1
|
Caro-Ramírez JY, Franca CA, Lavecchia M, Naso LG, Williams PAM, Ferrer EG. Exploring the potential anti-thyroid activity of Acetyl-L-carnitine: Lactoperoxidase inhibition profile, iodine complexation and scavenging power against H 2O 2. Experimental and theoretical studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124098. [PMID: 38460232 DOI: 10.1016/j.saa.2024.124098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
L-Acetylcarnitine (ALC), a versatile compound, has demonstrated beneficial effects in depression, Alzheimer's disease, cognitive impairment, and other conditions. This study focuses on its antithyroid activity. The precursor molecule, L-carnitine, inhibited the uptake of triiodothyronine (T3) and thyroxine (T4), and it is possible that ALC may reduce the iodination process of T3 and T4. Currently, antithyroid drugs are used to control the excessive production of thyroid hormones (TH) through various mechanisms: (i) forming electron donor-acceptor complexes with molecular iodine, (ii) eliminating hydrogen peroxide, and (iii) inhibiting the enzyme thyroid peroxidase. To understand the pharmacological properties of ALC, we investigated its plausible mechanisms of action. ALC demonstrated the ability to capture iodine (Kc = 8.07 ± 0.32 x 105 M-1), inhibit the enzyme lactoperoxidase (LPO) (IC50 = 17.60 ± 0.76 µM), and scavenge H2O2 (39.82 ± 0.67 mM). A comprehensive physicochemical characterization of ALC was performed using FTIR, Raman, and UV-Vis spectroscopy, along with theoretical DFT calculations. The inhibition process was assessed through fluorescence spectroscopy and vibrational analysis. Docking and molecular dynamics simulations were carried out to predict the binding mode of ALC to LPO and to gain a better understanding into the inhibition process. Furthermore, albumin binding experiments were also conducted. These findings highlight the potential of ALC as a therapeutic agent, providing valuable insights for further investigating its role in the treatment of thyroid disorders.
Collapse
Affiliation(s)
- Janetsi Y Caro-Ramírez
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina
| | - Carlos A Franca
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina
| | - Martín Lavecchia
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina
| | - Luciana G Naso
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina
| | - Patricia A M Williams
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina
| | - Evelina G Ferrer
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina.
| |
Collapse
|
2
|
Gout J, Meuris F, Desbois A, Dorlet P. In vitro coordination of Fe-protoheme with amyloid β is non-specific and exhibits multiple equilibria. J Inorg Biochem 2021; 227:111664. [PMID: 34955310 DOI: 10.1016/j.jinorgbio.2021.111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
In addition to copper and zinc, heme is thought to play a role in Alzheimer's disease and its metabolism is strongly affected during the course of this disease. Amyloid β, the peptide associated with Alzheimer's disease, was shown to bind heme in vitro with potential catalytic activity linked to oxidative stress. To date, there is no direct determination of the structure of this complex. In this work, we studied the binding mode of heme to amyloid β in different conditions of pH and redox state by using isotopically labelled peptide in combination with advanced magnetic and vibrational spectroscopic methods. Our results show that the interaction between heme and amyloid β leads to a variety of species in equilibrium. The formation of these species seems to depend on many factors suggesting that the binding site is neither very strong nor highly specific. In addition, our data do not support the currently accepted model where a water molecule is bound to the ferric heme as sixth ligand. They also exclude structural models mimicking a peroxidatic site in the amyloid β-Fe-protoheme complexes.
Collapse
Affiliation(s)
- Jérôme Gout
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Laboratoire Stress Oxydant et Détoxication, Gif-sur-Yvette, France
| | - Floriane Meuris
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Laboratoire Stress Oxydant et Détoxication, Gif-sur-Yvette, France
| | - Alain Desbois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Laboratoire Stress Oxydant et Détoxication, Gif-sur-Yvette, France.
| | - Pierre Dorlet
- CNRS, Aix-Marseille Université, BIP, IMM, Marseille, France; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Laboratoire Stress Oxydant et Détoxication, Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Jennings GK, Hsu MH, Shock LS, Johnson EF, Hackett JC. Noncovalent interactions dominate dynamic heme distortion in cytochrome P450 4B1. J Biol Chem 2018; 293:11433-11446. [PMID: 29858244 PMCID: PMC6065186 DOI: 10.1074/jbc.ra118.004044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 05/31/2018] [Indexed: 01/07/2023] Open
Abstract
Cytochrome P450 4B1 (4B1) functions in both xenobiotic and endobiotic metabolism. An ester linkage between Glu-310 in 4B1 and the 5-methyl group of heme facilitates preferential hydroxylation of terminal (ω) methyl groups of hydrocarbons (HCs) and fatty acids compared with ω-1 sites bearing weaker C-H bonds. This preference is retained albeit diminished 4-fold for the E310A mutant, but the reason for this is unclear. Here, a crystal structure of the E310A-octane complex disclosed that noncovalent interactions maintain heme deformation in the absence of the ester linkage. Consistent with the lower symmetry of the heme, resonance Raman (RR) spectroscopy revealed large enhancements of RR peaks for high-spin HC complexes of 4B1 and the E310A mutant relative to P450 3A4. Whereas these enhancements were diminished in RR spectra of a low-spin 4B1-N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine complex, a crystal structure indicated that this inhibitor does not alter heme ruffling. RR spectra of Fe2+-CO HC complexes revealed larger effects of HC length in E310A than in 4B1, suggesting that reduced rigidity probably underlies increased E310A-catalyzed (ω-1)-hydroxylation. Diminished effects of the HC on the position of the Fe-CO stretching mode in 4B1 suggested that the ester linkage limits substrate access to the CO. Heme ruffling probably facilitates autocatalytic ester formation by reducing inhibitory coordination of Glu-310 with the heme iron. This also positions the 5-methyl for a reaction with the proposed glutamyl radical intermediate and potentially enhances oxo-ferryl intermediate reactivity for generation of the glutamyl radical to initiate ester bond formation and ω-hydroxylation.
