1
|
Glavy JS, Wu SM, Wang PJ, Orr GA, Wolkoff AW. Down-regulation by extracellular ATP of rat hepatocyte organic anion transport is mediated by serine phosphorylation of oatp1. J Biol Chem 2000; 275:1479-84. [PMID: 10625701 DOI: 10.1074/jbc.275.2.1479] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies implicate a role in hepatocyte organic anion transport of a plasma membrane protein that has been termed oatp1 (organic anion transport protein 1). Little is known regarding mechanisms by which its transport activity is modulated in vivo. In previous studies (Campbell, C. G., Spray, D. C., and Wolkoff, A. W. (1993) J. Biol. Chem. 268, 15399-15404), we demonstrated that hepatocyte uptake of sulfobromophthalein was down-regulated by extracellular ATP. We have now found that extracellular ATP reduces the V(max) for transport of sulfobromophthalein by rat hepatocytes; K(m) remains unaltered. Reduced transport also results from incubation of hepatocytes with the phosphatase inhibitors okadaic acid and calyculin A. Immunoprecipitation of biotinylated cell surface proteins indicates that oatp1 remains on the cell surface after exposure of cells to ATP or phosphatase inhibitor, suggesting that loss of transport activity is not caused by transporter internalization. Exposure of (32)P-loaded hepatocytes to extracellular ATP results in serine phosphorylation of oatp1 with the appearance of a single major tryptic phosphopeptide; oatp1 from control cells is not phosphorylated. This phosphopeptide comigrates with one of four phosphopeptides resulting from incubation of cells with okadaic acid. These studies indicate that the phosphorylation state of oatp1 must be an important consideration when assessing alterations of its functional expression in pathobiological states.
Collapse
Affiliation(s)
- J S Glavy
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
2
|
Hansson LO, Bolton-Grob R, Widersten M, Mannervik B. Structural determinants in domain II of human glutathione transferase M2-2 govern the characteristic activities with aminochrome, 2-cyano-1,3-dimethyl-1-nitrosoguanidine, and 1,2-dichloro-4-nitrobenzene. Protein Sci 1999; 8:2742-50. [PMID: 10631991 PMCID: PMC2144236 DOI: 10.1110/ps.8.12.2742] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Two human Mu class glutathione transferases, hGST M1-1 and hGST M2-2, with high sequence identity (84%) exhibit a 100-fold difference in activities with the substrates aminochrome, 2-cyano-1,3-dimethyl-1-nitrosoguanidine (cyanoDMNG), and 1,2-dichloro-4-nitrobenzene (DCNB), hGST M2-2 being more efficient. A sequence alignment with the rat Mu class GST M3-3, an enzyme also showing high activities with aminochrome and DCNB, demonstrated an identical structural cluster of residues 164-168 in the alpha6-helices of rGST M3-3 and hGST M2-2, a motif unique among known sequences of human, rat, and mouse Mu class GSTs. A putative electrostatic network Arg107-Asp161-Arg165-Glu164(-Gln167) was identified based on the published three-dimensional structure of hGST M2-2. Corresponding variant residues of hGSTM1-1 (Leu165, Asp164, and Arg167) as well as the active site residue Ser209 were targeted for point mutations, introducing hGST M2-2 residues to the framework of hGST M1-1, to improve the activities with substrates characteristic of hGST M2-2. In addition, chimeric enzymes composed of hGST M1-1 and hGST M2-2 sequences were analyzed. The activity with 1-chloro-2,4-dinitrobenzene (CDNB) was retained in all mutant enzymes, proving that they were catalytically competent, but none of the point mutations improved the activities with hGST M2-2 characteristic substrates. The chimeric enzymes showed that the structural determinants of these activities reside in domain II and that residue Arg165 in hGST M2-2 appears to be important for the reactions with cyanoDMNG and DCNB. A mutant, which contained all the hGST M2-2 residues of the putative electrostatic network, was still lacking one order of magnitude of the activities with the characteristic substrates of wild-type hGST M2-2. It was concluded that a limited set of point mutations is not sufficient, but that indirect secondary structural affects also contribute to the hGST M2-2 characteristic activities with aminochrome, cyanoDMNG, and DCNB.
