1
|
Nock SH, Hutchinson JL, Blanco-Lopez M, Naseem K, Jones S, Mundell SJ, Unsworth AJ. Constitutive surface expression of the thromboxane A2 receptor is Pim kinase-dependent. J Thromb Haemost 2025; 23:293-305. [PMID: 39798965 DOI: 10.1016/j.jtha.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND The thromboxane A2 receptor (TPαR) plays an important role in the amplification of platelet responses during thrombosis. Receptor activity is regulated by internalization and receptor desensitization. The mechanism by which constitutive surface expression of the TPαR is regulated is unknown. Recently, it has been demonstrated that proviral insertion in murine lymphoma (Pim) kinase inhibitors reduce platelet functional responses in a TPαR-dependent manner. OBJECTIVES To investigate whether Pim kinases regulate constitutive TPαR surface expression. METHODS TPαR surface expression was measured in platelets, and human embryonic kidney 293T (HEK293T) cells transfected with tagged TPαRs in the presence and absence of Pim kinase inhibitors using flow cytometry and confocal microscopy. TPαR-dependent calcium flux was assessed using Fluo-4 AM. Site prediction modeling and site-directed mutagenesis were used to identify the TPαR PIM kinase phosphorylation site. RESULTS Surface expression of TPαR and calcium responses to U46619 were reduced in platelets and HEK293T cells following Pim kinase inhibition. Overexpression of kinase-dead Pim-1 also reduced TPαR surface expression on HEK293T cells. Reduced surface expression of the TPαR was found to be mediated by increased receptor internalization in a dynamin and β-arrestin-dependent manner. Four putative Pim kinase phosphorylation sites in the TPαR were mutated, and serine 57 in the first intracellular loop of TPαR was identified to be a novel regulatory site important for maintaining TPαR surface expression and thromboxane A2-dependent functional responses. CONCLUSION Pim kinase inhibition may offer a novel therapeutic approach to limit cellular responses to thromboxane A2, independent of cyclooxygenase inhibition and direct antagonism of the receptor.
Collapse
Affiliation(s)
- Sophie H Nock
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - James L Hutchinson
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Maria Blanco-Lopez
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Khalid Naseem
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Sarah Jones
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Stuart J Mundell
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Amanda J Unsworth
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom; Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
2
|
Allen MF, Hutchinson JL, Keith M, Mallah S, Corey RA, Trory JS, Jing C, Fang H, Wei L, Bennett SH, Aggarwal VK, Mundell SJ, Hers I. Difluorinated thromboxane A 2 reveals crosstalk between platelet activatory and inhibitory pathways by targeting both the TP and IP receptors. Br J Pharmacol 2024; 181:3685-3699. [PMID: 38840293 DOI: 10.1111/bph.16435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND AND PURPOSE Thromboxane A2 (TXA2) is a prostanoid produced during platelet activaton, important in enhancing platelet reactivity by activation of TP receptors. However, due to the short half-life, studying TXA2 signalling is challenging. To enhance our understanding of TP receptor-mediated platelet biology, we therefore synthesised mono and difluorinated TXA2 analogues and explored their pharmacology on heterologous and endogenously expressed TP receptor function. EXPERIMENTAL APPROACH Platelet functional and signalling responses were studied using aggregometry, Ca2+ mobilisation experiments and immunoblotting and compared with an analogue of the TXA2 precursor prostaglandin H2, U46619. Gαq/Gαs receptor signalling was determined using a bioluminescence resonance energy transfer (BRET) assay in a cell line overexpression system. KEY RESULTS BRET studies revealed that F-TXA2 and F2-TXA2 promoted receptor-stimulated TP receptor G-protein activation similarly to U46619. Unexpectedly, F2-TXA2 caused reversible aggregation in platelets, whereas F-TXA2 and U46619 induced sustained aggregation. Blocking the IP receptor switched F2-TXA2-mediated reversible aggregation into sustained aggregation. Further BRET studies confirmed F2-TXA2-mediated IP receptor activation. F2-TXA2 rapidly and potently stimulated platelet TP receptor-mediated protein kinase C/P-pleckstrin, whereas IP-mediated protein kinase A/P-vasodilator-stimulated phosphoprotein was more delayed. CONCLUSION AND IMPLICATIONS F-TXA2 is a close analogue to TXA2 used as a selective tool for TP receptor platelet activation. In contrast, F2-TXA2 acts on both TP and IP receptors differently over time, resulting in an initial wave of TP receptor-mediated platelet aggregation followed by IP receptor-induced reversibility of aggregation. This study reveals the potential difference in the temporal aspects of stimulatory and inhibitory pathways involved in platelet activation.
Collapse
Affiliation(s)
- Megan F Allen
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - James L Hutchinson
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Michael Keith
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Shahida Mallah
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Robin A Corey
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Justin S Trory
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | | | - Huaquan Fang
- School of Chemistry, University of Bristol, Bristol, UK
| | - Liang Wei
- School of Chemistry, University of Bristol, Bristol, UK
| | | | | | - Stuart J Mundell
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Stanger L, Holinstat M. Bioactive lipid regulation of platelet function, hemostasis, and thrombosis. Pharmacol Ther 2023; 246:108420. [PMID: 37100208 PMCID: PMC11143998 DOI: 10.1016/j.pharmthera.2023.108420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023]
Abstract
Platelets are small, anucleate cells in the blood that play a crucial role in the hemostatic response but are also implicated in the pathophysiology of cardiovascular disease. It is widely appreciated that polyunsaturated fatty acids (PUFAs) play an integral role in the function and regulation of platelets. PUFAs are substrates for oxygenase enzymes cyclooxygenase-1 (COX-1), 5-lipoxygenase (5-LOX), 12-lipoxygenase (12-LOX) and 15-lipoxygenase (15-LOX). These enzymes generate oxidized lipids (oxylipins) that exhibit either pro- or anti-thrombotic effects. Although the effects of certain oxylipins, such as thromboxanes and prostaglandins, have been studied for decades, only one oxylipin has been therapeutically targeted to treat cardiovascular disease. In addition to the well-known oxylipins, newer oxylipins that demonstrate activity in the platelet have been discovered, further highlighting the expansive list of bioactive lipids that can be used to develop novel therapeutics. This review outlines the known oxylipins, their activity in the platelet, and current therapeutics that target oxylipin signaling.
Collapse
Affiliation(s)
- Livia Stanger
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States of America; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America.
| |
Collapse
|
4
|
Fritz DI, Ding Y, Merrill-Skoloff G, Flaumenhaft R, Hanada T, Chishti AH. Dematin Regulates Calcium Mobilization, Thrombosis, and Early Akt Activation in Platelets. Mol Cell Biol 2023; 43:283-299. [PMID: 37216480 PMCID: PMC10251785 DOI: 10.1080/10985549.2023.2210033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
The complex intrinsic and extrinsic pathways contributing to platelet activation profoundly impact hemostasis and thrombosis. Detailed cellular mechanisms that regulate calcium mobilization, Akt activation, and integrin signaling in platelets remain incompletely understood. Dematin is a broadly expressed actin binding and bundling cytoskeletal adaptor protein regulated by phosphorylation via cAMP-dependent protein kinase. Here, we report the development of a conditional mouse model specifically lacking dematin in platelets. Using the new mouse model termed PDKO, we provide direct evidence that dematin is a major regulator of calcium mobilization, and its genetic deletion inhibits the early phase of Akt activation in response to collagen and thrombin agonists in platelets. The aberrant platelet shape change, clot retraction, and in vivo thrombosis observed in PDKO mice will enable future characterization of dematin-mediated integrin activation mechanisms in thrombogenic as well as nonvascular pathologies.
Collapse
Affiliation(s)
- Daniel I. Fritz
- Programs in Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Yiwen Ding
- Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Glenn Merrill-Skoloff
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Toshihiko Hanada
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Athar H. Chishti
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Kim S, Chaudhary PK, Kim S. Role of Prednisolone in Platelet Activation by Inhibiting TxA 2 Generation through the Regulation of cPLA 2 Phosphorylation. Animals (Basel) 2023; 13:ani13081299. [PMID: 37106862 PMCID: PMC10135208 DOI: 10.3390/ani13081299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Glucocorticoids have been commonly used in the treatment of inflammation and immune-mediated diseases in human beings and small animals such as cats and dogs. However, excessive use can lead to Cushing's syndrome along with several thrombotic and cardiovascular diseases. Although it is well-known that glucocorticoids exert a significant effect on coagulation, the effect of cortisol on platelet function is much less clear. Thus, we aimed to study the effects of prednisolone, one of the commonly used glucocorticoids, on the regulation of platelet function using murine platelets. We first evaluated the concentration-dependent effect of prednisolone on 2-MeSADP-induced platelet function and found that the 2-MeSADP-induced secondary wave of aggregation and dense granule secretion were completely inhibited from 500 nM prednisolone. Since 2-MeSADP-induced secretion and the resultant secondary wave of aggregation are mediated by TxA2 generation, this result suggested a role of prednisolone in platelet TxA2 generation. Consistently, prednisolone did not affect the 2-MeSADP-induced aggregation in aspirinated platelets, where the secondary wave of aggregation and secretion were blocked by eliminating the contribution of TxA2 generation by aspirin. In addition, thrombin-induced platelet aggregation and secretion were inhibited in the presence of prednisolone by inhibiting the positive-feedback effect of TxA2 generation on platelet function. Furthermore, prednisolone completely inhibited 2-MeSADP-induced TxA2 generation, confirming the role of prednisolone in TxA2 generation. Finally, Western blot analysis revealed that prednisolone significantly inhibited 2-MeSADP-induced cytosolic phospholipase A2 (cPLA2) and ERK phosphorylation in non-aspirinated platelets, while only cPLA2 phosphorylation, but not ERK phosphorylation, was significantly inhibited by prednisolone in aspirinated platelets. In conclusion, prednisolone affects platelet function by the inhibition of TxA2 generation through the regulation of cPLA2 phosphorylation, thereby shedding light on its clinical characterization and treatment efficacy in dogs with hypercortisolism in the future.