Collapse
Affiliation(s)
- Gareth K Jennings
- Massey Cancer Center and Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Mei-Hui Hsu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Lisa S Shock
- Massey Cancer Center and Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Eric F Johnson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037.
| | - John C Hackett
- Massey Cancer Center and Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298.
| |
Collapse
|
4
|
Li J, Peng Q, Oliver A, Alp EE, Hu MY, Zhao J, Sage JT, Scheidt WR. Comprehensive Fe-ligand vibration identification in {FeNO}6 hemes. J Am Chem Soc 2014; 136:18100-10. [PMID: 25490350 PMCID: PMC4295236 DOI: 10.1021/ja5105766] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Indexed: 01/06/2023]
Abstract
Oriented single-crystal nuclear resonance vibrational spectroscopy (NRVS) has been used to obtain all iron vibrations in two {FeNO}(6) porphyrinate complexes, five-coordinate [Fe(OEP)(NO)]ClO4 and six-coordinate [Fe(OEP)(2-MeHIm)(NO)]ClO4. A new crystal structure was required for measurements of [Fe(OEP)(2-MeHIm)(NO)]ClO4, and the new structure is reported herein. Single crystals of both complexes were oriented to be either parallel or perpendicular to the porphyrin plane and/or axial imidazole ligand plane. Thus, the FeNO bending and stretching modes can now be unambiguously assigned; the pattern of shifts in frequency as a function of coordination number can also be determined. The pattern is quite distinct from those found for CO or {FeNO}(7) heme species. This is the result of unchanging Fe-N(NO) bonding interactions in the {FeNO}(6) species, in distinct contrast to the other diatomic ligand species. DFT calculations were also used to obtain detailed predictions of vibrational modes. Predictions were consistent with the intensity and character found in the experimental spectra. The NRVS data allow the assignment and observation of the challenging to obtain Fe-Im stretch in six-coordinate heme derivatives. NRVS data for this and related six-coordinate hemes with the diatomic ligands CO, NO, and O2 reveal a strong correlation between the Fe-Im stretch and Fe-N(Im) bond distance that is detailed for the first time.
Collapse
Affiliation(s)
- Jianfeng Li
- College
of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, YanQi Lake, HuaiRou District, Beijing 101408, China
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Qian Peng
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Allen
G. Oliver
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre Dame, Indiana 46556, United States
| | - E. Ercan Alp
- Advanced
Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Michael Y. Hu
- Advanced
Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jiyong Zhao
- Advanced
Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - J. Timothy Sage
- Department
of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, 120 Forsyth Street, Boston, Massachusetts 02115, United States
| | - W. Robert Scheidt
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
5
|
Sun Y, Karunakaran V, Champion PM. Investigations of the low-frequency spectral density of cytochrome c upon equilibrium unfolding. J Phys Chem B 2013; 117:9615-25. [PMID: 23863217 DOI: 10.1021/jp404881k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The equilibrium unfolding process of ferric horse heart cytochrome c (cyt c), induced by guanidinium hydrochloride (GdHCl), was studied using UV-vis absorption spectroscopy, resonance Raman spectroscopy, and vibrational coherence spectroscopy (VCS). The unfolding process was successfully fit using a three-state model which included the fully folded (N) and unfolded (U) states, along with an intermediate (I) assigned to a Lys bound heme. The VCS spectra revealed for the first time several low-frequency heme modes that are sensitive to cyt c unfolding: γ(a) (~50 cm(-1)), γ(b) (~80 cm(-1)), γ(c) (~100 cm(-1)), and ν(s)(His-Fe-His) at 205 cm(-1). These out-of-plane modes have potential functional relevance and are activated by protein-induced heme distortions. The free energies for the N-I and the I-U transitions at pH 7.0 and 20 °C were found to be 4.6 kcal/M and 11.6 kcal/M, respectively. Imidazole was also introduced to replace the methionine ligand so the unfolding can be modeled as a two-state system. The intensity of the mode γ(b)~80 cm(-1) remains nearly constant during the unfolding process, while the amplitudes of the other low frequency modes track with spectral changes observed at higher frequency. This confirms that the heme deformation changes are coupled to the protein tertiary structural changes that take place upon unfolding. These studies also reveal that damping of the coherent oscillations depends sensitively on the coupling between heme and the surrounding water solvent.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, United States
| | | | | |
Collapse
|
6
|
Toyama A, Tominaga A, Inoue T, Takeuchi H. Activation of lactoperoxidase by heme-linked protonation and heme-independent iodide binding. Biopolymers 2010; 93:113-20. [DOI: 10.1002/bip.21308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Lemma K, Ashby MT. Reactive Sulfur Species: Kinetics and Mechanism of the Reaction of Hypothiocyanous Acid with Cyanide To Give Dicyanosulfide in Aqueous Solution. Chem Res Toxicol 2009; 22:1622-8. [DOI: 10.1021/tx900212r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kelemu Lemma
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Michael T. Ashby
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| |
Collapse
|
8
|
Brogioni S, Stampler J, Furtmüller PG, Feis A, Obinger C, Smulevich G. The role of the sulfonium linkage in the stabilization of the ferrous form of myeloperoxidase: A comparison with lactoperoxidase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:843-9. [DOI: 10.1016/j.bbapap.2008.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/15/2008] [Accepted: 02/19/2008] [Indexed: 11/28/2022]
|
9
|
Davydov R, Hoffman BM. EPR and ENDOR studies of Fe(II) hemoproteins reduced and oxidized at 77 K. J Biol Inorg Chem 2007; 13:357-69. [PMID: 18058139 DOI: 10.1007/s00775-007-0328-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 11/14/2007] [Indexed: 11/24/2022]
Abstract
gamma-irradiation of frozen solutions of Fe(II) hemoproteins at 77 K generates both electron paramagnetic resonance (EPR) active singly reduced and oxidized heme centers trapped in the conformation of the Fe(II) precursors. The reduction products of pentacoordinate (S = 2) Fe(II) globins, peroxidases and cytochrome P450cam show EPR and electron-nuclear double resonance (ENDOR) spectra characteristic of (3d 7) Fe(I) species. In addition, cryoreduced Fe(II) alpha-chains of hemoglobin and myoglobin exhibit an S = 3/2 spin state produced by antiferromagnetic coupling between a porphyrin anion radical and pentacoordinate (S = 2) Fe(II). The spectra of cryoreduced forms of Fe(II) hemoglobin alpha-chains and deoxymyoglobin reveal that the Fe(II) precursors adopt multiple conformational substates. Reduction of hexacoordinate Fe(II) cytochrome c and cytochrome b5 as well as carboxy complexes of deoxyglobins produces only Fe(II) porphyrin pi-anion radical species. The low-valent hemoprotein intermediates produced by cryoreduction convert to the Fe(II) states at T > 200 K. Cryogenerated Fe(III) cytochrome c and cytochrome b5 have spectra similar to these for the resting Fe(III) states, whereas the spectra of the products of cryooxidation of pentacoordinate Fe(II) globins and peroxidases are different. Cryooxidation of CO-Fe(II) globins generates Fe(III) hemes with quantum-mechanically admixed S = 3/2, 5/2 ground states. The trapped Fe(III) species relax to the equilibrium ferric states upon annealing at T > 190 K. Both cryooxidized and reduced centers provide very sensitive EPR/ENDOR structure probes of the EPR-silent Fe(II) state.
