome inhibitor, lactacystin, but not lysosomal protease inhibitors, E64 and leupeptin, suggesting that overexpression of Grp78 selectively induced proteasomal degradation of apoB100. CONCLUSIONS These findings suggest that binding and retention by Grp78 may play a critical role in proteasomal targeting and the ER quality-control of misfolded apoB. Interaction with core lipoprotein lipids may facilitate apoB transport out of the ER by reducing Grp78-mediated ER retention.
Collapse
Affiliation(s)
- Wei Qiu
- Division of Clinical Biochemistry, Department of Laboratory Medicine & Pathobiology, Hospital for Sick Children, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Lapierre LR, Currie DL, Yao Z, Wang J, McLeod RS. Amino acid sequences within the β1 domain of human apolipoprotein B can mediate rapid intracellular degradation. J Lipid Res 2004; 45:366-77. [PMID: 14581578 DOI: 10.1194/jlr.m300104-jlr200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein B (apoB)-48 contains a region termed the beta1 domain that is predicted to be composed of extensive amphipathic beta-strands. Analysis of truncated apoB variants revealed that sequences between the carboxyl termini of apoB-37 and apoB-42 governed the secretion efficiency and intracellular stability of apoB. Although apoB-37, apoB-34, and apoB-29 were stable and secreted efficiently, apoB-42 and apoB-100 were secreted poorly and were degraded by an acetyl-leucyl-leucyl-norleucinal (ALLN)-sensitive pathway. Amino acid sequence analysis suggested that a segment between the carboxyl termini of apoB-38 and apoB-42 was 63% homologous to fatty acid binding proteins (FABPs), which contain orthogonal beta-sheets. To test the hypothesis that sequences from the beta1 domain are involved in apoB degradation, fusion proteins were created that contained apoB-29 linked to fragments derived from the beta1 domain of apoB or to liver FABP. Fusion proteins containing the beta1 domain segments apoB-34-42 or apoB-37-42 were degraded rapidly, whereas other fusion proteins were stable and secreted efficiently. Degradation was ALLN-sensitive, and the apoB-34-42 segment increased the association of the apoB protein with the cytosolic surface of the microsomal membrane. Our data suggest that the presence of specific sequences in the beta1 domain of human apoB increases degradation by promoting the cytosolic exposure of the protein, although not all regions of the beta1 domain are functionally equivalent.
Collapse
Affiliation(s)
- Louis R Lapierre
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | | | | | |
Collapse
|
13
|
Abstract
Apolipoprotein B is a large, amphipathic protein that plays a central role in lipoprotein metabolism. Because its overproduction and deficiency leads to metabolic and pathologic disorders, much effort has been paid to investigate the mechanisms of how its homeostasis is achieved. Earlier and recent studies have showed that apoB gene locus might reside in different chromatin domains in the hepatic and intestinal cells, and two sets of very distinct regulatory elements operate to control its transcription. Posttranscriptional modification of apoB mRNA is performed by a multicomponent enzyme complex, several possible pathways regulate the editing efficiency. Understanding of the mechanism responsible for apoB mRNA editing will provide the basis for C-to-U editing in gene therapy. In addition to apoB mRNA abundance and stability, its translation can be also regulated at the steps of elongation. The translocation of apoB into the ER is an important and complicated process that is less understood. Successful transport and correct folding of apoB may lead to its final secretion, otherwise subject to intracellular degradation, which is accomplished by proteasomal and nonproteasomal pathways at multiple levels and may differ among cell types.
Collapse
Affiliation(s)
- Ai-Bing Wang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 10005, People's Republic of China
| | | | | |
Collapse
|
14
|
Fisher EA, Ginsberg HN. Complexity in the secretory pathway: the assembly and secretion of apolipoprotein B-containing lipoproteins. J Biol Chem 2002; 277:17377-80. [PMID: 12006608 DOI: 10.1074/jbc.r100068200] [Citation(s) in RCA: 356] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Edward A Fisher
- Cardiovascular Institute and Departments of Medicine and Biochemistry, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|
15
|
Sakata N, Phillips TE, Dixon JL. Distribution, transport, and degradation of apolipoprotein B-100 in HepG2 cells. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31523-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Abstract
The assembly of apolipoprotein B (apoB) into VLDL is broadly divided into two steps. The first involves transfer of lipid by the microsomal triglyceride transfer protein (MTP) to apoB during translation. The second involves fusion of apoB-containing precursor particles with triglyceride droplets to form mature VLDL. ApoB and MTP are homologs of the egg yolk storage protein, lipovitellin. Homodimerization surfaces in lipovitellin are reutilized in apoB and MTP to achieve apoB-MTP interactions necessary for first step assembly. Structural modeling predicts a small lipovitellin-like lipid binding cavity in MTP and a transient lipovitellin-like cavity in apoB important for nucleation of lipid sequestration. The formation of triglyceride droplets in the endoplasmic reticulum requires MTP however, their fusion with apoB may be MTP-independent. Second step assembly is modulated by phospholipase D and A2. Phospholipases may prime membrane transport steps required for second step fusion and/or channel phospholipids into a pathway for VLDL triglyceride production. The enzymology of VLDL triglyceride synthesis is still poorly understood; however, it appears that ACAT2 is the sole source of cholesterol esters for VLDL and chylomicron assembly. VLDL production is controlled primarily at the level of presecretory degradation. Recently, it was discovered that the LDL receptor modulates VLDL production through its interactions with nascent VLDL in the secretory pathway.
Collapse
Affiliation(s)
- G S Shelness
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| | | |
Collapse
|
17
|
Ujvari A, Aron R, Eisenhaure T, Cheng E, Parag HA, Smicun Y, Halaban R, Hebert DN. Translation rate of human tyrosinase determines its N-linked glycosylation level. J Biol Chem 2001; 276:5924-31. [PMID: 11069924 DOI: 10.1074/jbc.m009203200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosinase is a type I membrane glycoprotein essential for melanin synthesis. Mutations in tyrosinase lead to albinism due, at least in part, to aberrant retention of the protein in the endoplasmic reticulum and subsequent degradation by the cytosolic ubiquitin-proteasomal pathway. A similar premature degradative fate for wild type tyrosinase also occurs in amelanotic melanoma cells. To understand critical cotranslational events, the glycosylation and rate of translation of tyrosinase was studied in normal melanocytes, melanoma cells, an in vitro cell-free system, and semi-permeabilized cells. Site-directed mutagenesis revealed that all seven N-linked consensus sites are utilized in human tyrosinase. However, glycosylation at Asn-290 (Asn-Gly-Thr-Pro) was suppressed, particularly when translation proceeded rapidly, producing a protein doublet with six or seven N-linked core glycans. The inefficient glycosylation of Asn-290, due to the presence of a proximal Pro, was enhanced in melanoma cells possessing 2-3-fold faster (7.7-10.0 amino acids/s) protein translation rates compared with normal melanocytes (3.5 amino acids/s). Slowing the translation rate with the protein synthesis inhibitor cycloheximide increased the glycosylation efficiency in live cells and in the cell-free system. Therefore, the rate of protein translation can regulate the level of tyrosinase N-linked glycosylation, as well as other potential cotranslational maturation events.
Collapse
Affiliation(s)
- A Ujvari
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | | | |
Collapse
|