Collapse
Affiliation(s)
- Sanggu Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Preeti Kumari Chaudhary
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
6
|
Veuthey L, Aliotta A, Bertaggia Calderara D, Pereira Portela C, Alberio L. Mechanisms Underlying Dichotomous Procoagulant COAT Platelet Generation-A Conceptual Review Summarizing Current Knowledge. Int J Mol Sci 2022; 23:2536. [PMID: 35269679 PMCID: PMC8910683 DOI: 10.3390/ijms23052536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Procoagulant platelets are a subtype of activated platelets that sustains thrombin generation in order to consolidate the clot and stop bleeding. This aspect of platelet activation is gaining more and more recognition and interest. In fact, next to aggregating platelets, procoagulant platelets are key regulators of thrombus formation. Imbalance of both subpopulations can lead to undesired thrombotic or bleeding events. COAT platelets derive from a common pro-aggregatory phenotype in cells capable of accumulating enough cytosolic calcium to trigger specific pathways that mediate the loss of their aggregating properties and the development of new adhesive and procoagulant characteristics. Complex cascades of signaling events are involved and this may explain why an inter-individual variability exists in procoagulant potential. Nowadays, we know the key agonists and mediators underlying the generation of a procoagulant platelet response. However, we still lack insight into the actual mechanisms controlling this dichotomous pattern (i.e., procoagulant versus aggregating phenotype). In this review, we describe the phenotypic characteristics of procoagulant COAT platelets, we detail the current knowledge on the mechanisms of the procoagulant response, and discuss possible drivers of this dichotomous diversification, in particular addressing the impact of the platelet environment during in vivo thrombus formation.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (L.V.); (A.A.); (D.B.C.); (C.P.P.)
| |
Collapse
|
7
|
Rovati G, Contursi A, Bruno A, Tacconelli S, Ballerini P, Patrignani P. Antiplatelet Agents Affecting GPCR Signaling Implicated in Tumor Metastasis. Cells 2022; 11:725. [PMID: 35203374 PMCID: PMC8870128 DOI: 10.3390/cells11040725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Metastasis requires that cancer cells survive in the circulation, colonize distant organs, and grow. Despite platelets being central contributors to hemostasis, leukocyte trafficking during inflammation, and vessel stability maintenance, there is significant evidence to support their essential role in supporting metastasis through different mechanisms. In addition to their direct interaction with cancer cells, thus forming heteroaggregates such as leukocytes, platelets release molecules that are necessary to promote a disseminating phenotype in cancer cells via the induction of an epithelial-mesenchymal-like transition. Therefore, agents that affect platelet activation can potentially restrain these prometastatic mechanisms. Although the primary adhesion of platelets to cancer cells is mainly independent of G protein-mediated signaling, soluble mediators released from platelets, such as ADP, thromboxane (TX) A2, and prostaglandin (PG) E2, act through G protein-coupled receptors (GPCRs) to cause the activation of more additional platelets and drive metastatic signaling pathways in cancer cells. In this review, we examine the contribution of the GPCRs of platelets and cancer cells in the development of cancer metastasis. Finally, the possible use of agents affecting GPCR signaling pathways as antimetastatic agents is discussed.
Collapse
Affiliation(s)
- Gianenrico Rovati
- Department of Pharmaceutical Sciences, University of Milan, 20122 Milan, Italy;
| | - Annalisa Contursi
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Annalisa Bruno
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Stefania Tacconelli
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Paola Patrignani
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| |
Collapse
|
8
|
Abstract
Bioactive lipids are essential components of human cells and tissues. As discussed in this review, the cancer lipidome is diverse and malleable, with the ability to promote or inhibit cancer pathogenesis. Targeting lipids within the tumor and surrounding microenvironment may be a novel therapeutic approach for treating cancer patients. Additionally, the emergence of a novel super-family of lipid mediators termed specialized pro-resolving mediators (SPMs) has revealed a new role for bioactive lipid mediators in the resolution of inflammation in cancer biology. The role of SPMs in cancer holds great promise in our understanding of cancer pathogenesis and can ultimately be used in future cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Megan L Sulciner
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Allison Gartung
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Molly M Gilligan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Charles N Serhan
- Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Hu M, Liu P, Liu Y, Yue M, Wang Y, Wang S, Chen X, Zhou Y, Zhou J, Hu X, Ke Y, Hu H. Platelet Shp2 negatively regulates thrombus stability under high shear stress. J Thromb Haemost 2019; 17:220-231. [PMID: 30444570 DOI: 10.1111/jth.14335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 12/30/2022]
Abstract
Essentials Shp2 negatively regulates thrombus stability under pathological shear rate. Shp2 suppresses TXA2 receptor-mediated platelet dense granule secretion. Through αIIbβ3 outside-in signaling, Shp2 targets calmodulin-dependent activation of Akt. Shp2 may serve to prevent the formation of unwanted occlusive thrombi. SUMMARY: Background Perpetuation is the final phase of thrombus formation; however, its mechanisms and regulation are poorly understood. Objective To investigate the mechanism of Shp2 in platelet function and thrombosis. Methods and results We demonstrate that the platelet-expressed Src homology region 2 domain-containing protein tyrosine phosphatase Shp2 is a negative regulator of thrombus stability under high shear stress. In a ferric chloride-induced mesenteric arteriole thrombosis model, megakaryocyte/platelet-specific Shp2-deficient mice showed less thrombi shedding than wild-type mice, although their occlusion times were comparable. In accordance with this in vivo phenotype, a microfluidic whole-blood perfusion assay revealed that the thrombi formed on collagen surfaces by Shp2-deficient platelets were more stable under high shear rates than those produced by wild-type platelets. Whereas Shp2 deficiency did not alter platelet responsiveness towards thrombin, ADP and collagen stimulation, Shp2-deficient platelets showed increased dense granule secretion when stimulated by the thromboxane A2 analog U46619. Shp2 appears to act downstream of integrin αIIb β3 outside-in signaling, inhibiting the phosphorylation of Akt (Ser473 and Thr308) and dense granule secretion. Calmodulin was also shown to bind both Shp2 and Akt, linking Shp2 to Akt activation. Conclusions Platelet Shp2 negatively regulates thrombus perpetuation under high shear stress. This signaling pathway may constitute an important mechanism for the prevention of unwanted occlusive thrombus formation, without dramatically interfering with hemostasis.
Collapse
Affiliation(s)
- M Hu
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - P Liu
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China
| | - Y Liu
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - M Yue
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Y Wang
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - S Wang
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - X Chen
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Y Zhou
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - J Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - X Hu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Y Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - H Hu
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| |
Collapse
|
10
|
Abstract
This overview article for the Comprehensive Physiology collection is focused on detailing platelets, how platelets respond to various stimuli, how platelets interact with their external biochemical environment, and the role of platelets in physiological and pathological processes. Specifically, we will discuss the four major functions of platelets: activation, adhesion, aggregation, and inflammation. We will extend this discussion to include various mechanisms that can induce these functional changes and a discussion of some of the salient receptors that are responsible for platelets interacting with their external environment. We will finish with a discussion of how platelets interact with their vascular environment, with a special focus on interactions with the extracellular matrix and endothelial cells, and finally how platelets can aid and possibly initiate the progression of various vascular diseases. Throughout this overview, we will highlight both the historical investigations into the role of platelets in health and disease as well as some of the more current work. Overall, the authors aim for the readers to gain an appreciation for the complexity of platelet functions and the multifaceted role of platelets in the vascular system. © 2017 American Physiological Society. Compr Physiol 8:1117-1156, 2018.
Collapse
Affiliation(s)
- David A Rubenstein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Wei Yin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
11
|
Budnik I, Shenkman B, Hauschner H, Zilinsky I, Savion N. Role of heterotrimeric G proteins in platelet activation and clot formation in platelets treated with integrin αIIbβ3 inhibitor. Platelets 2017; 29:265-269. [DOI: 10.1080/09537104.2017.1295136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ivan Budnik
- Department of Pathophysiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Boris Shenkman
- National Hemophilia Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Hagit Hauschner
- Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Isaac Zilinsky
- Department of Plastic Surgery, Sheba Medical Center, Tel-Hashomer and Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Naphtali Savion
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
12
|
Garcia FC, Stiffel VM, Pearce WJ, Zhang L, Gilbert RD. Ca2+ Sensitivity of Fetal Coronary Arteries Exposed to Long-Term, High-Altitude Hypoxia. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760000700304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Felizabel C. Garcia
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | | | | | | | - Raymond D. Gilbert
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
13
|
Budnik I, Shenkman B, Savion N. Role of G protein signaling in the formation of the fibrin(ogen)–integrin αIIbβ3–actin cytoskeleton complex in platelets. Platelets 2016; 27:563-75. [DOI: 10.3109/09537104.2016.1147544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ivan Budnik
- Goldschleger Eye Research Institute and the Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pathophysiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Boris Shenkman
- National Hemophilia Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Naphtali Savion
- Goldschleger Eye Research Institute and the Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Vemana HP, Karim ZA, Conlon C, Khasawneh FT. A critical role for the transient receptor potential channel type 6 in human platelet activation. PLoS One 2015; 10:e0125764. [PMID: 25928636 PMCID: PMC4416038 DOI: 10.1371/journal.pone.0125764] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/25/2015] [Indexed: 12/31/2022] Open
Abstract
While calcium signaling is known to play vital roles in platelet function, the mechanisms underlying its receptor-operated calcium entry component (ROCE) remain poorly understood. It has been proposed, but never proven in platelets, that the canonical transient receptor potential channel-6 (TRPC6) mediates ROCE. Nonetheless, we have previously shown that the mouse TRPC6 regulates hemostasis, thrombogenesis by regulating platelet aggregation. In the present studies, we used a pharmacological approach to characterize the role of TRPC6 in human platelet biology. Thus, interestingly, we observed that a TRPC6 inhibitor exerted significant inhibitory effects on human platelet aggregation in a thromboxane receptor (TPR)-selective manner; no additional inhibition was observed in the presence of the calcium chelator BAPTA. This inhibitor also significantly inhibited human platelet secretion (dense and alpha granules), integrin IIb-IIIa, Akt and ERK phosphorylation, again, in a TPR-selective manner; no effects were observed in response to ADP receptor stimulation. Furthermore, there was a causal relationship between these inhibitory effects, and the capacity of the TRPC6 inhibitor to abrogate elevation in intracellular calcium, that was again found to be TPR-specific. This effect was not found to be due to antagonism of TPR, as the TRPC6 inhibitor did not displace the radiolabeled antagonist [3H]SQ29,548 from its binding sites. Finally, our studies also revealed that TRPC6 regulates human clot retraction, as well as physiological hemostasis and thrombus formation, in mice. Taken together, our findings demonstrate, for the first time, that TRPC6 directly regulates TPR-dependent ROCE and platelet function. Moreover, these data highlight TRPC6 as a novel promising therapeutic strategy for managing thrombotic disorders.
