1
|
Cytosolic Events in the Biogenesis of Mitochondrial Proteins. Trends Biochem Sci 2020; 45:650-667. [DOI: 10.1016/j.tibs.2020.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/18/2020] [Accepted: 04/02/2020] [Indexed: 01/08/2023]
|
2
|
Artigues A, Iriarte A, Martinez-Carrion M. Identification of Hsc70 binding sites in mitochondrial aspartate aminotransferase. Arch Biochem Biophys 2006; 450:30-8. [PMID: 16631106 DOI: 10.1016/j.abb.2006.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 03/21/2006] [Accepted: 03/22/2006] [Indexed: 11/27/2022]
Abstract
Hsc70 binds acid-unfolded mitochondrial aspartate aminotransferase (mAAT), forming either soluble or insoluble complexes depending on the relative concentrations of the proteins. Using partial proteolysis of Hsc70-mAAT complexes in combination with MALDI-TOF mass spectrometry, we have identified several potential Hsc70-binding regions in the mAAT polypeptide. Only one mAAT peptide was found bound to Hsc70 in the insoluble complexes while nine peptides arising from eight sequence regions of mAAT were found associated with Hsc70 in the soluble complexes. Most of these binding sites map to secondary structure elements, particularly alpha-helix, that are partly exposed on the surface of the folded structure. These results suggest that these peptide regions must not only be exposed but still in a flexible extended conformation in the mAAT folding intermediates recognized by Hsc70. Thus, for mAAT the discrimination between native and non-native structures by Hsc70 may rely more on the level of structure of the binding sites than on their degree of exposure to the solvent in the native structure.
Collapse
Affiliation(s)
- Antonio Artigues
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 64110-2499, USA
| | | | | |
Collapse
|
3
|
Johnson AE. The co-translational folding and interactions of nascent protein chains: a new approach using fluorescence resonance energy transfer. FEBS Lett 2005; 579:916-20. [PMID: 15680974 DOI: 10.1016/j.febslet.2004.11.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 11/02/2004] [Indexed: 10/26/2022]
Abstract
During protein biosynthesis, a nascent protein is exposed to multiple environments and proteins both inside and outside the ribosome that influence nascent chain folding and trafficking. Fluorescence resonance energy transfer between two dyes incorporated into a single nascent chain using aminoacyl-tRNA analogs can directly and selectively monitor changes in nascent chain conformation. This approach recently revealed the existence and functional ramifications of ribosome-mediated folding of nascent membrane proteins inside the ribosome and can be extended to characterize the effects of chaperones and other proteins and ligands on nascent protein folding, interactions, assembly, and avoidance of misfolding and degradation.
Collapse
Affiliation(s)
- Arthur E Johnson
- Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA.
| |
Collapse
|
4
|
Abstract
Protein unfolding is an important step in several cellular processes, most interestingly protein degradation by ATP-dependent proteases and protein translocation across some membranes. Unfolding can be catalyzed when the unfoldases change the unfolding pathway of substrate proteins by pulling at their polypeptide chains. The resistance of a protein to unraveling during these processes is not determined by the protein's stability against global unfolding, as measured by temperature or solvent denaturation in vitro. Instead, resistance to unfolding is determined by the local structure that the unfoldase encounters first as it follows the substrate's polypeptide chain from the targeting signal. As unfolding is a necessary step in protein degradation and translocation, the susceptibility to unfolding of substrate proteins contributes to the specificity of these important cellular processes.
Collapse
Affiliation(s)
- Andreas Matouschek
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA.
