1
|
Pilarova I, Kejnovska I, Vorlickova M, Trnkova L. Dynamic Structures of DNA Heptamers with Different Central Trinucleotide Sequences Studied by Electrochemical and Spectral Methods. ELECTROANAL 2014. [DOI: 10.1002/elan.201400288] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
2
|
Saha SK. Phenotypic evidence of ultra-highly diluted homeopathic remedies acting at gene expression level: a novel probe on experimental phage infectivity in bacteria. ACTA ACUST UNITED AC 2012; 10:462-70. [DOI: 10.3736/jcim20120416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Kostyukov VV. Energetics of complex formation of the dna hairpin structure d(GCGAAGC) with aromatic ligands. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s000635091101012x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
4
|
Folding topology of a bimolecular DNA quadruplex containing a stable mini-hairpin motif within the diagonal loop. J Mol Biol 2008; 385:1600-15. [PMID: 19070621 DOI: 10.1016/j.jmb.2008.11.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/12/2008] [Accepted: 11/20/2008] [Indexed: 11/24/2022]
Abstract
We describe the NMR structural characterisation of a bimolecular anti-parallel DNA quadruplex d(G(3)ACGTAGTG(3))(2) containing an autonomously stable mini-hairpin motif inserted within the diagonal loop. A folding topology is identified that is different from that observed for the analogous d(G(3)T(4)G(3))(2) dimer with the two structures differing in the relative orientation of the diagonal loops. This appears to reflect specific base stacking interactions at the quadruplex-duplex interface that are not present in the structure with the T(4)-loop sequence. A truncated version of the bimolecular quadruplex d(G(2)ACGTAGTG(2))(2), with only two core G-tetrads, is less stable and forms a heterogeneous mixture of three 2-fold symmetric quadruplexes with different loop arrangements. We demonstrate that the nature of the loop sequence, its ability to form autonomously stable structure, the relative stabilities of the hairpin loop and core quadruplex, and the ability to form favourable stacking interactions between these two motifs are important factors in controlling DNA G-quadruplex topology.
Collapse
|
5
|
An essential DnaB helicase of Bacillus anthracis: identification, characterization, and mechanism of action. J Bacteriol 2008; 191:249-60. [PMID: 18931108 DOI: 10.1128/jb.01259-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have described a novel essential replicative DNA helicase from Bacillus anthracis, the identification of its gene, and the elucidation of its enzymatic characteristics. Anthrax DnaB helicase (DnaB(BA)) is a 453-amino-acid, 50-kDa polypeptide with ATPase and DNA helicase activities. DnaB(BA) displayed distinct enzymatic and kinetic properties. DnaB(BA) has low single-stranded DNA (ssDNA)-dependent ATPase activity but possesses a strong 5'-->3' DNA helicase activity. The stimulation of ATPase activity appeared to be a function of the length of the ssDNA template rather than of ssDNA binding alone. The highest specific activity was observed with M13mp19 ssDNA. The results presented here indicated that the ATPase activity of DnaB(BA) was coupled to its migration on an ssDNA template rather than to DNA binding alone. It did not require nucleotide to bind ssDNA. DnaB(BA) demonstrated a strong DNA helicase activity that required ATP or dATP. Therefore, DnaB(BA) has an attenuated ATPase activity and a highly active DNA helicase activity. Based on the ratio of DNA helicase and ATPase activities, DnaB(BA) is highly efficient in DNA unwinding and its coupling to ATP consumption.
Collapse
|
6
|
Kostjukov V, Pahomov V, Andrejuk D, Davies D, Evstigneev M. Investigation of the complexation of the anti-cancer drug novantrone with the hairpin structure of the deoxyheptanucleotide 5′-d(GpCpGpApApGpC). J Mol Struct 2007. [DOI: 10.1016/j.molstruc.2006.12.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Kostyukov VV, Rogova OV, Pakhomov VI, Evstigneev MP. Structural and thermodynamic analysis of the conformational states of self-complementary hexanucleotides 5′-d(GCATGC) and 5′-d(GCTAGC) in Aqueous Solution. Biophysics (Nagoya-shi) 2007. [DOI: 10.1134/s0006350907040033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Kostjukov VV, Lantushenko AO, Davies DB, Evstigneev MP. On the origin of the decrease in stability of the DNA hairpin d(GCGAAGC) on complexation with aromatic drugs. Biophys Chem 2007; 129:56-9. [PMID: 17544564 DOI: 10.1016/j.bpc.2007.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 05/04/2007] [Accepted: 05/11/2007] [Indexed: 11/21/2022]
Abstract
Molecular dynamics simulations of drug-DNA complexes have been carried out in order to explain the experimentally observed decrease in thermal stability of the DNA hairpin d(GCGAAGC) on binding the aromatic drug molecules, daunomycin, ethidium bromide, novantrone and proflavine. This complexation behavior is in contrast to the stabilizing effect of the same aromatic drug molecules on DNA duplexes. Analysis of the energy parameters and the hydration properties of the complexes shows that the main factor correlating with the decrease in melting temperatures of the drug-hairpin complexes is the number of water bridges, with a reduction of at least 40% on ligand binding.