Collapse
Affiliation(s)
- Hari Priya Vemana
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Zubair A. Karim
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Christine Conlon
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Fadi T. Khasawneh
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Discovering anti-platelet drug combinations with an integrated model of activator-inhibitor relationships, activator-activator synergies and inhibitor-inhibitor synergies. PLoS Comput Biol 2015; 11:e1004119. [PMID: 25875950 PMCID: PMC4405222 DOI: 10.1371/journal.pcbi.1004119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/08/2015] [Indexed: 12/01/2022] Open
Abstract
Identifying effective therapeutic drug combinations that modulate complex
signaling pathways in platelets is central to the advancement of effective
anti-thrombotic therapies. However, there is no systems model of the platelet
that predicts responses to different inhibitor combinations. We developed an
approach which goes beyond current inhibitor-inhibitor combination screening to
efficiently consider other signaling aspects that may give insights into the
behaviour of the platelet as a system. We investigated combinations of platelet
inhibitors and activators. We evaluated three distinct strands of information,
namely: activator-inhibitor combination screens (testing a panel of inhibitors
against a panel of activators); inhibitor-inhibitor synergy screens; and
activator-activator synergy screens. We demonstrated how these analyses may be
efficiently performed, both experimentally and computationally, to identify
particular combinations of most interest. Robust tests of activator-activator
synergy and of inhibitor-inhibitor synergy required combinations to show
significant excesses over the double doses of each component. Modeling
identified multiple effects of an inhibitor of the P2Y12 ADP receptor, and
complementarity between inhibitor-inhibitor synergy effects and
activator-inhibitor combination effects. This approach accelerates the mapping
of combination effects of compounds to develop combinations that may be
therapeutically beneficial. We integrated the three information sources into a
unified model that predicted the benefits of a triple drug combination targeting
ADP, thromboxane and thrombin signaling. Drugs are often used in combinations, but establishing the best combinations is a
considerable challenge for basic and clinical research. Anti-platelet therapies
reduce thrombosis and heart attacks by lowering the activation of platelet
cells. We wanted to find good drug combinations, but a full systems model of the
platelet is absent, so we had no good predictions of how particular combinations
might behave. Instead, we put together three sources of knowledge. The first
concerned what inhibitors act on what activators; the second concerned what
pairs of activators synergise together (having a bigger effect than expected);
and the third concerned what pairs of inhibitors synergise together. We
implemented an efficient experimental approach to collect this information from
experiments on platelets. We developed a statistical model that brought these
separate results together. This gave us insights into how platelet inhibitors
act. For example, an inhibitor of an ADP receptor showed multiple effects. We
also worked out from the model what further (triple) combinations of drugs may
be most efficient. We predicted, and then tested experimentally, the effects of
a triple drug combination. This simultaneously inhibited the platelet’s
responses to three stimulants that it encounters during coronary thrombosis,
namely ADP, thromboxane and thrombin.
Collapse
|
16
|
Qian F, Le Breton GC, Chen J, Deng J, Christman JW, Wu D, Ye RD. Role for the guanine nucleotide exchange factor phosphatidylinositol-3,4,5-trisphosphate-dependent rac exchanger 1 in platelet secretion and aggregation. Arterioscler Thromb Vasc Biol 2011; 32:768-77. [PMID: 22207728 DOI: 10.1161/atvbaha.111.243675] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Recent studies have shown a role for Rac1 in regulating platelet functions, but how Rac1 is activated in platelets remains unclear. Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) was originally identified in neutrophils that regulates phagocyte functions. We sought to examine whether P-Rex1 plays a role in platelet activation. METHODS AND RESULTS Western blotting showed P-Rex1 expression in mouse and human platelets. Mice lacking P-Rex1 exhibited prolonged bleeding time and increased rebleeding. When challenged with low doses of the G protein-coupled receptor (GPCR) agonists U46619 and thrombin, P-Rex1-/- platelets displayed significantly reduced secretion and aggregation compared with wild-type platelets. Increasing the concentration of these agonists could overcome the defect. Platelet aggregation induced by collagen, a non-GPCR agonist, was also compromised in the absence of P-Rex1. Along with these phenotypic changes were impaired Rac1 activation; reduced ATP secretion; and decreased phosphorylation of Akt, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase in P-Rex1-/- platelets on agonist stimulation. CONCLUSION These results demonstrate for the first time the presence of P-Rex1 in platelets as well as its role in platelet secretion and aggregation induced by low-dose agonists for GPCR and by collagen.
Collapse
Affiliation(s)
- Feng Qian
- Department of Pharmacology, University of Illinois College of Medicine, 835 S Wolcott Ave, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Upon vascular injury, platelets are activated by adhesion to adhesive proteins, such as von Willebrand factor and collagen, or by soluble platelet agonists, such as ADP, thrombin, and thromboxane A(2). These adhesive proteins and soluble agonists induce signal transduction via their respective receptors. The various receptor-specific platelet activation signaling pathways converge into common signaling events that stimulate platelet shape change and granule secretion and ultimately induce the "inside-out" signaling process leading to activation of the ligand-binding function of integrin α(IIb)β(3). Ligand binding to integrin α(IIb)β(3) mediates platelet adhesion and aggregation and triggers "outside-in" signaling, resulting in platelet spreading, additional granule secretion, stabilization of platelet adhesion and aggregation, and clot retraction. It has become increasingly evident that agonist-induced platelet activation signals also cross talk with integrin outside-in signals to regulate platelet responses. Platelet activation involves a series of rapid positive feedback loops that greatly amplify initial activation signals and enable robust platelet recruitment and thrombus stabilization. Recent studies have provided novel insight into the molecular mechanisms of these processes.
Collapse
Affiliation(s)
- Zhenyu Li
- Department of Medicine, University of Kentucky
| | | | | | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago
| |
Collapse
|
18
|
Smid J, Braun-Dullaeus R, Gawaz M, Langer HF. Platelet interactions as therapeutic targets for prevention of atherothrombosis. Future Cardiol 2010; 5:285-96. [PMID: 19450054 DOI: 10.2217/fca.09.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Physiologically, platelets perform important tasks to maintain the homeostasis of the vascular wall and the surrounding environment. In pathologic conditions, however, platelets contribute to the formation of atherosclerotic plaques as well as to atherothrombotic events (i.e., acute myocardial infarction). This review aims to elucidate the role of platelets in atherogenesis and atherothrombosis and to provide an insight into current and future strategies for platelet inhibition.
Collapse
Affiliation(s)
- Jan Smid
- Universitätsklinik für Kardiologie, Angiologie & Pneumologie, Universitätsklinikum Magdeburg, Leipziger Strasse 44, Magdeburg 39120, Germany.
| | | | | | | |
Collapse
|
19
|
Kahner BN, Dorsam RT, Kim S, Shankar H, Kitamura D, Kunapuli SP. Hematopoietic lineage cell-specific protein-1 (HS1) regulates PAR-mediated ERK activation and thromboxane generation in platelets. Platelets 2008; 19:614-23. [PMID: 19012179 DOI: 10.1080/09537100802351057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Thrombin-induced platelet activation leads to tyrosine phosphorylation of hematopoietic lineage cell-specific protein-1 (HS1), a 75 kDa adapter protein expressed exclusively in cells of hematopoietic lineage. We have shown HS1 to be a functionally important signaling molecule downstream of PAR-4 and GPVI collagen receptor. We have thus begun to elucidate PAR signaling pathway of HS1 phosphorylation, and its functional implications. PAR-1 and PAR-4 activating peptides (SFLLRN and AYPGKF, respectively) induced HS1 phosphorylation in a Gq-dependent manner as shown by incubation with the Gq inhibitor, YM254890. Consistently, HS1 phosphorylation was abolished in platelets from Gq deficient mice upon AYPGKF stimulation. Treatment with ADP receptor antagonists did not affect HS1 phosphorylation. Pretreatment of platelets with Src kinase inhibitors abolished HS1 phosphorylation. Further Syk activation, as measured by tyrosine phosphorylation of Syk (residues 525/526), in response to PAR activation was abolished in the presence of Src inhibitors. HS1 null mice show inhibition of PAR-mediated thromboxane A2 generation compared to wild type littermates. Phosphorylation of Erk, a key signaling molecule in thromboxane generation, was also diminished in HS1 null mice platelets. Based on these findings, we conclude that tyrosine phosphorylation of HS1 occurs downstream of both PAR-1 and PAR-4. HS1 phosphorylation is a Gq mediated response regulated by Src kinases. Thus, HS1 may mediate PAR-induced thromboxane generation through regulation of Erk phosphorylation.
Collapse
Affiliation(s)
- Bryan N Kahner
- Department of Physiology, Temple University, School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
20
|
A novel nuclear signaling pathway for thromboxane A2 receptors in oligodendrocytes: evidence for signaling compartmentalization during differentiation. Mol Cell Biol 2008; 28:6329-41. [PMID: 18710937 DOI: 10.1128/mcb.00482-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The present study investigated G protein expression, localization, and functional coupling to thromboxane A(2) receptors (TPRs) during oligodendrocyte (OLG) development. It was found that as OLGs mature, the expression levels of G(q) increase while those of G(13) decrease. In contrast, the expression levels of G(s), G(o), and G(i) do not change significantly. Localization studies revealed that G(q), G(13), and G(i) are present only in the extranuclear compartment, whereas G(s) and G(o) are found in both the extranuclear and the nuclear compartments. Purification of TPR-G protein complexes demonstrated that TPRs couple to both G(q) and G(13) in the extranuclear compartment but only to G(s) in the nuclear compartment. Furthermore, functional analysis revealed that stimulation of nuclear TPR in OLGs stimulates CREB phosphorylation and myelin basic protein transcription and increases survival. Collectively, these results demonstrate that (i) OLGs selectively modulate the expression of certain G proteins during development, (ii) G proteins are differentially localized in OLGs leading to subcellular compartmentalization, (iii) TPRs couple to G(q) and G(13) in the extranuclear compartment and to G(s) only in the nucleus, (iv) mature OLGs have a functional nuclear TPR-G(s) signaling pathway, and (v) nuclear TPR signaling can stimulate CREB phosphorylation and myelin gene transcription and increase cell survival. These findings represent a novel paradigm for selective modulation of G protein-coupled receptor-G protein signaling during cell development.
Collapse
|
21
|
Nakahata N. Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol Ther 2008; 118:18-35. [PMID: 18374420 DOI: 10.1016/j.pharmthera.2008.01.001] [Citation(s) in RCA: 308] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 01/02/2008] [Indexed: 12/22/2022]
Abstract
Thromboxane A(2) (TXA(2)), an unstable arachidonic acid metabolite, elicits diverse physiological/pathophysiological actions, including platelet aggregation and smooth muscle contraction. TXA(2) has been shown to be involved in allergies, modulation of acquired immunity, atherogenesis, neovascularization, and metastasis of cancer cells. The TXA(2) receptor (TP) communicates mainly with G(q) and G(13), resulting in phospholipase C activation and RhoGEF activation, respectively. In addition, TP couples with G(11), G(12), G(13), G(14), G(15), G(16), G(i), G(s) and G(h). TP is widely distributed in the body, and is expressed at high levels in thymus and spleen. The second extracellular loop of TP is an important ligand-binding site, and Asp(193) is a key amino acid. There are two alternatively spliced isoforms of TP, TPalpha and TPbeta, which differ only in their C-terminals. TPalpha and TPbeta communicate with different G proteins, and undergo hetero-dimerization, resulting in changes in intracellular traffic and receptor protein conformations. TP cross-talks with receptor tyrosine kinases, such as EGF receptor, to induce cell proliferation and differentiation. TP is glycosylated in the N-terminal region for recruitment to plasma membranes. Furthermore, TP conformation is changed by coupling to G proteins, showing several states of agonist binding. Finally, several drugs modify TP-mediated events; these include cyclooxygenase inhibitors, TXA(2) synthase inhibitors and TP antagonists. Some flavonoids of natural origin also have TP receptor antagonistic activity. Recent advances in TP research have clarified TXA(2)-mediated events in detail, and further study will supply more beneficial information about TXA(2) pathophysiology.