Collapse
Affiliation(s)
- Roman Davydov
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Tech K148, Evanston, IL 60208-3113, USA.
| | | |
Collapse
|
10
|
Zederbauer M, Furtmüller PG, Brogioni S, Jakopitsch C, Smulevich G, Obinger C. Heme to protein linkages in mammalian peroxidases: impact on spectroscopic, redox and catalytic properties. Nat Prod Rep 2007; 24:571-84. [PMID: 17534531 DOI: 10.1039/b604178g] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Martina Zederbauer
- BOKU-University of Natural Resources and Applied Life Sciences, Department of Chemistry, Division of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
11
|
Lockney D, Miksovská J. Characterization of carbon monoxide photodissociation from Fe(II)LPO with photoacoustic calorimetry. J Phys Chem B 2007; 110:24165-70. [PMID: 17125388 DOI: 10.1021/jp0641233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactoperoxidase belongs to a family of mammalian peroxidases that catalyze the oxidation of halides and small organic molecules in the presence of H2O2. We have used photoacoustic calorimetry to characterize thermodynamic parameters associated with ligand dissociation from bovine milk lactoperoxidase. Upon CO photorelease, a prompt (tau < 50 ns) exothermic volume contraction (DeltaH = -20 +/- 7 kcal mol-1 and DeltaH = -2 +/- 1 mL mol-1) was measured at pH 7.0 and 4.0, whereas an endothermic expansion (DeltaH = 30 +/- 13 kcal mol-1 and DeltaV = 9 +/- 2 mL mol(-1)) was observed at pH 10.0 and 7.0 in the presence of 500 mM NaCl. We attribute the observed volume and enthalpy changes to electrostriction arising from changes in the charge distribution associated with a reorganization of the heme binding pocket upon ligand dissociation. It is likely that cleavage of the Fe-CO bond is accompanied by distortion of a salt bridge between Arg557 and the heme propionate group, resulting in the observed electrostriction due to changes in charge distribution.
Collapse
Affiliation(s)
- Dustin Lockney
- Chemistry Department, Marshall University, One John Marshall Drive, Huntington, West Virginia 25755, USA
| | | |
Collapse
|
12
|
Zelent B, Yano T, Ohlsson PI, Smith ML, Paul J, Vanderkooi JM. Optical Spectra of Lactoperoxidase as a Function of Solvent. Biochemistry 2005; 44:15953-9. [PMID: 16313199 DOI: 10.1021/bi0513655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The iron of lactoperoxidase is predominantly high-spin at ambient temperature. Optical spectra of lactoperoxidase indicate that the iron changes from high-spin to low-spin in the temperature range from room temperature to 20 K. The transformation is independent of whether the enzyme is in glycerol/water or solid sugar glass. Addition of the inhibitor benzohydroxamic acid increases the amount of the low-spin form, and again the transformation is independent of whether the protein is in an aqueous solution or a nearly anhydrous sugar. In contrast to lactoperoxidase, horseradish peroxidase remains high-spin over the temperature excursion in both solvents and with addition of benzohydroxamic acid. We conclude that details of the heme pocket of lactoperoxidase allow ligation changes with temperature that are dependent upon the apoprotein but independent of solvent fluctuations. At low pH, lactoperoxidase shows a solvent-dependent transition; the high-spin form is predominant in anhydrous sugar glass, but in the presence of water, the low-spin form is also present in abundance. The active site of lactoperoxidase is not as tightly constrained at low pH as at neutrality, though the enzyme is active over a wide pH range.
Collapse
Affiliation(s)
- B Zelent
- Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
13
|
Galijasevic S, Saed GM, Diamond MP, Abu-Soud HM. High dissociation rate constant of ferrous-dioxy complex linked to the catalase-like activity in lactoperoxidase. J Biol Chem 2004; 279:39465-70. [PMID: 15258136 DOI: 10.1074/jbc.m406003200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heme reduction of ferric lactoperoxidase (LPO) into its ferrous form initially leads to the accumulation of the unstable form of LPO-Fe(II), which spontaneously converts to a more stable species, the two of which can be identified by Soret peaks at 440 and 434 nm, respectively. Our data demonstrate that both LPO-Fe(II) species are capable of binding O(2) at a similar rate to generate the ferrous-dioxy complex. Its formation with respect to O(2) was first order and monophasic and with rate constants of k(on) = 3.8 x 10(4) m(-1) s(-1) and k(off) = 11.2 s(-1). The dissociation rate constant for the formation of LPO-Fe(II)-O(2) is relatively high, in contrast to hemoprotein model compounds. This high dissociation rate can be attributed to a combination of effects that include the positive trans effect of the proximal ligand, the heme pocket environment, and the geometry of the Fe-O(2) linkage. Our results have also shown that the decay of the LPO-Fe(II)-O(2) complex occurs by two sequential O(2)-independent steps. The first step involves formation of a short-lived intermediate that can be characterized by its Soret absorption peak at 416 nm and may be attributed to the weakening of the Fe(II)-O(2) linkage with a rate constant of 0.5 s(-1). The second step is spontaneous conversion of this intermediate to generate the native enzyme and presumably superoxide as end products with a rate constant of 0.03 s(-1). A comprehensive kinetic model that links LPO-Fe(II)-O(2) complex formation to the LPO catalase-like activity, combined with the classic catalytic cycle, is presented here.
Collapse
Affiliation(s)
- Semira Galijasevic
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
14
|
Ciaccio C, De Sanctis G, Marini S, Sinibaldi F, Santucci R, Arcovito A, Bellelli A, Ghibaudi E, Ferrari Rosa P, Coletta M. Proton linkage for CO binding and redox properties of bovine lactoperoxidase. Biophys J 2004; 86:448-54. [PMID: 14695287 PMCID: PMC1303810 DOI: 10.1016/s0006-3495(04)74121-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Accepted: 09/08/2003] [Indexed: 11/18/2022] Open
Abstract
The pH-dependence of redox properties and of CO binding to bovine lactoperoxidase has been investigated over the range between 2 and 11. The pH-dependence of redox potentials shows a biphasic behavior, suggesting the existence of (at least) two redox-linked groups, which change their pKa values upon reduction. These values are in close agreement with those observed to play a relevant role in the modulation of CO binding to ferrous bovine lactoperoxidase. They have been tentatively attributed to Arg-372 and His-226, which are located on the distal side of the heme pocket of lactoperoxidase. A complete and unequivocal description of the proton-linked behavior of bovine lactoperoxidase requires, however, three residues, which are redox linked and relevant for the modulation of CO binding. The rate constant for CO binding to bovine lactoperoxidase is slower than what is reported for most hemoproteins, suggesting that these two residues, Arg-372 and His-226, are representing a severe barrier for the access of exogenous ligands to the heme. This aspect has been further investigated by fast kinetics following laser photolysis, trying to obtain information on the ligand binding pathway and on the energy barriers.
