1
|
Saxena H, Patel R, Kelly J, Wakarchuk W. Differential substrate preferences IN ACTINOBACTERIAL protein O-MANNOSYLTRANSFERASES and alteration of protein-O-MANNOSYLATION by choice of secretion pathway. Glycobiology 2025; 35:cwae095. [PMID: 39673494 PMCID: PMC11727336 DOI: 10.1093/glycob/cwae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
Protein-O-mannosylation (POM) is a form of O-glycosylation that is ubiquitous and has been studied extensively throughout in fungi and animals. The key glycosyltransferase, protein O-mannosyltransferase (PMT), a member of family GT-39, is also found in over 3,800 bacterial genomes but has only been minimally examined from prokaryotes. In prokaryotes POM has only been investigated in terms of pathogenicity (in Mycobacterium tuberculosis) even though there are far more non-pathogenic bacteria that appear to carry out POM. To date, there is no consensus on what benefit POM imparts to the non-pathogenic bacteria that can perform it. Through the generation of a POM deficient mutant of Corynebacterium glutamicum - a widely utilized and known protein O-mannosylating actinobacteria - this work shows that even closely related actinobacterial GT-39 s (the enzymes responsible for the initiation of POM) can have different substrate specificities for targets of POM. Moreover, presented here is evidence that POM does not only occur in a SEC-dependent manner; POM also occurs with TAT and non-SEC secreted substrates in a specific and likely tightly regulated manner. Together these results highlight the need for further biochemical characterization of POM in these and other bacterial species to help elucidate the true nature of its biological functions.
Collapse
Affiliation(s)
- Hirak Saxena
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3
| | - Rucha Patel
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3
| | - John Kelly
- Human Health Therapeutics, National Research Council of Canada, 100 Sussex Dr, Ottawa, ON K1N 1J1
| | - Warren Wakarchuk
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3
| |
Collapse
|
2
|
Li M, Zhu P, Huang Z, Huang Y, Lv X, Zheng Q, Zhu Z, Fan Z, Yang Y, Shi P. Aspirin damages the cell wall of Saccharomyces cerevisiae by inhibiting the expression and activity of dolichol-phosphate mannose synthase 1. FEBS Lett 2022; 596:369-380. [PMID: 35028934 DOI: 10.1002/1873-3468.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/04/2021] [Accepted: 12/12/2021] [Indexed: 11/10/2022]
Abstract
Aspirin is a commonly used anti-inflammatory, analgesic and antithrombotic drug. It has attracted attention due to its potential antifungal therapeutic effect; however, the molecular mechanism is poorly understood. Here, the effects of aspirin on the cell wall of Saccharomyces cerevisiae were explored. We observed by scanning electron microscopy that aspirin could damage the cell wall ultrastructure. Meanwhile, a cellular surface hydrophobicity (CSH) assay showed that aspirin increased the hydrophobicity of the yeast cell surface. A drug sensitivity assay indicated that the overexpression of dolichol phosphate mannose synthase 1 (DPM1) reversed the cell wall damage and decreased the CSH induced by aspirin. Importantly, aspirin decreased the expression and enzyme activity of DPM1 in S. cerevisiae. Molecular docking results demonstrated that aspirin could directly bind to the Ser141 site of DPM1. Similarly, we found that aspirin damaged the cell wall and inhibited the expression of DPM1 in Candida albicans. These findings improve the current understanding of the action mode of aspirin and provide new strategies for antifungal drug design.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Pan Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Zhiwei Huang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Yunxia Huang
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaoguang Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Qiaoqiao Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Ziting Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Zheyu Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Youjun Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| |
Collapse
|
3
|
Distinct regions of the Haloferax volcanii dolichol phosphate-mannose synthase AglD mediate the assembly and subsequent processing of the lipid-linked mannose. J Bacteriol 2021; 204:e0044721. [PMID: 34633871 DOI: 10.1128/jb.00447-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haloferax volcanii AglD is currently the only archaeal dolichol phosphate (DolP)-mannose synthase shown to participate in N-glycosylation. However, the relation between AglD and Pyrococcus furiosus PF0058, the only archaeal DolP-mannose synthase for which structural information is presently available, was unclear. In this report, similarities between the PF0058 and AglD catalytic domains were revealed. At the same time, AglD includes a transmembrane domain far longer than that of PF0058 or other DolP-mannose synthases. To determine whether this extension affords AglD functions in addition to generating mannose-charged DolP, a series of Hfx. volcanii strains expressing truncated versions of AglD was generated. Mass spectrometry revealed that a version of AglD comprising the catalytic domain and only two of the six to nine predicted membrane-spanning domains could mediate mannose addition to DolP. However, in cells expressing this or other truncated versions of AglD, mannose was not transferred from the lipid to the protein-bound tetrasaccharide precursor of the N-linked pentasaccharide normally decorating Hfx. volcanii glycoproteins. These results thus point to AglD as contributing to additional aspects of Hfx. volcanii N-glycosylation beyond charging DolP with mannose. Accordingly, the possibility that AglD, possibly in coordination with AglR, translocates DolP-mannose across the plasma membrane is discussed. Layman summary In the archaea Haloferax volcanii, the dolichol phosphate (DolP)-mannose synthase AglD charges the lipid DolP with mannose, which is delivered to a protein-bound tetrasaccharide to generate the pentasaccharide decorating glycoproteins in this organism. Structural studies demonstrated the similarity of AglD to Pyrococcus furiosus PF0058, the only archaeal DolP-mannose synthase with a solved 3D structure. Truncated AglD containing the catalytic domain and only two of the predicted six to nine membrane-spanning regions catalyzed mannose-charging of DolP. Yet, no mannose was delivered to protein-linked tetrasaccharide in cells expressing AglD mutants including only up to five membrane-spanning regions, pointing to a role for the extended C-terminal region in a subsequent step of Hfx. volcanii N-glycosylation, such as DolP-mannose translocation across the plasma membrane.
Collapse
|
4
|
Groth A, Schmitt K, Valerius O, Herzog B, Pöggeler S. Analysis of the Putative Nucleoporin POM33 in the Filamentous Fungus Sordaria macrospora. J Fungi (Basel) 2021; 7:jof7090682. [PMID: 34575720 PMCID: PMC8468769 DOI: 10.3390/jof7090682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
In the filamentous fungus Sordaria macrospora (Sm), the STRIPAK complex is required for vegetative growth, fruiting-body development and hyphal fusion. The SmSTRIPAK core consists of the striatin homolog PRO11, the scaffolding subunit of phosphatase PP2A, SmPP2AA, and its catalytic subunit SmPP2Ac1. Among other STRIPAK proteins, the recently identified coiled-coil protein SCI1 was demonstrated to co-localize around the nucleus. Pulldown experiments with SCI identified the transmembrane nucleoporin (TM Nup) SmPOM33 as a potential nuclear-anchor of SmSTRIPAK. Localization studies revealed that SmPOM33 partially localizes to the nuclear envelope (NE), but mainly to the endoplasmic reticulum (ER). We succeeded to generate a Δpom33 deletion mutant by homologous recombination in a new S. macrospora Δku80 recipient strain, which is defective in non-homologous end joining. Deletion of Smpom33 did neither impair vegetative growth nor sexual development. In pulldown experiments of SmPOM33 followed by LC/MS analysis, ER-membrane proteins involved in ER morphology, protein translocation, glycosylation, sterol biosynthesis and Ca2+-transport were significantly enriched. Data are available via ProteomeXchange with identifier PXD026253. Although no SmSTRIPAK components were identified as putative interaction partners, it cannot be excluded that SmPOM33 is involved in temporarily anchoring the SmSTRIPAK to the NE or other sites in the cell.
Collapse
Affiliation(s)
- Anika Groth
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany; (A.G.); (B.H.)
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Service Unit LCMS Protein Analytics, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany; (K.S.); (O.V.)
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Service Unit LCMS Protein Analytics, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany; (K.S.); (O.V.)
| | - Britta Herzog
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany; (A.G.); (B.H.)
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany; (A.G.); (B.H.)
- Correspondence: ; Tel.: +49-551-391-3930
| |
Collapse
|
5
|
Piłsyk S, Perlinska-Lenart U, Janik A, Gryz E, Ajchler-Adamska M, Kruszewska JS. Yil102c-A is a Functional Homologue of the DPMII Subunit of Dolichyl Phosphate Mannose Synthase in Saccharomyces cerevisiae. Int J Mol Sci 2020; 21:E8938. [PMID: 33255655 PMCID: PMC7728079 DOI: 10.3390/ijms21238938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 11/30/2022] Open
Abstract
In a wide range of organisms, dolichyl phosphate mannose (DPM) synthase is a complex of tree proteins Dpm1, Dpm2, and Dpm3. However, in the yeast Saccharomyces cerevisiae, it is believed to be a single Dpm1 protein. The function of Dpm3 is performed in S. cerevisiae by the C-terminal transmembrane domain of the catalytic subunit Dpm1. Until present, the regulatory Dpm2 protein has not been found in S. cerevisiae. In this study, we show that, in fact, the Yil102c-A protein interacts directly with Dpm1 in S. cerevisiae and influences its DPM synthase activity. Deletion of the YIL102c-A gene is lethal, and this phenotype is reversed by the dpm2 gene from Trichoderma reesei. Functional analysis of Yil102c-A revealed that it also interacts with glucosylphosphatidylinositol-N-acetylglucosaminyl transferase (GPI-GnT), similar to DPM2 in human cells. Taken together, these results show that Yil102c-A is a functional homolog of DPMII from T. reesei and DPM2 from humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Joanna S. Kruszewska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; (S.P.); (U.P.-L.); (A.J.); (E.G.); (M.A.-A.)