Collapse
Affiliation(s)
- V V Kostjukov
- Department of Physics, Sevastopol National Technical University, Studgorodok, Sevastopol, 99053, Crimea, Ukraine
| | | | | | | |
Collapse
|
9
|
Balkwill GD, Williams HEL, Searle MS. Structure and folding dynamics of a DNA hairpin with a stabilising d(GNA) trinucleotide loop: influence of base pair mis-matches and point mutations on conformational equilibria. Org Biomol Chem 2007; 5:832-9. [PMID: 17315071 DOI: 10.1039/b616820e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hairpins are known to play specific roles in DNA- and RNA--protein recognition. Various disease states are thought to originate from the ill-timed formation of a hairpin loop during transcription, particularly in the context of triplet repeats which are associated with myotonic dystrophy, fragile X syndrome and other genetic disorders. An understanding of nucleic acid folding mechanisms requires a detailed appreciation of the timescales of these local folding events, a characterisation of the conformational equilibria that exist in solution and the influence of point mutations on the relative stabilities of the different species. We investigate using NMR and CD spectroscopy the structure and dynamics of a DNA hairpin containing a highly stabilising cGNAg loop. The single-stranded 13-mer 5'-d(GCTACGNAGTCGC) with N = T folds to form a hairpin structure which accommodates a C-T mis-matched base pair within the double-stranded stem region. The hairpin is in equilibrium with a double-stranded duplex form with the mixture of two interconverting conformations in slow exchange on the NMR timescale (1-2 s(-1) at 308 K). We are able to characterise the dynamics of the interconversion process by NMR magnetisation transfer and by CD stopped-flow kinetic experiments. The latter shows that the hairpin folds too rapidly to detect by this method (>500 s(-1)) and forms in a "kinetic overshoot" followed by a much slower equilibration to a mixture of conformations ( approximately 0.13 s(-1) at 298 K). A point mutation that converts the GTA to a GAA loop sequence destabilises the intermolecular duplex structure and enables us to unambiguously assign the various dynamic processes that are taking place.
Collapse
Affiliation(s)
- Graham D Balkwill
- Centre for Biomolecular Sciences, School of Chemistry, University Park, Nottingham, NG7 2RD, UK.
| | | | | |
Collapse
|
10
|
Ormond TK, Spear D, Stoll J, Mackey MA, St John PM. Increase in hybridization rates with oligodeoxyribonucleotides containing locked nucleic acids. J Biomol Struct Dyn 2006; 24:171-82. [PMID: 16928140 DOI: 10.1080/07391102.2006.10507110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Locked nucleic acids (LNAs) incorporated into either stable single stranded oligonucleotides containing tetraloops or their complements have been found to increase second order hybridization rate constants by an order of magnitude compared to the all-DNA hybridization rate constants. Model sequences composed of 20 bases in length that can form hairpins due to a stable GAAA tetraloop were used where LNAs were substituted for the nucleotides in the loop, stem, or end regions of the strand and in the complementary strand. Substitution of the LNAs to the loop predictably raised the melting temperatures of the duplex however, the hybridization rates between the tetraloop and the complementary sequence also increased. In contrast, when LNAs were substituted in the stem, the hybridization rate decreased implying the formation of a more stable hairpin. Substitution of LNAs into the end region of the sequence had little effect on the hybridization rate constants although melting temperatures still showed a predictable increase. Rates also increased when LNAs were substituted into complementary strands of DNA tetraloops. The increase in hybridization rate constant is being attributed to changes in the structure of the stable single strands.
Collapse
Affiliation(s)
- Thomas K Ormond
- Chemistry Department, SUNY New Paltz, New Paltz, NY 12561, USA
| | | | | | | | | |
Collapse
|
11
|
Ronning DR, Guynet C, Ton-Hoang B, Perez ZN, Ghirlando R, Chandler M, Dyda F. Active site sharing and subterminal hairpin recognition in a new class of DNA transposases. Mol Cell 2005; 20:143-54. [PMID: 16209952 DOI: 10.1016/j.molcel.2005.07.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 06/22/2005] [Accepted: 07/18/2005] [Indexed: 11/28/2022]
Abstract
Many bacteria harbor simple transposable elements termed insertion sequences (IS). In Helicobacter pylori, the chimeric IS605 family elements are particularly interesting due to their proximity to genes encoding gastric epithelial invasion factors. Protein sequences of IS605 transposases do not bear the hallmarks of other well-characterized transposases. We have solved the crystal structure of full-length transposase (TnpA) of a representative member, ISHp608. Structurally, TnpA does not resemble any characterized transposase; rather, it is related to rolling circle replication (RCR) proteins. Consistent with RCR, Mg2+ and a conserved tyrosine, Tyr127, are essential for DNA nicking and the formation of a covalent intermediate between TnpA and DNA. TnpA is dimeric, contains two shared active sites, and binds two DNA stem loops representing the conserved inverted repeats near each end of ISHp608. The cocrystal structure with stem-loop DNA illustrates how this family of transposases specifically recognizes and pairs ends, necessary steps during transposition.