Collapse
Affiliation(s)
- Chiara Ciaccio
- Department of Experimental Medicine and Biochemical Sciences, Università di Tor Vergata, I-00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zbylut SD, Kincaid JR. Resonance Raman evidence for protein-induced out-of-plane distortion of the heme prosthetic group of mammalian lactoperoxidase. J Am Chem Soc 2002; 124:6751-8. [PMID: 12047196 DOI: 10.1021/ja012578u] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Resonance Raman spectra have been acquired for resting state mammalian lactoperoxidase, LPO(N), and its six-coordinate, low-spin (6CLS) cyanide complex, LPO(CN), as well as for various heme l containing fragments resulting from partial or complete proteolytic digestion. These proteolytic fragments provide a useful set of reference compounds for analysis of the LPO(N) and LPO(CN) enzymes, using various ligands to generate well-defined five-coordinate and six-coordinate high-spin (5CHS and 6CHS) species. In addition, these model compounds, which contain zero, one, or two covalently attached ester linkages to polypeptide chains, are quite useful for determining the extent to which the presence of the ester linkages at the heme periphery affects the characteristic heme resonance Raman marker bands. The spectral results not only provide strong evidence for the formulation of the resting state enzyme as a 6CHS species, but also confirm the previously documented anomalous intensities of several low-frequency resonance Raman bands, which are most reasonably interpreted to arise from a protein-induced out-of-plane distortion of the heme l macrocycle mediated by the covalent ester linkages to the associated polypeptide residues of the intact protein.
Collapse
Affiliation(s)
- Steven D Zbylut
- Chemistry Department, Marquette University, Milwaukee, Wisconsin 53233, USA
| | | |
Collapse
|
16
|
Abu-Soud HM, Hazen SL. Interrogation of heme pocket environment of mammalian peroxidases with diatomic ligands. Biochemistry 2001; 40:10747-55. [PMID: 11535049 DOI: 10.1021/bi010478v] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent studies demonstrate that myeloperoxidase (MPO), eosinophil peroxidase (EPO), and lactoperoxidase (LPO), homologous members of the mammalian peroxidase superfamily, can all serve as catalysts for generating nitric oxide- (nitrogen monoxide, NO) derived oxidants. These enzymes contain heme prosthetic groups that are ligated through a histidine nitrogen and use H(2)O(2) as the electron acceptor in the catalysis of oxidative reactions. Here we show that heme reduction of these peroxidases results in distinct electronic and/or conformational changes in their heme pockets using a combination of rapid kinetics measurements, optical absorbance, and diatomic ligand binding studies. Addition of reducing agent to each peroxidase at ground state [Fe(III) state] causes immediate buildup of the corresponding Fe(II) complexes. Spectral changes indicate that two LPO-Fe(II) species are present in solution at equilibrium. Analyses of stopped-flow traces collected when EPO, MPO, or LPO solutions rapidly mixed with NO were accurately fit by single-exponential functions. Plots of the apparent rate constants as a function of NO concentration for all Fe(III) and Fe(II) forms were linear with positive intercepts, consistent with NO binding to each form in a simple reversible one-step mechanism. Fe(II) forms of MPO and LPO, but not EPO, displayed significantly lower affinity toward NO compared to Fe(III) forms, suggesting that heme reduction causes a dramatic change in the heme pocket electronic environment that alters the affinity and/or accessibility of heme iron toward NO. Optical absorbance spectra indicate that CO binds to the Fe(II) forms of both LPO and EPO, but not with MPO, and generates their respective low-spin six-coordinate complexes. Kinetic analyses indicate that the binding of CO to EPO is monophasic while CO binding to LPO is biphasic. Collectively, these results illustrate for the first time functional differences in the heme pocket environments of Fe(II) forms of EPO, LPO, and MPO toward binding of diatomic ligands. Our results suggest that, upon reduction, the heme pocket of MPO collapses, LPO adopts two spectroscopically and kinetically distinguishable forms (one partially open and the other relatively closed), and EPO remains open.
Collapse
Affiliation(s)
- H M Abu-Soud
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
17
|
Abstract
We now show that NO serves as a substrate for multiple members of the mammalian peroxidase superfamily under physiological conditions. Myeloperoxidase (MPO), eosinophil peroxidase, and lactoperoxidase all catalytically consumed NO in the presence of the co-substrate hydrogen peroxide (H(2)O(2)). Near identical rates of NO consumption by the peroxidases were observed in the presence versus absence of plasma levels of Cl(-). Although rates of NO consumption in buffer were accelerated in the presence of a superoxide-generating system, subsequent addition of catalytic levels of a model peroxidase, MPO, to NO-containing solutions resulted in the rapid acceleration of NO consumption. The interaction between NO and compounds I and II of MPO were further investigated during steady-state catalysis by stopped-flow kinetics. NO dramatically influenced the build-up, duration, and decay of steady-state levels of compound II, the rate-limiting intermediate in the classic peroxidase cycle, in both the presence and absence of Cl(-). Collectively, these results suggest that peroxidases may function as a catalytic sink for NO at sites of inflammation, influencing its bioavailability. They also support the potential existence of a complex and interdependent relationship between NO levels and the modulation of steady-state catalysis by peroxidases in vivo.
Collapse
Affiliation(s)
- H M Abu-Soud
- Department of Cell Biology and Department of Cardiology, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
18
|
Lou BS, Snyder JK, Marshall P, Wang JS, Wu G, Kulmacz RJ, Tsai AL, Wang J. Resonance Raman studies indicate a unique heme active site in prostaglandin H synthase. Biochemistry 2000; 39:12424-34. [PMID: 11015223 DOI: 10.1021/bi001257c] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prostaglandin H synthase isoforms 1 and 2 (PGHS-1 and -2) catalyze the first two steps in the biosynthesis of prostaglandins. Resonance Raman spectroscopy was used to characterize the PGHS heme active site and its immediate environment. Ferric PGHS-1 has a predominant six-coordinate high-spin heme at room temperature, with water as the sixth ligand. The proximal histidine ligand (or the distal water ligand) of this hexacoordinate high-spin heme species was reversibly photolabile, leading to a pentacoordinate high-spin ferric heme iron. Ferrous PGHS-1 has a single species of five-coordinate high-spin heme, as evident from nu(2) at 1558 cm(-1) and nu(3) at 1471 cm(-1). nu(4) at 1359 cm(-1) indicates that histidine is the proximal ligand. A weak band at 226-228 cm(-1) was tentatively assigned as the Fe-His stretching vibration. Cyanoferric PGHS-1 exhibited a nu(Fe)(-)(CN) line at 446 cm(-1) and delta(Fe)(-)(C)(-)(N) at 410 cm(-1), indicating a "linear" Fe-C-N binding conformation with the proximal histidine. This linkage agrees well with the open distal heme pocket in PGHS-1. The ferrous PGHS-1 CO complex exhibited three important marker lines: nu(Fe)(-)(CO) (531 cm(-1)), delta(Fe)(-)(C)(-)(O) (567 cm(-1)), and nu(C)(-)(O) (1954 cm(-1)). No hydrogen bonding was detected for the heme-bound CO in PGHS-1. These frequencies markedly deviated from the nu(Fe)(-)(CO)/nu(C)(-)(O) correlation curve for heme proteins and porphyrins with a proximal histidine or imidazolate, suggesting an extremely weak bond between the heme iron and the proximal histidine in PGHS-1. At alkaline pH, PGHS-1 is converted to a second CO binding conformation (nu(Fe)(-)(CO): 496 cm(-1)) where disruption of the hydrogen bonding interactions to the proximal histidine may occur.