| |
Collapse
|
5
|
Tieman BC, Johnston MF, Fisher MT. A comparison of the GroE chaperonin requirements for sequentially and structurally homologous malate dehydrogenases: the importance of folding kinetics and solution environment. J Biol Chem 2001; 276:44541-50. [PMID: 11551947 DOI: 10.1074/jbc.m106693200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli malate dehydrogenase (EcMDH) and its eukaryotic counterpart, porcine mitochondrial malate dehydrogenase (PmMDH), are highly homologous proteins with significant sequence identity (60%) and virtually identical native structural folds. Despite this homology, EcMDH folds rapidly and efficiently in vitro and does not seem to interact with GroE chaperonins at physiological temperatures (37 degrees C), whereas PmMDH folds much slower than EcMDH and requires these chaperonins to fold to the native state at 37 degrees C. Double jump experiments indicate that the slow folding behavior of PmMDH is not limited by proline isomerization. Although the folding enhancer glycerol (<5 m) does not alter the renaturation kinetics of EcMDH, it dramatically accelerates the spontaneous renaturation of PmMDH at all temperatures tested. Kinetic analysis of PmMDH renaturation with increasing glycerol concentrations suggests that this osmolyte increases the on-pathway kinetics of the monomer folding to assembly-competent forms. Other osmolytes such as trimethylamine N-oxide, sucrose, and betaine also reactivate PmMDH at nonpermissive temperatures (37 degrees C). Glycerol jump experiments with preformed GroEL.PmMDH complexes indicate that the shift between stringent (requires ATP and GroES) and relaxed (only requires ATP) complex conformations is rapid (<3-5 s). The similarity in irreversible misfolding kinetics of PmMDH measured with glycerol or the activated chaperonin complex (GroEL.GroES.ATP) suggests that these folding aids may influence the same step in the PmMDH folding reaction. Moreover, the interactions between glycerol-induced PmMDH folding intermediates and GroEL.GroES.ATP are diminished. Our results support the notion that the protein folding kinetics of sequentially and structurally homologous proteins, rather than the structural fold, dictates the GroE chaperonin requirement.
Collapse
Affiliation(s)
- B C Tieman
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | |
Collapse
|
6
|
Zhou J, Weiner H. The N-terminal portion of mature aldehyde dehydrogenase affects protein folding and assembly. Protein Sci 2001; 10:1490-7. [PMID: 11468345 PMCID: PMC2374079 DOI: 10.1110/ps.5301] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2001] [Revised: 04/19/2001] [Accepted: 04/26/2001] [Indexed: 10/16/2022]
Abstract
Human liver cytosolic (ALDH1) and mitochondrial (ALDH2) aldehyde dehydrogenases are both encoded in the nucleus and synthesized in the cytosol. ALDH1 must fold in the cytosol, but ALDH2 is first synthesized as a precursor and must remain unfolded during import into mitochondria. The two mature forms share high identity (68%) at the protein sequence level except for the first 21 residues (14%); their tertiary structures were found to be essentially identical. ALDH1 folded faster in vitro than ALDH2 and could assemble to tetramers while ALDH2 remained as monomers. Import assay was used as a tool to study the folding status of ALDH1 and ALDH2. pALDH1 was made by fusing the presequence of precursor ALDH2 to the N-terminal end of ALDH1. Its import was reduced about 10-fold compared to the precursor ALDH2. The exchange of the N-terminal 21 residues from the mature portion altered import, folding, and assembly of precursor ALDH1 and precursor ALDH2. More of chimeric ALDH1 precursor was imported into mitochondria compared to its parent precursor ALDH1. The import of chimeric ALDH2 precursor, the counterpart of chimeric ALDH1 precursor, was reduced compared to its parent precursor ALDH2. Mature ALDH1 proved to be more stable against urea denaturation than ALDH2. Urea unfolding improved the import of precursor ALDH1 and the chimeric precursors but not precursor ALDH2, consistent with ALDH1 and the chimeric ALDHs being more stable than ALDH2. The N-terminal segment of the mature protein, and not the presequence, makes a major contribution to the folding, assembly, and stability of the precursor and may play a role in folding and hence the translocation of the precursor into mitochondria.
Collapse
Affiliation(s)
- J Zhou
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153, USA
| | | |
Collapse
|
7
|
Abstract
Protein unfolding is a key step in the import of some proteins into mitochondria and chloroplasts and in the degradation of regulatory proteins by ATP-dependent proteases. In contrast to protein folding, the reverse process has remained largely uninvestigated until now. This review discusses recent discoveries on the mechanism of protein unfolding during translocation into mitochondria. The mitochondria can actively unfold preproteins by unraveling them from the N-terminus. The central component of the mitochondrial import motor, the matrix heat shock protein 70, functions by both pulling and holding the preproteins.