Collapse
Affiliation(s)
- Donald R Ronning
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Trnková L, Postbieglová I, Holik M. Electroanalytical determination of d(GCGAAGC) hairpin. Bioelectrochemistry 2004; 63:25-30. [PMID: 15110243 DOI: 10.1016/j.bioelechem.2003.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 09/17/2003] [Indexed: 11/30/2022]
Abstract
Hairpins (or hairpin-like structures) may play a major role in expansion events of triplet repeat expansion diseases (X syndrome, Huntington's disease, Friedreich's ataxia). The d(GCGAAGC) fragment has been found in the replication origins of phage phiX 174 and herpes simplex virus, in a promoter region of an Escherichia coli heat-shock gene, and in rRNA genes. The paper deals with the application of electrochemical methods to the determination of the DNA heptamer-d(GCGAAGC) which forms very stable hairpin structure in aqueous solutions. On mercury electrodes, this hairpin provides voltammetric reduction signals of adenine and cytosine, and oxidation signals of guanine. Both signals have been studied by cyclic voltammetry (CV), linear sweep voltammetry (LSV), and elimination voltammetry with linear scan (EVLS) in dependence on pH, accumulation time, scan rate, and loop sequences. The EVLS in combination with the adsorptive stripping was employed to the determination of the detection limit (LD) of this mini-hairpin (2 nM). Multidimensional voltammetric data were worked up by Fourier Transform (FT) and for the first coefficient a confidence ellipse was calculated in order to drop out some outlier data. The same method was used also for detection limit determinations. The values of LD obtained by two approaches were compared.
Collapse
Affiliation(s)
- Libuse Trnková
- Department of Theoretical and Physical Chemistry, Faculty of Science, Masaryk University Brno, Kotláøská 2, 611 37 Brno, Czech Republic.
| | | | | |
Collapse
|
13
|
Uprichard SL, Knipe DM. Conformational changes in the herpes simplex virus ICP8 DNA-binding protein coincident with assembly in viral replication structures. J Virol 2003; 77:7467-76. [PMID: 12805446 PMCID: PMC164794 DOI: 10.1128/jvi.77.13.7467-7476.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The herpes simplex virus (HSV) single-stranded DNA-binding protein, ICP8, is required for viral DNA synthesis. Before viral DNA replication, ICP8 colocalizes with other replication proteins at small punctate foci called prereplicative sites. With the onset of viral genome amplification, these proteins become redistributed into large globular replication compartments. Here we present the results of immunocytochemical and biochemical analysis of ICP8 showing that various antibodies recognize distinct forms of ICP8. Using these ICP8-specific antibodies as probes for ICP8 structure, we detected a time-dependent appearance and disappearance of ICP8 epitopes in immunoprecipitation assays. Immunofluorescence staining of ICP8 in cells infected with different HSV mutant viruses as well as cells transfected with a limited number of viral genes demonstrated that these and other antigenic changes occur coincident with ICP8 assembly at intranuclear replication structures. Genetic analysis has revealed a correlation between the ability of various ICP8 mutant proteins to form the 39S epitope and their ability to bind to DNA. These results support the hypothesis that ICP8 undergoes a conformational change upon binding to other HSV proteins and/or to DNA coincident with assembly into viral DNA replication structures.
Collapse
Affiliation(s)
- Susan L Uprichard
- Committee on Virology and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
14
|
Abstract
We report the reconstitution of the initial steps of the double-strand break-repair pathway where joint molecule formation between a duplex DNA fragment and a circular template by the combined action of RecA, RecBCD, and the single-stranded DNA binding protein provides the substrate for replication fork formation by the restart primosome and the DNA polymerase III holoenzyme. We show that PriA dictates the pathway of replication from the recombination intermediate by inhibiting a nonspecific, strand displacement DNA synthesis reaction and favoring the formation of a bona fide replication fork. Furthermore, we find that RecO and RecR significantly stimulate this recombination-directed DNA replication reaction, and that this stimulation is modulated by the presence of RecF, suggesting that the latter protein may also act as a regulator of the pathway of resolution of the recombination intermediate.
Collapse
Affiliation(s)
- Liewei Xu
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
15
|
Abstract
The elaborate process of genomic replication requires a large collection of proteins properly assembled at a DNA replication fork. Several decades of research on the bacterium Escherichia coli and its bacteriophages T4 and T7 have defined the roles of many proteins central to DNA replication. These three different prokaryotic replication systems use the same fundamental components for synthesis at a moving DNA replication fork even though the number and nature of some individual proteins are different and many lack extensive sequence homology. The components of the replication complex can be grouped into functional categories as follows: DNA polymerase, helix destabilizing protein, polymerase accessory factors, and primosome (DNA helicase and DNA primase activities). The replication of DNA derives from a multistep enzymatic pathway that features the assembly of accessory factors and polymerases into a functional holoenzyme; the separation of the double-stranded template DNA by helicase activity and its coupling to the primase synthesis of RNA primers to initiate Okazaki fragment synthesis; and the continuous and discontinuous synthesis of the leading and lagging daughter strands by the polymerases. This review summarizes and compares and contrasts for these three systems the types, timing, and mechanism of reactions and of protein-protein interactions required to initiate, control, and coordinate the synthesis of the leading and lagging strands at a DNA replication fork and comments on their generality.