Collapse
Affiliation(s)
- B S Lou
- Novartis Pharmaceuticals Corporation, 556 Morris Avenue, Summit, New Jersey 07901, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Thorsteinsson MV, Kerby RL, Roberts GP. Altering the specificity of CooA, the carbon monoxide-sensing transcriptional activator: characterization of CooA variants that bind cyanide in the Fe(II) form with high affinity. Biochemistry 2000; 39:8284-90. [PMID: 10889037 DOI: 10.1021/bi000327c] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CooA is a carbon monoxide- (CO-) sensing homodimeric heme protein that activates the transcription of genes required for the anaerobic oxidation of CO to CO(2) in the phototrophic bacterium Rhodospirillum rubrum. In this study, we demonstrate that mutational alteration of the histidine residue (His(77)) that serves as a heme ligand in the Fe(II) form of CooA allows high-affinity binding of cyanide (K(d) approximately 0.4 mM) to the heme. In contrast, neither these same variants in the Fe(III) form nor wild-type CooA in either oxidation state was able to bind cyanide even at high concentrations (50 mM). Examination of the pH dependence of spectral changes upon addition of cyanide suggested that the cyanide anion coordinated the heme iron. In addition, the UV-visible absorption spectrum of H77Y Fe(II) CooA without added effectors is also pH-dependent, suggesting that an ionizable amino acid has become solvent-accessible in the absence of His(77). Finally, we demonstrate that the transcriptional activity of H77Y CooA shows a small (1.4-fold) increase in the presence of cyanide, suggesting that the binding of cyanide to this variant promotes the active conformation of H77Y CooA.
Collapse
Affiliation(s)
- M V Thorsteinsson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
20
|
Indiani C, Feis A, Howes BD, Marzocchi MP, Smulevich G. Benzohydroxamic Acid−Peroxidase Complexes: Spectroscopic Characterization of a Novel Heme Spin Species. J Am Chem Soc 2000. [DOI: 10.1021/ja000587h] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chiara Indiani
- Contribution from the Dipartimento di Chimica, Università di Firenze, Via G. Capponi 9, I-50121 Firenze, Italy
| | - Alessandro Feis
- Contribution from the Dipartimento di Chimica, Università di Firenze, Via G. Capponi 9, I-50121 Firenze, Italy
| | - Barry D. Howes
- Contribution from the Dipartimento di Chimica, Università di Firenze, Via G. Capponi 9, I-50121 Firenze, Italy
| | - Mario P. Marzocchi
- Contribution from the Dipartimento di Chimica, Università di Firenze, Via G. Capponi 9, I-50121 Firenze, Italy
| | - Giulietta Smulevich
- Contribution from the Dipartimento di Chimica, Università di Firenze, Via G. Capponi 9, I-50121 Firenze, Italy
| |
Collapse
|
21
|
Seibold SA, Cerda JF, Mulichak AM, Song I, Garavito RM, Arakawa T, Smith WL, Babcock GT. Peroxidase activity in prostaglandin endoperoxide H synthase-1 occurs with a neutral histidine proximal heme ligand. Biochemistry 2000; 39:6616-24. [PMID: 10828979 DOI: 10.1021/bi0002333] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prostaglandin endoperoxide H synthases-1 and -2 (PGHS-1 and -2) convert arachidonic acid to prostaglandin H(2) (PGH(2)), the committed step in prostaglandin and thromboxane formation. Interaction of peroxides with the heme sites in PGHSs generates a tyrosyl radical that catalyzes subsequent cyclooxygenase chemistry. To study the peroxidase reaction of ovine oPGHS-1, we combined spectroscopic and directed mutagenesis data with X-ray crystallographic refinement of the heme site. Optical and Raman spectroscopy of oxidized oPGHS-1 indicate that its heme iron (Fe(3+)) exists exclusively as a high-spin, six-coordinate species in the holoenzyme and in heme-reconstituted apoenzyme. The sixth ligand is most likely water. The cyanide complex of oxidized oPGHS-1 has a six-coordinate, low-spin ferric iron with a v[Fe-CN] frequency at 445 cm(-)(1); a monotonic sensitivity to cyanide isotopomers that indicates the Fe-CN adduct has a linear geometry. The ferrous iron in reduced oPGHS-1 adopts a high-spin, five-coordinate state that is converted to a six-coordinate, low-spin geometry by CO. The low-frequency Raman spectrum of reduced oPGHS-1 reveals two v[Fe-His] frequencies at 206 and 222 cm(-)(1). These vibrations, which disappear upon addition of CO, are consistent with a neutral histidine (His388) as the proximal heme ligand. The refined crystal structure shows that there is a water molecule located between His388 and Tyr504 that can hydrogen bond to both residues. However, substitution of Tyr504 with alanine yields a mutant having 46% of the peroxidase activity of native oPGHS-1, establishing that bonding of Tyr504 to this water is not critical for catalysis. Collectively, our results show that the proximal histidine ligand in oPGHS-1 is electrostatically neutral. Thus, in contrast to most other peroxidases, a strongly basic proximal ligand is not necessary for peroxidase catalysis by oPGHS-1.
Collapse
Affiliation(s)
- S A Seibold
- Department of Biochemistry, Department of Chemistry and the LASER Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ferrari RP, Ghibaudi EM, Traversa S, Laurenti E, De Gioia L, Salmona M. Spectroscopic and binding studies on the interaction of inorganic anions with lactoperoxidase. J Inorg Biochem 1997; 68:17-26. [PMID: 9379177 DOI: 10.1016/s0162-0134(97)00003-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interaction of several inorganic species (SCN-, I-, Br-, Cl-, F-, NO2-, N3-, CN-) with bovine lactoperoxidase was investigated through kinetic and binding studies by using UV-Vis spectroscopy. The above ligands form 1:1 complexes with the protein and can be assigned to three different groups, on the basis of the dissociation constant values (KD) of the adducts: (1) SCN-, I-, Br-, and Cl- (KD increases along the series); (2) F- (which shows a singular behavior); (3) NO2-, N3-, and CN- (that bind at the iron site). KD values for the LPO/SCN- adduct appeared to be modified in the presence of other inorganic species; a strong competition between this substrate and all other anions (with the exception of F-) was evidentiated. Binding investigations on the natural substrates SCN- and I-, at varying pH and temperature, showed that their interaction with lactoperoxidase involves the protonation of a common site in proximity of the iron (possibly distal histidine). Michaelis-Menten constants for SCN-, I-, and Br- followed roughly the same trend as KD; KM for hydrogen peroxide is strongly dependent on the cosubstrate. Computer-assisted docking simulations showed that all ligands can penetrate inside the heme pocket.