Collapse
Affiliation(s)
- L O Hansson
- Department of Biochemistry, Uppsala University, Biomedical Center, Sweden
| | | | | | | |
Collapse
|
3
|
Rodilla V, Benzie AA, Veitch JM, Murray GI, Rowe JD, Hawksworth GM. Glutathione S-transferases in human renal cortex and neoplastic tissue: enzymatic activity, isoenzyme profile and immunohistochemical localization. Xenobiotica 1998; 28:443-56. [PMID: 9622847 DOI: 10.1080/004982598239371] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. Glutathione S-transferase (GST) activity in the cytosol of renal cortex and tumours from eight men and eight women was measured using 1-chloro-2,4-dinitrobenzene (CDNB) as a substrate. GST activities ranged from 685 to 2192 nmol/min/mg protein in cortex (median 1213) and from non-detectable (minimum 45) to 2424 nmol/min/mg protein in tumours (median 469). The activities in the tumours were lower than those in the normal cortices (p < 0.05). 2. In men, the activity in the cortical cytosol was in all cases higher than that measured in the corresponding tumours (p < 0.05). In women, the difference in activity between cortices and tumours was not significantly different (p > 0.05). 3. The age of the patients ranged from 42 to 81 years (median 62) and was not found to play a role in the levels of GST activity observed in cortex or in renal tumours from either sex. 4. Immunoblotting and immunohistochemical studies confirmed that GST-alpha was the predominant form expressed both in normal cortex and tumour and probably accounted for most of the GST activity present in these samples. GST-mu and GST-phi were expressed in both tumours and normal cortex and, while in some cases the level of expression in the cortices was higher than that found in the tumours, the reverse was also observed. Within the GST-mu class, GST M1/M2 was only detected in one sample (tumour), which showed the highest overall expression of GST-mu. GSTM3 was the predominant isoenzyme of the mu class in normal and tumour tissue, whereas GTM4 and GSTM5 were not detected. 5. These differences could have functional significance where xenobiotics or cytotoxic drugs are specific substrates for the different classes of GSTs.
Collapse
Affiliation(s)
- V Rodilla
- Department of Medicine, University of Aberdeen, Foresterhill, UK
| | | | | | | | | | | |
Collapse
|
4
|
Sun YJ, Kuan IC, Tam MF, Hsiao CD. The three-dimensional structure of an avian class-mu glutathione S-transferase, cGSTM1-1 at 1.94 A resolution. J Mol Biol 1998; 278:239-52. [PMID: 9571047 DOI: 10.1006/jmbi.1998.1716] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutathione S-transferase cGSTM1-1, an avian class-mu enzyme with high sequence identity with rGSTM3-3, was expressed heterologously in Escherichia coli. The three-dimensional structure of this protein that co-crystallized with an inhibitor, S-hexylglutathione, was determined by the molecular replacement method and refined to 1.94 A resolution. The three-dimensional structure and the folding topology of the dimeric cGSTM1-1 closely resembles those of other class-mu GSTs. The bound inhibitor, S-hexylglutathione, orients in disparate directions in the two subunits. The combined space occupied by the hexyl moiety of the inhibitors overlaps with that reported for rGSTM1-1 co-crystallized with (9 S,10 S)-9-(S-glutathionyl)-10-hydroxy-9,10-dihydrophenanthrene. Conformational differences at a flexible loop (residue 35 to 40) were also observed between the crystal structures of cGSTM1-1 and rGSTM1-1.cGSTM1-1 has the highest epoxidase activity among all the class-mu enzymes reported. Tyr115, has been identified as a residue that participates in the epoxidase activity of class-mu glutathione S-transferase and is conserved in cGSTM1-1. The epoxidase and trans-4-phenyl-3-buten-2-one conjugating activity of cGSTM1-1 are decreased drastically but not abolished by replacing Tyr115 with phenylalanine. The specificity constant of the cGSTM1-1(Y115F) mutant, with 1-chloro-2,4-dinitrobenzene as substrate, is 15-fold higher than that of the wild-type enzyme.
Collapse
Affiliation(s)
- Y J Sun
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, 11529, Republic of China
| | | | | | | |
Collapse
|
5
|
Rowe JD, Patskovsky YV, Patskovska LN, Novikova E, Listowsky I. Rationale for reclassification of a distinctive subdivision of mammalian class Mu glutathione S-transferases that are primarily expressed in testis. J Biol Chem 1998; 273:9593-601. [PMID: 9545290 DOI: 10.1074/jbc.273.16.9593] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A rat testicular Mu-class glutathione S-transferase (GST) resolved by reversed-phase high performance liquid chromatography cross-reacted with peptide sequence-specific antisera raised against the human hGSTM3 subunit. Electrospray ionization mass spectrometry indicated that this rat GST subunit (designated rGSTM5 in this report) has a significantly greater molecular mass (26,541 Da) than the other rat GST subunits. The mouse homologue (mGSTM5 subunit) was also identified and characterized by high performance liquid chromatography and electrospray ionization mass spectrometry. Sequence analysis of rGSTM5 peptide fragments and the sequence deduced from a cDNA clone showed that the protein is highly homologous to the hGSTM3 and murine mGSTM5 subunits. All three GSTs of this subclass have N- and C-terminal extensions with C-terminal cysteine residues, but the two penultimate amino acids near the C terminus are divergent in the three species. The proteins of this class Mu subfamily have similar catalytic specificities and mechanisms, are all cysteine rich, are found mainly in testis, and share characteristics that distinguish them from other GSTs. Moreover, the rGSTM5 subunit isolated from rat testis was not found in heterodimeric combination with other common Mu-class GST subunits. As the rGSTM5, mGSTM5, and hGSTM3 subunits are structurally more closely related to each other than they are to other Mu GSTs, it is proposed that they be considered a functionally distinct and separate subfamily within class Mu. The identification of this unique mammalian GST subclass could advance strategies for interspecies comparisons of GSTs and provides a rodent model for studies on functions and regulatory mechanisms for human GSTs.