Collapse
Affiliation(s)
- S J Benkovic
- Pennsylvania State University, Department of Chemistry, 414 Wartik Laboratory, University Park, Pennsylvania 16802, USA.
| | | | | |
Collapse
|
16
|
Abstract
We earlier reported that Escherichia coli single-stranded DNA-binding protein (SSB) bound in a fixed position to the stem-loop structure of the origin of complementary DNA strand synthesis in phage G4 (G4ori(c)), leaving stem-loop I and the adjacent 5' CTG 3', the primer RNA initiation site, as an SSB-free region (W. Sun and G. N. Godson, J. Biol. Chem. 268:8026-8039, 1993). Using a small 278-nucleotide (nt) G4ori(c) single-stranded DNA fragment that supported primer RNA synthesis, we now demonstrate by gel shift that E. coli primase can stably interact with the SSB-G4ori(c) complex. This stable interaction requires Mg2+ for specificity. At 8 mM Mg2+, primase binds to an SSB-coated 278-nt G4ori(c) fragment but not to an SSB-coated control 285-nt LacZ ss-DNA fragment. In the absence of Mg2+, primase binds to both SSB-coated fragments and gives a gel shift. T4 gene 32 protein cannot substitute for E. coli SSB in this reaction. Stable interaction of primase with naked G4ori(c). single-stranded DNA was not observed. DNase I and micrococcal nuclease footprinting, of both 5' and 3' 32P-labeled DNA, demonstrated that primase interacts with two regions of G4ori(c): one covering stem-loop I and the 3' sequence flanking stem-loop I which contains the pRNA initiation site and another located on the 5' sequence flanking stem-loop III.
Collapse
Affiliation(s)
- W Sun
- Biochemistry Department, New York University Medical Center, New York, New York 10016, USA
| | | |
Collapse
|
17
|
Ng JY, Marians KJ. The ordered assembly of the phiX174-type primosome. I. Isolation and identification of intermediate protein-DNA complexes. J Biol Chem 1996; 271:15642-8. [PMID: 8663104 DOI: 10.1074/jbc.271.26.15642] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The phiX-type primosome was discovered during the resolution and reconstitution in vitro of the complementary strand DNA replication step of the phiX174 viral life cycle. This multienzyme bidirectional helicase-primase complex can provide the DNA unwinding and Okazaki fragment-priming functions at the replication fork and has been implicated in cellular DNA replication, repair, and recombination. We have used gel mobility shift assays and enhanced chemiluminescence Western analysis to isolate and identify the pathway of primosome assembly at a primosome assembly site (PAS) on a 300-nucleotide-long single-stranded DNA fragment. The first three steps do not require ATP and are as follows: (i) PriA recognition and binding to the PAS, (ii) stabilization of the PriA-PAS complex by the addition of PriB, and (iii) formation of a PriA-PriB-DnaT-PAS complex. Subsequent formation of the preprimosome involves the ATP-dependent transfer of DnaB from a DnaB-DnaC complex to the PriA-PriB-DnaT-PAS complex. The final preprimosomal complex contains PriA, PriB, DnaT, and DnaB but not DnaC. A transient interaction between the preprimosome and DnaG generates the five-protein primosome. As described in an accompanying article (Ng, J. Y., and Marians, K. J. (1996) J. Biol. Chem. 271, 15649-15655), when assembled on intact phiX174 phage DNA, the primosome also contains PriC.
Collapse
Affiliation(s)
- J Y Ng
- Graduate Program in Molecular Biology, Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | |
Collapse
|
18
|
Ng JY, Marians KJ. The ordered assembly of the phiX174-type primosome. II. Preservation of primosome composition from assembly through replication. J Biol Chem 1996; 271:15649-55. [PMID: 8663105 DOI: 10.1074/jbc.271.26.15649] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Gel filtration chromatography was used to isolate both preprimosomal and primosomal complexes formed on single-stranded DNA-binding protein-coated phiX174 DNA by the combination of PriA, PriB, PriC, DnaT, DnaB, DnaC, and DnaG. The presence and relative amounts of primosomal proteins in these complexes were determined by Western blotting. Protein-DNA complexes isolated (i) after assembly in the presence of 10 microM ATP, (ii) after preprimosome movement in the presence of 1 mM ATP, (iii) after priming in the presence of the four ribonucleoside triphosphates, or (iv) after complementary strand DNA replication in the presence of the DNA polymerase III holoenzyme all had the same protein composition; preprimosomes contained PriA, PriB, PriC, DnaT, and DnaB, whereas primosomes included DnaG. The stable association of DnaG with the protein-DNA complex could be attributed partially to its ability to remain bound to the primers synthesized. In the absence of PriC, the efficiencies of priming and replication were reduced by one-third and one-half, respectively, even though PriC was not required for the formation of stable protein-DNA complexes on a 304-nucleotide-long single strand of DNA containing a primosome assembly site (Ng, J. Y., and Marians, K. J. (1996) J. Biol. Chem. 271, 15642-15648). We hypothesize that maintenance of the primosome on the replicated DNA may provide a mechanism to allow primosomes to participate in the resolution of recombination intermediates and intermediates formed during double strand break repair by permitting the re-establishment of a replication fork.