Collapse
Affiliation(s)
- R P Ferrari
- Dipartimento di Chimica I.F.M., Università di Torino, Italy.
| | | | | | | | | | | |
Collapse
|
23
|
Andersson LA, Bylkas SA, Wilson AE. Spectral analysis of lactoperoxidase. Evidence for a common heme in mammalian peroxidases. J Biol Chem 1996; 271:3406-12. [PMID: 8631940 DOI: 10.1074/jbc.271.7.3406] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The identity of the non-extractable heme of mammalian lactoperoxidase (LPO) has remained unsolved for over 40 years. Accepted possibilities include a constrained heme b or an 8-thiomethylene-modified heme b. Recent studies of myeloperoxidase (MPO) (Fenna, R., Zeng, J., and Davey, C. (1995) Arch. Biochem. Biophys. 316, 653-656; Taylor, K. L., Strobel, F., Yue, K. T., Ram, P., Pohl, J., Woods, A. S., and Kinkade, J. M., Jr. (1995) Arch. Biochem. Biophys. 316, 635-642) suggest possible prosthetic group similarities between MPO and LPO. To address heme identity for LPO, we used comparative magnetic circular dichroism (MCD) spectroscopy of LPO versus myoglobin (Mb), horseradish peroxidase (HRP), and MPO. MCD spectra of native Fe3+-LPO and Fe3+-CN--LPO are approximately 10 nm red shifted from analogous forms of Mb and HRP, including the formate-Mb adduct. MCD spectra of native LPO and MPO are opposite in sign, and MCD spectra of their cyanoadducts also differ. These data indicate the LPO heme is distinct from heme b of Mb and HRP as well as from "heme m" of MPO. From this work and literature analysis, we suggest that the non-extractable "heme l" of LPO has the two vinyl groups of heme b but lacks the 2-sulfonium-vinyl linkage of heme m. The observed red shifts in LPO spectra may derive from ester linkages to protein as for MPO. Strong spectral analogies between LPO and mammalian peroxidases (e.g. from saliva, eosinophils, thyroid, intestine) indicate similar prosthetic heme moieties.
Collapse
Affiliation(s)
- L A Andersson
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | |
Collapse
|
24
|
Sharonov YA. Evidence for the high-spin heme iron in both stable and unstable reduced forms of lactoperoxidase: low-temperature magnetic circular dichroism data. FEBS Lett 1995; 377:512-4. [PMID: 8549787 DOI: 10.1016/0014-5793(95)01409-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The unstable and stable ferrous lactoperoxidase at pH 6.0, 7.0 and 10.2 have been analysed using optical absorption and variable temperature MCD spectroscopy. The evidence is given that two high-spin forms of ferrous. LPO are always observed when the enzyme is reduced in a buffer-glycerol mixture at low temperature (ca. -20 degrees C) at which no spectral changes are seen for a long time after the reduction. Form 1 (the absorption band, 450 nm) dominates significantly over form 2 (the absorption band, 435 nm), but a relative content of form 2 increases on lowering the pH value. An annealing of the unstable LPO at high temperatures is followed by complete irreversible conversion of form 1 to form 2. In addition, at least one low-spin ferrous form exists in temperature-dependent equilibrium with the high-spin form(s) in both stable and unstable ferrous LPO. The reversible increase of its content is observed at least down to 140 K, suggesting that minor structural changes are sufficient for reaching the heme iron by a distal amino acid residue (presumably a histidine).
Collapse
Affiliation(s)
- Y A Sharonov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
25
|
Arciero D, Hooper A. A di-heme cytochrome c peroxidase from Nitrosomonas europaea catalytically active in both the oxidized and half-reduced states. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32655-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Takahashi S, Wang J, Rousseau D, Ishikawa K, Yoshida T, Host J, Ikeda-Saito M. Heme-heme oxygenase complex. Structure of the catalytic site and its implication for oxygen activation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42212-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Hu S, Treat RW, Kincaid JR. Distinct heme active-site structure in lactoperoxidase revealed by resonance Raman spectroscopy. Biochemistry 1993; 32:10125-30. [PMID: 8399138 DOI: 10.1021/bi00089a031] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Low-frequency resonance Raman spectra of the cyanide and carbon monoxide adducts of lactoperoxidase are obtained with Soret excitation. The nu(Fe-CN) and delta(Fe-C-N) modes are detected at 360 and 453 cm-1, respectively. Upon the isotopic substitution of 13C14N, 12C15N, and 13C15N, the band at 453 cm-1 in the natural abundance adduct shifts to 448, 452, and 445 cm-1, while the 360-cm-1 peak shifts to 358, 357, and 356 cm-1, respectively. The 360-cm-1 band is shifted to 355 cm-1 when the pH is changed from 7.0 to 10.5. On the basis of a previous normal-mode analysis of the cyanoferric adduct of myeloperoxidase, a bent Fe-C-N linkage is suggested for the cyanide adduct of lactoperoxidase. The nu(Fe-CN) (374 cm-1) and delta(Fe-C-N) (480 cm-1) modes are observed for the cyanide adduct of reduced lactoperoxidase. For the carbon monoxide adduct, the nu(Fe-CO) (533 cm-1) and delta(Fe-C-O) (578 cm-1) modes at pH 7.0 are observed to shift to 498 and 570 cm-1 as the pH is raised from 7.0 to 10.0. The strong intensity of delta(Fe-C-O) at both acid and alkaline pHs, along with a suggested bent structure of the Fe-C-N moiety, implies a narrow heme pocket for lactoperoxidase.
Collapse
Affiliation(s)
- S Hu
- Chemistry Department, Marquette University, Milwaukee, Wisconsin 53233
| | | | | |
Collapse
|
28
|
Lukat GS, Doran MB, Utschig LM, Goff HM. Magnetic resonance spectroscopy, calcium content, and anion coordination studies of bovine and goat lactoperoxidase. J Inorg Biochem 1993; 50:157-71. [PMID: 8388915 DOI: 10.1016/0162-0134(93)80022-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bovine lactoperoxidase from two purebred strains and a commercial source as well as lactoperoxidase isolated from Alpine goat milk were examined by proton NMR spectroscopy for structural comparison of the heme site. Hyperfine shifted proton NMR spectra for both the native enzymes and cyanide complexes were equivalent for the protein obtained from the four separate sources. Activity assays (guaiacol and iodide ion oxidations) were also employed to compare the enzyme from various sources. Bovine lactoperoxidase was shown to contain 1.5 +/- 0.1 calcium ions per heme unit. Lactoperoxidase complexes with nitrite ion and thiocyanate ion were characterized for comparison with the cyanide complex. The nitrite complex exhibits a proton NMR hyperfine shift pattern at ambient temperature consistent with a low-spin ferric formulation. Interaction of lactoperoxidase with thiocyanate ion was monitored by NMR and EPR spectroscopy. Proton NMR spectra of lactoperoxidase in the presence of excess thiocyanate ion illustrated the retention of a high-spin ferric configuration consistent with predominant binding of the physiological thiocyanate substrate at a non-heme site at room temperature. However, EPR spectroscopy at cryogenic temperatures revealed the existence of a low-spin lactoperoxidase thiocyanate complex. This result may be explained by low-affinity ambient temperature thiocyanate heme binding that is greatly enhanced at liquid helium temperature.