| |
Collapse
|
6
|
Li ST, Lu TT, Xu XX, Ding Y, Li Z, Kitajima T, Dean N, Wang N, Gao XD. Reconstitution of the lipid-linked oligosaccharide pathway for assembly of high-mannose N-glycans. Nat Commun 2019; 10:1813. [PMID: 31000718 PMCID: PMC6472349 DOI: 10.1038/s41467-019-09752-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/29/2019] [Indexed: 11/11/2022] Open
Abstract
The asparagine (N)-linked Man9GlcNAc2 is required for glycoprotein folding and secretion. Understanding how its structure contributes to these functions has been stymied by our inability to produce this glycan as a homogenous structure of sufficient quantities for study. Here, we report the high yield chemoenzymatic synthesis of Man9GlcNAc2 and its biosynthetic intermediates by reconstituting the eukaryotic lipid-linked oligosaccharide (LLO) pathway. Endoplasmic reticulum mannosyltransferases (MTases) are expressed in E. coli and used for mannosylation of the dolichol mimic, phytanyl pyrophosphate GlcNAc2. These recombinant MTases recognize unique substrates and when combined, synthesize end products that precisely mimic those in vivo, demonstrating that ordered assembly of LLO is due to the strict enzyme substrate specificity. Indeed, non-physiological glycans are produced only when the luminal MTases are challenged with cytosolic substrates. Reconstitution of the LLO pathway to synthesize Man9GlcNAc2 in vitro provides an important tool for functional studies of the N-linked glycoprotein biosynthesis pathway. Attachment of the oligosaccharide Man9GlcNAc2 is required for glycoprotein folding and secretion but synthesizing this compound for structural and functional studies has remained challenging. Here, the authors achieve efficient Man9GlcNAc2 synthesis by reconstituting its biosynthetic pathway in vitro.
Collapse
Affiliation(s)
- Sheng-Tao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Tian-Tian Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Xin-Xin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Yi Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Toshihiko Kitajima
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Neta Dean
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| |
Collapse
|
7
|
Engineering of Yeast Glycoprotein Expression. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 175:93-135. [DOI: 10.1007/10_2018_69] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Gandini R, Reichenbach T, Tan TC, Divne C. Structural basis for dolichylphosphate mannose biosynthesis. Nat Commun 2017; 8:120. [PMID: 28743912 PMCID: PMC5526996 DOI: 10.1038/s41467-017-00187-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022] Open
Abstract
Protein glycosylation is a critical protein modification. In biogenic membranes of eukaryotes and archaea, these reactions require activated mannose in the form of the lipid conjugate dolichylphosphate mannose (Dol-P-Man). The membrane protein dolichylphosphate mannose synthase (DPMS) catalyzes the reaction whereby mannose is transferred from GDP-mannose to the dolichol carrier Dol-P, to yield Dol-P-Man. Failure to produce or utilize Dol-P-Man compromises organism viability, and in humans, several mutations in the human dpm1 gene lead to congenital disorders of glycosylation (CDG). Here, we report three high-resolution crystal structures of archaeal DPMS from Pyrococcus furiosus, in complex with nucleotide, donor, and glycolipid product. The structures offer snapshots along the catalytic cycle, and reveal how lipid binding couples to movements of interface helices, metal binding, and acceptor loop dynamics to control critical events leading to Dol-P-Man synthesis. The structures also rationalize the loss of dolichylphosphate mannose synthase function in dpm1-associated CDG. The generation of glycolipid dolichylphosphate mannose (Dol-P-Man) is a critical step for protein glycosylation and GPI anchor synthesis. Here the authors report the structure of dolichylphosphate mannose synthase in complex with bound nucleotide and donor to provide insight into the mechanism of Dol-P-Man synthesis.
Collapse
Affiliation(s)
- Rosaria Gandini
- School of Biotechnology, KTH Royal Institute of Technology, S-10691, Stockholm, Sweden
| | - Tom Reichenbach
- School of Biotechnology, KTH Royal Institute of Technology, S-10691, Stockholm, Sweden
| | - Tien-Chye Tan
- School of Biotechnology, KTH Royal Institute of Technology, S-10691, Stockholm, Sweden
| | - Christina Divne
- School of Biotechnology, KTH Royal Institute of Technology, S-10691, Stockholm, Sweden.
| |
Collapse
|
9
|
Dolichol phosphate mannose synthase: a Glycosyltransferase with Unity in molecular diversities. Glycoconj J 2017; 34:467-479. [PMID: 28616799 DOI: 10.1007/s10719-017-9777-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/20/2017] [Accepted: 05/18/2017] [Indexed: 10/19/2022]
Abstract
N-glycans provide structural and functional stability to asparagine-linked (N-linked) glycoproteins, and add flexibility. Glycan biosynthesis is elaborative, multi-compartmental and involves many glycosyltransferases. Failure to assemble N-glycans leads to phenotypic changes developing infection, cancer, congenital disorders of glycosylation (CDGs) among others. Biosynthesis of N-glycans begins at the endoplasmic reticulum (ER) with the assembly of dolichol-linked tetra-decasaccharide (Glc3Man9GlcNAc2-PP-Dol) where dolichol phosphate mannose synthase (DPMS) plays a central role. DPMS is also essential for GPI anchor biosynthesis as well as for O- and C-mannosylation of proteins in yeast and in mammalian cells. DPMS has been purified from several sources and its gene has been cloned from 39 species (e.g., from protozoan parasite to human). It is an inverting GT-A folded enzyme and classified as GT2 by CAZy (carbohydrate active enZyme; http://www.cazy.org ). The sequence alignment detects the presence of a metal binding DAD signature in DPMS from all 39 species but finds cAMP-dependent protein phosphorylation motif (PKA motif) in only 38 species. DPMS also has hydrophobic region(s). Hydropathy analysis of amino acid sequences from bovine, human, S. crevisiae and A. thaliana DPMS show PKA motif is present between the hydrophobic domains. The location of PKA motif as well as the hydrophobic domain(s) in the DPMS sequence vary from species to species. For example, the domain(s) could be located at the center or more towards the C-terminus. Irrespective of their catalytic similarity, the DNA sequence, the amino acid identity, and the lack of a stretch of hydrophobic amino acid residues at the C-terminus, DPMS is still classified as Type I and Type II enzyme. Because of an apparent bio-sensing ability, extracellular signaling and microenvironment regulate DPMS catalytic activity. In this review, we highlight some important features and the molecular diversities of DPMS.
Collapse
|
10
|
Lombard J. The multiple evolutionary origins of the eukaryotic N-glycosylation pathway. Biol Direct 2016; 11:36. [PMID: 27492357 PMCID: PMC4973528 DOI: 10.1186/s13062-016-0137-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/26/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The N-glycosylation is an essential protein modification taking place in the membranes of the endoplasmic reticulum (ER) in eukaryotes and the plasma membranes in archaea. It shares mechanistic similarities based on the use of polyisoprenol lipid carriers with other glycosylation pathways involved in the synthesis of bacterial cell wall components (e.g. peptidoglycan and teichoic acids). Here, a phylogenomic analysis was carried out to examine the validity of rival hypotheses suggesting alternative archaeal or bacterial origins to the eukaryotic N-glycosylation pathway. RESULTS The comparison of several polyisoprenol-based glycosylation pathways from the three domains of life shows that most of the implicated proteins belong to a limited number of superfamilies. The N-glycosylation pathway enzymes are ancestral to the eukaryotes, but their origins are mixed: Alg7, Dpm and maybe also one gene of the glycosyltransferase 1 (GT1) superfamily and Stt3 have proteoarchaeal (TACK superphylum) origins; alg2/alg11 may have resulted from the duplication of the original GT1 gene; the lumen glycosyltransferases were probably co-opted and multiplied through several gene duplications during eukaryogenesis; Alg13/Alg14 are more similar to their bacterial homologues; and Alg1, Alg5 and a putative flippase have unknown origins. CONCLUSIONS The origin of the eukaryotic N-glycosylation pathway is not unique and less straightforward than previously thought: some basic components likely have proteoarchaeal origins, but the pathway was extensively developed before the eukaryotic diversification through multiple gene duplications, protein co-options, neofunctionalizations and even possible horizontal gene transfers from bacteria. These results may have important implications for our understanding of the ER evolution and eukaryogenesis. REVIEWERS This article was reviewed by Pr. Patrick Forterre and Dr. Sergei Mekhedov (nominated by Editorial Board member Michael Galperin).
Collapse
Affiliation(s)
- Jonathan Lombard
- National Evolutionary Synthesis Center, 2024 W. Main Street Suite A200, Durham, NC, 27705, USA.
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
11
|
Quality control of nonstop membrane proteins at the ER membrane and in the cytosol. Sci Rep 2016; 6:30795. [PMID: 27481473 PMCID: PMC4969602 DOI: 10.1038/srep30795] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/11/2016] [Indexed: 11/08/2022] Open
Abstract
Since messenger RNAs without a stop codon (nonstop mRNAs) for organelle-targeted proteins and their translation products (nonstop proteins) generate clogged translocon channels as well as stalled ribosomes, cells have mechanisms to degrade nonstop mRNAs and nonstop proteins and to clear the translocons (e.g. the Sec61 complex) by release of nonstop proteins into the organellar lumen. Here we followed the fate of nonstop endoplasmic reticulum (ER) membrane proteins with different membrane topologies in yeast to evaluate the importance of the Ltn1-dependent cytosolic degradation and the Dom34-dependent release of the nonstop membrane proteins. Ltn1-dependent degradation differed for membrane proteins with different topologies and its failure did not affect ER protein import or cell growth. On the other hand, failure in the Dom34-dependent release of the nascent polypeptide from the ribosome led to the block of the Sec61 channel and resultant inhibition of other protein import into the ER caused cell growth defects. Therefore, the nascent chain release from the translation apparatus is more instrumental in clearance of the clogged ER translocon channel and thus maintenance of normal cellular functions.