Collapse
Affiliation(s)
- J Y Ng
- Graduate Program in Molecular Biology, Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | |
Collapse
|
19
|
Kleinsteuber S, Quiñones A. Expression of the dnaB gene of Escherichia coli is inducible by replication-blocking DNA damage in a recA-independent manner. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:695-702. [PMID: 7476872 DOI: 10.1007/bf02191709] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The replicative DNA helicase encoded by the dnaB gene is essential for chromosomal DNA replication in Escherichia coli. The DnaB protein is a component of the phi X-type primosome which is regarded as a model system for lagging strand synthesis of the chromosome. Using translational lacZ fusions at the plasmid and chromosomal levels, we studied the influence of DNA-damaging agents on dnaB gene expression. We found that DNA damage caused by mitomycin C, methyl methanesulphonate, 4-nitro-quinoline N-oxide, and UV irradiation led to a moderate, but significant induction of dnaB gene expression. Comparative S1 analysis of transcripts in untreated and induced cells demonstrated that the induction is due to increased transcription from the dnaB promoter. In contrast to other DNA damage-inducible replication genes, such as dnaA, dnaN, dnaQ, and polA, expression of which is not inducible in recA and lexA mutants, the induction of dnaB was also observed in a recA1 mutant. These results show that the induction of dnaB gene expression by replication-blocking DNA damage is due to a mechanism other than the indirectly SOS-dependent induction of the other DNA replication genes. Moreover, the data suggest that replication proteins are involved in recovery from replication-blocking DNA damage in two different ways--on the one hand at the level of initiation and on the other hand at the level of elongation.
Collapse
Affiliation(s)
- S Kleinsteuber
- Institut für Genetik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | | |
Collapse
|
20
|
Saluja D, Godson GN. Biochemical characterization of Escherichia coli temperature-sensitive dnaB mutants dnaB8, dnaB252, dnaB70, dnaB43, and dnaB454. J Bacteriol 1995; 177:1104-11. [PMID: 7532169 PMCID: PMC176710 DOI: 10.1128/jb.177.4.1104-1111.1995] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
By use of PCR, the dnaB genes from the classical temperature-sensitive dnaB mutants PC8 (dnaB8), RS162 (dnaB252), CR34/454 (dnaB454), HfrH165/70 (dnaB70), and CR34/43 (dnaB43) were isolated. The mutant genes were sequenced, and single amino acid changes were identified in all cases. The mutant DnaB proteins were overexpressed in BL21 (DE3) cells by using the T7 based pET-11c expression vector system. The purified proteins were compared in regard to activities in the general priming reaction of primer RNA synthesis (with primase and single-stranded DNA [ssDNA] as the template), ATPase activity, and helicase activity at permissive (30 degrees C) and nonpermissive (42 degrees C) temperatures. The DnaB252 mutation is at amino acid 299 (Gly to Asp), and in all in vitro assays the DnaB252 protein was as active as the wild-type DnaB protein at both 30 and 42 degrees C. This region of the DnaB protein is believed to be involved in interaction with the DnaC protein. The dnaB8, dnaB454, and dnaB43 mutations, although independently isolated in different laboratories, were all at the same site, changing amino acid 130 from Ala to Val. This mutation is in the hinge region of the DnaB protein domains and probably induces a temperature-sensitive conformational change. These mutants have negligible primer RNA synthesis, ATPase activity, and helicase activity at the nonpermissive temperature. DnaB70 has a mutation at amino acid 242 (Met to Ile), which is close to the proposed ATP binding site. At 30 degrees C this mutant protein has a low level of ATPase activity (approximately 25% of that of the wild type) which is not affected by high temperature. By using a gel shift method that relies upon ssDNA substrates containing the photoaffinity analog 5-(N-(p-azidobenzoyl)-3-aminoallyl)-dUMP, all mutant proteins were shown to bind to ssDNA at both 30 and 42 degrees C. Their lack of other activities at 42 degrees C, therefore, is not due to loss of binding to the ssDNA substrate.
Collapse
Affiliation(s)
- D Saluja
- Department of Biochemistry, New York University Medical Center, New York 10016
| | | |
Collapse
|
21
|
Affiliation(s)
- K J Marians
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| |
Collapse
|
22
|
|
23
|
Bujalowski W, Klonowska MM. Close proximity of tryptophan residues and ATP-binding site in Escherichia coli primary replicative helicase DnaB protein. Molecular topography of the enzyme. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31702-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Bujalowski W, Klonowska MM. Structural characteristics of the nucleotide-binding site of Escherichia coli primary replicative helicase DnaB protein. Studies with ribose and base-modified fluorescent nucleotide analogs. Biochemistry 1994; 33:4682-94. [PMID: 8161526 DOI: 10.1021/bi00181a028] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Structural characteristics of the base- and ribose-binding regions of the high-affinity noninteracting nucleotide-binding site of Escherichia coli primary replicative helicase DnaB protein have been studied, using the base-modified fluorescent nucleotide analog 1, N6-ethenoadenosine diphosphate (epsilon ADP) and the ribose-modified fluorescent analogs 3'(2')-O-(N-methylantraniloyl)adenosine 5'-diphosphate (MANT-ADP), 3'-O-(N-methylantraniloyl)deoxyadenosine 5'-diphosphate (MANT-dADP), 3'-O-(N-methylantraniloyl)-deoxyadenosine 5'-triphosphate (MANT-dATP), and 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-diphosphate (TNP-ADP). The obtained data indicate contrasting differences between these two regions. Binding of epsilon ADP to the DnaB helicase causes only approximately 21% increase of the nucleotide fluorescence intensity and no shift of the emission spectrum maximum. The fluorescence of bound epsilon ADP is characterized by a single lifetime of 24.2 +/- 0.6 ns, only slightly shorter than the fluorescent lifetime of the free epsilon ADP in