Collapse
Affiliation(s)
- Norimichi Nakahata
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-0815, Japan
| |
Collapse
|
22
|
Abstract
Because of their ability to become rapidly activated at places of vascular injury, platelets are important players in primary hemostasis as well as in arterial thrombosis. In addition, they are also involved in chronic pathological processes including the atherosclerotic remodeling of the vascular system. Although primary adhesion of platelets to the vessel wall is largely independent of G protein-mediated signaling, the subsequent recruitment of additional platelets into a growing platelet thrombus requires mediators such as ADP, thromboxane A(2), or thrombin, which act through G protein-coupled receptors. Platelet activation via G protein-coupled receptors involves 3 major G protein-mediated signaling pathways that are initiated by the activation of the G proteins G(q), G(13), and G(i). This review summarizes recent progress in understanding the mechanisms underlying platelet activation and thrombus extension via G protein-mediated signaling pathways.
Collapse
Affiliation(s)
- Stefan Offermanns
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| |
Collapse
|
23
|
Ramamurthy S, Mir F, Gould RM, Le Breton GC. Characterization of thromboxane A2 receptor signaling in developing rat oligodendrocytes: nuclear receptor localization and stimulation of myelin basic protein expression. J Neurosci Res 2007; 84:1402-14. [PMID: 16998891 DOI: 10.1002/jnr.21061] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The present work investigates the role of thromboxane A(2) (TXA(2)) receptors in the development of oligodendrocytes (OLGs). The results demonstrate that the proteins of the TXA(2) signaling pathway, i.e., cyclooxygenase (COX-1), TXA(2) synthase (TS), and TXA(2) receptor (TPR) are expressed in the developing rat brain during myelination. Furthermore, culture of OLG progenitor cells (OPCs) revealed that the expression levels of these proteins as well as TXA(2) synthesis increase during OLG maturation. Separate studies established that activation of TPRs by the agonist U46619 increases intracellular calcium in both OPCs and OLGs as visualized by digital fluorescence imaging. Immunocytochemical staining demonstrated that TPRs are localized in the plasma membrane and perinuclear compartments in OPCs. However, during OLG differentiation, TPRs shift their localization pattern and also become associated with the nuclear compartment. This shift to nuclear localization was confirmed by biochemical analysis in cultured cells and by immunocytochemical analysis in developing rat brain. Finally, it was found that U46619 activation of TPRs in maturing OLGs resulted in enhanced myelin basic protein (MBP) expression. Alternatively, inhibition of endogenous TPR signaling led to reduced MBP expression. Furthermore, TPR-mediated MBP expression was found to be associated with increased transcription from the MBP promoter using a MBP-luciferase reporter. Collectively, these findings suggest a novel TPR signaling pathway in OLGs and a potential role for this signaling during OLG maturation and myelin production.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Age Factors
- Animals
- Animals, Newborn
- Blotting, Western/methods
- Brain/cytology
- Calcium/metabolism
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cells, Cultured
- Cyclic AMP/metabolism
- Enzyme Inhibitors/pharmacology
- Gangliosides/metabolism
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Myelin Basic Protein/metabolism
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Thromboxane A2, Prostaglandin H2/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Stem Cells/drug effects
- Stem Cells/physiology
- Thromboxane B2/metabolism
- Time Factors
- Transfection/methods
Collapse
Affiliation(s)
- Santosh Ramamurthy
- Department of Cellular and Molecular Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612-7343, USA
| | | | | | | |
Collapse
|
24
|
|
25
|
Miyosawa K, Sasaki M, Ohkubo S, Nakahata N. Different Pathways for Activation of Extracellular Signal-Regulated Kinase through Thromboxane A2 Receptor Isoforms. Biol Pharm Bull 2006; 29:719-24. [PMID: 16595906 DOI: 10.1248/bpb.29.719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thromboxane A2 receptor (TP) consists of two alternatively spliced isoforms, TPalpha and TPbeta, which differ in their cytoplasmic tails. In the present study, we examined the difference in signal transduction of TPalpha and TPbeta, using stably expressing cells of TPalpha and TPbeta. The cells expressing TPalpha (TPalpha-SC2) and TPbeta (TPbeta-SC15) were selected based on the similar binding sites of [3H]-SQ29548, a TP antagonist. U46619, a TP agonist, elicited phosphoinositide hydrolysis in TPalpha-SC2 and TPbeta-SC15 cells with a similar concentration-dependency. U46619 also caused the phosphorylation of extracellular signal-regulated kinase (ERK1/2) in both TPalpha-SC2 and TPbeta-SC15 cells. While the peak of the phosphorylation of ERK1/2 was observed 5 min after addition of U46619 in TPalpha-SC2 cells, the long lasting phosphorylation up to 60 min was in TPbeta-SC15 cells. U46619-induced phosphorylation of ERK1/2 at 5 min was inhibited by pertussis toxin in both cells, suggesting that G(i) is involved in the phosphorylation mediated via both TP isoforms. Interfering G(12/13) activity by overexpression of p115-RGS reduced U46619-induced ERK1/2 phosphorylation in TPbeta-SC15 cells, but not in TPalpha-SC2 cells. H89, an inhibitor of protein kinase A (PKA), reduced U46619-induced ERK1/2 phosphorylation in TPalpha-SC2 cells, but not in TPbeta-SC15 cells. These results indicate that G(i) may be involved in TP-mediated ERK1/2 phosphorylation in both isoforms. In addition, H89-sensitive kinase and G(12/13) may be involved in TP-mediated ERK1/2 phosphorylation in TPalpha and TPbeta, respectively.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Adenoviridae/genetics
- Animals
- Blotting, Western
- CHO Cells
- Cricetinae
- Enzyme Activation
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Genetic Vectors
- Hydrolysis
- Isomerism
- Isoquinolines/pharmacology
- Pertussis Toxin/pharmacology
- Phosphatidylinositols/metabolism
- Plasmids/genetics
- Receptors, Cell Surface/drug effects
- Receptors, Thromboxane A2, Prostaglandin H2/drug effects
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Sulfonamides/pharmacology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Katsutoshi Miyosawa
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Sendai, Japan
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- D S Woulfe
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
27
|
Schneider T, Hein P, Michel-Reher MB, Michel MC. Effects of ageing on muscarinic receptor subtypes and function in rat urinary bladder. Naunyn Schmiedebergs Arch Pharmacol 2005; 372:71-8. [PMID: 16059734 DOI: 10.1007/s00210-005-1084-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 07/13/2005] [Indexed: 01/25/2023]
Abstract
We compared the density and function of M2 and M3 muscarinic acetylcholine receptor subtypes in the urinary bladder of young adult (3 months) and old (23 months) male Wistar rats. Old rats had a reduced density of muscarinic receptors (96+/-10 vs. 156+/-21 fmol/mg protein), but competition experiments with the M3-selective darifenacin did not indicate alterations in the relative roles of M2 and M3 receptors, with the former being more abundant. The amount of immunodetectable alpha-subunits of various G-proteins potentially linked to muscarinic receptor function was unchanged. The potency of carbachol to contract bladder strips was also unaltered; its maximum effects as well as those of a single KCl concentration were unchanged if raw data or those corrected for strip length were analysed, but somewhat reduced when those corrected for strip weight were analysed. Antagonistic effects of atropine, the M2-selective Ro 320-6206 and the M3-selective darifenacin were unchanged. Agonistic effects of the M3-sparing agonist 4-(2-oxo-2,3-dihydro-benzoimidazol-1-yl)-[1,4']bipiperidinyl-1'-carboxylic acid ethyl ester were similarly poor in young and old rats. Additional experiments were concomitantly performed in submandibular glands from the same animals. While total muscarinic receptor density in submandibular glands was not significantly affected by age (56+/-5 vs. 61+/-4 fmol/mg protein), the relative contribution of M3 receptors significantly declined from 68+/-3% to 57+/-2% based upon darifenacin competition curves. We conclude that aged Wistar rats express fewer muscarinic receptors in their urinary bladder, but there is no change in the relative abundance of M2 and M3 receptors; this is accompanied by only minor if any alterations in receptor responsiveness. In contrast, submandibular gland expresses similar receptor numbers in young and old rats, but slightly fewer M3 receptors in old animals.
Collapse
Affiliation(s)
- Tim Schneider
- Department of Urology, University of Essen, Essen, Germany
| | | | | | | |
Collapse
|
28
|
Laroche G, Rochdi MD, Laporte SA, Parent JL. Involvement of Actin in Agonist-induced Endocytosis of the G Protein-coupled Receptor for Thromboxane A2. J Biol Chem 2005; 280:23215-24. [PMID: 15845539 DOI: 10.1074/jbc.m414071200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of actin in endocytosis of G protein-coupled receptors is poorly defined. In the present study, we demonstrate that agents that depolymerize (latrunculin B and cytochalasin D) or stabilize (jasplakinolide) the actin cytoskeleton blocked agonist-induced endocytosis of the beta isoform of the thromboxane A(2) receptor (TPbeta) in HEK293 cells. This suggests that endocytosis of TPbeta requires active remodeling of the actin cytoskeleton. On the other hand, disruption of microtubules with colchicine did not affect endocytosis of the receptor. Expression of wild-type and mutant forms of the small GTPases RhoA and Cdc42 potently inhibited endocytosis of TPbeta, further indicating a role for the dynamic regulation of the actin cytoskeleton in this pathway. Agonist treatment of TPbeta in HEK293 cells resulted in the formation of actin stress fibers through Galpha(q/11) signaling. Because we previously showed that endocytosis of TPbeta is dependent on arrestins, we decided to explore the relation between arrestin-2 and -3 and actin in endocytosis of this receptor. Interestingly, we show that the inhibition of TPbeta endocytosis by the actin toxins in HEK293 cells was overcome by the overexpression of arrestin-3, but not of arrestin-2. These results indicate that the actin cytoskeleton is not essential in arrestin-3-mediated endocytosis of TPbeta. However, arrestin-3 could not promote endocytosis of the TPbetaY339A and TPbetaI343A carboxyl-terminal mutants when the actin cytoskeleton was disrupted. Our data provide new evidence that the actin cytoskeleton plays an essential role in TPbeta endocytosis. Furthermore, our work suggests the existence of actin-dependent and -independent arrestin-mediated pathways of endocytosis.