Collapse
Affiliation(s)
- G S Lukat
- Department of Chemistry, University of Iowa, Iowa City 52242
| | | | | | | |
Collapse
|
29
|
Chang CS, Sinclair R, Khalid S, Yamazaki I, Nakamura S, Powers L. An extended X-ray absorption fine structure investigation of the structure of the active site of lactoperoxidase. Biochemistry 1993; 32:2780-6. [PMID: 8457545 DOI: 10.1021/bi00062a007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Native lactoperoxidase, compound III, and the reduced forms (at pH 6 and 9) were studied using X-ray absorption spectroscopy (XAS). Native lactoperoxidase has four pyrrole nitrogen ligands at an average distance of 2.04 +/- 0.01 A, a proximal ligand at 1.91 +/- 0.02 A, and a sixth (distal) ligand at 2.16 +/- 0.03 A. Lactoperoxidase native enzyme has a first coordination shell structure that is similar to that of native lignin peroxidase [Sinclair, R., Yamazaki, I., Bumpus, J., Brock, B., Chang, C.-S., Albo, A., & Powers, L. (1992) Biochemistry 31, 4892-4900] and different from that of horseradish peroxidase [Chance, B., Powers, L., Ching, Y., Poulos, T., Schonbaum, G., Yamazaki, I., & Paul, K. (1984) Arch. Biochem. Biophys. 235, 596-611]. Similarly, lactoperoxidase compound III resembles lignin peroxidase compound III. The five-coordinated ferrous form was stable at pH 9, but at pH 6 it was rapidly converted to the six-coordinated form with a distal ligand at 2.18 +/- 0.03 A. No evidence typical of changes in spin state was obtained at the different pH values.
Collapse
Affiliation(s)
- C S Chang
- National Center for the Design of Molecular Function, Utah State University, Logan 84322-4630
| | | | | | | | | | | |
Collapse
|
30
|
Chatterjee R, Bandyopadhyay U, Bhattacharyya D, Banerjee RK. Inhibition of intestinal peroxidase activity by nonsteroidal antiinflammatory drugs. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1161:168-76. [PMID: 8381669 DOI: 10.1016/0167-4838(93)90210-i] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The peroxidase activity of the mitochondrial fraction of rat intestine is inhibited in vitro by non-steroidal antiinflammatory drugs (NSAIDs), such as indomethacin (IMN) and acetylsalicylic acid (ASA), the former being more potent than the latter. The peroxidase was solubilised by cetab-NH4Cl extraction and purified to apparent homogeneity by Sephadex G-150 gel filtration and affinity chromatography on Con-A Sepharose. The purified enzyme activity was 80% inhibited by 150 microM IMN and 50% by 2.67 mM ASA. IMN could also inhibit lactoperoxidase activity to the same extent but not the horseradish peroxidase activity. The inhibition of peroxidase-catalysed iodide oxidation by IMN and ASA was optimal at pH 5.5 and 4.5, respectively. Kinetic studies revealed that the inhibition by IMN was competitive with respect to iodide or guaiacol, while the inhibition by ASA was noncompetitive and reversible in nature. Studies of some structural analogues showed that indole-3-acetic acid was as effective as IMN, while salicylic acid was more potent than ASA. Spectral studies showed a small bathochromic shift of the Soret band of the enzyme by IMN, suggesting its possible interaction at or near the heme moiety. The competitive nature of IMN may be explained as due to its oxidation by the peroxidase to a product absorbing at 412 nm, the formation of which is inhibited by iodide. We suggest that IMN inhibits intestinal peroxidase activity by acting as a competitive substrate for the enzyme. As intestinal peroxidase is mainly contributed by the invading eosinophils, NSAIDs may affect the host defence mechanism by inhibiting the activity of the enzyme.
Collapse
Affiliation(s)
- R Chatterjee
- Department of Physiology, Indian Institute of Chemical Biology, Calcutta
| | | | | | | |
Collapse
|
31
|
Hurst JK, Loehr TM, Curnutte JT, Rosen H. Resonance Raman and electron paramagnetic resonance structural investigations of neutrophil cytochrome b558. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52340-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Abstract
EPR spectra of intestinal peroxidase are reported for the first time. The resting state of intestinal peroxidase exhibits only a high spin EPR spectrum with pH-dependent rhombicity. Addition of chloride shifts the equilibrium between an acidic and a neutral form of the enzyme. In contrast, resting lactoperoxidase shows EPR spectra of both low spin and high spin species, indicating a different heme environment between these two peroxidases. The high spin signal of lactoperoxidase consists of multiple components; the major component exhibits pH-dependent rhombicity similar to intestinal peroxidase and the equilibrium between the acidic and the neutral forms is also shifted by chloride ion. EPR features of the low spin cyanide complex of intestinal peroxidase and lactoperoxidase are compared with those of other hemeproteins, whose proximal axial ligands are known to be histidine residues. The g-values of the cyanide adducts of the mammalian peroxidases are similar. The relationship between the g-value anisotropy and imidazolate character of the proximal histidine is discussed.