Collapse
|
12
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
13
|
Juchimiuk M, Kruszewska J, Palamarczyk G. Dolichol phosphate mannose synthase from the pathogenic yeast Candida albicans is a multimeric enzyme. Biochim Biophys Acta Gen Subj 2015; 1850:2265-75. [DOI: 10.1016/j.bbagen.2015.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/12/2015] [Indexed: 11/29/2022]
|
14
|
Cartwright BR, Binns DD, Hilton CL, Han S, Gao Q, Goodman JM. Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol Biol Cell 2014; 26:726-39. [PMID: 25540432 PMCID: PMC4325842 DOI: 10.1091/mbc.e14-08-1303] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Loss-of-function mutations in seipin cause severe lipodystrophy, yet seipin's function in incompletely understood. Seipin is shown here to be important specifically for initiation of droplet formation, and a deletion mutant allows dissection of this function from maintenance of droplet morphology and vectorial droplet budding. Seipin is necessary for both adipogenesis and lipid droplet (LD) organization in nonadipose tissues; however, its molecular function is incompletely understood. Phenotypes in the seipin-null mutant of Saccharomyces cerevisiae include aberrant droplet morphology (endoplasmic reticulum–droplet clusters and size heterogeneity) and sensitivity of droplet size to changes in phospholipid synthesis. It has not been clear, however, whether seipin acts in initiation of droplet synthesis or at a later step. Here we utilize a system of de novo droplet formation to show that the absence of seipin results in a delay in droplet appearance with concomitant accumulation of neutral lipid in membranes. We also demonstrate that seipin is required for vectorial budding of droplets toward the cytoplasm. Furthermore, we find that the normal rate of droplet initiation depends on 14 amino acids at the amino terminus of seipin, deletion of which results in fewer, larger droplets that are consistent with a delay in initiation but are otherwise normal in morphology. Importantly, other functions of seipin, namely vectorial budding and resistance to inositol, are retained in this mutant. We conclude that seipin has dissectible roles in both promoting early LD initiation and in regulating LD morphology, supporting its importance in LD biogenesis.
Collapse
Affiliation(s)
- Bethany R Cartwright
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9041
| | - Derk D Binns
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9041
| | - Christopher L Hilton
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9041
| | - Sungwon Han
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9041
| | - Qiang Gao
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9041
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9041
| |
Collapse
|
15
|
Wang YG, An M, Zhou SF, She YH, Li WC, Fu FL. Expression profile of maize microRNAs corresponding to their target genes under drought stress. Biochem Genet 2014. [PMID: 25027834 DOI: 10.1007/s10535-016-0590-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Microarray assay of four inbred lines was used to identify 303 microRNAs differentially expressed under drought stress. The microRNAs were used for bioinformatics prediction of their target genes. The majority of the differentially expressed microRNA families showed different expression profiles at different time points of the stress process among the four inbred lines. Digital gene expression profiling revealed 54 genes targeted by 128 of the microRNAs differentially expressed under the same stress conditions. The differential expression of miR159 and miR168 was further validated by locked nucleic acid northern hybridization. These results indicated that miR159 and miR168, as well as numerous other microRNAs, play critical roles in signaling pathways of maize response to drought stress. However, the level of the post-transcriptional regulation mediated by microRNAs had different responses among genotypes, and the gene expression related to signaling pathways under drought stress is also regulated, possibly by multiple mechanisms.
Collapse
Affiliation(s)
- Ying-Ge Wang
- Maize Research Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, 611130, Sichuan, China
| | | | | | | | | | | |
Collapse
|
16
|
Aebi M. N-linked protein glycosylation in the ER. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2430-7. [PMID: 23583305 DOI: 10.1016/j.bbamcr.2013.04.001] [Citation(s) in RCA: 507] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/25/2013] [Accepted: 04/01/2013] [Indexed: 01/18/2023]
Abstract
N-linked protein glycosylation in the endoplasmic reticulum (ER) is a conserved two phase process in eukaryotic cells. It involves the assembly of an oligosaccharide on a lipid carrier, dolichylpyrophosphate and the transfer of the oligosaccharide to selected asparagine residues of polypeptides that have entered the lumen of the ER. The assembly of the oligosaccharide (LLO) takes place at the ER membrane and requires the activity of several specific glycosyltransferases. The biosynthesis of the LLO initiates at the cytoplasmic side of the ER membrane and terminates in the lumen where oligosaccharyltransferase (OST) selects N-X-S/T sequons of polypeptide and generates the N-glycosidic linkage between the side chain amide of asparagine and the oligosaccharide. The N-glycosylation pathway in the ER modifies a multitude of proteins at one or more asparagine residues with a unique carbohydrate structure that is used as a signalling molecule in their folding pathway. In a later stage of glycoprotein processing, the same systemic modification is used in the Golgi compartment, but in this process, remodelling of the N-linked glycans in a protein-, cell-type and species specific manner generates the high structural diversity of N-linked glycans observed in eukaryotic organisms. This article summarizes the current knowledge of the N-glycosylation pathway in the ER that results in the covalent attachment of an oligosaccharide to asparagine residues of polypeptide chains and focuses on the model organism Saccharomyces cerevisiae. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
Affiliation(s)
- Markus Aebi
- Department of Biology, Institute of Microbiology, Zurich, Switzerland.
| |
Collapse
|
17
|
Loibl M, Strahl S. Protein O-mannosylation: what we have learned from baker's yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2438-46. [PMID: 23434682 DOI: 10.1016/j.bbamcr.2013.02.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/05/2013] [Accepted: 02/10/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Protein O-mannosylation is a vital type of glycosylation that is conserved among fungi, animals, and humans. It is initiated in the endoplasmic reticulum (ER) where the synthesis of the mannosyl donor substrate and the mannosyltransfer to proteins take place. O-mannosylation defects interfere with cell wall integrity and ER homeostasis in yeast, and define a pathomechanism of severe neuromuscular diseases in humans. SCOPE OF REVIEW On the molecular level, the O-mannosylation pathway and the function of O-mannosyl glycans have been characterized best in the eukaryotic model yeast Saccharomyces cerevisiae. In this review we summarize general features of protein O-mannosylation, including biosynthesis of the mannosyl donor, characteristics of acceptor substrates, and the protein O-mannosyltransferase machinery in the yeast ER. Further, we discuss the role of O-mannosyl glycans and address the question why protein O-mannosylation is essential for viability of yeast cells. GENERAL SIGNIFICANCE Understanding of the molecular mechanisms of protein O-mannosylation in yeast could lead to the development of novel antifungal drugs. In addition, transfer of the knowledge from yeast to mammals could help to develop diagnostic and therapeutic approaches in the frame of neuromuscular diseases. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
|
18
|
Barone R, Aiello C, Race V, Morava E, Foulquier F, Riemersma M, Passarelli C, Concolino D, Carella M, Santorelli F, Vleugels W, Mercuri E, Garozzo D, Sturiale L, Messina S, Jaeken J, Fiumara A, Wevers RA, Bertini E, Matthijs G, Lefeber DJ. DPM2-CDG: a muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy. Ann Neurol 2013; 72:550-8. [PMID: 23109149 DOI: 10.1002/ana.23632] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Congenital disorders of glycosylation (CDG) are a group of metabolic diseases due to defects in protein and lipid glycosylation. We searched for the primary defect in 3 children from 2 families with a severe neurological phenotype, including profound developmental delay, intractable epilepsy, progressive microcephaly, severe hypotonia with elevated blood creatine kinase levels, and early fatal outcome. There was clinical evidence of a muscular dystrophy-dystroglycanopathy syndrome, supported by deficient O-mannosylation by muscle immunohistochemistry. METHODS Biochemical and molecular methods were combined to pinpoint the defect in the glycosylation pathway in the endoplasmic reticulum. RESULTS Metabolic investigations revealed CDG-I, pointing to a defect in protein N-glycosylation in the endoplasmic reticulum. Analysis of lipid-linked oligosaccharides in fibroblasts showed accumulation of Dol-PP-GlcNAc(2) -Man(5) . DNA analysis revealed mutations in DPM2, 1 of the subunits of the dolichol-phosphate-mannose (DPM) synthase; the patient in the first family is compound heterozygous for 2 mutations (c.68A>G, predicting a missense mutation p.Y23C and c.4-1G>C, a splice mutation), whereas the patients in the second family are homozygous for the same missense mutation (c.68A>G, p.Y23C). INTERPRETATION We describe a new CDG, due to a deficiency of DPM2. Hence, mutations have now been described in the genes for the 3 subunits of DPM: DPM1, DPM2, and DPM3, whereby DPM2-CDG links the congenital disorders of glycosylation to the congenital muscular dystrophies.
Collapse
Affiliation(s)
- Rita Barone
- Pediatric Neurology, Department of Pediatrics, University of Catania, Catania, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The yeast eukaryotic translation initiation factor 2B translation initiation complex interacts with the fatty acid synthesis enzyme YBR159W and endoplasmic reticulum membranes. Mol Cell Biol 2012; 33:1041-56. [PMID: 23263984 DOI: 10.1128/mcb.00811-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Using affinity purifications coupled with mass spectrometry and yeast two-hybrid assays, we show the Saccharomyces cerevisiae translation initiation factor complex eukaryotic translation initiation factor 2B (eIF2B) and the very-long-chain fatty acid (VLCFA) synthesis keto-reductase enzyme YBR159W physically interact. The data show that the interaction is specifically between YBR159W and eIF2B and not between other members of the translation initiation or VLCFA pathways. A ybr159wΔ null strain has a slow-growth phenotype and a reduced translation rate but a normal GCN4 response to amino acid starvation. Although YBR159W localizes to the endoplasmic reticulum membrane, subcellular fractionation experiments show that a fraction of eIF2B cofractionates with lipid membranes in a YBR159W-independent manner. We show that a ybr159wΔ yeast strain and other strains with null mutations in the VLCFA pathway cause eIF2B to appear as numerous foci throughout the cytoplasm.
Collapse
|
20
|
Orlean P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 2012; 192:775-818. [PMID: 23135325 PMCID: PMC3522159 DOI: 10.1534/genetics.112.144485] [Citation(s) in RCA: 315] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023] Open
Abstract
The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins.