solution (25.5 +/- 0.6 ns). Solute-quenching studies of bound epsilon ADP, using different quenchers, acrylamide, I-, and Tl+, indicate limited accessibility of ethenoadenosine to the solvent. These results strongly suggest that the base-binding region of the DnaB nucleotide-binding site is located in the polar cleft on the enzyme's surface. Moreover, the limiting emission anisotropy of bound epsilon ADP is 0.21 +/- 0.02, compared to the anisotropy of 0.3 of completely immobilized epsilon ADP at the same excitation wavelength (lambda ex = 325 nm, lambda em = 410 nm), indicating that the adenine preserves substantial mobility when bound in the base-binding site. In contrast, fluorescence intensity at the emission maximum of TNP-ADP and MANT-ADP, which has modifying groups attached to the 2' and/or 3' oxygens of the ribose, increases upon binding to DnaB by factors of approximately 4.7 (lambda ex = 408 nm) and approximately 2.6 (lambda ex = 356 nm), respectively. Moreover, the maximum of emission spectrum of bound TNP-ADP is blue-shifted by approximately 11 nm and that of MANT-ADP by approximately 12 nm. Comparisons between spectral properties of TNP-ADP and MANT-ADP bound to DnaB and in different solvents suggest that the ribose-binding region of the DnaB nucleotide-binding site has relatively low polarity. Solute quenching studies of MANT-ADP fluorescence, using acrylamide, I-, and Tl+, indicate that the MANT group has very little accessibility to the solvent when bound to DnaB. Taken together, these results suggest that the ribose-binding region constitutes a hydrophobic cleft, or pocket, with very limited, if any, contact with the solvent.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- W Bujalowski
- Department of Human Biological Chemistry & Genetics, University of Texas Medical Branch at Galveston 77555-0653
| | | |
Collapse
|
25
|
|
26
|
Allen GC, Dixon NE, Kornberg A. Strand switching of a replicative DNA helicase promoted by the E. coli primosome. Cell 1993; 74:713-22. [PMID: 8395352 DOI: 10.1016/0092-8674(93)90518-u] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The E. coli primosome assembles at an origin on a single-stranded DNA, like that of phi X174, to promote replication of that template. Upon conversion to the duplex form, the primosome can generate a rolling circle product from this template. Rolling circle synthesis implies the transfer of the DnaB helicase from its initial loading site on the viral strand to a displaced complementary strand. Isolated primosomes promote only unit-length synthesis; supplementation with PriC, DnaC, and DnaT is necessary to reconstitute rolling circle synthesis. Rolling circle replication is sensitive to salts, whereas primosome assembly and unit-length synthesis are not. Thus, the primosome promotes two distinct reactions: assembly for first-round synthesis and strand switching for rolling circle synthesis.
Collapse
Affiliation(s)
- G C Allen
- Department of Biochemistry Beckman Center, Stanford University School of Medicine, California 94305
| | | | | |
Collapse
|
27
|
Livneh Z, Cohen-Fix O, Skaliter R, Elizur T. Replication of damaged DNA and the molecular mechanism of ultraviolet light mutagenesis. Crit Rev Biochem Mol Biol 1993; 28:465-513. [PMID: 8299359 DOI: 10.3109/10409239309085136] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
On UV irradiation of Escherichia coli cells, DNA replication is transiently arrested to allow removal of DNA damage by DNA repair mechanisms. This is followed by a resumption of DNA replication, a major recovery function whose mechanism is poorly understood. During the post-UV irradiation period the SOS stress response is induced, giving rise to a multiplicity of phenomena, including UV mutagenesis. The prevailing model is that UV mutagenesis occurs by the filling in of single-stranded DNA gaps present opposite UV lesions in the irradiated chromosome. These gaps can be formed by the activity of DNA replication or repair on the damaged DNA. The gap filling involves polymerization through UV lesions (also termed bypass synthesis or error-prone repair) by DNA polymerase III. The primary source of mutations is the incorporation of incorrect nucleotides opposite lesions. UV mutagenesis is a genetically regulated process, and it requires the SOS-inducible proteins RecA, UmuD, and UmuC. It may represent a minor repair pathway or a genetic program to accelerate evolution of cells under environmental stress conditions.
Collapse
Affiliation(s)
- Z Livneh
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
28
|
Marszalek J, Kaguni J. Defective replication activity of a dominant-lethal dnaB gene product from Escherichia coli. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41779-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
29
|
Stamford NP, Lilley PE, Dixon NE. Enriched sources of Escherichia coli replication proteins. The dnaG primase is a zinc metalloprotein. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1132:17-25. [PMID: 1511009 DOI: 10.1016/0167-4781(92)90047-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Primase, the product of the Escherichia coli dnaG gene, is the enzyme responsible for RNA primer synthesis on both template strands at replication forks during chromosomal DNA synthesis. The dnaG gene was modified by replacement of the natural ribosome-binding site with one complementary to the 3' end of 16S rRNA, and then inserted downstream of tandem bacteriophage lambda PR and PL promoters in the pUC9-derived vector pCE30. Following thermal induction of transcription, the resulting plasmid pPL195 directed synthesis of primase activity to levels corresponding to approx. 120,000 molecules per cell. The overproduced protein was soluble and was readily purified in high yield (31 mg per 1 of culture). Purified primase was monomeric, was fully active in priming replication at the bacteriophage G4 complementary strand origin, and was shown to contain 0.92 +/- 0.08 g atom of tightly-bound zinc per mol of protein. Potential zinc-binding amino-acid residues near the N-terminus of the protein were identified. Although a mutant primase lacking 27 amino acid residues from the N-terminus was partly soluble, it was completely inactive.
