1
|
Mondal A, Jin JP. Protein Structure-Function Relationship at Work: Learning from Myopathy Mutations of the Slow Skeletal Muscle Isoform of Troponin T. Front Physiol 2016; 7:449. [PMID: 27790152 PMCID: PMC5062619 DOI: 10.3389/fphys.2016.00449] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/20/2016] [Indexed: 12/03/2022] Open
Abstract
Troponin T (TnT) is the sarcomeric thin filament anchoring subunit of the troponin complex in striated muscles. A nonsense mutation in exon 11 of the slow skeletal muscle isoform of TnT (ssTnT) gene (TNNT1) was found in the Amish populations in Pennsylvania and Ohio. This single nucleotide substitution causes a truncation of the ssTnT protein at Glu180 and the loss of the C-terminal tropomyosin (Tm)-binding site 2. As a consequence, it abolishes the myofilament integration of ssTnT and the loss of function causes an autosomal recessive nemaline myopathy (NM). More TNNT1 mutations have recently been reported in non-Amish ethnic groups with similar recessive NM phenotypes. A nonsense mutation in exon 9 truncates ssTnT at Ser108, deleting Tm-binding site 2 and a part of the middle region Tm-binding site 1. Two splicing site mutations result in truncation of ssTnT at Leu203 or deletion of the exon 14-encoded C-terminal end segment. Another splicing mutation causes an internal deletion of the 39 amino acids encoded by exon 8, partially damaging Tm-binding site 1. The three splicing mutations of TNNT1 all preserve the high affinity Tm-binding site 2 but still present recessive NM phenotypes. The molecular mechanisms for these mutations to cause myopathy provide interesting models to study and understand the structure-function relationship of TnT. This focused review summarizes the current knowledge of TnT isoform regulation, structure-function relationship of TnT and how various ssTnT mutations cause recessive NM, in order to promote in depth studies for further understanding the pathogenesis and pathophysiology of TNNT1 myopathies toward the development of effective treatments.
Collapse
Affiliation(s)
- Anupom Mondal
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
2
|
Jin JP. Evolution, Regulation, and Function of N-terminal Variable Region of Troponin T: Modulation of Muscle Contractility and Beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 321:1-28. [DOI: 10.1016/bs.ircmb.2015.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Troponin T isoforms and posttranscriptional modifications: Evolution, regulation and function. Arch Biochem Biophys 2010; 505:144-54. [PMID: 20965144 DOI: 10.1016/j.abb.2010.10.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 12/11/2022]
Abstract
Troponin-mediated Ca²(+)-regulation governs the actin-activated myosin motor function which powers striated (skeletal and cardiac) muscle contraction. This review focuses on the structure-function relationship of troponin T, one of the three protein subunits of the troponin complex. Molecular evolution, gene regulation, alternative RNA splicing, and posttranslational modifications of troponin T isoforms in skeletal and cardiac muscles are summarized with emphases on recent research progresses. The physiological and pathophysiological significances of the structural diversity and regulation of troponin T are discussed for impacts on striated muscle function and adaptation in health and diseases.
Collapse
|
4
|
Degasperi V, Gasparini F, Shimeld SM, Sinigaglia C, Burighel P, Manni L. Muscle differentiation in a colonial ascidian: organisation, gene expression and evolutionary considerations. BMC DEVELOPMENTAL BIOLOGY 2009; 9:48. [PMID: 19737381 PMCID: PMC2753633 DOI: 10.1186/1471-213x-9-48] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 09/08/2009] [Indexed: 11/24/2022]
Abstract
BACKGROUND Ascidians are tunicates, the taxon recently proposed as sister group to the vertebrates. They possess a chordate-like swimming larva, which metamorphoses into a sessile adult. Several ascidian species form colonies of clonal individuals by asexual reproduction. During their life cycle, ascidians present three muscle types: striated in larval tail, striated in the heart, and unstriated in the adult body-wall. RESULTS In the colonial ascidian Botryllus schlosseri, we investigated organisation, differentiation and gene expression of muscle beginning from early buds to adults and during zooid regression. We characterised transcripts for troponin T (BsTnT-c), adult muscle-type (BsMA2) and cytoplasmic-type (BsCA1) actins, followed by in situ hybridisation (ISH) on sections to establish the spatio-temporal expression of BsTnT-c and BsMA2 during asexual reproduction and in the larva. Moreover, we characterised actin genomic sequences, which by comparison with other metazoans revealed conserved intron patterns. CONCLUSION Integration of data from ISH, phalloidin staining and TEM allowed us to follow the phases of differentiation of the three muscle kinds, which differ in expression pattern of the two transcripts. Moreover, phylogenetic analyses provided evidence for the close relationship between tunicate and vertebrate muscle genes. The characteristics and plasticity of muscles in tunicates are discussed.
Collapse
Affiliation(s)
- Valentina Degasperi
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Fabio Gasparini
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Chiara Sinigaglia
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Paolo Burighel
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| |
Collapse
|
5
|
Muroya S, Ohnishi-Kameyama M, Oe M, Nakajima I, Chikuni K. Postmortem changes in bovine troponin T isoforms on two-dimensional electrophoretic gel analyzed using mass spectrometry and western blotting: The limited fragmentation into basic polypeptides. Meat Sci 2007; 75:506-14. [DOI: 10.1016/j.meatsci.2006.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/23/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
|
6
|
Hsiao CD, Tsai WY, Horng LS, Tsai HJ. Molecular structure and developmental expression of three muscle-type troponin T genes in zebrafish. Dev Dyn 2003; 227:266-79. [PMID: 12761854 DOI: 10.1002/dvdy.10305] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Troponin T (Tnnt), a troponin component, interacts with tropomyosin and is crucial to the regulation of striated muscle contraction. To gain insight into the molecular evolution and developmental regulation of Tnnt gene (Tnnt) in lower vertebrates, zebrafish Tnnt1 (slow Tnnt), Tnnt2 (cardiac Tnnt), and Tnnt3b (fast Tnnt isoform b) were characterized. The polypeptides of zebrafish Tnnt1, Tnnt2, and Tnnt3b were conserved in the central tropomyosin- and C-terminal troponin I-binding domains. However, the N-terminal hypervariable regions were highly extended and rich in glutamic acid in polypeptides of Tnnt1 and Tnnt2, but not Tnnt3b. The Tnnt2 and Tnnt3b contain introns, whereas Tnnt1 is intron-free. During development, large to small, alternatively spliced variants were detected in Tnnt2, but not in Tnnt1 or Tnnt3. Whole-mount in situ hybridization showed zebrafish Tnnt1 and Tnnt2 are activated during early somitogenesis (10 hr postfertilization, hpf) and cardiogenesis (14 hpf), respectively, but Tnnt3b is not activated until middle somitogenesis (18 hpf). Tnnt2 and Tnnt3b expression was cardiac- and fast-muscle specific, but Tnnt1 was expressed in both slow and fast muscles. We propose that three, distinct, muscle-type Tnnt evolved after the divergence of fish and deuterostome invertebrates. In zebrafish, the developmental regulation of Tnnt during somitogenesis and cardiogenesis is more restricted and simpler than in tetrapods. These new findings may provide insight into the developmental regulation and molecular evolution of vertebrate Tnnt.