Collapse
Affiliation(s)
- A Matouschek
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA.
| | | | | |
Collapse
|
8
|
Mattingly JR, Yañez AJ, Martinez-Carrion M. The folding of nascent mitochondrial aspartate aminotransferase synthesized in a cell-free extract can be assisted by GroEL and GroES. Arch Biochem Biophys 2000; 382:113-22. [PMID: 11051104 DOI: 10.1006/abbi.2000.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At 30 degrees C, the precursor to mitochondrial aspartate aminotransferase (pmAspAT) cannot fold after synthesis in rabbit reticulocyte lysate (RRL), a model for studying intracellular protein folding. However, it folds rapidly once imported into mitochondria. Guanidinium chloride denatured pmAspAT likewise cannot refold at 30 degrees C in a defined in vitro system. However, it refolds rapidly and in good yield in the presence of the intramitochondrial chaperone homologues GroEL and GroES. In this report, we demonstrate that GroEL and GroES can also facilitate the folding of nascent pmAspAT in reticulocyte lysate under conditions where it otherwise would not. When added alone, GroEL arrests the slow folding of nascent pmAspAT and inhibits import into mitochondria. These effects are significantly reversed by adding GroES. These observations suggest that added GroEL participates in an equilibrium with endogenous chaperones in the cytosol which inhibit folding and promote import competence. Native gel electrophoresis suggests that nascent pmAspAT exists in RRL as a heterogeneous population of partially folded species, some of which bind to added GroEL more readily than others. The GroEL-trapped species appear to be among the productive pmAspAT folding intermediates formed in RRL or they at least appear to equilibrate with these intermediates, since they become import competent after GroES-stimulated release from GroEL.
Collapse
Affiliation(s)
- J R Mattingly
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City 64110, USA
| | | | | |
Collapse
|
9
|
Lumb MJ, Drake AF, Danpure CJ. Effect of N-terminal alpha-helix formation on the dimerization and intracellular targeting of alanine:glyoxylate aminotransferase. J Biol Chem 1999; 274:20587-96. [PMID: 10400689 DOI: 10.1074/jbc.274.29.20587] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The unparalleled peroxisome-to-mitochondrion mistargeting of alanine:glyoxylate aminotransferase (AGT) in the hereditary disease primary hyperoxaluria type 1 is caused by the combined presence of a common Pro11 --> Leu polymorphism and a disease-specific Gly170 --> Arg mutation. The Pro11 --> Leu replacement generates a functionally weak N-terminal mitochondrial targeting sequence (MTS), the efficiency of which is increased by the additional presence of the Gly170 --> Arg replacement. AGT dimerization is inhibited in the combined presence of both replacements but not when each is present separately. In this paper we have attempted to identify the structural determinants of AGT dimerization and mitochondrial mistargeting. Unlike most MTSs, the polymorphic MTS of AGT has little tendency to adopt an alpha-helical conformation in vitro. Nevertheless, it is able to target efficiently a monomeric green fluorescent (GFP) fusion protein, but not dimeric AGT, to mitochondria in transfected COS-1 cells. Increasing the propensity of this MTS to fold into an alpha-helix, by making a double Pro11 --> Leu + Pro10 --> Leu replacement, enabled it to target both GFP and AGT efficiently to mitochondria. The double Pro11 --> Leu + Pro10 --> Leu replacement retarded AGT dimerization in vitro as did the disease-causing double Pro11 --> Leu + Gly170 --> Arg replacement. These data suggest that N-terminal alpha-helix formation is more important for maintaining AGT in a conformation (i. e. monomeric) compatible with mitochondrial import than it is for the provision of mitochondrial targeting information. The parallel effects of the Pro10 --> Leu and Gly170 --> Arg replacements on the dimerization and intracellular targeting of polymorphic AGT (containing the Pro11 --> Leu replacement) raise the possibility that they might achieve their effects by the same mechanism.