Collapse
MESH Headings
- Actins/chemistry
- Actins/metabolism
- Actins/physiology
- Antineoplastic Agents/pharmacology
- Arrestins/physiology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line
- Clathrin/metabolism
- Cloning, Molecular
- Colchicine/pharmacology
- Cytochalasin D/pharmacology
- Cytoskeleton/metabolism
- Depsipeptides/pharmacology
- Endocytosis
- Enzyme-Linked Immunosorbent Assay
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Humans
- Marine Toxins/pharmacology
- Microscopy, Fluorescence
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Phosphoproteins/physiology
- Plasmids/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Thromboxane A2, Prostaglandin H2/chemistry
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Signal Transduction
- Thiazoles/pharmacology
- Thiazolidines
- Time Factors
- Transfection
- cdc42 GTP-Binding Protein/metabolism
- rhoA GTP-Binding Protein/chemistry
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Geneviève Laroche
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine and Centre de Recherche Clinique, Université de Sherbrooke, Quebec, Canada
| | | | | | | |
Collapse
|
29
|
Lin X, Ramamurthy SK, Le Breton GC. Thromboxane A receptor-mediated cell proliferation, survival and gene expression in oligodendrocytes. J Neurochem 2005; 93:257-68. [PMID: 15816849 DOI: 10.1111/j.1471-4159.2004.02969.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Thromboxane A(2) receptors (TP) were previously localized to discrete regions in the rat brain on myelinated fiber tracts and oligodendrocytes (OLGs). The present studies extended these findings and investigated the effects of TP signaling on cell proliferation, survival, and gene expression in OLG progenitor cells (OPCs) and OLGs. It was found that the TP agonist, U46619 stimulated the proliferation of OPCs and promoted the survival of mature OLGs. Examination of the early gene expression events involved in OPC proliferation, revealed that c-fos expression was substantially increased by U46619 stimulation. Treatment of OPCs or OLGs with U46619 caused activation of the mitogen-activated protein kinases (MAPK) ERK 1/2. In OPCs this activation was blocked by inhibition of src. However, in OLGs this phosphorylation was not only blocked by inhibition of src but also by inhibition of protein kinase C (PKC). Furthermore, U46619 was found to increase CREB phosphorylation in both OPCs and OLGs. Similar to ERK 1/2 activation, there was a divergence in the mechanism of the TP-mediated CREB response for each cell type. Specifically, U46619 activation was attenuated by src and protein kinase A (PKA) inhibition in OPCs, whereas in OLGs this effect was blocked by inhibition of src, PKA as well as by inhibition of PKC. Collectively, these results provide the first demonstration that TP-activated nuclear signaling events are involved in the proliferation of OPCs, the survival of mature OLGs, and the stimulation of gene expression.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Animals
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cell Survival/physiology
- Cells, Cultured
- Dose-Response Relationship, Drug
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Oligodendroglia/cytology
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Thromboxane A2, Prostaglandin H2/agonists
- Receptors, Thromboxane A2, Prostaglandin H2/biosynthesis
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/physiology
Collapse
Affiliation(s)
- Xin Lin
- University of Illinois at Chicago College of Medicine, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
30
|
Bos CL, Richel DJ, Ritsema T, Peppelenbosch MP, Versteeg HH. Prostanoids and prostanoid receptors in signal transduction. Int J Biochem Cell Biol 2004; 36:1187-205. [PMID: 15109566 DOI: 10.1016/j.biocel.2003.08.006] [Citation(s) in RCA: 267] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 07/31/2003] [Accepted: 08/22/2003] [Indexed: 10/26/2022]
Abstract
Prostanoids are arachidonic acid metabolites and are generally accepted to play pivotal functions in amongst others inflammation, platelet aggregation, and vasoconstriction/relaxation. Inhibition of their production with, for instance, aspirin has been used for over a century to combat a large variety of pathophysiological processes, with great clinical success. Hence, the cellular changes induced by prostanoids have been subject to an intensive research effort and especially prostanoid-dependent signal transduction has been extensively studied. In this review, we discuss the impact of the five basic prostanoids, TxA(2), PGF(2alpha), PGE(2), PGI(2), and PGD(2), via their receptors on cellular physiology. These inflammatory lipids may stimulate serpentine plasma membrane-localized receptors, which in turn affect major signaling pathways, such as the MAP kinase pathway and the protein kinase A pathway, finally resulting in altered cellular physiology. In addition, prostanoids may activate the PPARgamma members of the steroid/thyroid family of nuclear hormone receptors, which act as transcription factors and may thus directly influence gene transcription. Finally, evidence exists that prostanoids act as second messengers downstream of mitogen receptor activation, mediating events, such as cytoskeletal changes, maybe via direct interaction with GTPase activating proteins. The final cellular reaction to prostaglandin stimulation will most likely depend on combined effects of the above-mentioned levels of interaction between prostaglandins and their cellular receptors.
Collapse
Affiliation(s)
- Carina L Bos
- Laboratory for Experimental Internal Medicine, G2-130, Academic Medical Center, Meibergdreef 9, NL-1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
31
|
Takasaki J, Saito T, Taniguchi M, Kawasaki T, Moritani Y, Hayashi K, Kobori M. A novel Galphaq/11-selective inhibitor. J Biol Chem 2004; 279:47438-45. [PMID: 15339913 DOI: 10.1074/jbc.m408846200] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
YM-254890, which was isolated from the culture broth of Chromobacterium sp., inhibits ADP-induced platelet aggregation and has antithrombotic and thrombolytic effects. YM-254890 blocks Galpha(q/11)-coupled ADP receptor P2Y1-mediated Ca(2+) mobilization. Here we report that YM-254890 is a selective Galpha(q/11) inhibitor. YM-254890 blocked Ca(2+) mobilization mediated by several Galpha(q/11)-coupled receptors but not by Galpha(i)- or Galpha(15)-coupled receptor, indicating that phospholipase Cbeta activation and subsequent signaling molecules are not the target of YM-254890. YM-254890 completely prevented the serum response factor (SRF)-mediated gene transcription induced by Galpha(q)R183C, which is constitutively active in a receptor-dependent manner because of its reduced k(cat) of GTP hydrolysis. Conversely, YM-254890 had only a modest effect on the SRF-mediated gene transcription by Galpha(q)Q209L, which is GTPase-deficient (activated) Galpha(q). These suggested that the acting point of YM-254890 is receptor-Galpha(q) interaction or the subsequent guanine nucleotide exchange step. The fact that YM-254890 (i) inhibited the SRF-mediated gene transcription by Galpha(qi5), which interacts with Galpha(i)-coupled receptor and possesses the effector function of Galpha(q), and (ii) had no effect on the K(d) value of high affinity [(3)H]2MeSADP binding to P2Y1, which reflects the agonist-receptor-Galpha ternary complex, suggested that receptor-Galpha(q/11) interaction is not the target of YM-254890. On the other hand, specific [(35)S]GTPgammaS binding to Galpha(q/11) stimulated by the M1 muscarinic acetylcholine receptor and P2Y1 were inhibited by YM-254890. These data indicate that YM-254890 blocks the exchange of GDP for GTP in Galpha(q/11) activation. This novel Galpha(q/11)-selective inhibitor is a promising and powerful tool for studying Galpha(q/11) protein activation, Galpha(q/11) -coupled receptor signaling, and Galpha(q/11)-mediated biological events.
Collapse
MESH Headings
- Animals
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Calcium/metabolism
- Cell Line
- Cyclic AMP/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/antagonists & inhibitors
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Genes, Reporter
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Heterotrimeric GTP-Binding Proteins/genetics
- Heterotrimeric GTP-Binding Proteins/metabolism
- Humans
- Molecular Structure
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/genetics
- Peptides, Cyclic/metabolism
- Protein Binding
- Purinergic P2 Receptor Antagonists
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2Y1
- Signal Transduction/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Jun Takasaki
- Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Capra V, Veltri A, Foglia C, Crimaldi L, Habib A, Parenti M, Rovati GE. Mutational analysis of the highly conserved ERY motif of the thromboxane A2 receptor: alternative role in G protein-coupled receptor signaling. Mol Pharmacol 2004; 66:880-9. [PMID: 15229298 DOI: 10.1124/mol.104.001487] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The presence of highly conserved amino acid stretches in G protein-coupled receptors (GPCRs) usually predicts an important role in receptor function. Considerable attention has therefore been focused on the involvement of the highly conserved Glu/Asp-Arg-Tyr (E/DRY) motif at the cytoplasmic end of transmembrane domain 3 in the regulation of GPCR conformational states and/or the mediation of G protein activation. In the present study, we investigated the role of Glu129 and Arg130 in the ERY of thromboxane A2 receptor alpha (TPalpha) in transfected human embryonic kidney 293 cells. We show that no conservative or nonconservative substitutions of Glu129 and Arg130 generated a constitutively active TPalpha mutant, but a nonconservative mutation of Arg130 (R130V) yielded a mutant receptor with significantly impaired 9,11-dideoxy-9alpha,11alpha-methanoepoxy-prosta-5Z,13E-dien-1-oic acid (U46619)-induced accumulation of inositol phosphates (IPs). This loss-of-function phenotype seems to be caused by the uncoupling of the TPalpha receptor from Gq, as demonstrated by the loss of high-affinity agonist binding, and not by receptor internalization, as shown by localization studies with the R130V-green fluorescent protein fusion protein. It is interesting to note that U46619-induced activation of the nonconservative E129V mutant stimulated the production of IPs with a approximately 10-fold lower EC50 and a approximately 2-fold higher Emax than in the wild-type receptor. Collectively, these data demonstrate that, unlike other GPCRs, mutations of Glu129 do not induce constitutive activity, whereas Arg130 is involved in G protein coupling or recognition, and they suggest the existence within class A GPCRs of at least two different subclasses that make different uses of the highly conserved E/DRY motif.