Collapse
Affiliation(s)
- Chung-Der Hsiao
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
7
|
Tao T, Gong BJ, Grabarek Z, Gergely J. Conformational changes induced in troponin I by interaction with troponin T and actin/tropomyosin. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1450:423-33. [PMID: 10395953 DOI: 10.1016/s0167-4889(99)00050-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Troponin I (TnI) is the inhibitory component of the striated muscle Ca2+ regulatory protein troponin (Tn). The other two components of Tn are troponin C (TnC), the Ca2+-binding component, and troponin T (TnT), the tropomyosin-binding component. We have used limited chymotryptic digestion to probe the local conformation of TnI in the free state, the binary TnC*TnI complex, the ternary TnC*. TnI*TnT (Tn) complex, and in the reconstituted Tn*tropomyosin*F-actin filament. The digestion of TnI alone or in the TnC*TnI complex produced initially two major fragments via a cleavage of the peptide bond between Phe100 and Asp101 in the so-called inhibitory region. In the ternary Tn complex cleavage occurred at a new site between Leu140 and Lys141. In the absence of Ca2+ this was followed by digestion of the 1-140 fragment at Leu122 and Met116. In the reconstituted thin filament the same fragments as in the case of the ternary complex were produced, but the rate of digestion was slower in the absence than in the presence of Ca2+. These results indicate firstly that in both free TnI and TnI complexed with TnC there is an exposed and flexible site in the inhibitory region. Secondly, TnT affects the conformation of TnI in the inhibitory region and also in the region that contains the 140-141 bond. Thirdly, the 140-141 region of TnI is likely to interact with actin in the reconstituted thin filament when Ca2+ is absent. These findings are discussed in terms of the role of TnI in the mechanism of thin filament regulation, and in light of our previous results [Y. Luo, J.-L. Wu, J. Gergely, T. Tao, Biochemistry 36 (1997) 13449-13454] on the global conformation of TnI.
Collapse
Affiliation(s)
- T Tao
- Muscle Research Group, Boston Biomedical Research Institute, 20 Staniford Street, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
8
|
Ogut O, Granzier H, Jin JP. Acidic and basic troponin T isoforms in mature fast-twitch skeletal muscle and effect on contractility. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C1162-70. [PMID: 10329966 DOI: 10.1152/ajpcell.1999.276.5.c1162] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Developmentally regulated alternative RNA splicing generates distinct classes of acidic and basic troponin T (TnT) isoforms. In fast-twitch skeletal muscles, an acidic-to-basic TnT isoform switch ensures basic isoform expression in the adult. As an exception, an acidic segment in the NH2-terminal variable region of adult chicken breast muscle TnT isoforms is responsible for the unique exclusive expression of acidic TnTs in this muscle (O. Ogut and J.-P. Jin. J. Biol. Chem. 273: 27858-27866, 1998). To understand the relationship between acidic vs. basic TnT isoform expression and muscle contraction, the contractile properties of fibers from adult chicken breast muscle were compared with those of the levator coccygeus muscle, which expresses solely basic TnT isoforms. With use of Triton X-100-skinned muscle fibers, the force and stiffness responses to Ca2+ were measured. Relative to the levator coccygeus muscle, the breast muscle fibers showed significantly increased sensitivity to Ca2+ of force and stiffness with a shift of approximately 0.15 in the pCa at which force or stiffness was 50% of maximal. The expression of tropomyosin, troponin I, and troponin C isoforms was also determined to delineate their contribution to thin-filament regulation. The data indicate that TnT isoforms differing in their NH2-terminal charge are able to alter the sensitivity of the myofibrillar contractile apparatus to Ca2+. These results provide evidence linking the regulated expression of distinct acidic and basic TnT isoform classes to the contractility of striated muscle.
Collapse
Affiliation(s)
- O Ogut
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | | | |
Collapse
|
9
|
Hinkle A, Goranson A, Butters CA, Tobacman LS. Roles for the troponin tail domain in thin filament assembly and regulation. A deletional study of cardiac troponin T. J Biol Chem 1999; 274:7157-64. [PMID: 10066775 DOI: 10.1074/jbc.274.11.7157] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Striated muscle contraction is regulated by Ca2+ binding to troponin, which has a globular domain and an elongated tail attributable to the NH2-terminal portion of the bovine cardiac troponin T (TnT) subunit. Truncation of the bovine cardiac troponin tail was investigated using recombinant TnT fragments and subunits TnI and TnC. Progressive truncation of the troponin tail caused progressively weaker binding of troponin-tropomyosin to actin and of troponin to actin-tropomyosin. A sharp drop-off in affinity occurred with NH2-terminal deletion of 119 rather than 94 residues. Deletion of 94 residues had no effect on Ca2+-activation of the myosin subfragment 1-thin filament MgATPase rate and did not eliminate cooperative effects of Ca2+ binding. Troponin tail peptide TnT1-153 strongly promoted tropomyosin binding to actin in the absence of TnI or TnC. The results show that the anchoring function of the troponin tail involves interactions with actin as well as with tropomyosin and has comparable importance in the presence or absence of Ca2+. Residues 95-153 are particularly important for anchoring, and residues 95-119 are crucial for function or local folding. Because striated muscle regulation involves switching among the conformational states of the thin filament, regulatory significance for the troponin tail may arise from its prominent contribution to the protein-protein interactions within these conformations.
Collapse
Affiliation(s)
- A Hinkle
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
10
|
Benoist P, Mas JA, Marco R, Cervera M. Differential muscle-type expression of the Drosophila troponin T gene. A 3-base pair microexon is involved in visceral and adult hypodermic muscle specification. J Biol Chem 1998; 273:7538-46. [PMID: 9516455 DOI: 10.1074/jbc.273.13.7538] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complete genomic organization of the Drosophila troponin T (TnT) gene shows many interesting features, including the presence of a microexon of only 3 nucleotides conserved among Drosophilidae. It is the smallest bona fide exon so far described, placing a new lower limit on the nucleotide number required for correct splicing. Four muscle-type specific transcripts are generated by developmentally regulated alternative splicing. Exons 3, 4, and 5 are absent in the transcript present in jump and flight muscles. A total of 11 exons are present in the adult hypodermic muscles transcript, whereas the microexon is absent in the larval hypodermic musculature. The two isoforms differ in a lysine residue. Post-translational regulation of the flight muscles/tergal depressor of the trochanter-specific isoform is involved in flight and/or jump function. The interaction domains of TnT in the tropomyosin-troponin complex are strongly conserved in the known vertebrate and invertebrate TnT sequences, whereas the terminal regions show an important variability. The COOH-terminal region shows important phylogenetic variations, whereas the NH2-terminal domain is associated with specific muscle types in a particular organism, a finding that discloses a selective value for these domains in the functionality of distinct muscles in different organisms.