Collapse
Affiliation(s)
- M J Lumb
- MRC Laboratory for Molecular Cell Biology and the Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
10
|
Artigues A, Crawford DL, Iriarte A, Martinez-Carrion M. Divergent Hsc70 binding properties of mitochondrial and cytosolic aspartate aminotransferase. Implications for their segregation to different cellular compartments. J Biol Chem 1998; 273:33130-4. [PMID: 9837879 DOI: 10.1074/jbc.273.50.33130] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic Hsc70 discriminates between the homologous mitochondrial and cytosolic isozymes of aspartate aminotransferase, binding exclusively the mitochondrial form. By screening a library of synthetic peptides spanning the sequence of the mitochondrial enzyme, we have identified binding sites in this polypeptide that interact with Hsc70. These potential binding sites are scattered over the entire sequence and map to secondary structure elements, particularly the alpha-helix, that are partly exposed on the surface of the native protein. Several peptides corresponding to analogous positions in the cytosolic enzyme sequence do not bind to Hsc70. Phylogenetic analyses suggest that Hsc70 binding sequences have diverged as a consequence of biochemical specialization ensuring differential interaction of each isozyme with the cellular machinery in charge of protein folding and translocation.
Collapse
Affiliation(s)
- A Artigues
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110, USA
| | | | | | | |
Collapse
|
11
|
Mattingly JR, Torella C, Iriarte A, Martinez-Carrion M. Conformation of aspartate aminotransferase isozymes folding under different conditions probed by limited proteolysis. J Biol Chem 1998; 273:23191-202. [PMID: 9722549 DOI: 10.1074/jbc.273.36.23191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The partially homologous mitochondrial (mAAT) and cytosolic (cAAT) aspartate aminotransferase have nearly identical three-dimensional structures but differ in their folding rates in cell-free extracts and in their affinity for binding to molecular chaperones. In its native state, each isozyme is protease-resistant. Using limited proteolysis as an index of their conformational states, we have characterized these proteins (a) during the early stages of spontaneous refolding; (b) as species trapped in stable complexes with the chaperonin GroEL; or (c) as newly translated polypeptides in cell-free extracts. Treatment of the refolding proteins with trypsin generates reproducible patterns of large proteolytic fragments that are consistent with the formation of defined folding domains soon after initiating refolding. Binding to GroEL affords considerable protection to both isozymes against proteolysis. The tryptic fragments are similar in size for both isozymes, suggesting a common distribution of compact and flexible regions in their folding intermediates. cAAT synthesized in cell-free extracts becomes protease-resistant almost instantaneously, whereas trypsin digestion of the mAAT translation product produces a pattern of fragments qualitatively akin to that observed with the protein refolding in buffer. Analysis of the large tryptic peptides obtained with the GroEL-bound proteins reveals that the cleavage sites are located in analogous regions of the N-terminal portion of each isozyme. These results suggest that (a) binding to GroEL does not cause unfolding of AAT, at least to an extent detectable by proteolysis; (b) the compact folding domains identified in AAT bound to GroEL (or in mAAT fresh translation product) are already present at the early stages of refolding of the proteins in buffer alone; and (c) the two isozymes seem to bind in a similar fashion to GroEL, with the more compact C-terminal portion completely protected and the more flexible N-terminal first 100 residues still partially accessible to proteolysis.
Collapse
Affiliation(s)
- J R Mattingly
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110-2499, USA
| | | | | | | |
Collapse
|
12
|
Doñate F, Artigues A, Iriarte A, Martinez-Carrion M. Opposite behavior of two isozymes when refolding in the presence of non-ionic detergents. Protein Sci 1998; 7:1811-20. [PMID: 10082379 PMCID: PMC2144090 DOI: 10.1002/pro.5560070817] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
GroEL has a greater affinity for the mitochondrial isozyme (mAAT) of aspartate aminotransferase than for its cytosolic counterpart (cAAT) (Mattingly JR Jr, Iriarte A, Martinez-Carrion M, 1995, J Biol Chem 270:1138-1148), two proteins that share a high degree of sequence similarity and an almost identical spatial structure. The effect of detergents on the refolding of these large, dimeric isozymes parallels this difference in behavior. The presence of non-ionic detergents such as Triton X-100 or lubrol at concentrations above their critical micelle concentration (CMC) interferes with reactivation of mAAT unfolded in guanidinium chloride but increases the yield of cAAT refolding at low temperatures. The inhibitory effect of detergents on the reactivation of mAAT decreases progressively as the addition of detergents is delayed after starting the refolding reaction. The rate of disappearance of the species with affinity for binding detergents coincides with the slowest of the two rate-limiting steps detected in the refolding pathway of mAAT. Limited proteolysis studies indicate that the overall structure of the detergent-bound mAAT resembles that of the protein in a complex with GroEL. The mAAT folding intermediates trapped in the presence of detergents can resume reactivation either upon dilution of the detergent below its CMC or by adding beta-cyclodextrin. Thus, isolation of otherwise transient productive folding intermediates for further characterization is possible through the use of detergents.