Collapse
Affiliation(s)
- Peter Orlean
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
21
|
Banerjee DK. N-glycans in cell survival and death: cross-talk between glycosyltransferases. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:1338-46. [PMID: 22326428 PMCID: PMC3499948 DOI: 10.1016/j.bbagen.2012.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/12/2012] [Accepted: 01/27/2012] [Indexed: 11/25/2022]
Abstract
Asparagine-linked (N-linked) protein glycosylation is one of the most important protein modifications. N-glycans with "high mannose", "hybrid", or "complex" type sugar chains participate in a multitude of cellular processes. These include cell-cell/cell-matrix/receptor-ligand interaction, cell signaling/growth and differentiation, to name a few. Many diseases such as disorders of blood clotting, congenital disorder of glycosylation, diseases of blood vessels, cancer, neo-vascularization, i.e., angiogenesis essential for breast and other solid tumor progression and metastasis are associated with N-glycan expression. Biosynthesis of N-glycans requires multiple steps and multiple cellular compartments. Following transcription and translation the proteins migrate to the endoplasmic reticulum (ER) lumen to acquire glycan chain(s) with a defined glycoform, i.e., a tetradecasaccharide. These are further modified, i.e., edited in ER lumen and in Golgi prior to moving to their respective destinations. The tetradecasaccharide is pre-assembled on a poly-isoprenoid lipid called dolichol, and becomes an essential component of the supply chain. Therefore, dolichol cycle synthesizing the lipid-linked oligosaccharide (LLO) is a hallmark for all N-linked glycoproteins. It is expected that there is a great deal of cross-talk between the participating glycosyltransferases and any missed step would express defective N-glycans that could have fatal consequences. The positive impact of the structurally altered N-glycans could lead to discovery of an N-glycan signature for a disease and/or help developing glycotherapeutic treating cancer or other human diseases. The purpose of this review is to identify the gaps of N-glycan biology and help developing appropriate technology for biomedical applications. This article is part of a Special Issue entitled Glycoproteomics.
Collapse
Affiliation(s)
- Dipak K Banerjee
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936-5067.
| |
Collapse
|
22
|
Abstract
PtdIns4P is a key regulator of the secretory pathway and plays an essential role in trafficking from the Golgi. Our recent work demonstrated that spatial control of PtdIns4P at the ER (endoplasmic reticulum) and Golgi co-ordinates secretion with cell growth. The central elements of this regulation are specific phosphoinositide 4-kinases and the phosphoinositide phosphatase Sac1. Growth-dependent translocation of Sac1 between the ER and Golgi modulates the levels of PtdIns4P and anterograde traffic at the Golgi. In yeast, this mechanism is largely dependent on the availability of glucose, but our recent results in mammalian cells suggest that Sac1 phosphatases play evolutionarily conserved roles in the growth control of secretion. Sac1 lipid phosphatase plays also an essential role in the spatial control of PtdIns4P at the Golgi complex. A restricted pool of PtdIns4P at the TGN (trans-Golgi network) is required for Golgi integrity and for proper lipid and protein sorting. In mammalian cells, the stress-activated MAPK (mitogen-activated protein kinase) p38 appears to play a critical role in transmitting nutrient signals to the phosphoinositide signalling machinery at the ER and Golgi. These results suggest that temporal and spatial integration of metabolic and lipid signalling networks at the Golgi is required for controlling the secretory pathway.
Collapse
|
23
|
The mammalian ABC transporter ABCA1 induces lipid-dependent drug sensitivity in yeast. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:373-80. [PMID: 21787882 DOI: 10.1016/j.bbalip.2011.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/12/2011] [Accepted: 07/08/2011] [Indexed: 11/20/2022]
Abstract
ABCA1 belongs to the A class of ABC transporter, which is absent in yeast. ABCA1 elicits lipid translocation at the plasma membrane through yet elusive processes. We successfully expressed the mouse Abca1 gene in Saccharomyces cerevisiae. The cloned ABCA1 distributed at the yeast plasma membrane in stable discrete domains that we name MCA (membrane cluster containing ABCA1) and that do not overlap with the previously identified punctate structures MCC (membrane cluster containing Can1p) and MCP (membrane cluster containing Pma1p). By comparison with a nonfunctional mutant, we demonstrated that ABCA1 elicits specific phenotypes in response to compounds known to interact with membrane lipids, such as papuamide B, amphotericin B and pimaricin. The sensitivity of these novel phenotypes to the genetic modification of the membrane lipid composition was studied by the introduction of the cho1 and lcb1-100 mutations involved respectively in phosphatidylserine or sphingolipid biosynthesis in yeast cells. The results, corroborated by the analysis of equivalent mammalian mutant cell lines, demonstrate that membrane composition, in particular its phosphatidylserine content, influences the function of the transporter. We thus have reconstituted in yeast the essential functions associated to the expression of ABCA1 in mammals and characterized new physiological phenotypes prone to genetic analysis. This article is a part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
|
24
|
Banerjee A, Lang JY, Hung MC, Sengupta K, Banerjee SK, Baksi K, Banerjee DK. Unfolded protein response is required in nu/nu mice microvasculature for treating breast tumor with tunicamycin. J Biol Chem 2011; 286:29127-29138. [PMID: 21676868 DOI: 10.1074/jbc.m110.169771] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Up-regulation of the dolichol pathway, a "hallmark" of asparagine-linked protein glycosylation, enhances angiogenesis in vitro. The dynamic relationship between these two processes is now evaluated with tunicamycin. Capillary endothelial cells treated with tunicamycin were growth inhibited and could not be reversed with exogenous VEGF(165). Inhibition of angiogenesis is supported by down-regulation of (i) phosphorylated VEGFR1 and VEGFR2 receptors; (ii) VEGF(165)-specific phosphotyrosine kinase activity; and (iii) Matrigel(TM) invasion and chemotaxis. In vivo, tunicamycin prevented the vessel development in Matrigel(TM) implants in athymic Balb/c (nu/nu) mice. Immunohistochemical analysis of CD34 (p < 0.001) and CD144 (p < 0.001) exhibited reduced vascularization. A 3.8-fold increased expression of TSP-1, an endogenous angiogenesis inhibitor in Matrigel(TM) implants correlated with that in tunicamycin (32 h)-treated capillary endothelial cells. Intravenous injection of tunicamycin (0.5 mg/kg to 1.0 mg/kg) per week slowed down a double negative (MDA-MB-435) grade III breast adenocarcinoma growth by ∼50-60% in 3 weeks. Histopathological analysis of the paraffin sections indicated significant reduction in vessel size, the microvascular density and tumor mitotic index. Ki-67 and VEGF expression in tumor tissue were also reduced. A significant reduction of N-glycan expression in tumor microvessel was also observed. High expression of GRP-78 in CD144-positive cells supported unfolded protein response-mediated ER stress in tumor microvasculature. ∼65% reduction of a triple negative (MDA-MB-231) breast tumor xenograft in 1 week with tunicamycin (0.25 mg/kg) given orally and the absence of systemic and/or organ failure strongly supported tunicamycin's potential for a powerful glycotherapeutic treatment of breast cancer in the clinic.
Collapse
Affiliation(s)
- Aditi Banerjee
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00936-5067
| | - Jing-Yu Lang
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030,; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan 404
| | - Krishanu Sengupta
- Cancer Research Unit, Veterans Affairs Medical Center and Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160-7350
| | - Sushanta K Banerjee
- Cancer Research Unit, Veterans Affairs Medical Center and Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160-7350
| | - Krishna Baksi
- Department of Anatomy and Cell Biology, School of Medicine, Universidad Central del Caribe, Bayamon, Puerto Rico 00960-3001, and
| | - Dipak K Banerjee
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00936-5067,; Institute of Functional Nanomaterials, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00931-1907.
| |
Collapse
|
25
|
Zembek P, Perlińska-Lenart U, Rawa K, Górka-Nieć W, Palamarczyk G, Kruszewska JS. Cloning and functional analysis of the dpm2 and dpm3 genes from Trichoderma reesei expressed in a Saccharomyces cerevisiae dpm1Δ mutant strain. Biol Chem 2011; 392:517-27. [DOI: 10.1515/bc.2011.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractInTrichoderma reesei, dolichyl phosphate mannose (dpm) synthase, a key enzyme in the O-glycosylation process, requires three proteins for full activity. In this study, thedpm2anddpm3genes coding for the DPMII and DPMIII subunits ofT. reeseiDPM synthase were cloned and functionally analyzed after expression in theSaccharomyces cerevisiae dpm1Δ[genotype (BY4743;his3Δ1; /leu2Δ0; lys2Δ0; /ura3Δ0; YPR183w::kanMX4] mutant. It was found that apart from the catalytic subunit DPMI, the DPMIII subunit is also essential to form an active DPM synthase in yeast. Additional expression of the DPMII protein, considered to be a regulatory subunit of DPM synthase, decreased the enzymatic activity. We also characterizedS. cerevisiaestrains expressing thedpm1,2,3ordpm1, 3genes and analyzed the consequences ofdpmexpression on protein O-glycosylationin vivoand on the cell wall composition.