Collapse
Affiliation(s)
- N P Stamford
- Centre for Molecular Structure and Function, Research School of Chemistry, Australian National University, Canberra, ACT
| | | | | |
Collapse
|
30
|
Wu C, Zechner E, Marians K. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. I. Multiple effectors act to modulate Okazaki fragment size. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50628-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Allen G, Kornberg A. Fine balance in the regulation of DnaB helicase by DnaC protein in replication in Escherichia coli. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54538-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
32
|
Mechanism of DNA A protein-dependent pBR322 DNA replication. DNA A protein-mediated trans-strand loading of the DNA B protein at the origin of pBR322 DNA. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55148-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Matson SW. DNA helicases of Escherichia coli. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1991; 40:289-326. [PMID: 1851571 DOI: 10.1016/s0079-6603(08)60845-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A great deal has been learned in the last 15 years with regard to how helicase enzymes participate in DNA metabolism and how they interact with their DNA substrates. However, many questions remain unanswered. Of critical importance is an understanding of how NTP hydrolysis and hydrogen-bond disruption are coupled. Several models exist and are being tested; none has been proven. In addition, an understanding of how a helicase disrupts the hydrogen bonds holding duplex DNA together is lacking. Recently, helicase enzymes that unwind duplex RNA and DNA.RNA hybrids have been described. In some cases, these are old enzymes with new activities. In other cases, these are new enzymes only recently discovered. The significance of these reactions in the cell remains to be clarified. However, with the availability of significant amounts of these enzymes in a highly purified state, and mutant alleles in most of the genes encoding them, the answers to these questions should be forthcoming. The variety of helicases found in E. coli, and the myriad processes these enzymes are involved in, were perhaps unexpected. It seems likely that an equally large number of helicases will be discovered in eukaryotic cells. In fact, several helicases have been identified and purified from eukaryotic sources ranging from viruses to mouse cells (4-13, 227-234). Many of these helicases have been suggested to have roles in DNA replication, although this remains to be shown conclusively. Helicases with roles in DNA repair, recombination, and other aspects of DNA metabolism are likely to be forthcoming as we learn more about these processes in eukaryotic cells.
Collapse
Affiliation(s)
- S W Matson
- Department of Biology and Curriculum in Genetics, University of North Carolina, Chapel Hill 27599
| |
Collapse
|
34
|
Abstract
The single-stranded DNA-binding protein (SSB) of Escherichia coli is involved in all aspects of DNA metabolism: replication, repair, and recombination. In solution, the protein exists as a homotetramer of 18,843-kilodalton subunits. As it binds tightly and cooperatively to single-stranded DNA, it has become a prototypic model protein for studying protein-nucleic acid interactions. The sequences of the gene and protein are known, and the functional domains of subunit interaction, DNA binding, and protein-protein interactions have been probed by structure-function analyses of various mutations. The ssb gene has three promoters, one of which is inducible because it lies only two nucleotides from the LexA-binding site of the adjacent uvrA gene. Induction of the SOS response, however, does not lead to significant increases in SSB levels. The binding protein has several functions in DNA replication, including enhancement of helix destabilization by DNA helicases, prevention of reannealing of the single strands and protection from nuclease digestion, organization and stabilization of replication origins, primosome assembly, priming specificity, enhancement of replication fidelity, enhancement of polymerase processivity, and promotion of polymerase binding to the template. E. coli SSB is required for methyl-directed mismatch repair, induction of the SOS response, and recombinational repair. During recombination, SSB interacts with the RecBCD enzyme to find Chi sites, promotes binding of RecA protein, and promotes strand uptake.
Collapse
Affiliation(s)
- R R Meyer
- Department of Biological Sciences, University of Cincinnati, Ohio 45221
| | | |
Collapse
|
35
|
Differential ATP requirements distinguish the DNA translocation and DNA unwinding activities of the Escherichia coli PRI A protein. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)44871-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
36
|
The ABC-primosome. A novel priming system employing dnaA, dnaB, dnaC, and primase on a hairpin containing a dnaA box sequence. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77233-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Mallory JB, Alfano C, McMacken R. Host virus interactions in the initiation of bacteriophage lambda DNA replication. Recruitment of Escherichia coli DnaB helicase by lambda P replication protein. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38298-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
38
|
Parada CA, Marians KJ. Transcriptional Activation of pBR322 DNA Can Lead to Duplex DNA Unwinding Catalyzed by the Escherichia coli Preprimosome. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)63820-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
The Escherichia coli Primosome Can Translocate Actively in Either Direction along a DNA Strand. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71711-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Alonso JC, Stiege CA, Tailor RH, Viret JF. Functional analysis of the dna (Ts) mutants of Bacillus subtilis: plasmid pUB110 replication as a model system. MOLECULAR & GENERAL GENETICS : MGG 1988; 214:482-9. [PMID: 3146018 DOI: 10.1007/bf00330484] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We determined the effect of various Bacillus subtilis dna(Ts) mutations on pUB110 and chromosomal replication. Leading strand DNA synthesis of pUB110, starting by a nick at the plasmid replication origin (oriU), is performed by DNA polymerase III, since replication is blocked at non-permissive temperature in thermosensitive mutants dnaD, dnaF, dnaH and dnaN known to cause thermosensitivity of the various subunits of DNA polymerase III. When the lagging strand origin (oriL) is exposed, the DnaG protein (DNA primase) alone, or in association with unknown protein(s) binds asymmetrically to oriL to form a primer that is also extended by DNA polymerase III. In oriL- plasmids like pBT32, leading and lagging strand DNA syntheses are decoupled from each other. The DnaB protein, that is not required for pUB110 replication, may be associated with priming at a second unidentified lagging strand origin on pBT32. At non-permissive temperature, the dnaC30 and dnaI2 mutations affect both pUB110 and chromosomal DNA synthesis.