Collapse
Affiliation(s)
- F Doñate
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 64110-2499, USA
| | | | | | | |
Collapse
|
13
|
Lain B, Yañez A, Iriarte A, Martinez-Carrion M. Aminotransferase variants as probes for the role of the N-terminal region of a mature protein in mitochondrial precursor import and processing. J Biol Chem 1998; 273:4406-15. [PMID: 9468492 DOI: 10.1074/jbc.273.8.4406] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Of the two homologous isozymes of aspartate aminotransferase that are also nearly identical in their folded structures, only the mitochondrial form (mAAT) is synthesized as a precursor (pmAAT). After its in vitro synthesis in rabbit reticulocyte lysate, it can also be efficiently imported into isolated rat liver mitochondria, where it is processed to its native form by removal of the N-terminal presequence. The homologous cytosolic isoenzyme (cAAT) is not imported into mitochondria, even after fusion of the mitochondrial presequence from pmAAT to its N-terminal end. Substitution of the 30-residue N-terminal peptide of the mature portion of pmAAT with the corresponding sequence from the homologous, import-incompetent cytosolic isozyme (pcmAAT) does not prevent import but reduces substantially its processing in the matrix. A detectable amount of the pcmAAT chimera is found associated with the inner mitochondrial membrane. Single and double substitution mutants of Trp-5 and Trp-6 at the N-terminal end of the mature protein are imported into mitochondria with efficiency similar to that of wild type. However, replacement of Trp-5 with proline, or of both tryptophans with either alanine (W5A/W6A mutant) or valine and alanine (W5V/W6A mutant), allows import but interferes with the correct processing of the imported protein despite the presence of an intact cleavage site for the processing peptidase. Similar cleavage results were obtained using newly synthesized proteins and mitochondrial matrix extracts. These results indicate that translocation and processing for a precursor are independent events and that sequences C-terminal to the cleavage site are indeed important for the correct maturation of pmAAT in the matrix, probably because of their contribution to the conformation and flexibility of the peptide region surrounding the cleavage site required for efficient processing. The same region from the mature component of the protein may play a role in the commitment of the passenger protein to complete its translocation into the matrix.
Collapse
Affiliation(s)
- B Lain
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110-2499, USA
| | | | | | | |
Collapse
|
14
|
Komar AA, Lesnik T, Cullin C, Guillemet E, Ehrlich R, Reiss C. Differential resistance to proteinase K digestion of the yeast prion-like (Ure2p) protein synthesized in vitro in wheat germ extract and rabbit reticulocyte lysate cell-free translation systems. FEBS Lett 1997; 415:6-10. [PMID: 9326358 DOI: 10.1016/s0014-5793(97)01082-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Ure2p yeast prion-like protein was translated in vitro in the presence of labeled [35S]methionine in either rabbit reticulocyte lysate (RRL) or wheat germ extract (WGE) cell-free systems. When subjected to proteinase K digestion, the Ure2p protein synthesized in WGE was proteolysed much more slowly compared to that synthesized in RRL; this displays fragments of about 31-34 kDa, persisting over 8 min. Thus, the digestion rate and pattern of the protein synthesized in WGE, unlike that synthesized in RRL, revealed characteristic features of the [URE3] prion-like isoform of the Ure2p protein [Masison, D.C. and Wickner, R.B. (1995) Science 270, 93-95]. Chloramphenicol acetyltransferase, synthesized under the same conditions, differed fundamentally in its proteolytic sensitivity toward proteinase K (PK); in the RRL system it was more slowly digested than in WGE, proving specific PK inhibitors to be absent in both systems. Posttranslational addition of the WGE to the RRL-synthesized Ure2p does not protect Ure2p from efficient PK degradation either. The differences in Ure2p degradation may be ascribed to a specific structure or specific states of association of Ure2p synthesized in WGE; obviously, they yield a protein that mimics the behavior of the Ure2p in [URE3] yeast strains. The present data suggest that particular conditions of the Ure2p protein translation and/or certain cellular components (accessory proteins and extrinsic factors), as well as the nature of the translation process itself, could affect the intracellular folding pathway of Ure2p leading to the de novo formation of the prion [URE3] isoform.