Collapse
Affiliation(s)
- P Benoist
- Departamento de Bioquímica & Instituto Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Endo T, Matsumoto K, Hama T, Ohtsuka Y, Katsura G, Obinata T. Distinct troponin T genes are expressed in embryonic/larval tail striated muscle and adult body wall smooth muscle of ascidian. J Biol Chem 1996; 271:27855-62. [PMID: 8910384 DOI: 10.1074/jbc.271.44.27855] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During development of the ascidian Halocynthia roretzi, the tadpole larva hatched from the tailbud embryo metamorphoses to the sessile adult with a body wall muscle. Although the adult body wall muscle is morphologically nonsarcomeric smooth muscle, it contains troponin complex consisting of three subunits (T, I, and C) as do vertebrate striated muscles. Different from vertebrate troponins, however, the smooth muscle troponin promotes actomyosin Mg2+-ATPase activity in the presence of high concentration of Ca2+, and this promoting property is attributable to troponin T. To address whether the embryonic/larval tail striated muscle and the adult smooth muscle utilize identical or different regulatory machinery, we cloned troponin T cDNAs from each cDNA library. The embryonic and the adult troponin Ts were encoded by distinct genes and shared only <60% identity with each other. Northern blotting and whole mount in situ hybridization revealed that these isoforms were specifically expressed in the embryonic/larval tail striated muscle and the adult smooth muscle, respectively. These results may imply that these isoforms regulate actin-myosin interaction in different manners. The adult troponin T under forced expression in mouse fibroblasts was unexpectedly located in the nuclei. However, a truncated protein with a deletion including a cluster of basic amino acids colocalized with tropomyosin on actin filaments. Thus, complex formation with troponin I and C immediately after the synthesis is likely to be essential for the protein to properly localize on the thin filaments.
Collapse
Affiliation(s)
- T Endo
- Department of Biology, Faculty of Science, Chiba University, Yayoicho, Inageku, Chiba 263, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg HP, Seidman JG, Seidman CE. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 1994; 77:701-12. [PMID: 8205619 DOI: 10.1016/0092-8674(94)90054-x] [Citation(s) in RCA: 693] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We demonstrate that missense mutations (Asp175Asn; Glu180Gly) in the alpha-tropomyosin gene cause familial hypertrophic cardiomyopathy (FHC) linked to chromosome 15q2. These findings implicated components of the troponin complex as candidate genes at other FHC loci, particularly cardiac troponin T, which was mapped in this study to chromosome 1q. Missense mutations (Ile79Asn; Arg92Gln) and a mutation in the splice donor sequence of intron 15 of the cardiac troponin T gene are also shown to cause FHC. Because alpha-tropomyosin and cardiac troponin T as well as beta myosin heavy chain mutations cause the same phenotype, we conclude that FHC is a disease of the sarcomere. Further, because the splice site mutation is predicted to function as a null allele, we suggest that abnormal stoichiometry of sarcomeric proteins can cause cardiac hypertrophy.
Collapse
Affiliation(s)
- L Thierfelder
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Heeley DH. Investigation of the effects of phosphorylation of rabbit striated muscle alpha alpha-tropomyosin and rabbit skeletal muscle troponin-T. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 221:129-37. [PMID: 8168502 DOI: 10.1111/j.1432-1033.1994.tb18721.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
FPLC has been employed to prepare the phosphorylated and unphosphorylated forms of rabbit striated muscle alpha alpha-tropomyosin (TM), and the major isoform of rabbit fast-skeletal-muscle troponin-T (Tn-T2f) and corresponding chymotryptic fragment T1 (residues 1-158), in order to investigate the effects which these in vivo modifications have on thin filament function. In all instances, no significance could be attributed to the presence of a phosphate moiety on acetyl serine 1 of Tn-T (or fragment T1). As expected, fragment T1 increased the relative viscosities of solutions of unphosphorylated alpha alpha-TM, but this induction was noticeably lower for phosphorylated alpha alpha-TM. In affinity chromatography experiments, fragment T1 bound equally well to either form of alpha alpha-TM, but the interaction between fragment T2 (residues 159-259) and phosphorylated alpha alpha-TM was strengthened relative to the control. In the presence of alpha alpha-TM (unphosphorylated), fragment T1 was found to down regulate the actin-activated myosin-S1 MgATPase activity, indicating that this portion of Tn-T possesses modulatory properties. Under the same conditions, less inhibition was observed with phosphorylated alpha alpha-TM. When the two different forms of alpha alpha-TM were reconstituted into a complete regulatory system, the activation of myosin-S1 was double for those thin filaments containing the phosphorylated molecule. Dephosphorylation of the phospho alpha alpha-TM reduced the rates to control values. In ATPase Ca2+ titrations, these systems exhibited no difference in the co-operativity of activation and little or no difference in the pCa2+ 1/2 value. Developmentally linked changes in the steady-state phosphorylation of alpha alpha-TM could be a mechanism to increase the activating propensity of thin filaments, by modifying the functional properties of the T1 section of Tn-T.
Collapse
Affiliation(s)
- D H Heeley
- Department of Biochemistry, Memorial University, St John's, Newfoundland, Canada
| |
Collapse
|
14
|
Wu QL, Jha PK, Raychowdhury MK, Du Y, Leavis PC, Sarkar S. Isolation and characterization of human fast skeletal beta troponin T cDNA: comparative sequence analysis of isoforms and insight into the evolution of members of a multigene family. DNA Cell Biol 1994; 13:217-33. [PMID: 8172653 DOI: 10.1089/dna.1994.13.217] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A cDNA encoding human fast skeletal beta troponin T (beta TnTf) has been isolated and characterized from a fetal skeletal muscle library. The cDNA insert is 1,000 bp in length and contains the entire coding region of 777 bp and 5' and 3' untranslated (UT) segments of 12 and 211 bp, respectively. The 3' UT segment shows the predicted stem-loop structure typical of eukaryotic mRNAs. The cDNA-derived amino acid sequence is the first available sequence for human beta TnTf protein. It is encoded by a single-copy gene that is expressed in a tissue-specific manner in fetal and adult fast skeletal muscles. Although the human beta TnTf represents the major fetal isoform, the sequence information indicates that this cDNA and the coded protein are quite distinct from the fetal and neonatal TnTf isoforms reported in other mammalian fetal muscles. The hydropathy plot indicates that human beta TnTf is highly hydrophilic along its entire length. The protein has an extremely high degree of predicted alpha-helical content involving the entire molecule except the carboxy-terminal 30 residues. Comparative sequence analysis reveals that the human beta TnTf shares a high level of sequence similarity in the coding region with other vertebrate TnTf and considerably reduced similarity with slow skeletal and cardiac TnT cDNAs. The TnT isoforms have a large central region consisting of amino acid residues 46-204 which shows a high sequence conservation both at the nucleotide and amino acid levels. This conserved region is flanked by the variable carboxy-terminal and an extremely variable amino-terminal segment. The tropomyosin-binding peptide of TnT, which is represented by amino acid residues 47-151 and also includes a part of troponin I binding region, is an important domain of this central segment. It is suggested that this conserved segment is encoded by an ancestral gene. The variable regions of vertebrate striated TnT isoforms reflect the subsequent addition and modification of genomic sequences to give rise to members of the TnT multigene family.