Collapse
Affiliation(s)
- Valérie Capra
- Laboratory of Molecular Pharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133, Italy.
| | | | | | | | | | | | | |
Collapse
|
33
|
Geng L, Wu J, So SP, Huang G, Ruan KH. Structural and functional characterization of the first intracellular loop of human thromboxane A2 receptor. Arch Biochem Biophys 2004; 423:253-65. [PMID: 15001390 DOI: 10.1016/j.abb.2004.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Indexed: 11/19/2022]
Abstract
The conformation of a constrained peptide mimicking the putative first intracellular domain (iLP1) of thromboxane A(2) receptor (TP) was determined by (1)H 2D NMR spectroscopy. Through completed assignments of TOCSY, DQF-COSY, and NOESY spectra, a NMR structure of the peptide showed a beta-turn in residues 56-59 and a short helical structure in the residues 63-66. It suggests that residues 63-66 may be part of the second transmembrane domain (TM), and that Arg60, in an exposed position on the outer surface of the loop, may be involved in signaling through charge contact with Gq protein. The sequence alignment of Lys residue in the same position of other prostanoid receptors mediates different G protein couplings, suggesting that the chemical properties of Arg and Lys may also affect the receptor signaling activity. These hypotheses were supported by mutagenesis studies, in which the mutant of Arg60Leu completely lost activity in increasing intracellular calcium level through Gq coupling, and the mutant of Arg60Lys retained only about 35% signaling activity. The difference between the side chain functions of Lys and Arg in effecting the signaling was discussed.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Arginine/genetics
- Arginine/metabolism
- COS Cells
- Calcium/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Circular Dichroism
- Humans
- Models, Molecular
- Nuclear Magnetic Resonance, Biomolecular
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Thromboxane A2, Prostaglandin H2/antagonists & inhibitors
- Receptors, Thromboxane A2, Prostaglandin H2/chemistry
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Transfection
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Linda Geng
- Vascular Biology Research Center and Division of Hematology, Department of Internal Medicine, The University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
34
|
Thomas DW, Rocha PN, Nataraj C, Robinson LA, Spurney RF, Koller BH, Coffman TM. Proinflammatory actions of thromboxane receptors to enhance cellular immune responses. THE JOURNAL OF IMMUNOLOGY 2004; 171:6389-95. [PMID: 14662837 DOI: 10.4049/jimmunol.171.12.6389] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Metabolism of arachidonic acid by the cyclo-oxygenase (COX) pathway generates a family of prostanoid mediators. Nonsteroidal anti-inflammatory drugs (NSAIDs) act by inhibiting COX, thereby reducing prostanoid synthesis. The efficacy of these agents in reducing inflammation suggests a dominant proinflammatory role for the COX pathway. However, the actions of COX metabolites are complex, and certain prostanoids, such as PGE(2), in some circumstances actually inhibit immune and inflammatory responses. In these studies, we examine the hypothesis that anti-inflammatory actions of NSAIDs may be due, in part, to inhibition of thromboxane A(2) synthesis. To study the immunoregulatory actions of thromboxane A(2), we used mice with a targeted disruption of the gene encoding the thromboxane-prostanoid (TP) receptor. Both mitogen-induced responses and cellular responses to alloantigen were substantially reduced in TP(-/-) spleen cells. Similar attenuation was observed with pharmacological inhibition of TP signaling in wild-type splenocytes, suggesting that reduced responsiveness was not due to subtle developmental abnormalities in the TP-deficient mice. The absence of TP receptors reduced immune-mediated tissue injury following cardiac transplant rejection, an in vivo model of intense inflammation. Taken together, these findings show that thromboxane augments cellular immune responses and inflammatory tissue injury. Specific inhibition of the TP receptor may provide a more precise approach to limit inflammation without some of the untoward effects associated with NSAIDs.
Collapse
MESH Headings
- Adjuvants, Immunologic/deficiency
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Animals
- Calcium Signaling/genetics
- Calcium Signaling/immunology
- Cell Division/genetics
- Cell Division/immunology
- Cells, Cultured
- Enzyme Inhibitors/pharmacology
- Graft Rejection/genetics
- Graft Rejection/immunology
- Graft Rejection/pathology
- Heart Transplantation/immunology
- Heart Transplantation/pathology
- Immunity, Cellular/genetics
- Inflammation Mediators/metabolism
- Inflammation Mediators/physiology
- Lymphocyte Culture Test, Mixed
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Thromboxane/biosynthesis
- Receptors, Thromboxane/deficiency
- Receptors, Thromboxane/genetics
- Receptors, Thromboxane/physiology
- Ribonucleases/metabolism
- Spleen/cytology
- Spleen/enzymology
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thromboxane-A Synthase/antagonists & inhibitors
Collapse
Affiliation(s)
- Dennis W Thomas
- Division of Nephrology, Duke University and Durham Veterans Affairs Medical Centers, Durham, NC 27705, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Li Z, Zhang G, Le Breton GC, Gao X, Malik AB, Du X. Two waves of platelet secretion induced by thromboxane A2 receptor and a critical role for phosphoinositide 3-kinases. J Biol Chem 2003; 278:30725-31. [PMID: 12796499 DOI: 10.1074/jbc.m301838200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thromboxane A2 (TXA2)-mediated platelet secretion and aggregation are important in thrombosis. Here, we present a novel finding that the stable TXA2 analogue, U46619, induces two waves of platelet secretion, each of which precedes a distinct wave of platelet aggregation. ADP released from platelets during the first wave of secretion played a major role in augmenting the first wave of platelet aggregation. The second wave of platelet secretion and aggregation required the first wave of both ADP secretion and aggregation and were blocked by either the integrin inhibitor RGDS or a P2Y12 receptor antagonist, indicating a requirement for both the integrin outside-in signal and ADP-activated Gi pathway. U46619 stimulated phosphoinositide 3-kinase (PI3K)-dependent phosphorylation of Akt, which was augmented by ADP but did not require integrin outside-in signaling. Platelets from PI3Kgamma knock-out mice or PI3K inhibitor-treated platelets showed an impaired second wave of platelet secretion and aggregation. However, the second wave of platelet aggregation was restored by addition of exogenous ADP to PI3Kgamma deficient or PI3K inhibitor-treated platelets. Thus, our data indicate that PI3K, together with the integrin outside-in signaling, play a central role in inducing the second wave of platelet secretion, which leads to the second wave of irreversible platelet aggregation.
Collapse
Affiliation(s)
- Zhenyu Li
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
36
|
Iismaa SE, Graham RM. Dissecting cardiac hypertrophy and signaling pathways: evidence for an interaction between multifunctional g proteins and prostanoids. Circ Res 2003; 92:1059-61. [PMID: 12775653 DOI: 10.1161/01.res.0000075792.92001.d4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Nurden P, Poujol C, Winckler J, Combrié R, Pousseau N, Conley PB, Levy-Toledano S, Habib A, Nurden AT. Immunolocalization of P2Y1 and TPalpha receptors in platelets showed a major pool associated with the membranes of alpha -granules and the open canalicular system. Blood 2003; 101:1400-8. [PMID: 12393588 DOI: 10.1182/blood-2002-02-0642] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
P2Y(1) and thromboxane-prostanoid-alpha (TPalpha) receptors on platelets belong to the G-protein-coupled 7-transmembrane domain family. They transmit signals for shape change, mobilization of calcium, and platelet aggregation. Immunogold labeling with a monoclonal antibody (MoAb) to the amino-terminal domain of P2Y(1) and a polyclonal antibody to the C-terminal domain of TPalpha revealed that while present at the platelet surface, both receptors were abundantly represented inside the platelet. Specifically, receptors were found in membranes of alpha-granules and elements of the open-canalicular system. A similar organization was found in mature megakaryocytes. Activation of platelets by adenosine diphosphate (ADP) and the thromboxane A(2) (TXA(2)) analog, I-BOP [1S-(1 alpha,2 beta(5Z),3 alpha-(1E,3S)4 alpha)-7-(3-(3- hydroxy-4-(p-iodophenoxy)-1-butenyl)-7-oxabicyclo(2.2.1)hept-2-yl)-5-heptenoic acid], increased the labeling of both P2Y(1) and TPalpha at the surface and in intracellular pools, suggesting that activation resulted in greater antibody accessibility to the receptor. A return to a platelet discoid shape and to basal values of labeling accompanied receptor desensitization. Platelets lacking the P2Y(12) ADP receptor normally expressed P2Y(1) and TPalpha, both before and after activation. Studies with the anti-ligand-induced binding site (anti-LIBS) MoAb, AP-6, confirmed that stored fibrinogen associated with internal pools of alpha(IIb)beta(3) at the start of secretion in a microenvironment containing agonist receptors. Pharmacologic antagonism of ADP or TXA(2) receptors in antithrombotic therapy may need to take into account blockade of internal receptor pools.
Collapse
Affiliation(s)
- Paquita Nurden
- Centre National de la Recherche Scientifique (CNRS), Hôpital Cardiologique, Pessac, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Manganello JM, Huang JS, Kozasa T, Voyno-Yasenetskaya TA, Le Breton GC. Protein kinase A-mediated phosphorylation of the Galpha13 switch I region alters the Galphabetagamma13-G protein-coupled receptor complex and inhibits Rho activation. J Biol Chem 2003; 278:124-30. [PMID: 12399457 DOI: 10.1074/jbc.m209219200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The present studies mapped the protein kinase A (PKA) phosphorylation site of Galpha(13) and studied the consequences of its phosphorylation. Initial experiments using purified human Galpha(13) and the PKA catalytic subunit established that PKA directly phosphorylates Galpha(13). The location of this phosphorylation site was next investigated with a new synthetic peptide (G(13)SRI(pep)) containing the PKA consensus sequence (Arg-Arg-Pro-Thr(203)) within the switch I region of Galpha(13). G(13)SRI(pep) produced a dose-dependent inhibition of PKA-mediated Galpha(13) phosphorylation. On the other hand, the Thr-phosphorylated derivative of G(13)SRI(pep) possessed no inhibitory activity, suggesting that Galpha(13) Thr(203) may represent the phosphorylation site. Confirmation of this notion was obtained by showing that the Galpha(13)-T203A mutant (in COS-7 cells) could not be phosphorylated by PKA. Additional studies using co-elution affinity chromatography and co-immunoprecipitation demonstrated that Galpha(13) phosphorylation stabilized coupling of Galpha(13) with platelet thromboxane A(2) receptors but destabilized coupling of Galpha(13) to its betagamma subunits. In order to determine the functional consequences of this phosphorylation on Galpha(13) signaling, activation of the Rho pathway was investigated. Specifically, Chinese hamster ovary cells overexpressing human Galpha(13) wild type (Galpha(13)-WT) or Galpha(13)-T203A mutant were generated and assayed for Rho activation. It was found that 8-bromo-cyclic AMP caused a significant decrease (50%; p < 0.002) of Rho activation in Galpha(13) wild type cells but produced no change of basal Rho activation levels in the mutant (p > 0.4). These results therefore suggest that PKA blocks Rho activation by phosphorylation of Galpha(13) Thr(203).
Collapse
Affiliation(s)
- Jeanne M Manganello
- Department of Pharmacology, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
39
|
Kreuzer J, Viedt C, Brandes RP, Seeger F, Rosenkranz AS, Sauer H, Babich A, Nürnberg B, Kather H, Krieger-Brauer HI. Platelet-derived growth factor activates production of reactive oxygen species by NAD(P)H oxidase in smooth muscle cells through Gi1,2. FASEB J 2003; 17:38-40. [PMID: 12424219 DOI: 10.1096/fj.01-1036fje] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent findings indicate that platelet-derived growth factor (PDGF) plays a role in the generation of reactive oxygen species (ROS) as second messengers in smooth muscle cells (SMC). To identify the source and signal transduction pathway of ROS formation in SMC, we investigated PDGF-induced ROS formation. Stimulation of SMC with PDGF resulted in a rapid increase of ROS production. Using an inactivating antibody, we identified the increase to be dependent on p22phox, a NAD(P)H-oxidase subunit. ROS release was completely inhibited by the Gi protein inhibitor PTX as well as an antibody against Galphai1,2, however, not by antibodies against Galphai3/0, Gas, and Gbeta1beta2. The effect of PDGF on ROS production in SMC membranes could likewise be mimicked by the use of a recombinant Galphai2 subunit but not by Galphai3, Galphai0, Gas, and Gbetagamma subunits. Immunoaffinity chromatography demonstrated coupling of Galphai1,2 to the PDGF a-receptor, which, after preincubation of the SMC membranes with PDGF, was increased in the absence of GTPgammaS but decreased in the presence of GTPgammaS and prevented by PTX treatment. These data define a novel G protein-dependent mechanism by which PDGF signaling is transduced through direct coupling of the Gai1,2 subunit of the trimeric G proteins to the PDGF tyrosine kinase receptor.