Collapse
Affiliation(s)
- J C Alonso
- Max-Planck Institut für Molekulare Genetik, Berlin, Federal Republic of Germany
| | | | | | | |
Collapse
|
41
|
Abstract
A class of dominant lethal mutations in the dnaB (replicative helicase) gene of Salmonella typhimurium is described. The mutated genes, when present on multicopy plasmids, interfered with colony formation by Escherichia coli host strains with a functional chromosomal dnaB gene. The lethal phenotype was expressed specifically in supE (glutamine-inserting) host strains and not in Sup+ strains, because the mutant genes, by design, also possessed an amber mutation derived from a glutamine codon. Mutations located at 11 sites by deletion mapping and DNA sequence analysis varied in the temperature dependence and severity of their lethal effects. None of the mutations complemented a dnaB(Ts) host strain at high temperature (42 degrees C). Therefore, these nonfunctional DnaB proteins must engage some component(s) of the DNA replication machinery and inhibit replication. These mutations are predicted to confer limited, specific defects in either the catalytic activity of DnaB or the ability of DnaB to interact with one of its ligands such as DNA, nucleotide, or another replication protein. The variety of mutant sites and detailed phenotypes represented in this group of mutations may indicate the operation of more than one specific mechanism of lethality.
Collapse
Affiliation(s)
- R Maurer
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|
42
|
|
43
|
Purification and properties of the MalT protein, the transcription activator of the Escherichia coli maltose regulon. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45255-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
44
|
Nakayama N, Bond MW, Miyajima A, Kobori J, Arai K. Structure of Escherichia coli dnaC. Identification of a cysteine residue possibly involved in association with dnaB protein. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)60985-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Funnell B, Baker T, Kornberg A. In vitro assembly of a prepriming complex at the origin of the Escherichia coli chromosome. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61116-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
46
|
Regulation of dnaB function in DNA replication in Escherichia coli by dnaC and lambda P gene products. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47643-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
47
|
Fluit AC, Baas PD, Jansz HS. Termination and reinitiation signals of bacteriophage phi X174 rolling circle DNA replication. Virology 1986; 154:357-68. [PMID: 2945311 DOI: 10.1016/0042-6822(86)90461-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nucleotide sequence requirements for termination and reinitiation of rolling circle DNA replication within the 30-bp phi X174 origin region were studied. Plasmids were constructed which contained a complete and a partial phi X174 origin region in the same orientation. The partial origin consisted of the first 16, 24, 25, 26, 27, or 28 bp of the origin region. Plasmids harboring a complete origin region are subject to rolling circle DNA replication and packaging of single-stranded plasmid DNA into phage coats in phi X174 or G4 phage infected cells. The plasmids with a complete and partial origin region were tested in these in vivo transduction systems. The results lead to the following conclusions: The phi X174 and G4 in vivo transduction systems are useful in studying termination and reinitiation of rolling circle DNA replication. The first 24 bp of the origin region are sufficient for termination of a round of rolling circle DNA replication coupled to DNA packaging. The first 16 bp, however, are not recognized as a termination signal. Reinitiation of rolling circle DNA replication coupled to DNA packaging on a partial origin region occurs with low frequency.
Collapse
|
48
|
Baker TA, Sekimizu K, Funnell BE, Kornberg A. Extensive unwinding of the plasmid template during staged enzymatic initiation of DNA replication from the origin of the Escherichia coli chromosome. Cell 1986; 45:53-64. [PMID: 3006926 DOI: 10.1016/0092-8674(86)90537-4] [Citation(s) in RCA: 221] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Early in the staged initiation of enzymatic replication of plasmids containing the unique origin of the E. coli chromosome (oriC), the plasmid is converted to a new topological form which is highly underwound, two to 15 times more than native supercoiled DNA. The underwinding reaction precedes priming of DNA synthesis and follows an initial complex formation, requiring ATP and proteins dnaA, dnaB, and dnaC; underwinding depends on the further addition of gyrase and SSB. DnaB protein as a helicase and gyrase as a topoisomerase drive the underwinding with the energy of ATP hydrolysis. The underwound template, extensively single-stranded and complexed with proteins, is an active form for priming by primase and elongation by DNA polymerase III holoenzyme.
Collapse
|
49
|
|
50
|
Minden JS, Marians KJ. Replication of pBR322 DNA in vitro with purified proteins. Requirement for topoisomerase I in the maintenance of template specificity. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39368-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|