Collapse
|
26
|
Jadid N, Mialoundama AS, Heintz D, Ayoub D, Erhardt M, Mutterer J, Meyer D, Alioua A, Van Dorsselaer A, Rahier A, Camara B, Bouvier F. DOLICHOL PHOSPHATE MANNOSE SYNTHASE1 mediates the biogenesis of isoprenyl-linked glycans and influences development, stress response, and ammonium hypersensitivity in Arabidopsis. THE PLANT CELL 2011; 23:1985-2005. [PMID: 21558543 PMCID: PMC3123950 DOI: 10.1105/tpc.111.083634] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/19/2011] [Accepted: 05/01/2011] [Indexed: 05/17/2023]
Abstract
The most abundant posttranslational modification in nature is the attachment of preassembled high-mannose-type glycans, which determines the fate and localization of the modified protein and modulates the biological functions of glycosylphosphatidylinositol-anchored and N-glycosylated proteins. In eukaryotes, all mannose residues attached to glycoproteins from the luminal side of the endoplasmic reticulum (ER) derive from the polyprenyl monosaccharide carrier, dolichol P-mannose (Dol-P-Man), which is flipped across the ER membrane to the lumen. We show that in plants, Dol-P-Man is synthesized when Dol-P-Man synthase1 (DPMS1), the catalytic core, interacts with two binding proteins, DPMS2 and DPMS3, that may serve as membrane anchors for DPMS1 or provide catalytic assistance. This configuration is reminiscent of that observed in mammals but is distinct from the single DPMS protein catalyzing Dol-P-Man biosynthesis in bakers' yeast and protozoan parasites. Overexpression of DPMS1 in Arabidopsis thaliana results in disorganized stem morphology and vascular bundle arrangements, wrinkled seed coat, and constitutive ER stress response. Loss-of-function mutations and RNA interference-mediated reduction of DPMS1 expression in Arabidopsis also caused a wrinkled seed coat phenotype and most remarkably enhanced hypersensitivity to ammonium that was manifested by extensive chlorosis and a strong reduction of root growth. Collectively, these data reveal a previously unsuspected role of the prenyl-linked carrier pathway for plant development and physiology that may help integrate several aspects of candidate susceptibility genes to ammonium stress.
Collapse
Affiliation(s)
- Nurul Jadid
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
- Department of Biology, Botanical and Plant Tissue Culture Laboratory, Sepuluh Nopember Institut of Technology (Its), Gedung H Kampus Its Sukolilo, Surabaya 60111, East-Java, Indonesia
| | - Alexis Samba Mialoundama
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Daniel Ayoub
- Laboratoire de Spectrométrie de Masse Bio-Organique, Département des Sciences Analytiques, Institut Pluridisciplinaire Hubert Curien du Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7178, Université de Strasbourg, 67087 Strasbourg Cedex, France
| | - Mathieu Erhardt
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Jérôme Mutterer
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Denise Meyer
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Abdelmalek Alioua
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bio-Organique, Département des Sciences Analytiques, Institut Pluridisciplinaire Hubert Curien du Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7178, Université de Strasbourg, 67087 Strasbourg Cedex, France
| | - Alain Rahier
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Bilal Camara
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Florence Bouvier
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
- Address correspondence to
| |
Collapse
|
27
|
Chadrin A, Hess B, San Roman M, Gatti X, Lombard B, Loew D, Barral Y, Palancade B, Doye V. Pom33, a novel transmembrane nucleoporin required for proper nuclear pore complex distribution. ACTA ACUST UNITED AC 2010; 189:795-811. [PMID: 20498018 PMCID: PMC2878943 DOI: 10.1083/jcb.200910043] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A previously unrecognized pore membrane protein, Pom33, stabilizes the interface between the nuclear envelope and the NPC to facilitate NPC biogenesis and spatial organization. The biogenesis of nuclear pore complexes (NPCs) represents a paradigm for the assembly of high-complexity macromolecular structures. So far, only three integral pore membrane proteins are known to function redundantly in NPC anchoring within the nuclear envelope. Here, we describe the identification and functional characterization of Pom33, a novel transmembrane protein dynamically associated with budding yeast NPCs. Pom33 becomes critical for yeast viability in the absence of a functional Nup84 complex or Ndc1 interaction network, which are two core NPC subcomplexes, and associates with the reticulon Rtn1. Moreover, POM33 loss of function impairs NPC distribution, a readout for a subset of genes required for pore biogenesis, including members of the Nup84 complex and RTN1. Consistently, we show that Pom33 is required for normal NPC density in the daughter nucleus and for proper NPC biogenesis and/or stability in the absence of Nup170. We hypothesize that, by modifying or stabilizing the nuclear envelope–NPC interface, Pom33 may contribute to proper distribution and/or efficient assembly of nuclear pores.
Collapse
Affiliation(s)
- Anne Chadrin
- Institut Jacques Monod, UMR 7592, Centre National de la Recherche Scientifique/Université Paris Diderot, 75013 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mora-Montes HM, Ponce-Noyola P, Villagómez-Castro JC, Gow NA, Flores-Carreón A, López-Romero E. Protein glycosylation in Candida. Future Microbiol 2010; 4:1167-83. [PMID: 19895219 DOI: 10.2217/fmb.09.88] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Candidiasis is a significant cause of invasive human mycosis with associated mortality rates that are equivalent to, or worse than, those cited for most cases of bacterial septicemia. As a result, considerable efforts are being made to understand how the fungus invades host cells and to identify new targets for fungal chemotherapy. This has led to an increasing interest in Candida glycobiology, with an emphasis on the identification of enzymes essential for glycoprotein and adhesion metabolism, and the role of N- and O-linked glycans in host recognition and virulence. Here, we refer to studies dealing with the identification and characterization of enzymes such as dolichol phosphate mannose synthase, dolichol phosphate glucose synthase and processing glycosidases and synthesis, structure and recognition of mannans and discuss recent findings in the context of Candida albicans pathogenesis.
Collapse
|
29
|
Zhang Z, Banerjee A, Baksi K, Banerjee DK. Mannosylphosphodolichol synthase overexpression supports angiogenesis. BIOCATAL BIOTRANSFOR 2009; 28:90-98. [PMID: 20640223 DOI: 10.3109/10242420903411629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mannosylphospho dolichol synthase (DPMS) plays a critical role in Glc(3)Man(9)GlcNAc(2)-PP-Dol (lipid-linked oligosaccharide, LLO) biosynthesis, an essential intermediate in asparagine-linked (N-linked) protein glycosylation. We have observed earlier that phosphorylation of DPMS increases the catalytic activity of the enzyme by increasing the V(max) as well as the enzyme turnover (k(cat)) without significantly changing the K(m) for GDP-mannose. As a result, LLO biosynthesis, turnover and protein N-glycosylation are increased. This is manifested in increased proliferation of capillary endothelial cells, i.e., angiogenesis. We have then asked if the phosphorylation event or the up-regulation of the DPMS due to over production of the enzyme is a key factor in up-regulating angiogenesis? This question has been answered by isolating a stable capillary endothelial cell clone overexpressing the DPMS gene. Our results indicate that the DPMS overexpressing clone has a high level DPMS mRNA judged by QRT-PCR. The clone also expresses nearly four-times higher DPMS protein over the clone transfected with pEGFP-N1 vector only (i.e., control) as analyzed by western blotting. Most importantly, the overexpressing DPMS clone has ~108% higher DPMS activity than that of the vector control. Immunofluorescence microscopy with Texas-Red conjugated WGA indicates a high level expression of GlcNAc-beta-(1,4)-GlcNAc)1-4-beta-GlcNAc-NeuAc glycans on the external surface of the capillary endothelial cells overexpressing DPMS. Increased cellular proliferation and accelerated healing of the wound induced by a mechanical stress of the DPMS overexpressing clone unequivocally supports DPMS for angiogenesis.
Collapse
Affiliation(s)
- Zhenbo Zhang
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, USA
| | | | | | | |
Collapse
|
30
|
Bowman BJ, Draskovic M, Freitag M, Bowman EJ. Structure and distribution of organelles and cellular location of calcium transporters in Neurospora crassa. EUKARYOTIC CELL 2009; 8:1845-55. [PMID: 19801418 PMCID: PMC2794220 DOI: 10.1128/ec.00174-09] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 09/25/2009] [Indexed: 11/20/2022]
Abstract
We wanted to examine the cellular locations of four Neurospora crassa proteins that transport calcium. However, the structure and distribution of organelles in live hyphae of N. crassa have not been comprehensively described. Therefore, we made recombinant genes that generate translational fusions of putative organellar marker proteins with green or red fluorescent protein. We observed putative endoplasmic reticulum proteins, encoded by grp-78 and dpm, in the nuclear envelope and associated membranes. Proteins of the vacuolar membrane, encoded by vam-3 and vma-1, were in an interconnected network of small tubules and vesicles near the hyphal tip, while in more distal regions they were in large and small spherical vacuoles. Mitochondria, visualized with tagged ARG-4, were abundant in all regions of the hyphae. Similarly, we tagged the four N. crassa proteins that transport calcium with green or red fluorescent protein to examine their cellular locations. NCA-1 protein, a homolog of the SERCA-type Ca(2+)-ATPase of animal cells, colocalized with the endoplasmic reticulum markers. The NCA-2 and NCA-3 proteins are homologs of Ca(2+)-ATPases in the vacuolar membrane in yeast or in the plasma membrane in animal cells. They colocalized with markers in the vacuolar membrane, and they also occurred in the plasma membrane in regions of the hyphae more than 1 mm from the tip. The cax gene encodes a Ca(2+)/H(+) exchange protein found in vacuoles. As expected, the CAX protein localized to the vacuolar compartment. We observed, approximately 50 to 100 mum from the tip, a few spherical organelles that had high amounts of tagged CAX protein and tagged subunits of the vacuolar ATPase (VMA-1 and VMA-5). We suggest that this organelle, not described previously in N. crassa, may have a role in sequestering calcium.
Collapse
Affiliation(s)
- Barry J Bowman
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA.
| | | | | | | |
Collapse
|
31
|
Hypoglycosylation due to dolichol metabolism defects. Biochim Biophys Acta Mol Basis Dis 2009; 1792:888-95. [DOI: 10.1016/j.bbadis.2009.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 01/21/2009] [Accepted: 01/26/2009] [Indexed: 11/22/2022]
|
32
|
Abstract
Protein O-mannosylation is an essential modification in fungi and animals. Different from most other types of O-glycosylation, protein O-mannosylation is initiated in the endoplasmic reticulum by the transfer of mannose from dolichol monophosphate-activated mannose to serine and threonine residues of secretory proteins. In recent years, it has emerged that even bacteria are capable of O-mannosylation and that the biosynthetic pathway of O-mannosyl glycans is conserved between pro- and eukaryotes. In this review, we summarize the observations that have opened up the field and highlight characteristics of O-mannosylation in the different domains/kingdoms of life.