Collapse
MESH Headings
- Animals
- Enzyme Activation
- GTP-Binding Protein alpha Subunit, Gi2
- GTP-Binding Protein alpha Subunits, Gi-Go/physiology
- Membrane Transport Proteins
- Models, Biological
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- NADH, NADPH Oxidoreductases/metabolism
- NADPH Dehydrogenase/physiology
- NADPH Oxidases
- Phosphoproteins/physiology
- Platelet-Derived Growth Factor/pharmacology
- Proto-Oncogene Proteins/physiology
- Reactive Oxygen Species/metabolism
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- J Kreuzer
- Innere Medizin III, Universität Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Prostanoids are a group of lipid mediators that include the prostaglandins (PG) and thromboxanes (TX). Upon cell stimulation, prostanoids are synthesized from arachidonic acid via the cyclooxygenase (COX) pathway and released outside the cells to exert various physiological and pathological actions in a variety of tissues and cells. The activities of prostanoids are mediated by specific G protein-coupled receptors, which have been classified on the basis of pharmacological experiments into eight types and subtypes according to their responsiveness to selective agonists and antagonists. These prostanoid receptors have been cloned from various species including human, and their distinct binding properties and signal transduction pathways have been characterized by analyses of cells expressing each receptor. Furthermore, the distribution patterns of prostanoid receptor mRNAs have been determined in tissues and cells for various species. This information is useful for understanding the molecular basis of the pathophysiological actions of prostanoids.
Collapse
Affiliation(s)
- Kazuhito Tsuboi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan.
| | | | | |
Collapse
|
41
|
Moore F, Asbóth G, López BA. Thromboxane receptor signalling in human myometrial cells. Prostaglandins Other Lipid Mediat 2002; 67:31-47. [PMID: 11789896 DOI: 10.1016/s0090-6980(01)00169-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We measured the effects of stable thromboxane A2 (TXA2) analogues on signalling in cultured human myometrial cells. U46619 and/or IBOP stimulated total inositol phosphates (IPs) and cAMP production, RhoA-associated protein kinase (ROK) activity and elevated intracellular calcium [Ca2+]i. Pretreatment of the cells with pertussis toxin did not inhibit IPs or [Ca2+]i production but the thromboxane receptor (TP) antagonist SQ-29548 did inhibit IPs and cAMP production, the elevation of [Ca2+]i, and the increase in ROK activity. Pretreatment with thapsigargin inhibited [Ca2+]i elevation. TP receptor-stimulated ROK activity was inhibited by the ROK inhibitor Y27632 while ROK activity was enhanced by the caspase 3 inhibitor, Z-DEVD-FMK. TP receptor-stimulated IPs production is additive to prostaglandin F2alpha (FP) or prostaglandin E (EP) receptor-stimulated IPs production and neither FP nor EP receptor-stimulated IPs production is inhibited by SQ29548. Thus cultured human myometrial cells express at least two functional TP receptor subtypes; TPalpha-like (cAMP-stimulating) and TPbeta-like (IPs, [Ca2+] and ROK-stimulating).
Collapse
Affiliation(s)
- Frances Moore
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, UK.
| | | | | |
Collapse
|
42
|
Muja N, Blackman SC, Le Breton GC, DeVries GH. Identification and functional characterization of thromboxane A2 receptors in Schwann cells. J Neurochem 2001; 78:446-56. [PMID: 11483647 DOI: 10.1046/j.1471-4159.2001.00378.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous reports have demonstrated the presence of functional thromboxane A2 (TP) receptors in astrocytes and oligodendrocytes. In these experiments, the presence and function of TP receptors in primary rat Schwann cells (rSC) and a neurofibrosarcoma-derived human Schwann cell line (T265) was investigated. Immunocytochemical and immunoblot analyses using polyclonal anti-TP receptor antibodies demonstrate that both cell types express TP receptors. Treatment with the stable thromboxane A2 mimetic U46619 (10 microM) did not stimulate intracellular calcium mobilization in rSC, whereas T265 cells demonstrated a calcium response that was inhibited by prior treatment with TP receptor antagonists. U46619 also stimulated CREB phosphorylation on Ser133 in T265 cells and, to a lesser extent, in rSC. To identify potential mechanisms of CREB phosphorylation in rSC, we monitored intracellular cAMP levels following U46619 stimulation. Elevated levels of cAMP were detected in both rSC (20-fold) and T265 (15-fold) cells. These results demonstrate that TP receptor activation specifically stimulates CREB phosphorylation in T265 cells, possibly by a calcium- and/or cAMP-dependent mechanism. In contrast, TP receptor activation in rSC stimulates increases in cAMP and CREB phosphorylation but does not elicit changes in intracellular calcium.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Animals
- Bridged Bicyclo Compounds, Heterocyclic
- Calcium/metabolism
- Cell Fractionation
- Cells, Cultured
- Culture Media, Conditioned
- Culture Media, Serum-Free
- Cyclic AMP/metabolism
- Cyclic AMP Response Element-Binding Protein/metabolism
- Fatty Acids, Unsaturated
- Humans
- Hydrazines/pharmacology
- Immunoblotting
- Microscopy, Fluorescence
- Radioligand Assay
- Rats
- Receptors, Thromboxane/antagonists & inhibitors
- Receptors, Thromboxane/metabolism
- Schwann Cells/drug effects
- Schwann Cells/metabolism
- Thromboxane A2/pharmacology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- N Muja
- Neuroscience Graduate Program, and Department of Cell Biology, Neurobiology and Anatomy, Loyola University of Chicago, Maywood, Illinois, USA
| | | | | | | |
Collapse
|
43
|
Foley JF, Kelley LP, Kinsella BT. Prostaglandin D(2) receptor-mediated desensitization of the alpha isoform of the human thromboxane A(2) receptor. Biochem Pharmacol 2001; 62:229-39. [PMID: 11389883 DOI: 10.1016/s0006-2952(01)00661-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Thromboxane (TX) A(2) and prostaglandin (PG) D(2) mediate opposing actions in platelets and in vascular and non-vascular smooth muscle. Here, we investigated the effects of stimulation of the PGD(2) receptor (DP) on signaling by the TXA(2) receptor (TP) expressed in human platelets and in human embryonic kidney (HEK) 293 cells over-expressing the individual TP alpha and TP beta isoforms. In platelets, the selective DP agonist BW245C abolished TP-mediated mobilization of intracellular calcium ([Ca(2+)](i)) and inhibited platelet aggregation in response to the TXA(2) mimetic U46619. DP-mediated desensitization of TP signaling in platelets was prevented by pretreatment with the cAMP-dependent PKA inhibitor, H-89, but was unaffected by the PKC inhibitor GF 109203X. In HEK 293 cells, signaling by TP alpha, but not TP beta, was subject to DP-mediated desensitization in a PKA-dependent, PKC-independent manner. U46619-induced signaling by TP(Delta 328), a truncated variant of TP containing only those residues common to TP alpha and TP beta, was insensitive to prior DP stimulation, indicating that the carboxyl terminal tail of TPalpha contains the target site(s) for DP-mediated desensitization. Mutation of Ser(329) to Ala(329) within a consensus PKA site in TP alpha rendered the mutant TP alpha(S329A) insensitive to BW245C-mediated desensitization. Whole cell phosphorylation assays established that TP alpha, but not TP beta or TP alpha(S329A), was subject to DP-mediated phosphorylation and that TP alpha phosphorylation was blocked by the PKA inhibitor H-89. These data establish that TP alpha, but not TP beta, is subject to DP-mediated cross desensitization, which occurs through direct PKA-mediated phosphorylation of TP alpha at Ser(329).
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Blood Platelets/drug effects
- Blood Platelets/metabolism
- Cells, Cultured
- Humans
- Hydantoins/pharmacology
- Inositol 1,4,5-Trisphosphate/metabolism
- Phosphorylation
- Protein Isoforms/physiology
- Receptor Cross-Talk/physiology
- Receptors, Immunologic
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/metabolism
- Receptors, Prostaglandin/physiology
- Receptors, Thromboxane/physiology
- Signal Transduction
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- J F Foley
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, Merville House, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
44
|
Pelletier S, Dubé J, Villeneuve A, Gobeil F, Yang Q, Battistini B, Guillemette G, Sirois P. Prostaglandin E(2) increases cyclic AMP and inhibits endothelin-1 production/secretion by guinea-pig tracheal epithelial cells through EP(4) receptors. Br J Pharmacol 2001; 132:999-1008. [PMID: 11226130 PMCID: PMC1572636 DOI: 10.1038/sj.bjp.0703886] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2000] [Revised: 12/03/2000] [Accepted: 12/05/2000] [Indexed: 11/08/2022] Open
Abstract
Prostaglandin E(2) (PGE(2)) increased adenosine 3' : 5'-cyclic monophosphate (cyclic AMP) formation in tracheal epithelial cells and concomitantly decreased the production/secretion of immunoreactive endothelin (irET). Naturally occurring prostanoids and selective and non-selective EP receptor agonists showed the following rank order of potency in stimulating cyclic AMP generation by epithelial cells: PGE(2) (EP-selective)>16,16-dimethyl PGE(2) (EP-selective)>11-deoxy PGE(2) (EP-selective)>>>iloprost (IP/EP(1)/EP(3)-selective), butaprost (EP(2)-selective), PGD(2) (DP-selective), PGF(2alpha) (FP-selective). The lack of responsiveness of the latter prostanoids indicated that the prostanoid receptor present in these cells is not of the DP, FP, IP, EP(1), EP(2) or EP(3) subtype. Pre-incubating the cells with the selective TP/EP(4)-receptor antagonists AH23848B and AH22921X antagonized the PGE(2)-evoked cyclic AMP generation. This suggested that EP(4) receptors mediate PGE(2) effects. However, in addition to any antagonistic effects at EP(4)-receptors, both compounds, to a different extent, modified cyclic AMP metabolism. The selective EP(1), DP and EP(2) receptor antagonist (AH6809) failed to inhibit PGE(2)-evoked cyclic AMP generation which confirmed that the EP(2) receptor subtype did not contribute to the change in cyclic AMP formation in these cells. The PGE(2)-induced inhibition of irET production by guinea-pig tracheal epithelial cells was due to cyclic AMP generation and activation of the cyclic AMP-dependent protein kinase since this effect was reverted by the cyclic AMP antagonist Rp-cAMPS. These results provide the first evidence supporting the existence of a functional prostaglandin E(2) receptor that shares the pharmacological features of the EP(4)-receptor subtype in guinea-pig tracheal epithelial cells. These receptors modulate cyclic AMP formation as well as ET-1 production/secretion in these cells.