Collapse
Affiliation(s)
- Q L Wu
- Department of Anatomy and Cellular Biology, Tufts University School of Veterinary Medicine, Boston, MA 02111
| | | | | | | | | | | |
Collapse
|
15
|
Ho CY, Stromer MH, Robson RM. Identification of the 30 kDa polypeptide in post mortem skeletal muscle as a degradation product of troponin-T. Biochimie 1994; 76:369-75. [PMID: 7849100 DOI: 10.1016/0300-9084(94)90110-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although a 30 kDa polypeptide frequently is seen by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of post mortem (pm) skeletal muscle and in turn is used as an indicator of proteolysis, its origin has not been conclusively identified. We used antibodies to selected myofibrillar proteins, including some known to be degraded pm, to identify this polypeptide. The left side of eight beef carcasses was electrically stimulated (ES) within 1 h after slaughter, and the right side served as the non-stimulated (NS) control. The longissimus lumborum (LL) muscle was removed from the carcass at 24 h pm and was stored at 2 degrees C. Myofibrils were prepared from the LL muscle immediately after stimulation (0 day) and from the stored muscle sample at 1, 3, 7, 14 and 28 days pm for analysis of SDS-PAGE and Western blots. By SDS-PAGE, troponin-T (TN-T) decreased in amount more rapidly pm in ES samples than in NS samples. By SDS-PAGE, a 30 kDa band increased and became a prominent band by 7 days pm in both NS and ES samples. A monoclonal antibody (mAb) to TN-T labeled purified TN-T, as well as the TN-T in myofibrils, a prominent 30 kDa polypeptide and a family of lower molecular mass polypeptides in pm muscle. This mAb also labeled a 30 kDa band that had been electrophoretically purified from pm muscle.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Y Ho
- Department of Animal Science, Iowa State University, Ames 50011
| | | | | |
Collapse
|
16
|
Jin JP, Huang QQ, Yeh HI, Lin JJ. Complete nucleotide sequence and structural organization of rat cardiac troponin T gene. A single gene generates embryonic and adult isoforms via developmentally regulated alternative splicing. J Mol Biol 1992; 227:1269-76. [PMID: 1433301 DOI: 10.1016/0022-2836(92)90540-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have previously demonstrated that rat cardiac troponin T (TnT) is expressed as two different isoforms during development, the larger, more acidic embryonic isoform and the smaller, more basic adult isoform, which appear to be generated from a common transcript of the cardiac TnT gene by alternative RNA splicing. In this study, Southern blot analysis confirmed the existence of a single copy of cardiac TnT gene in the rat genome. For investigation of the molecular mechanism of isoform switch and the control of this gene expression in myocardial development, several overlapping genomic clones were isolated from a rat genomic library. Complete nucleotide sequences were determined from these genomic clones and revealed a 19,186 base-pair DNA fragment containing 16 exons of rat cardiac TnT gene. Its DNA sequence and exon organization appeared to differ from that of the rat fast skeletal muscle TnT gene or chicken cardiac TnT gene. Comparison of genomic and cDNA clones also confirmed that the cardiac TnT isoform switching was due to the inclusion or exclusion of exon 4 during RNA processing. Sequence analysis allowed us to further identify the other alternatively spliced exon containing only nine nucleotides in size (exon 12). The inclusion and complete or partial exclusion of this exon may be responsible for generating three classes of mRNAs detected by our cDNA clones. The functional significance of this variation in TnT isoforms remained unknown, but its splicing pattern did not appear to link to the developmental changes. The 5' upstream structure was very similar to that in chicken cardiac TnT gene but differed from that in the rat fast skeletal muscle TnT gene, suggesting a similar regulatory mechanism for mammalian and avian cardiac TnT expression.
Collapse
Affiliation(s)
- J P Jin
- Department of Biology, University of Iowa, Iowa City 52242
| | | | | | | |
Collapse
|
17
|
Westfall MV, Solaro RJ. Alterations in myofibrillar function and protein profiles after complete global ischemia in rat hearts. Circ Res 1992; 70:302-13. [PMID: 1531186 DOI: 10.1161/01.res.70.2.302] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We studied changes in myofibrillar function and protein profiles after complete global ischemia with anoxia in rat hearts. Hearts were exposed to global ischemia and anoxia (CGI) for 30 or 60 minutes at 37 degrees C, and myofibrils were prepared for measurement of Ca(2+)-dependent Mg(2+)-ATPase activity at pH 7.0 and 6.5. Hearts incubated in cold saline (1 +/- 1 degrees C) and nonincubated hearts served as controls. Maximum ATPase activity was unchanged at pH 7.0 and pH 6.5 in myofibrils from hearts treated with 30 or 60 minutes of CGI. At pH 7.0, the Hill coefficient, which is an index of cooperative interactions among thin-filament proteins, was unchanged after 30 minutes of CGI but was significantly increased after 60 minutes of CGI. A similar trend for increased cooperativity was observed when myofibrillar ATPase activity was measured at pH 6.5 in myofibrils from rat hearts made ischemic for 30 or 60 minutes. Both 30 and 60 minutes of CGI resulted in increased pCa50 values (half-maximally activating free [Ca2+]) at pH 7.0 and pH 6.5. Densitometric analysis of myofibrillar proteins separated with sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that troponin I and troponin T were degraded during 60 minutes of CGI. Two new protein bands appearing in ischemia-treated myofibrils were identified as partially degraded troponin I and troponin T with Western blots. The troponin I fragment could be phosphorylated by cAMP-dependent protein kinase. In addition, we observed phosphorylation of a protein band that corresponded to myosin light chain-2 in myofibrils from CGI-treated hearts. These results suggest that degradation of thin-filament proteins may contribute to the changes in cooperativity of Ca2+ regulation of ATPase activity observed in the myofibrils from rat hearts exposed to CGI.