Collapse
Affiliation(s)
- A A Komar
- Centre de Genetique Moleculaire, CNRS, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
15
|
Artigues A, Iriarte A, Martinez-Carrion M. Refolding intermediates of acid-unfolded mitochondrial aspartate aminotransferase bind to hsp70. J Biol Chem 1997; 272:16852-61. [PMID: 9201992 DOI: 10.1074/jbc.272.27.16852] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cytosolic (cAAT) and mitochondrial (mAAT) isozymes of eukaryotic aspartate aminotransferase share a high degree of sequence identity and almost identical three-dimensional structure. The rat liver proteins can be refolded and reassembled into active dimers after unfolding at low pH. However, refolding of the mitochondrial form after unfolding at pH 2.0 is arrested in the presence of hsp70, whereas this chaperone does not affect the refolding of the cytosolic isozyme unfolded under similar conditions. To elucidate the nature of the differential interaction between hsp70 and the two transaminase forms, we have characterized their refolding from their acid-unfolded states. The recovery of activity of the cytosolic enzyme is monophasic and can be adequately described by a single first-order reaction. By contrast, two sequential first-order rate-limiting steps can be detected for the refolding and reactivation of the mitochondrial protein. The overall refolding pathway of mAAT includes a very fast collapse to an intermediate with 80% of the secondary structure of the active dimer. This is followed by a slow isomerization to form assembly-competent monomers that rapidly associate to form an inactive dimer and a final structural rearrangement of the dimer to the native conformation. Analysis of the interaction of hsp70 with intermediates along the folding pathway of mAAT shows that the polypeptide loses its ability to bind to the chaperone after it has proceeded through the first isomerization/fast dimerization steps. Thus it appears that only the first collapsed intermediate states in the folding of mAAT bind hsp70. By contrast a faster refolding of cAAT from this collapsed state could explain, at least in part, the inability of hsp70 to bind this isozyme.
Collapse
Affiliation(s)
- A Artigues
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499, USA
| | | | | |
Collapse
|
16
|
Danpure CJ. Variable peroxisomal and mitochondrial targeting of alanine: glyoxylate aminotransferase in mammalian evolution and disease. Bioessays 1997; 19:317-26. [PMID: 9136629 DOI: 10.1002/bies.950190409] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Under the putative influence of dietary selection pressure, the subcellular distribution of alanine:glyoxylate aminotransferase 1 (AGT) has changed on many occasions during the evolution of mammals. Depending on the particular species, AGT can be found either in peroxisomes or mitochondria, or in both peroxisomes and mitochondria. This variable localization depends on the differential expression of N-terminal mitochondrial and C-terminal peroxisomal targeting sequences by the use of alternative transcription and translation initiation sites. AGT is peroxisomal in most humans, but it is mistargeted to the mitochondria in a subset of patients suffering from the rare hereditary disease primary hyperoxaluria type 1. Mistargeting is due to the unlikely combination of a normally occurring polymorphism that generates a functionally weak mitochondrial targeting sequence and a disease-specific mutation which, in combination with the polymorphism, inhibits AGT dimerization. The mechanisms by which AGT can be targeted differentially to peroxisomes and/or mitochondria highlight the different molecular requirements for protein import into these two organelles.