Collapse
Affiliation(s)
- Mark Lommel
- Department V Cell Chemistry, Heidelberg Institute for Plant Sciences, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
33
|
Baksi K, Zhang Z, Banerjee A, Banerjee DK. Cloning and expression of mannosylphospho dolichol synthase from bovine adrenal medullary capillary endothelial cells. Glycoconj J 2009; 26:635-45. [PMID: 19214747 DOI: 10.1007/s10719-008-9214-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 10/21/2008] [Accepted: 10/28/2008] [Indexed: 10/21/2022]
Abstract
Mannosylphospho dolichol synthase (DPMS) is a critical enzyme in the biosynthesis of lipid-linked oligosaccharide (LLO; Glc(3)Man(9)GlcNAc(2)-PP-Dol), a pre-requisite for asparagine-linked (N-linked) protein glycosylation. We have shown earlier that DPMS is important for angiogenesis, i.e., endothelial cell proliferation. This is true when cAMP is used for intracellular signaling. During cAMP signaling, DPMS is activated and ER stress is reduced. To understand the activation of DPMS at the molecular level we have isolated a cDNA clone for the DPMS gene (bDPMS) from the capillary endothelial cells of bovine adrenal medulla. DNA sequencing and the deduced amino acid sequence have established that bDPMS has a motif to be phosphorylated by cAMP-dependent protein kinase (PKA). Based on the sequence information Serine 165 has been found to be the phosphorylation target in bDPMS. Hydropathy Index when plotted against amino acid number indicates the presence of a hydrophobic region around the amino acid residues 120-160, supporting that bDPMS has one membrane spanning region. The recombinant bDPMS has now been purified as His-tag protein with an apparent molecular weight of M (r) 33 kDa. Additionally, we show here that overexpression of DPMS is indeed angiogenic. The capillary endothelial cells proliferate at a higher rate carrying the DPMS overexpression plasmid over the parental cells or the vector.
Collapse
Affiliation(s)
- Krishna Baksi
- Department of Anatomy and Cell Biology, School of Medicine, Universidad Central del Caribe, Bayamón, PR 00930-3100, USA
| | | | | | | |
Collapse
|
34
|
Urushibata Y, Ebisu S, Matsui I. A thermostable dolichol phosphoryl mannose synthase responsible for glycoconjugate synthesis of the hyperthermophilic archaeon Pyrococcus horikoshii. Extremophiles 2008; 12:665-76. [PMID: 18563288 DOI: 10.1007/s00792-008-0173-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Accepted: 05/08/2008] [Indexed: 11/28/2022]
Abstract
Dolichol phosphoryl mannose synthase (DPM synthase) is an essential enzyme in the synthesis of N- and O-linked glycoproteins and the glycosylphosphatidyl-inositol anchor. An open reading frame, PH0051, from the hyperthermophilic archaeon Pyrococcus horikoshii encodes a DPM synthase ortholog, PH0051p. A full-length version of PH0051p was produced using an E. coli in vitro translation system and its thermostable activity was confirmed with a DPM synthesis assay, although the in vitro productivity was not sufficient for further characterization. Then, a yeast expression vector coding for the N-terminal catalytic domain of PH0051p was constructed. The N-terminal domain, named DPM(1-237), was successfully expressed, and turned out to be a membrane-bound form in Saccharomyces cerevisiae cells, even without its hydrophobic C-terminal domain. The membrane-bound DPM(1-237) was solubilized with a detergent and purified to homogeneity. The purified DPM(1-237) showed thermostability at up to 75 degrees C and an optimum temperature of 60 degrees C. The truncated mutant DPM(1-237) required Mg(2+) and Mn(2+) ions as cofactors the same as eukaryotic DPM synthases. By site-directed mutagenesis, Asp(89) and Asp(91) located at the most conserved motif, DXD, were confirmed as the catalytic residues, the latter probably bound to a cofactor, Mg(2+). DPM(1-237) was able to utilize both acceptor lipids, dolichol phosphate and the prokaryotic carrier lipid C(55)-undecaprenyl phosphate, with Km values of 1.17 and 0.59 microM, respectively. The DPM synthase PH0051p seems to be a key component of the pathway supplying various lipid-linked phosphate sugars, since P. horikoshii could synthesize glycoproteins as well as the membrane-associated PH0051p in vivo.
Collapse
Affiliation(s)
- Yuji Urushibata
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | | | | |
Collapse
|
35
|
Dolichyl-phosphate-glucose is used to make O-glycans on glycoproteins of Trichomonas vaginalis. EUKARYOTIC CELL 2008; 7:1344-51. [PMID: 18552282 DOI: 10.1128/ec.00061-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Trichomonas vaginalis, the protist that causes vaginal itching, has a huge genome with numerous gene duplications. Recently we found that Trichomonas has numerous genes encoding putative dolichyl-phosphate-glucose (Dol-P-Glc) synthases (encoded by ALG5 genes) despite the fact that Trichomonas lacks the glycosyltransferases (encoded by ALG6, ALG8, and ALG10 genes) that use Dol-P-Glc to glucosylate dolichyl-PP-linked glycans. In addition, Trichomonas does not have a canonical DPM1 gene, encoding a dolichyl-P-mannose (Dol-P-Man) synthase. Here we show Trichomonas membranes have roughly 300 times the Dol-P-Glc synthase activity of Saccharomyces cerevisiae membranes and about one-fifth the Dol-P-Man synthase activity of Saccharomyces membranes. Endogenous Dol-P-hexoses of Trichomonas are relatively abundant and contain 16 isoprene units. Five paralogous Trichomonas ALG5 gene products have Dol-P-Glc synthase activity when expressed as recombinant proteins, and these Trichomonas Alg5s correct a carboxypeptidase N glycosylation defect in a Saccharomyces alg5 mutant in vivo. A recombinant Trichomonas Dpm1, which is deeply divergent in its sequence, has Dol-P-Man synthase activity. When radiolabeled Dol-P-Glc is incubated with Trichomonas membranes, Glc is incorporated into reducing and nonreducing sugars of O-glycans of endogenous glycoproteins. To our knowledge, this is the first demonstration of Dol-P-Glc as a sugar donor for O-glycans on glycoproteins.
Collapse
|
36
|
Maeda Y, Kinoshita T. Dolichol-phosphate mannose synthase: Structure, function and regulation. Biochim Biophys Acta Gen Subj 2008; 1780:861-8. [DOI: 10.1016/j.bbagen.2008.03.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/11/2008] [Accepted: 03/06/2008] [Indexed: 11/30/2022]
|
37
|
Shams-Eldin H, de Macedo CS, Niehus S, Dorn C, Kimmel J, Azzouz N, Schwarz RT. Plasmodium falciparum dolichol phosphate mannose synthase represents a novel clade. Biochem Biophys Res Commun 2008; 370:388-93. [DOI: 10.1016/j.bbrc.2008.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 03/05/2008] [Indexed: 11/16/2022]
|
38
|
Takeda Y, Nakano A. In vitro formation of a novel type of membrane vesicles containing Dpm1p: putative transport vesicles for lipid droplets in budding yeast. J Biochem 2008; 143:803-11. [PMID: 18343875 DOI: 10.1093/jb/mvn034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A novel type of membrane vesicles was formed in vitro from microsomes of Saccharomyces cerevisiae, which carries Dpm1p, an enzyme involved in dolichol-sugar synthesis, but not a typical secretory cargo. While COPII vesicles formed in vitro were sedimentable by centrifugation at 200,000g(max) for 15 min, the novel vesicles were not. However, they were sedimented by additional centrifugation at the same speed for 1 h. Immunoelectron microscopy showed that the Dpm1p-containing vesicles had small vesicular/saccular structures of around 40-50 nm in diameter. The addition of glycerol-3-phosphate and oleoyl-CoA, substrates for lipid biosynthesis, significantly enhanced the efficiency of vesicle budding in an ATP-dependent fashion. Dpm1p was localized to lipid droplets as well as endoplasmic reticulum. Fluorescence microscopy further showed that Dpm1p-GFP was present in restricted subregions in isolated lipid droplets. The possibility that the vesicles were intermediates from the endoplasmic reticulum to lipid droplets was examined, and their possible role is discussed.
Collapse
Affiliation(s)
- Yuichi Takeda
- Molecular Membrane Biology Laboratory, RIKEN Discovery Research Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan.
| | | |
Collapse
|
39
|
Higashio H, Sato K, Nakano A. Smy2p participates in COPII vesicle formation through the interaction with Sec23p/Sec24p subcomplex. Traffic 2007; 9:79-93. [PMID: 17973654 PMCID: PMC2239301 DOI: 10.1111/j.1600-0854.2007.00668.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The coat protein complex II (COPII) is essential for vesicle formation from the endoplasmic reticulum (ER) and is composed of two heterodimeric subcomplexes, Sec23p/Sec24p and Sec13p/Sec31p, and the small guanosine triphosphatase Sar1p. In an effort to identify novel factors that may participate in COPII vesicle formation, we isolated SMY2, a yeast gene encoding a protein of unknown function, as a multicopy suppressor of the temperature-sensitive sec24-20 mutant. We found that even a low-copy expression of SMY2 was sufficient for the suppression of the sec24-20 phenotypes, and the chromosomal deletion of SMY2 led to a severe growth defect in the sec24-20 background. In addition, SMY2 exhibited genetic interactions with several other genes involved in the ER-to-Golgi transport. Subcellular fractionation analysis showed that Smy2p was a peripheral membrane protein fractionating together with COPII components. However, Smy2p was not loaded onto COPII vesicles generated in vitro. Interestingly, coimmunoprecipitation between Smy2p and the Sec23p/Sec24p subcomplex was specifically observed in sec23-1 and sec24-20 backgrounds, suggesting that this interaction was a prerequisite for the suppression of the sec24-20 phenotypes by overexpression of SMY2. We propose that Smy2p is located on the surface of the ER and facilitates COPII vesicle formation through the interaction with Sec23p/Sec24p subcomplex.