Collapse
Affiliation(s)
- M V Westfall
- Department of Physiology and Biophysics, University of Illinois, Chicago 60680
| | | |
Collapse
|
18
|
Fujita S, Maéda K, Maéda Y. Complete coding sequences of cDNAs of four variants of rabbit skeletal muscle troponin T. J Muscle Res Cell Motil 1991; 12:560-5. [PMID: 1791195 DOI: 10.1007/bf01738444] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Four variants of troponin T (TnT) cDNAs have been isolated and sequenced. These cDNAs have been derived from rabbit skeletal muscle, the most widely studied source of troponin, of a 11-day-old animal. One variant (TnT-1) contains the complete coding sequence, while in three variants the coding sequences are truncated at the 5' termini. The previously published amino acid sequence differs from the present cDNA-derived sequences at three locations. At least two, possibly all, of them are probably accounted for by errors in peptide sequencing. The present results are consistent with the two types of alternative splicing of TnT genes, both being first reported on the rat gene. (1) Highly variable sequences in the amino-terminal region are accounted for by the alternative splicing of exons 4-8 in an interchangeable but not mutually exclusive manner. (2) In the carboxyl-terminal region, the alternative splicing of two exons 17 (beta-type) or 16 (alpha-type) in mutually exclusive manner is consistent with the difference between all the four cDNAs, which express exon 17, and the previously published peptide sequence (derived from the adult muscle) in which exon 16 is present. This variation also corresponds to the finding in chicken skeletal muscle that the choice of exon 16 or 17 may be dependent on developmental stages. Finally, a sequence is observed corresponding to an extra exon or exons between exons 5 and 6. This sequence is shorter than that of the chicken skeletal muscle gene and is not detected in the rat skeletal muscle gene.
Collapse
Affiliation(s)
- S Fujita
- European Molecular Biology Laboratory, DESY, Hamburg, Germany
| | | | | |
Collapse
|
19
|
Zanellato AM, Borrione AC, Saggin L, Giuriato L, Schiaffino S, Sartore S. Troponin T- and troponin I-like proteins in bovine vascular smooth muscle. Circ Res 1991; 68:1349-61. [PMID: 2018995 DOI: 10.1161/01.res.68.5.1349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have tested the hypothesis whether proteins with biochemical and immunochemical properties similar to those of troponin T (TnT) and troponin I (TnI) are expressed in bovine vascular smooth muscle (SM). Three monoclonal anti-TnT antibodies (TT-1, TT-2, and RV-C2) specific for the two isoforms of TnT present in the bovine cardiac muscle and two monoclonal antibodies (TI-1 and TI-5) reacting with cardiac TnI were used in this study. Anti-TnT antibodies were found to be unreactive with 1) skeletal and nonmuscle isoforms of glyceraldehyde-3-phosphate dehydrogenase, a glycolytic enzyme that shares some structural homologies with skeletal TnT, and 2) calponin, a TnT-like calmodulin/tropomyosin binding protein with some antigenic properties in common with TnT. When tested on SM extracts from aorta or coronary arteries by Western blotting, the anti-TnT antibodies were able to react exclusively with one or two polypeptides whose electrophoretic mobility corresponds to the cardiac TnT subunits. Similarly, anti-TnI antibodies specifically recognized a component in the aortic or coronary SM extracts with electrophoretic properties identical to the cardiac TnI. Immunofluorescence analysis performed on the vascular SM cells of bovine aorta, coronary arteries, and intramural branches of coronary vessels confirmed the existence of cardiac troponin immunoreactivity in these tissues. In addition, differences in the distribution of cardiac TnT- and TnI-like proteins were evidenced in nonvascular and vascular SM cells. This study shows for the first time that polypeptides with some structural properties in common with cardiac TnT and TnI can be found in the vascular SM system.
Collapse
|
20
|
Fyrberg E, Fyrberg CC, Beall C, Saville DL. Drosophila melanogaster troponin-T mutations engender three distinct syndromes of myofibrillar abnormalities. J Mol Biol 1990; 216:657-75. [PMID: 2124273 DOI: 10.1016/0022-2836(90)90390-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In vertebrates troponin complexes interact co-operatively with tropomyosin dimers to modulate skeletal muscle contraction. In order further to investigate troponin assembly and function in vivo, we are developing molecular genetic approaches. Here we report characterization of the gene that encodes Drosophila tropinin-T and analyses of muscle defects engendered by several mutant alleles. We found that the Drosophila troponin-T locus specifies at least three proteins having sequences similar to vertebrate troponin-T. All are significantly larger than any avian or mammalian isoforms, however, due to a highly acidic carboxy-terminal extension. Comparisons of the chromosomal arrangements of vertebrate and Drosophila troponin-T genes revealed that the location of one intron-exon boundary is conserved. This observation and the similarity of vertebrate and Drosophila troponin-T primary sequences suggest that the respective proteins are homologous, and that troponin-T pre-dates the divergence of vertebrate and invertebrate organisms. In situ hybridization of the Drosophila troponin-T gene to polytene chromosomes demonstrated that it resides within subdivision 12A of the X chromosome, precisely where upheld and indented thorax flight muscle mutations have been mapped previously. We determined the nucleotide sequences of troponin-T genes in five extant mutants. All have deleterious alterations, directly establishing that upheld and indented thorax muscle abnormalities are due to defective troponin-T. Two of the alleles, upheld2 and upheld3, apparently disrupt RNA splicing and eliminate most or all troponin-T from flight and jump muscles, while the remaining three alleles change the identities of single amino acids of troponin-T. Electron microscopy of mutant muscles revealed that the two null alleles eliminate thin filaments, except where they are bound by electron-dense material presumed to be Z-disc proteins. Two of the point mutations, upheld101 and indented thorax3, do not perturb assembly of myofibrils, but cause their degeneration within days after muscles begin to be utilized. The final mutation, upheldwhu, reduces the diameter of the myofibril lattice by approximately one-half. We propose hypotheses to explain how each troponin-T mutation engenders the observed myofibrillar defects.
Collapse
Affiliation(s)
- E Fyrberg
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | | | | | |
Collapse
|
21
|
Jin JP, Lin JJ. Isolation and Characterization of cDNA Clones Encoding Embryonic and Adult Isoforms of Rat Cardiac Troponin T. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71702-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
22
|
Raggi A, Grand RJ, Moir AJ, Perry SV. Structure-function relationships in cardiac troponin T. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 997:135-43. [PMID: 2752050 DOI: 10.1016/0167-4838(89)90145-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Regions of rabbit and bovine cardiac troponin T that are involved in binding tropomyosin, troponin C and troponin I have been identified. Two sites of contact for tropomyosin have been located, situated between residues 92-178 and 180-284 of troponin T. A cardiac-specific binding site for troponin I has been identified between residues 1-68 of cardiac troponin T, within a region of the protein that has previously been shown to be encoded by a series of exons that are expressed in a tissue-specific and developmentally regulated manner. The binding site for troponin C is located between residues 180-284 of cardiac troponin T. When isolated from fresh bovine hearts, cardiac troponin T contained 0.21 +/- 0.11 mol phosphate per mol; incubation with phosphorylase kinase increased the phosphate content to approx. 1 mol phosphate per mol. One site of phosphorylation was identified as serine-1; a second site of phosphorylation was located within peptide CB3 (residues 93-178) and has been tentatively identified as serine-176. Addition of troponin C to cardiac troponin T does not inhibit the phosphorylation of this latter protein that is catalysed by phosphorylase b kinase.