Collapse
Affiliation(s)
- C J Danpure
- MRC Laboratory for Molecular Cell Biology, University College London, UK
| |
Collapse
|
17
|
Kim DM, Kigawa T, Choi CY, Yokoyama S. A highly efficient cell-free protein synthesis system from Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:881-6. [PMID: 8774739 DOI: 10.1111/j.1432-1033.1996.0881u.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We modified a cell-free coupled transcription/translation system from Escherichia coli with the T7 phage RNA polymerase, and achieved a productivity as high as 0.4 mg protein/ml reaction mixture. First, we found that the optimal concentrations of phosphoenolpyruvate and poly(ethylene glycol) are interdependent; higher concentrations of the former should be used at higher concentrations of the latter. Second, the use of a condensed 30000 x g cell extract, in place of the conventional one, significantly increased the initial rate of protein synthesis. This phenomenon was demonstrated to be due to a reason other than elimination of inhibitory molecule(s) from the extract. For this system with the condensed extract, the phosphoenolpyruvate and poly(ethylene glycol) concentrations were again co-optimized, resulting in production of chloramphenicol acetyltransferase at a productivity of 0.3 mg/ml. Finally, the productivity was further increased up to 0.4 mg/ml, by supplementation of the pool of amino acids. This improved cell-free protein synthesis system is superior in productivity to any other cell-free systems reported so far, including the continuous-flow cell-free system.
Collapse
Affiliation(s)
- D M Kim
- Interdisciplinary Program for Biochemical Engineering and Technology, College of Engineering, Seoul National University, Korea
| | | | | | | |
Collapse
|
18
|
Lain B, Iriarte A, Mattingly JR, Moreno JI, Martinez-Carrion M. Structural features of the precursor to mitochondrial aspartate aminotransferase responsible for binding to hsp70. J Biol Chem 1995; 270:24732-9. [PMID: 7559589 DOI: 10.1074/jbc.270.42.24732] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The precursor (pmAspAT) and mature (mAspAT) forms of mitochondrial aspartate aminotransferase interact with hsp70 very early during translation when synthesized in either rabbit reticulocyte lysate or wheat germ extract (Lain, B., Iriarte, A., and Martinez-Carrion. (1994) J. Biol. Chem. 269, 15588-15596). The nature of the structural elements responsible for recognition and binding of this protein to hsp70 has been studied by examining the folding and potential association with the chaperone of several engineered forms of this enzyme. Whereas pmAspAT and mAspAT bind hsp70 very early during translation, the cytosolic form of this enzyme (cAspAT) does not interact with hsp70. A fusion protein consisting of the mitochondrial presequence peptide attached to the amino terminus of cAspAT associates with hsp70 only after the protein has acquired its native-like conformation, apparently through binding to the presequence exposed on the surface of the folded protein. Deletion of the amino-terminal segment of mAspAT or its replacement with the corresponding domain from the cytosolic isozyme eliminates the cotranslational binding of hsp70 to the mitochondrial protein. We conclude that both the presequence and NH2-terminal region of pmAspAT represent recognition signals for binding of hsp70 to the newly synthesized mitochondrial precursor. Results from competition studies with synthetic peptides support this conclusion. The ability of hsp70 to discriminate between these two highly homologous proteins probably involves the recognition of specific sequence elements in the NH2-terminal portion of the mitochondrial protein and may relate to their separate localization in the cell. A slower folding rate and higher affinity for cytosolic chaperones may represent evolutionary adaptations of translocated mitochondrial proteins to ensure their efficient importation into the organelle.
Collapse
Affiliation(s)
- B Lain
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City 64110-2499, USA
| | | | | | | | | |
Collapse
|
19
|
Martin CS, Flores AI, Cuezva JM. Cpn60 is exclusively localized into mitochondria of rat liver and embryonic Drosophila cells. J Cell Biochem 1995; 59:235-45. [PMID: 8904317 DOI: 10.1002/jcb.240590212] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several reports have claimed that the mitochondrial chaperonin cpn60, or a close homolog, is also present in some other subcellular compartments of the eukaryotic cell. Immunoelectron microscopy studies, using a polyclonal serum against cpn60, revealed that the protein is exclusively localized within the mitochondria of rat liver and embryonic Drosophila cells (SL2). Furthermore, no cpn60 immunoreactive material could be found within the nucleus of SL2 cells subjected to a 1 h 37 degrees C heat-shock treatment. In contrast to these findings, immunoelectron microscopy studies, using a cpn60 monoclonal antibody, revealed mitochondrial and extramitochondrial (plasma membrane, nucleus) immunoreactive material in rat liver cells. Surprisingly, the monoclonal antibody also reacted with fixed proteins of the mature red blood cell. The monoclonal antibody, as well as cpn60 polyclonal sera, only recognize mitochondrial cpn60 in Western blots of liver proteins. Furthermore, none of the cpn60 antibodies used in this study recognized blotted proteins from rat red blood cells. Therefore, we suggest that the reported extramitochondrial localization of cpn60 in metazoan cells may be due to cross-reactivity of some of cpn60 antibodies with conformational epitopes also present in distantly related cpn60 protein homologs that are preserved during fixation procedures of the cells.