Collapse
Affiliation(s)
- Hironori Higashio
- Molecular Membrane Biology Laboratory, RIKEN Discovery Research Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
40
|
Goto M. Protein O-glycosylation in fungi: diverse structures and multiple functions. Biosci Biotechnol Biochem 2007; 71:1415-27. [PMID: 17587671 DOI: 10.1271/bbb.70080] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein glycosylation is essential for eukaryotic cells from yeasts to humans. When compared to N-glycosylation, O-glycosylation is variable in sugar components and the mode of linkages connecting the sugars. In fungi, secretory proteins are commonly mannosylated by protein O-mannosyltransferase (PMT) in the endoplasmic reticulum, and subsequently glycosylated by several glycosyltransferases in the Golgi apparatus to form glycoproteins with diverse O-glycan structures. Protein O-glycosylation has roles in modulating the function of secretory proteins by enhancing the stability and solubility of the proteins, by affording protection from protease degradation, and by acting as a sorting determinant in yeasts. In filamentous fungi, protein O-glycosylation contributes to proper maintenance of fungal morphology, hyphal development, and differentiation. This review describes recent studies of the structure and function of protein O-glycosylation in industrially and medically important fungi.
Collapse
Affiliation(s)
- Masatoshi Goto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Japan.
| |
Collapse
|
41
|
Faulhammer F, Kanjilal-Kolar S, Knödler A, Lo J, Lee Y, Konrad G, Mayinger P. Growth Control of Golgi Phosphoinositides by Reciprocal Localization of Sac1 Lipid Phosphatase and Pik1 4-Kinase. Traffic 2007; 8:1554-67. [PMID: 17908202 DOI: 10.1111/j.1600-0854.2007.00632.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Compartment-specific control of phosphoinositide lipids is essential for cell function. The Sac1 lipid phosphatase regulates endoplasmic reticulum (ER) and Golgi phosphatidylinositol-4-phosphate [PI(4)P] in response to nutrient levels and cell growth stages. During exponential growth, Sac1p interacts with Dpm1p at the ER but shuttles to the Golgi during starvation. Here, we report that a C-terminal region in Sac1p is required for retention in the perinuclear ER, whereas the N-terminal domain is responsible for Golgi localization. We also show that starvation-induced shuttling of Sac1p to the Golgi depends on the coat protein complex II and the Rer1 adaptor protein. Starvation-induced shuttling of Sac1p to the Golgi specifically eliminates a pool of PI(4)P generated by the lipid kinase Pik1p. In addition, absence of nutrients leads to a rapid dissociation of Pik1p, together with its non-catalytical subunit Frq1p, from Golgi membranes. Reciprocal rounds of association/dissociation of the Sac1p lipid phosphatase and the Pik1p/Frq1p lipid kinase complex are responsible for growth-dependent control of Golgi phosphoinositides. Sac1p and Pik1p/Frq1p are therefore elements of a unique machinery that synchronizes ER and Golgi function in response to different growth conditions.
Collapse
Affiliation(s)
- Frank Faulhammer
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Vehring S, Pakkiri L, Schröer A, Alder-Baerens N, Herrmann A, Menon AK, Pomorski T. Flip-flop of fluorescently labeled phospholipids in proteoliposomes reconstituted with Saccharomyces cerevisiae microsomal proteins. EUKARYOTIC CELL 2007; 6:1625-34. [PMID: 17616631 PMCID: PMC2043374 DOI: 10.1128/ec.00198-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A phospholipid flippase activity from the endoplasmic reticulum (ER) of the model organism Saccharomyces cerevisiae has been characterized and functionally reconstituted into proteoliposomes. Analysis of the transbilayer movement of acyl-7-nitrobenz-2-oxa-1,3-diazol-4-yl (acyl-NBD)-labeled phosphatidylcholine in yeast microsomes using a fluorescence stopped-flow back exchange assay revealed a rapid, ATP-independent flip-flop (half-time, <2 min). Proteoliposomes prepared from a Triton X-100 extract of yeast microsomal membranes were also capable of flipping NBD-labeled phospholipid analogues rapidly in an ATP-independent fashion. Flippase activity was sensitive to the protein modification reagents N-ethylmaleimide and diethylpyrocarbonate. Resolution of the Triton X-100 extract by velocity gradient centrifugation resulted in the identification of a approximately 4S protein fraction enriched in flippase activity as well as of other fractions where flippase activity was depleted or undetectable. We estimate that flippase activity is due to a protein(s) representing approximately 2% (wt/wt) of proteins in the Triton X-100 extract. These results indicate that specific proteins are required to facilitate ATP-independent phospholipid flip-flop in the ER and that their identification is feasible. The architecture of the ER protein translocon suggests that it could account for the flippase activity in the ER. We tested this hypothesis using microsomes prepared from a temperature-sensitive yeast mutant in which the major translocon component, Sec61p, was quantitatively depleted. We found that the protein translocon is not required for transbilayer movement of phospholipids across the ER. Our work defines yeast as a promising model system for future attempts to identify the ER phospholipid flippase and to test and purify candidate flippases.
Collapse
Affiliation(s)
- Stefanie Vehring
- Institute of Biology/Biophysics, Humboldt University of Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Cottrell TR, Griffith CL, Liu H, Nenninger AA, Doering TL. The pathogenic fungus Cryptococcus neoformans expresses two functional GDP-mannose transporters with distinct expression patterns and roles in capsule synthesis. EUKARYOTIC CELL 2007; 6:776-85. [PMID: 17351078 PMCID: PMC1899245 DOI: 10.1128/ec.00015-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cryptococcus neoformans is a fungal pathogen that is responsible for life-threatening disease, particularly in the context of compromised immunity. This organism makes extensive use of mannose in constructing its cell wall, glycoproteins, and glycolipids. Mannose also comprises up to two-thirds of the main cryptococcal virulence factor, a polysaccharide capsule that surrounds the cell. The glycosyltransfer reactions that generate cellular carbohydrate structures usually require activated donors such as nucleotide sugars. GDP-mannose, the mannose donor, is produced in the cytosol by the sequential actions of phosphomannose isomerase, phosphomannomutase, and GDP-mannose pyrophosphorylase. However, most mannose-containing glycoconjugates are synthesized within intracellular organelles. This topological separation necessitates a specific transport mechanism to move this key precursor across biological membranes to the appropriate site for biosynthetic reactions. We have discovered two GDP-mannose transporters in C. neoformans, in contrast to the single such protein reported previously for other fungi. Biochemical studies of each protein expressed in Saccharomyces cerevisiae show that both are functional, with similar kinetics and substrate specificities. Microarray experiments indicate that the two proteins Gmt1 and Gmt2 are transcribed with distinct patterns of expression in response to variations in growth conditions. Additionally, deletion of the GMT1 gene yields cells with small capsules and a defect in capsule induction, while deletion of GMT2 does not alter the capsule. We suggest that C. neoformans produces two GDP-mannose transporters to satisfy its enormous need for mannose utilization in glycan synthesis. Furthermore, we propose that the two proteins have distinct biological roles. This is supported by the different expression patterns of GMT1 and GMT2 in response to environmental stimuli and the dissimilar phenotypes that result when each gene is deleted.
Collapse
Affiliation(s)
- Tricia R Cottrell
- Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8230, 600 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
44
|
Strahl T, Thorner J. Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1771:353-404. [PMID: 17382260 PMCID: PMC1868553 DOI: 10.1016/j.bbalip.2007.01.015] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 02/02/2023]
Abstract
It is now well appreciated that derivatives of phosphatidylinositol (PtdIns) are key regulators of many cellular processes in eukaryotes. Of particular interest are phosphoinositides (mono- and polyphosphorylated adducts to the inositol ring in PtdIns), which are located at the cytoplasmic face of cellular membranes. Phosphoinositides serve both a structural and a signaling role via their recruitment of proteins that contain phosphoinositide-binding domains. Phosphoinositides also have a role as precursors of several types of second messengers for certain intracellular signaling pathways. Realization of the importance of phosphoinositides has brought increased attention to characterization of the enzymes that regulate their synthesis, interconversion, and turnover. Here we review the current state of our knowledge about the properties and regulation of the ATP-dependent lipid kinases responsible for synthesis of phosphoinositides and also the additional temporal and spatial controls exerted by the phosphatases and a phospholipase that act on phosphoinositides in yeast.
Collapse
Affiliation(s)
- Thomas Strahl
- Divisions of Biochemistry & Molecular Biology and of Cell & Developmental Biology.Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Jeremy Thorner
- Divisions of Biochemistry & Molecular Biology and of Cell & Developmental Biology.Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
45
|
Nakanishi H, Morishita M, Schwartz CL, Coluccio A, Engebrecht J, Neiman AM. Phospholipase D and the SNARE Sso1p are necessary for vesicle fusion during sporulation in yeast. J Cell Sci 2006; 119:1406-15. [PMID: 16554438 DOI: 10.1242/jcs.02841] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spore formation in Saccharomyces cerevisiae requires the de novo formation of prospore membranes. The coalescence of secretory vesicles into a membrane sheet occurs on the cytoplasmic surface of the spindle pole body. Spo14p, the major yeast phospholipase D, is necessary for prospore membrane formation; however, the specific function of Spo14p in this process has not been elucidated. We report that loss of Spo14p blocks vesicle fusion, leading to the accumulation of prospore membrane precursor vesicles docked on the spindle pole body. A similar phenotype was seen when the t-SNARE Sso1p, or the partially redundant t-SNAREs Sec9p and Spo20p were mutated. Although phosphatidic acid, the product of phospholipase D action, was necessary to recruit Spo20p to the precursor vesicles, independent targeting of Spo20p to the membrane was not sufficient to promote fusion in the absence of SPO14. These results demonstrate a role for phospholipase D in vesicle fusion and suggest that phospholipase D-generated phosphatidic acid plays multiple roles in the fusion process.