Collapse
Affiliation(s)
- A Raggi
- Istituto di Chimica Biologica Università di Pisa, Italy
| | | | | | | |
Collapse
|
23
|
Leszyk J, Mornet D, Audemard E, Collins JH. Amino acid sequence of a 15 kilodalton actin-binding fragment of turkey gizzard caldesmon: similarity with dystrophin, tropomyosin and the tropomyosin-binding region of troponin T. Biochem Biophys Res Commun 1989; 160:210-6. [PMID: 2653315 DOI: 10.1016/0006-291x(89)91642-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have determined the amino acid sequence of a 15 kDa actin-binding fragment of turkey gizzard caldesmon. The 96-residue fragment contains 29 acidic and 29 basic residues, and is predicted to have an extended helical conformation stabilized by numerous internal salt bridges. CaD15 bears some resemblance to dystrophin, tropomyosin and several other proteins, but is most strikingly similar to the tropomyosin-binding segment of troponin T.
Collapse
Affiliation(s)
- J Leszyk
- Department of Biological Chemistry, School of Medicine, University of Maryland, Baltimore 21201
| | | | | | | |
Collapse
|
24
|
Briggs MM, Schachat F. N-terminal amino acid sequences of three functionally different troponin T isoforms from rabbit fast skeletal muscle. J Mol Biol 1989; 206:245-9. [PMID: 2704041 DOI: 10.1016/0022-2836(89)90538-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The different isoforms of fast skeletal muscle troponin T (TnT) are generated by alternative splicing of several 5' exons in the fast TnT gene. In rabbit skeletal muscle this process results in three major fast TnT species, TnT1f, TnT2f and TnT3f, that differ in a region of 30 to 40 amino acid residues near the N terminus. Differential expression of these three isoforms modulates the activation of the thin filament by calcium. To establish a basis for further structure-function studies, we have sequenced the N-terminal region of these proteins. TnT2f is the fast TnT sequenced by Pearlstone et al. The larger species TnT1f contains six additional amino acid residues identical in sequence and position to those encoded by exon 4 in the rat fast skeletal muscle TnT gene. TnT3f also contains that sequence but lacks 17 amino acid residues spanning the region encoded by exons 6 and 7 of the rat gene. These three TnTs appear to be generated by discrete alternative splicing pathways, each differing by a single event. Comparison of these TnT sequences with those from chicken fast skeletal muscle and bovine heart shows that the splicing pattern resulting in the excision of exon 4 is evolutionarily conserved and leads to a more calcium-sensitive thin filament.
Collapse
Affiliation(s)
- M M Briggs
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | | |
Collapse
|
25
|
|
26
|
Bullard B, Leonard K, Larkins A, Butcher G, Karlik C, Fyrberg E. Troponin of asynchronous flight muscle. J Mol Biol 1988; 204:621-37. [PMID: 2852258 DOI: 10.1016/0022-2836(88)90360-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Troponin has been prepared from the asynchronous flight muscle of Lethocerus (water bug) taking special care to prevent proteolysis. The regulatory complex contained tropomyosin and troponin components. The troponin components were Tn-C (18,000 Mr), Tn-T (apparent Mr 53,000) and a heavy component, Tn-H (apparent Mr 80,000). The troponin was tightly bound to tropomyosin and could not be dissociated from it in non-denaturing conditions. A complex of Tn-T, Tn-H and tropomyosin inhibited actomyosin ATPase activity and the inhibition was relieved by Tn-C from vertebrate striated muscle in the presence of Ca2+. However, unlike vertebrate Tn-I, Tn-H by itself was not inhibitory. Monoclonal antibodies were obtained to Tn-T and Tn-H. Antibody to Tn-T was used to screen an expression library of Drosophila cDNA cloned in lambda phage. The sequence of cDNA coding for the protein was determined and hence the amino acid sequence. The Drosophila protein has a sequence similar to that of vertebrate skeletal and cardiac Tn-T. The sequence extends beyond the carboxyl end of the vertebrate sequences, and the last 40 residues are acidic. Part of the sequence of Drosophila Tn-T is homologous to the carboxyl end of the Drosophila myosin light chain MLC-2 and one anti-Tn-T antibody cross-reacted with the light chain. Lethocerus Tn-H is related to the large tropomyosins of Drosophila flight muscle, for which the amino acid sequence is known, since antibodies that recognize this component also recognize the large tropomyosins. Tn-H is easily digested by calpain, suggesting that part of the molecule has an extended configuration. Electron micrographs of negatively stained specimens showed that Lethocerus thin filaments have projections at about 39 nm intervals, which are not seen on thin filaments from vertebrate striated muscle and are probably due to the relatively large troponin complex. Decoration of the thin filaments with myosin subfragment-1 in rigor conditions appeared not to be affected by the troponin. The troponin of asynchronous flight muscle lacks the Tn-I component of vertebrate striated muscle. Tn-H occurs only in the flight muscle and may be involved in the activation of this muscle by stretch.
Collapse
Affiliation(s)
- B Bullard
- Department of Immunology, AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, U.K
| | | | | | | | | | | |
Collapse
|
27
|
Heeley DH, Smillie LB. Interaction of rabbit skeletal muscle troponin T and F-actin at physiological ionic strength. Biochemistry 1988; 27:8227-32. [PMID: 3233205 DOI: 10.1021/bi00421a036] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Troponin T has been shown to interact significantly with F-actin at 150 mM KC1 by using an F-actin pelleting assay and 125I-labeled proteins. While troponin T fragment T1 (residues 1-158) fails to pellet with F-actin, fragment T2 (residues 159-259) mimics the binding properties of the intact molecule. The weak competition of T2 binding to F-actin, shown by subfragments of T2, indicates that the interaction site(s) encompass(es) an extensive segment of troponin T. The extent of pelleting of troponin T (or T2) with F-actin is only marginally altered in the binary complex troponin IT (or T2), indicating that the direct interactions either of troponin T (or T2) or of troponin I, or both, with F-actin are weakened when these components are incorporated into a binary complex. The binding of troponin T (or T2) is moderately (-Ca2+) or more extensively reduced (+Ca2+) in the presence of troponin C. The pelleting of Tn-T seen in the presence of Tn-C (-Ca2+) and Tn-I was further reduced when either Tn-I or Tn-C (-Ca2+) was added, respectively, to form a fully reconstituted Tn complex. As noted by others, whole troponin shows little sensitivity to Ca2+ in its binding to F-actin (-tropomyosin). These and other observations, taken together with the restoration of troponin IC (+/- Ca2+) binding to F-actin by troponin T, implicate a role for the interaction of troponin T and F-actin in the thin filament assembly.