Collapse
Affiliation(s)
- M Ikeda-Saito
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | | |
Collapse
|
33
|
López-Garriga JJ, Oertling WA, Kean RT, Hoogland H, Wever R, Babcock GT. Metal-ligand vibrations of cyanoferric myeloperoxidase and cyanoferric horseradish peroxidase: evidence for a constrained heme pocket in myeloperoxidase. Biochemistry 1990; 29:9387-95. [PMID: 2174260 DOI: 10.1021/bi00492a012] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The low-frequency FeCN vibrations of cyanoferric myeloperoxidase (MPO) and horseradish peroxidase (HRP) have been measured by resonance Raman spectroscopy. The ordering of the frequencies of the predominantly FeC stretching and FeCN bending normal vibrational modes in the two peroxidases differs. These normal mode vibrations are identified by their wavenumber shifts upon isotopic substitution of the cyanide ligand. For MPO, the stretching mode nu 1 (361 cm-1) occurs at a lower frequency than the bending mode delta 2 (454 cm-1). For HRP, the order is reversed as nu 1 (456 cm-1) is at a higher frequency than delta 2 (404 cm-1). Normal coordinate analyses and model complexes have been used to address the origin of this behavior. The nu 1 stretching frequencies in cyanide complexes of iron porphyrin and iron chlorin model compounds are similar to one another and to that of HRP. Thus, the inverted order and altered frequencies of the nu 1 and delta 2 vibrations in MPO, relative to those in HRP and the model compounds, are not inherent to the proposed iron chlorin prosthetic group in MPO but, rather, are attributed to distinct distal environmental effects in the MPO active site. The normal coordinate analyses for MPO and HRP showed that the nu 1 and delta 2 vibrational frequencies are not pure; the potential energy distributions for these modes respond not only to the geometry but also to the force constants of the nu(FeC) and delta(FeCN) internal coordinates.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J J López-Garriga
- Department of Chemistry, Michigan State University, East Lansing 48824
| | | | | | | | | | | |
Collapse
|
34
|
A nuclear Overhauser effect study of the active site of myeloperoxidase. Structural similarity of the prosthetic group to that on lactoperoxidase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39095-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
Resonance Raman characterization of heme Fe(IV)=O groups of intermediates of yeast cytochrome C peroxidase and lactoperoxidase. J Mol Struct 1989. [DOI: 10.1016/0022-2860(89)80004-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Thanabal V, La Mar GN. A nuclear Overhauser effect investigation of the molecular and electronic structure of the heme crevice in lactoperoxidase. Biochemistry 1989; 28:7038-44. [PMID: 2554963 DOI: 10.1021/bi00443a039] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The proton homonuclear nuclear Overhauser effect, NOE, in conjunction with paramagnetic-induced dipolar relaxation, is utilized to assign resonances and to probe the molecular and electronic structures of the heme cavity in the low-spin cyanide complex of resting-state bovine lactoperoxidase, LPO-CN. Predominantly primary NOEs were detected in spite of the large molecular weight (approximately 78 x 10(3)) of the enzyme, which demonstrates again the advantage of paramagnetism suppressing spin diffusion in large proteins. Both of the nonlabile ring protons of a coordinated histidine are located at resonance positions consistent with a deprotonated imidazole. Several methylene proton pairs are identified, of which the most strongly hyperfine-shifted pair is assigned to the unusual chemically functionalized 8-(mercaptomethylene) group of the prosthetic group [Nichol, A. W., Angel, L. A., Moon, T., & Clezy, P. S. (1987) Biochem. J. 247, 147-150]. The large 8-(mercaptomethylene) proton contact shifts relative to that of the only resolved heme methyl signal are rationalized by the additive perturbations on the rhombic asymmetry of the functionalization of the 8-position and the alignment of the axial histidyl imidazole projection along a vector passing through pyrrole A and C of the prosthetic group. Such a stereochemistry is consistent with the resolution of only a single heme methyl group, 3-CH3, as observed.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- V Thanabal
- Department of Chemistry, University of California, Davis 95616
| | | |
Collapse
|
37
|
Abstract
Following a brief introduction of cellular response to stimulation comprising leukocyte activation, three major areas are discussed: (1) the neutrophil oxidase; (2) myeloperoxidase (MPO)-dependent oxidative microbicidal reactions; and (3) MPO-independent oxidative reactions. Topics included in section (A) are current views on the activation mechanism, redox composition, structural and topographic organization of the oxidase, and its respiratory products. In section (B), emphasis is placed on recent research on cidal mechanisms of HOCl, including the oxidative biochemistry of active chlorine compounds, identification of sites of lesions in bacteria, and attendant metabolic consequences. In section (C), we review the (bio)chemistry of H2O2 and .OH microbicidal reactions, with particular attention being given to addressing the controversial issue of probe methods to identify .OH radical and critical assessment of the recent proposal that MPO-independent killing arises from site-specific metal-catalyzed Fenton-type chemistry.
Collapse
Affiliation(s)
- J K Hurst
- Department of Chemical and Biological Sciences, Oregon Graduate Center, Beaverton
| | | |
Collapse
|
38
|
Oertling WA, Hoogland H, Babcock GT, Wever R. Identification and properties of an oxoferryl structure in myeloperoxidase compound II. Biochemistry 1988; 27:5395-400. [PMID: 2846034 DOI: 10.1021/bi00415a002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Myeloperoxidase compound II has been characterized by using optical absorption and resonance Raman spectroscopies. Compared to compounds II in other peroxidases, the electronic and vibrational properties of this intermediate are strongly perturbed due to the unusual active-site iron chromophore that occurs in myeloperoxidase. Despite this difference in prosthetic group, however, other properties of myeloperoxidase compound II are similar to those observed for this intermediate in the more common peroxidases (horseradish peroxidase in particular). Two forms of the myeloperoxidase intermediate species, each with distinct absorption spectra, are recognized as a function of pH. We present evidence consistent with interconversion of these two forms via a heme-linked ionization of a distal amino acid residue with a pKa congruent to 9. From resonance Raman studies of isotopically labeled species at pH 10.7, we identify an iron-oxygen stretching frequency at 782 cm-1, indicating the presence of an oxoferryl (O = FeIV) group in myeloperoxidase compound II. We further conclude that the oxo ligand is not hydrogen bonded above the pKa but possibly exhibits oxygen exchange with the medium at pH values below the pKa due to hydrogen bonding of the oxo ligand to the distal protein group.
Collapse
Affiliation(s)
- W A Oertling
- Department of Chemistry, Michigan State University, East Lansing 48824
| | | | | | | |
Collapse
|
39
|
Lukat GS, Jabro MN, Rodgers KR, Goff HM. Electron paramagnetic resonance spectroscopy of thyroid peroxidase. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 954:265-70. [PMID: 2835983 DOI: 10.1016/0167-4838(88)90081-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thyroid peroxidase was isolated from porcine thyroids by two methods. Limited trypsin proteolysis was employed to obtain a cleaved enzyme, and affinity chromatography was used to isolate intact thyroid peroxidase. Enzyme isolated by both methods was used in the examination of the heme site of native thyroid peroxidase and its complexes by EPR spectroscopy. Intact thyroid peroxidase showed a homogeneous high-spin EPR signal with axial symmetry, in contrast to the rhombic EPR signal of native lactoperoxidase. Reaction of cyanide or azide ion with native thyroid peroxidase resulted in the loss of the axial EPR signal within several hours. The EPR spectroscopy of the nitrosyl adduct of ferrous thyroid peroxidase exhibited a three-line hyperfine splitting pattern and indicated that the heme-ligand structure of thyroid peroxidase is significantly different from that of lactoperoxidase.
Collapse
Affiliation(s)
- G S Lukat
- Department of Chemistry, University of Iowa, Iowa City 52242
| | | | | | | |
Collapse
|
40
|
Yonetani T, Anni H. Yeast cytochrome c peroxidase. Coordination and spin states of heme prosthetic group. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47968-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|