Collapse
Affiliation(s)
- Hideki Nakanishi
- Department of Biochemistry and Cell Biology, SUNY Stony Brook, Stony Brook, NY 4-5215, USA
| | | | | | | | | | | |
Collapse
|
46
|
Newman HA, Romeo MJ, Lewis SE, Yan BC, Orlean P, Levin DE. Gpi19, the Saccharomyces cerevisiae homologue of mammalian PIG-P, is a subunit of the initial enzyme for glycosylphosphatidylinositol anchor biosynthesis. EUKARYOTIC CELL 2006; 4:1801-7. [PMID: 16278447 PMCID: PMC1287868 DOI: 10.1128/ec.4.11.1801-1807.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycosylphosphatidylinositols (GPIs) are attached to the C termini of some glycosylated secretory proteins, serving as membrane anchors for many of those on the cell surface. Biosynthesis of GPIs is initiated by the transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to phosphatidylinositol. This reaction is carried out at the endoplasmic reticulum (ER) by an enzyme complex called GPI-N-acetylglucosaminyltransferase (GPI-GlcNAc transferase). The human enzyme has six known subunits, at least four of which, GPI1, PIG-A, PIG-C, and PIG-H, have functional homologs in the budding yeast Saccharomyces cerevisiae. The uncharacterized yeast gene YDR437w encodes a protein with some sequence similarity to human PIG-P, a fifth subunit of the GPI-GlcNAc transferase. Here we show that Ydr437w is a small but essential subunit of the yeast GPI-GlcNAc transferase, and we designate its gene GPI19. Similar to other mutants in the yeast enzyme, temperature-sensitive gpi19 mutants display cell wall defects and hyperactive Ras phenotypes. The Gpi19 protein associates with the yeast GPI-GlcNAc transferase in vivo, as judged by coimmuneprecipitation with the Gpi2 subunit. Moreover, conditional gpi19 mutants are defective for GPI-GlcNAc transferase activity in vitro. Finally, we present evidence for the topology of Gpi19 within the ER membrane.
Collapse
Affiliation(s)
- Heather A Newman
- Department of Biochemistry & Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205-2179, USA
| | | | | | | | | | | |
Collapse
|
47
|
Kanjilal-Kolar S, Raetz CRH. Dodecaprenyl phosphate-galacturonic acid as a donor substrate for lipopolysaccharide core glycosylation in Rhizobium leguminosarum. J Biol Chem 2006; 281:12879-87. [PMID: 16497671 PMCID: PMC2556281 DOI: 10.1074/jbc.m513865200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lipid A and inner core regions of Rhizobium leguminosarum lipopolysaccharide contain four galacturonic acid (GalA) residues. Two are attached to the outer unit of the 3-deoxy-D-manno-octulosonic acid (Kdo) disaccharide, one to the mannose residue, and one to the 4'-position of lipid A. The enzymes RgtA and RgtB, described in the accompanying article, catalyze GalA transfer to the Kdo residue, whereas RgtC is responsible for modification of the core mannose unit. Heterologous expression of RgtA in Sinorhizhobium meliloti 1021, a strain that normally lacks GalA modifications on its Kdo disaccharide, resulted in detectable GalA transferase activity in isolated membrane preparations, suggesting that the appropriate GalA donor substrate is available in S. meliloti membranes. In contrast, heterologous expression of RgtA in Escherichia coli yielded inactive membranes. However, RgtA activity was detectable in the E. coli system when total lipids from R. leguminosarum 3841 or S. meliloti 1021 were added. We have now purified and characterized dodecaprenyl (C60) phosphate-GalA as a minor novel lipid of R. leguminosarum 3841 and S. meliloti. This substance is stable to mild base hydrolysis and was purified by DEAE-cellulose column chromatography. Its structure was established by a combination of electrospray ionization mass spectrometry and gas-liquid chromatography. Purified dodecaprenyl phosphate-GalA supports the efficient transfer of GalA to Kdo2-1-dephospho-lipid IV(A) by membranes of E. coli cells expressing RgtA, RgtB, and RgtC. The identification of a polyisoprene phosphate-GalA donor substrate suggests that the active site of RgtA faces the periplasmic side of the inner membrane. This work represents the first definitive characterization of a lipid-linked GalA derivative with the proposed structure dodecaprenyl phosphate-beta-D-GalA.
Collapse
Affiliation(s)
| | - Christian R. H. Raetz
- To whom correspondence should be addressed: Duke University Medical Center, Durham, NC, 27710. Tel.: 919-684-5326; Fax: 919-684-8885; E-mail,
| |
Collapse
|
48
|
Kanjilal-Kolar S, Basu SS, Kanipes MI, Guan Z, Garrett TA, Raetz CRH. Expression cloning of three Rhizobium leguminosarum lipopolysaccharide core galacturonosyltransferases. J Biol Chem 2006; 281:12865-78. [PMID: 16497674 PMCID: PMC2814240 DOI: 10.1074/jbc.m513864200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lipid A and core regions of the lipopolysaccharide in Rhizobium leguminosarum, a nitrogen-fixing plant endosymbiont, are strikingly different from those of Escherichia coli. In R. leguminosarum lipopolysaccharide, the inner core is modified with three galacturonic acid (GalA) moieties, two on the distal 3-deoxy-D-manno-octulosonic acid (Kdo) unit and one on the mannose residue. Here we describe the expression cloning of three novel GalA transferases from a 22-kb R. leguminosarum genomic DNA insert-containing cosmid (pSGAT). Two of these enzymes modify the substrate, Kdo2-[4'-(32)P]lipid IV(A) and its 1-dephosphorylated derivative on the distal Kdo residue, as indicated by mild acid hydrolysis. The third enzyme modifies the mannose unit of the substrate mannosyl-Kdo2-1-dephospho-[4'-(32)P]lipid IV(A). Sequencing of a 7-kb subclone derived from pSGAT revealed three putative membrane-bound glycosyltransferases, now designated RgtA, RgtB, and RgtC. Transfer by tri-parental mating of these genes into Sinorhizobium meliloti 1021, a strain that lacks these particular GalA residues, results in the heterologous expression of the GalA transferase activities seen in membranes of cells expressing pSGAT. Reconstitution experiments with the individual genes demonstrated that the activity of RgtA precedes and is necessary for the subsequent activity of RgtB, which is followed by the activity of RgtC. Electrospray ionization-tandem mass spectrometry and gas-liquid chromatography of the product generated in vitro by RgtA confirmed the presence of a GalA moiety. No in vitro activity was detected when RgtA was expressed in Escherichia coli unless Rhizobiaceae membranes were also included.
Collapse
Affiliation(s)
- Suparna Kanjilal-Kolar
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
49
|
Ashida H, Maeda Y, Kinoshita T. DPM1, the catalytic subunit of dolichol-phosphate mannose synthase, is tethered to and stabilized on the endoplasmic reticulum membrane by DPM3. J Biol Chem 2005; 281:896-904. [PMID: 16280320 DOI: 10.1074/jbc.m511311200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dolichol-phosphate mannose (DPM) synthase is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor, N-glycan precursor, protein O-mannose, and C-mannose. We previously identified DPM3, the third component of this enzyme, which was co-purified with DPM1 and DPM2. Here, we have established mutant Chinese hamster ovary (CHO) 2.38 cells that were defective in DPM3. CHO2.38 cells were negative for GPI-anchored proteins, and microsomes from these cells showed no detectable DPM synthase activity, indicating that DPM3 is an essential component of this enzyme. A coiled-coil domain near the C terminus of DPM3 was important for tethering DPM1, the catalytic subunit of the enzyme, to the endoplasmic reticulum membrane and, therefore, was critical for enzyme activity. On the other hand, two transmembrane regions in the N-terminal portion of DPM3 showed no specific functions. DPM1 was rapidly degraded by the proteasome in the absence of DPM3. Free DPM1 was strongly associated with the C terminus of Hsc70-interacting protein (CHIP), a chaperone-dependent E3 ubiquitin ligase, suggesting that DPM1 is ubiquitinated, at least in part, by CHIP.
Collapse
Affiliation(s)
- Hisashi Ashida
- Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Japan
| | | | | |
Collapse
|
50
|
Arroyo-Flores BL, Calvo-Méndez C, Flores-Carreón A, López-Romero E. Biosynthesis of glycoproteins in the pathogenic fungus Candida albicans: activation of dolichol phosphate mannose synthase by cAMP-mediated protein phosphorylation. ACTA ACUST UNITED AC 2005; 45:429-34. [PMID: 16055313 DOI: 10.1016/j.femsim.2005.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 05/27/2005] [Indexed: 10/25/2022]
Abstract
Following incubation with ATP and a cAMP-dependent protein kinase under optimal conditions of lipid acceptor, phospholipid and metal ion requirements, the transfer activity of partially purified dolichol phosphate mannose synthase (DPMS) increased about 60% and this activation correlated with a 50% increase in V(max) with no alteration in the apparent K(m) for GDP-Manose. Phosphorylation with [gamma-(32)P]ATP resulted in the labeling of several polypeptides, one of which exhibited the molecular weight of the enzyme (30 kDa) and was also recognized using a specific anti-DPMS monoclonal antibody. This and the fact that the phosphate label could be removed by an alkaline phosphatase indicate that Candida DPMS may be regulated by phosphorylation-dephosphorylation, a mechanism that has been proposed for the enzyme in other organisms.
Collapse
Affiliation(s)
- Blanca L Arroyo-Flores
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Mexico
| | | | | | | |
Collapse
|