Collapse
Affiliation(s)
- D H Heeley
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
28
|
Swiderek K, Jaquet K, Meyer HE, Heilmeyer LM. Cardiac troponin I, isolated from bovine heart, contains two adjacent phosphoserines. A first example of phosphoserine determination by derivatization to S-ethylcysteine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 176:335-42. [PMID: 3138117 DOI: 10.1111/j.1432-1033.1988.tb14286.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bovine cardiac troponin containing approximately 3 mol P/mol protein could be separated into its subunits without loss of phosphate. Troponin I and troponin T each contain about 1.5 mol P/mol protein. In troponin I two phosphorylated serine residues could be localized in the N-terminal region by conversion of phosphoserine to S-ethylcysteine. They are located in adjacent positions in the following sequence: -Arg-Arg-Ser(P)-Ser(P)-Ala-Asn-Tyr-Tyr-Arg-Ala-Tyr-Ala-Thr-Glu-Pro- His-Ala-Lys. This sequence shows that the first phosphoserine residue in bovine cardiac troponin I occupies a homologous position to phosphoserine-20 of rabbit cardiac troponin I.
Collapse
Affiliation(s)
- K Swiderek
- Abteilung für Biochemie Supramolekularer Systeme, Ruhr-Universitt Bochum, Federal Republic of Germany
| | | | | | | |
Collapse
|
29
|
Saito T, Itoh T, Adachi S. Chemical structure of neutral sugar chains isolated from human mature milk kappa-casein. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 964:213-20. [PMID: 3342257 DOI: 10.1016/0304-4165(88)90169-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The carbohydrate chains linked to human kappa-casein from mature milk were released by alkaline borohydride treatment as reduced oligosaccharides. The neutral oligosaccharides of lower molecular weight were fractionated and purified by gel filtration and preparative thin layer chromatographies. Seven neutral oligosaccharides (a di- (0.5%), two tetra- (30.5%), two penta- (5.4%) and two hexasaccharide alditols (10.9%] were obtained in homogeneity, and followed by methylation analysis with gas-liquid chromatography-mass spectrometry and by anomer analysis with 13C nuclear magnetic resonance. Their chemical structures were identified to be Gal beta 1----3GalNAc-ol (I), Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol (II), Gal beta 1----3[Fuc alpha 1----4GlcNAc beta 1----6]GalNAc-ol (III), GlcNAc beta 1----3/6Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol (IV), GlcNAc beta 1----3/6Gal beta 1----3[Fuc alpha 1----4GlcNAc beta 1----6]GalNAc-ol (V), Fuc alpha 1----4GlcNAc beta 1----3/6Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol (VI) and Fuc alpha 1----4GlcNAc beta 1----3/6Gal beta 1----3[Fuc alpha 1----4GlcNAc beta 1----6]GalNAc-ol (VII). Five oligosaccharide alditols (III-VII) were the novel carbohydrate chains of kappa-casein from mammalian milk.
Collapse
Affiliation(s)
- T Saito
- Laboratory of Food Hygiene, Faculty of Social Welfare, Tohoku Fukushi University, Japan
| | | | | |
Collapse
|
30
|
|
31
|
|
32
|
Briggs MM, Lin JJ, Schachat FH. The extent of amino-terminal heterogeneity in rabbit fast skeletal muscle troponin T. J Muscle Res Cell Motil 1987; 8:1-12. [PMID: 2439538 DOI: 10.1007/bf01767259] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extent and nature of fast troponin T (TnT) heterogeneity has been assessed in rabbit skeletal muscle. Previous studies identified two major fast TnT species (TnT1f and TnT2f), in the fast white muscle erector spinae, differing in their N-terminal cyanogen bromide (CNBr) fragments. Here a monoclonal antibody that recognizes a conserved region of TnT was used to characterize two additional TnT species (TnT3f and TnT4f) in the epaxial and limb musculature and a minor species (TnTcf) in craniofacial muscles. A combination of CNBr peptide mapping, immunoblotting and specific labelling of the N-terminus shows that these TnT species also differ in their N-terminal region. This observation is consistent with cDNA studies that predicted the N-terminal region is hypervariable. One additional species, a variant of TnT2f present in the tongue, was identified by two-dimensional gel electrophoresis. The limited number of TnT variants indicates that the full potential for heterogeneity inferred from the cDNA studies is not realized. This conclusion is supported by immunoblot analysis with a monoclonal antibody that recognizes an epitope in the hypervariable N-terminal region which is present in all variants of TnT1f and TnT2f but absent from the lower molecular weight species TnT3f and TnT4f.
Collapse
|
33
|
|
34
|
Chen WY, Dhoot GK, Perry SV. Characterization and fibre type distribution of a new myofibrillar protein of molecular weight 32 kDa. J Muscle Res Cell Motil 1986; 7:517-26. [PMID: 3805257 DOI: 10.1007/bf01753568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A new basic protein of molecular weight 32 kDa has been isolated and purified to homogeneity from skeletal muscles rich in type I fibres. By the use of a specific monoclonal antibody, the protein has been shown to be present in all type I fibres and some type II fibres, the number of which varies with the muscle and the region of the muscle sectioned. A protein of similar properties could not be isolated from rabbit muscles consisting predominantly of type II fibres. By fluorescence microscopy, the protein has been shown to be located in the Z-disc from which the presence of divalent cations, probably calcium, facilitates its extraction at low ionic strength. The protein is unusual in that its distribution does not correlate completely with the known muscle fibre types and in that as yet there is no evidence for the presence of an isoform in those cells that do not stain with the specific antibody for the 32 kDa protein isolated from slow muscles.
Collapse
|
35
|
Ohtsuki I, Maruyama K, Ebashi S. Regulatory and cytoskeletal proteins of vertebrate skeletal muscle. ADVANCES IN PROTEIN CHEMISTRY 1986; 38:1-67. [PMID: 3541537 DOI: 10.1016/s0065-3233(08)60525-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Cooper TA, Ordahl CP. A single cardiac troponin T gene generates embryonic and adult isoforms via developmentally regulated alternate splicing. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39158-5] [Citation(s) in RCA: 207] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
37
|
Herzberg O, James MN. Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature 1985; 313:653-9. [PMID: 3974698 DOI: 10.1038/313653a0] [Citation(s) in RCA: 532] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Crystals of turkey skeletal muscle troponin-C reveal a molecule of two domains with an unusual structure. Two Ca2+ ions are bound to the C-terminal domain. The two cation-binding sites of the regulatory (N-terminal) domain are Ca2+ free; this domain adopts a markedly different conformation from the C-terminal domain. The two domains are connected by a long nine-turn alpha-helix; three of these turns are exposed fully to solvent.