Collapse
Affiliation(s)
- C S Martin
- Departamento de Biologia Molecular, Centro de Biologia Molecular "Severo Ochoa," Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid, Spain
| | | | | |
Collapse
|
20
|
Mattingly JR, Iriarte A, Martinez-Carrion M. Homologous proteins with different affinities for groEL. The refolding of the aspartate aminotransferase isozymes at varying temperatures. J Biol Chem 1995; 270:1138-48. [PMID: 7836372 DOI: 10.1074/jbc.270.3.1138] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The homologous cytosolic and mitochondrial isozymes of aspartate aminotransferase (c- and mAspAT, respectively) seem to follow very different folding pathways after synthesis in rabbit reticulocyte lysate, suggesting that the nascent proteins interact differently with molecular chaperones (Mattingly, J. R., Jr., Iriarte, A., and Martinez-Carrion, M. (1993) J. Biol. Chem. 268, 26320-26327). In an attempt to discern the structural basis for this phenomenon, we have begun to study the effect of temperature on the refolding of the guanidine hydrochloride-denatured, purified proteins and their interaction with the groEL/groES molecular chaperone system from Escherichia coli. In the absence of chaperones, temperature has a critical effect on the refolding of the two isozymes, with mAspAT being more susceptible than cAspAT to diminishing refolding yields at increasing temperatures. No refolding is observed for mAspAT at physiological temperatures. The molecular chaperones groEL and groES can extend the temperature range over which the AspAT isozymes successfully refold; however, cAspAT can still refold at higher temperatures than mAspAT. In the absence of groES and MgATP, the two isozymes interact differently with groEL, groEL arrests the refolding of mAspAT throughout the temperature range of 0-45 degrees C. Adding only MgATP releases very little mAspAT from groEL; both groES and MgATP are required for significant refolding of mAspAT in the presence of groEL. On the other hand, the extent to which groEL inhibits the refolding of cAspAT depends upon the temperature of the refolding reaction, only slowing the reaction at 0 degrees C but arresting it completely at 30 degrees C. MgATP alone is sufficient to effect the release of cAspAT from groEL at any temperature examined; inclusion of groES along with MgATP has no effect on the refolding yield but does increase the refolding rate at temperatures greater than 15 degrees C. These results demonstrate that groEL can have significantly different affinities for proteins with highly homologous final tertiary and quarternary structures and suggest that dissimilarities in the primary sequence of the protein substrates may control the structure of the folding intermediates captured by groEL and/or the composition of the surfaces through which the folding proteins interact with groEL.
Collapse
Affiliation(s)
- J R Mattingly
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City 64110-2499
| | | | | |
Collapse
|
21
|
Martinez-Carrion M, Artigues A, Berezov A, Bianconi ML, Reyes AM, Iriarte A. Probes for analysis of stability of different variants of aspartate aminotransferase. Methods Enzymol 1995; 259:590-608. [PMID: 8538474 DOI: 10.1016/0076-6879(95)59063-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- M Martinez-Carrion
- School of Biological Sciences, University of Missouri-Kansas City 64110, USA
| | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Dependence of the folding and import of the precursor to mitochondrial aspartate aminotransferase on the nature of the cell-free translation system. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40721-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
Fisher M. The effect of groES on the groEL-dependent assembly of dodecameric glutamine synthetase in the presence of ATP and ADP. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36876-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|