Collapse
Affiliation(s)
- Stéphane Pelletier
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Jean Dubé
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Annie Villeneuve
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Fernand Gobeil
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Quan Yang
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Bruno Battistini
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Gaétan Guillemette
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Pierre Sirois
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| |
Collapse
|
45
|
Dunlop PC, Leis LA, Johnson GJ. Epinephrine correction of impaired platelet thromboxane receptor signaling. Am J Physiol Cell Physiol 2000; 279:C1760-71. [PMID: 11078690 DOI: 10.1152/ajpcell.2000.279.6.c1760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study evaluated the mechanism of epinephrine potentiation of platelet secretion induced by thromboxane A(2) (TXA(2)). Dog platelets that do not secrete in response to TXA(2) alone (TXA(2)-) were compared with dog platelets that do secrete (TXA(2)+) and with human platelets. TXA(2)- platelets had impaired TXA(2) receptor (TP receptor)-G protein coupling, indicated by 1) impaired stimulated GTPase activity, 2) elevated basal guanosine 5'-O-(3-thiotriphosphate) binding, and 3) elevated Galpha(q) palmitate turnover that was corrected by preexposure to epinephrine. Kinetic agonist binding studies revealed biphasic dog and human platelet TP receptor association and dissociation. TXA(2)- and TP receptor-desensitized TXA(2)+ dog and human platelets had altered ligand binding parameters compared with untreated TXA(2)+ or human platelets. These parameters were reversed, along with impaired secretion, by epinephrine. Basal phosphorylation of TXA(2)- platelet TP receptors was elevated 60% and was normalized by epinephrine. Epinephrine potentiates platelet secretion stimulated by TXA(2) by reducing basal TP receptor phosphorylation and facilitating TP receptor-G protein coupling in TXA(2)- platelets and, probably, in normal platelets as well.
Collapse
Affiliation(s)
- P C Dunlop
- Hematology/Oncology Section, Department of Medicine, Veterans Administration Medical Center and University of Minnesota, Minneapolis, Minnesota 55417, USA
| | | | | |
Collapse
|
46
|
Abstract
Thromboxane A2 is a biologically potent arachidonate metabolite through the cyclooxygenase pathway. It induces platelet aggregation and smooth muscle contraction and may promote mitogenesis and apoptosis of other cells. Its roles in physiological and pathological conditions have been widely documented. The enzyme that catalyzes its synthesis, thromboxane A2 synthase, and the receptors that mediate its actions, thromboxane A2 receptors, are the two key components critical for the functioning of this potent autacoid. Recent molecular biological studies have revealed the structure-function relationship and gene organizations of these proteins as well as genetic and epigenetic factors modulating their gene expression. Future investigation should shed light on detailed molecular signaling events specifying thromboxane A2 actions, and the genetic underpinning of the enzyme and the receptors in health and disease.
Collapse
Affiliation(s)
- R F Shen
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for the Genetics of Asthma and Other Complex Diseases, University of Maryland School of Medicine, Baltimore 21201, USA.
| | | |
Collapse
|
47
|
Walsh MT, Foley JF, Kinsella BT. The alpha, but not the beta, isoform of the human thromboxane A2 receptor is a target for prostacyclin-mediated desensitization. J Biol Chem 2000; 275:20412-23. [PMID: 10827090 DOI: 10.1074/jbc.m907881199] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we examined the effects the prostacyclin receptor (IP) agonist cicaprost exhibited on U46619-mediated thromboxane A(2) receptor (TP) signaling in platelets and compared it to that which occurs in human embryonic kidney (HEK) 293 cells stably overexpressing the individual TPalpha or TPbeta isoforms. Consistent with previous studies, cicaprost abrogated U46619-mediated platelet aggregation and mobilization of intracellular calcium ([Ca(2+)](i)). In HEK 293 cells, signaling by TPalpha, but not TPbeta, was subject to IP-mediated desensitization in a protein kinase A-dependent, protein kinase C-independent manner. Desensitization of TPalpha signaling was independent of the nature of the IP agonist used, the level of IP expression, or the subtype of G(q) protein. Signaling by TP(Delta)(328), a truncated variant of TP devoid of the divergent residues of the TPs, or by TPalpha(S329A), a site-directed mutant of TPalpha, were insensitive to IP agonist activation. Whole cell phosphorylations established that TPalpha, but not TPbeta or TPalpha(S329A), is subject to IP-mediated phosphorylation and that TPalpha phosphorylation is inhibited by H-89. Thus, we conclude that TPalpha, but not TPbeta, is subject to cross-desensitization by IP mediated through direct protein kinase A phosphorylation at Ser(329) and propose that TPalpha may be the isoform physiologically relevant to TP:IP-mediated vascular hemostasis.
Collapse
Affiliation(s)
- M T Walsh
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, Merville House, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
48
|
Djellas Y, Antonakis K, Le Breton GC. Shifts in the affinity distribution of one class of seven-transmembrane receptors by activation of a separate class of seven-transmembrane receptors. Biochem Pharmacol 2000; 59:1521-9. [PMID: 10799648 DOI: 10.1016/s0006-2952(00)00296-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have demonstrated previously that activation of thrombin receptors causes increased Galpha(q) coupling to thromboxane A(2) receptors and increased thromboxane A(2) receptor ligand affinity. These results led to the hypothesis that thrombin receptor activation stimulates Galpha(q) redistribution to thromboxane A(2) receptors, thereby shifting them to a higher affinity state. The present study investigated three questions regarding this inter-receptor signaling phenomenon: (i) does activation of thrombin receptors cause a redistribution of thromboxane A(2) receptor subpopulations; (ii) does inter-receptor signaling require that participating receptors couple to the same family of G-protein alpha-subunits; and (iii) does inter-receptor signaling occur in cell types other than platelets? It was found that thrombin receptor activation caused a shift in the thromboxane A(2) receptor binding data from a one-site model to a two-site model (K(i) = 0.5 microM vs K(i) = 10 nM and 1.1 microM for the antagonist 4-[2-[[(4-chlorophenyl)sulfonyl]amino]ethyl]benzeneacetic acid (BM13. 505) and K(i) = 2.5 microM vs K(i) = 29.5 nM and 2.6 microM for the agonist 9,11-dideoxy-9alpha,11alpha-methanoepoxy prostaglandin F(2alpha) (U46619). It also was found that activation of prostaglandin D(2) receptors also caused a shift of prostacyclin receptor binding data from a one-site model (IC(50) = 10.1 nM) to a two-site model (IC(50) = 3.3 and 12.5 nM). The physiological manifestation of this inter-receptor signaling between prostacyclin and prostaglandin D(2) receptors was a synergistic inhibition of human platelet aggregation. Finally, the present results established that activation of endothelial cell thrombin receptors shifts thromboxane A(2) receptor affinity from K(i) = 0.8 microM (control) to K(i) = 0.2 microM (thrombin receptor-activating peptide), indicating that cells other than platelets have the capability to signal between seven-transmembrane receptors.
Collapse
Affiliation(s)
- Y Djellas
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
49
|
Santos-Alvarez J, Sánchez-Margalet V. Affinity purification of pancreastatin receptor-Gq/11 protein complex from rat liver membranes. Arch Biochem Biophys 2000; 378:151-6. [PMID: 10871055 DOI: 10.1006/abbi.2000.1789] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pancreastatin, a chromogranin A derived peptide, exerts a glycogenolytic effect on the hepatocyte. This effect is initiated by binding to membrane receptors which are coupled to pertussis toxin insensitive G proteins belonging to the Gq/11 family. We have recently solubilized active pancreastatin receptors from rat liver membranes still functionally coupled to G proteins. Here, we have purified pancreastatin receptors by a two-step procedure. First, pancreastatin receptors with their associated Gq/11 regulatory proteins were purified from liver membranes by lectin absorption chromatography on wheat germ agglutinin immobilized on agarose. A biotinylated rat pancreastatin analog was tested for binding to liver membranes before using it for affinity purification. Unlabeled biotinylated rat pancreastatin competed for 125I-labeled [Tyr0]PST binding to solubilized receptors with a Kd = 0.27 nM, comparable to that of native pancreastatin. The biotinylated analog was immobilized on streptavidin-coated Sepharose beads and used to further affinity purify wheat germ agglutinin eluted receptor material. Specific elution at low pH showed that the receptor protein was purified as an 80-kDa protein in association with a G protein of the q/11 family, as demonstrated by specific immunoblot analysis. The specificity of the receptor band was assessed by chemical cross-linking of the purified material followed by SDS-PAGE and autoradiography. In conclusion, we have purified pancreastatin receptor as a glycoprotein of 80 kDa physically associated with a Gq/11 protein.
Collapse
Affiliation(s)
- J Santos-Alvarez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, Seville, Spain
| | | |
Collapse
|
50
|
Kobayashi H, Honma S, Nakahata N, Ohizumi Y. Involvement of phosphatidylcholine-specific phospholipase C in thromboxane A2-induced activation of mitogen-activated protein kinase in astrocytoma cells. J Neurochem 2000; 74:2167-73. [PMID: 10800962 DOI: 10.1046/j.1471-4159.2000.0742167.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thromboxane A2 (TXA2) receptor-mediated signal transduction was investigated in 1321N1 human astrocytoma cells. 9,11-Epithio-11,12-methano-TXA2 (STA2), a TXA2 receptor agonist, induced Ca2+ mobilization and phosphoinositide hydrolysis in a concentration-dependent manner. These responses were inhibited by treatment with U73122, an inhibitor of phosphatidylinositol-specific phospholipase C, or by culturing in 0.5% fetal calf serum containing 0.5 mM dibutyryladenosine 3',5'-cyclic monophosphate (dbcAMP) for 2 days. However, the dbcAMP treatment augmented the TXA2 receptor-mediated phosphorylation of mitogen-activated protein kinase (MAPK). These results were confirmed by a functional MAPK assay measuring the incorporation of 32P into the MAPK substrate peptide. The TXA2 receptor-mediated MAPK activation was inhibited by SQ29548, a TXA2 receptor antagonist, and GF109203X, an inhibitor of protein kinase C. Although U73122 did not inhibit or only slightly inhibited the activation of MAPK, D-609, an inhibitor of phosphatidylcholine-specific phospholipase C, potently attenuated the activation in a concentration-dependent manner. Furthermore, STA2 accelerated the release of [3H]choline metabolites from the cells prelabeled with [3H]choline chloride. This release was inhibited by treatment with D-609. These results suggest that phosphatidylcholine-specific phospholipase C and protein kinase C, but not phosphatidylinositol-specific phospholipase C, are involved in TXA2 receptor-mediated MAPK activation in 1321N1 human astrocytoma cells.
Collapse
Affiliation(s)
- H Kobayashi
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|