Collapse
|
38
|
Wang K. Sarcomere-associated cytoskeletal lattices in striated muscle. Review and hypothesis. CELL AND MUSCLE MOTILITY 1985; 6:315-69. [PMID: 3888377 DOI: 10.1007/978-1-4757-4723-2_10] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Jaquet K, Heilmeyer LM. Sequential phosphorylation of skeletal muscle troponin. J Muscle Res Cell Motil 1984; 5:677-86. [PMID: 6533158 DOI: 10.1007/bf00713926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Phosphorylation of the isolated rabbit skeletal muscle holotroponin complex at troponin-T by phosphorylase kinase is unusual in that it shows maxima and minima. These oscillations are due to protein phosphatase activity present in the preparations. Following tryptic digestion two phosphorylated peptides, I and II, can be isolated. Their amino-acid compositions are identical and correspond to that of the tryptic peptide which contains the two known phosphorylatable sites 149/150 and 156/7 of troponin-T. Peptide I is phosphorylated on both sites and peptide II only on one site. During phosphorylation the doubly phosphorylated peptide I appears first; after a short lag phase peptide II is formed containing only one phosphate. These phenomena probably cause the observed oscillations in the degree of the holotroponin phosphorylation.
Collapse
|
40
|
Abstract
The relative reactivity of the tyrosine side chains in the proteins of skeletal muscle myofibrils was determined using iodination techniques. The destruction of ATPase activity of myofibrils and myosin by lactoperoxidase and chloramine-T iodination could be prevented by the attachment of cysteamine to the sulphydryl groups prior to the iodination reaction and subsequent regeneration with thioglycolate or dithiothreitol. Iodination using 1,3,4,6-tetrachloro-3 alpha, 6 alpha-diphenylglycoluril did not require cysteamine treatment for retention of full enzymatic activity. The specific activity of the different proteins varied markedly with desmin, troponin-T, and tropomyosin having the highest labelling with all three iodination procedures. In contrast the myosin light chains had low specific activity when labelled in myofibrils or intact myosin. The isolated light chains, however, were much more highly iodinated. It appears that iodination may be a useful technique for examining protein-protein interactions in the myofibril.
Collapse
|
41
|
Cooper TA, Ordahl CP. A single troponin T gene regulated by different programs in cardiac and skeletal muscle development. Science 1984; 226:979-82. [PMID: 6095446 DOI: 10.1126/science.6095446] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A cloned complementary DNA derived from a messenger RNA transiently present at low abundance levels in early chick embryonic skeletal muscle hybridizes to a messenger RNA present at high abundance levels in cardiac muscle. Genomic DNA hybridization and nucleotide sequence identity of complementary DNA's from both heart and skeletal muscle demonstrate that the messenger RNA's from both sources are encoded by the same gene. The encoded polypeptide is a troponin T sequence which is probably a cardiac isoform. This single copy troponin T isogene is governed by different regulatory programs in heart and skeletal muscle differentiation.
Collapse
|
42
|
Briggs MM, Klevit RE, Schachat FH. Heterogeneity of contractile proteins. Purification and characterization of two species of troponin T from rabbit fast skeletal muscle. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90974-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
43
|
Abstract
The myosin and actin content of muscle tissue and purified myofibrils from rabbit psoas muscle has been determined. Myofibrils were purified using Percoll gradients, which allowed rapid separation from nuclei and connective tissue proteins. Myosin and actin were quantitated by amino acid analysis of the appropriate bands from sodium dodecyl sulfate/polyacrylamide gels. Muscle tissue contained 94 and 619 nmol/g wet weight of myosin and actin, respectively, while myofibrils had 0.82 and 5.37 mumol/g protein. Thus myosin contributed 43% and actin 22% of the myofibril protein mass. The value of 2.5 myosins per 14.3 nm repeat as calculated from these results suggests that thick filament models with mixtures of two and three crossbridges per repeat should be considered.
Collapse
|
44
|
Amino acid sequence of the N alpha-terminal 201 residues of human erythrocyte membrane band 3. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(20)82016-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
Yates LD, Greaser ML. Troponin subunit stoichiometry and content in rabbit skeletal muscle and myofibrils. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(20)81960-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Côte G, Smillie L. The effects of platelet tropomyosin on the ATPase activities of muscle actomyosin subfragment 1 in the absence and presence of troponin, its components, and calmodulin. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(18)43223-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Mak AS, Smillie LB. Structural interpretation of the two-site binding of troponin on the muscle thin filament. J Mol Biol 1981; 149:541-50. [PMID: 7310890 DOI: 10.1016/0022-2836(81)90486-1] [Citation(s) in RCA: 160] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Hitchcock SE, Zimmerman CJ, Smalley C. Study of the structure of troponin-T by measuring the relative reactivities of lysines with acetic anhydride. J Mol Biol 1981; 147:125-51. [PMID: 6790714 DOI: 10.1016/0022-2836(81)90082-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
49
|
Parry DA. Analysis of the amino acid sequence of a tropomyosin-binding fragment from troponin-T. J Mol Biol 1981; 146:259-63. [PMID: 7265229 DOI: 10.1016/0022-2836(81)90435-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
50
|
Gusev NB, Friedrich P. Ca2+-induced conformational changes in the troponin complex detected by crosslinking. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 626:106-16. [PMID: 6779874 DOI: 10.1016/0005-2795(80)90202-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In an attempt to detect Ca2+-induced conformational changes by crosslinking, rabbit muscle troponin complex was reacted with the bifunctional reagents 1,3-difluoro-4,6-dinitrobenzene, 4,4'-difluoro-3,3'-dinitrodiphenylsulfone and dimethyl suberimidate under various conditions and the products were analyzed by dodecyl sulfate gel electrophoresis. In the absence of divalent cations, with the two aromatic reagents at a low reagent/protein ratio, the main cross-link products were troponin T-I and I-C. With dimethyl suberimidate the only major crosslink product was conjugate T-I. Ca2+, alone as well as in the presence of Mg2+, prevented the formation of I-C crosslinks with both aromatic reagents, but it did not affect crosslinking with dimethyl suberimidate. Ca2+ also decreased the number of NH2 groups of troponin that are highly reactive towards 2,4,6-trinitrobenzene sulfonate. Both effects of Ca2+ can be interpreted in terms of a conformational change in the troponin complex elicited by the binding of the specific divalent cation.
Collapse
|