Collapse
Affiliation(s)
- J D Rowe
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
6
|
Guengerich FP, Gillam EM, Shimada T. New applications of bacterial systems to problems in toxicology. Crit Rev Toxicol 1996; 26:551-83. [PMID: 8891430 DOI: 10.3109/10408449609037477] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Bacterial systems have long been of use in toxicology. In addition to providing general models of enzymes and paradigms for biochemistry and molecular biology, they have been adapted to practical genotoxicity assays. More recently, bacteria also have been used in the production of mammalian enzymes of relevance to toxicology. Escherichia coli has been used to express cytochrome P450, NADPH-cytochrome P450 reductase, flavin-containing monooxygenase, glutathione S-transferase, quinone reductase, sulfotransferase, N-acetyltransferase, UDP-glucuronosyl transferase, and epoxide hydrolase enzymes from humans and experimental animals. The expressed enzymes have been utilized in a variety of settings, including coupling with bacterial genotoxicity assays. Another approach has involved expression of mammalian enzymes directly in bacteria for use in genotoxicity systems. Particularly with Salmonella typhimurium. Applications include both the reversion mutagenesis assay and a system using a chimera with an SOS-response indicator and a reporter.
Collapse
Affiliation(s)
- F P Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|
7
|
Abramovitz M, Testori A, Angelov IV, Darmon A, Listowsky I. Brain and testis selective expression of the glutathione S-transferase Yb3 subunit is governed by tandem direct repeat octamer motifs in the 5'-flanking region of its gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 28:37-46. [PMID: 7707876 DOI: 10.1016/0169-328x(94)00182-e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To gain insight into mechanisms of cell type-specific transcription of class mu-glutathione S-transferase genes, the gene encoding the Yb3 subunit was cloned. Yb3 subunits are selectively expressed at high levels in rat brain and testis but not in liver or kidney. The Yb3 subunit gene spans over 6 kb and consists of 8 exons and 7 introns and a sequence consisting of tandem direct repeat consensus octamer DNA binding motifs separated by a 6 base pair (bp) spacer was identified in its 5'-flanking region. Gel shift assays with a 40 bp segment of DNA containing the two consensus octamer sequences, revealed the presence of specific binding proteins in nuclear extracts of rat brain, testis and C6 glioma cells. DNA binding activity was greatly reduced in liver, kidney and HTC cells. Reporter vectors carrying segments of the 5'-flanking region of the Yb3 subunit gene fused to a luciferase gene were introduced into C6 glioma cells which express high levels of Yb3 subunits, and into HTC cells which do not. The plasmids consisting of the Yb3 gene promoter up to, but not including, the octamer motifs did not support luciferase transcription in the C6 glioma cells, but larger fragments that included the octamer repeat sequences, effectively directed transcription in the C6 glioma cells. With mutated octameric sequences transcriptional activity was greatly reduced, and none of the same Yb3 constructs directed substantial luciferase transcription in the HTC cells. The results show that octamer motifs in the 5'-flanking region of the Yb3 subunit gene are functional and are the principal cis-acting elements that account for its discrete cell type-selective expression. This gene is one of the few known targets for octamer DNA binding transcription factors in brain.
Collapse
Affiliation(s)
- M Abramovitz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | | | | |
Collapse
|
8
|
Rozell B, Hansson HA, Guthenberg C, Tahir MK, Mannervik B. Glutathione transferases of classes alpha, mu and pi show selective expression in different regions of rat kidney. Xenobiotica 1993; 23:835-49. [PMID: 8284940 DOI: 10.3109/00498259309059412] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. Glutathione transferases (GST) are mainly cytosolic and occur in multiple forms, which can be arranged in three distinct, structural classes. The different enzyme forms show distinct substrate specificities with electrophilic and genotoxic substances. The expression of the alpha subunits 1, 2 and 8, the mu subunits 3, 4 and 6, and the pi subunit 7 of GST in different parts of the rat kidney was determined immunohistochemically. 2. GST immunoreactivity was present predominantly in the nephron, collecting duct and urothelium. 3. A conspicuous finding was that subunits 1, 2 and 8 were localized to the proximal tubules, while the mu subunit 3 was demonstrable in epithelial tubular cells from the distal tubules to the urothelium. The immunoreactivity of subunits 4 and 6 could be visualized in epithelial cells from the ascending thin limb to the collecting ducts. Subunit 7 was found in the thin limb of the loop of Henle, and in scattered cells in the distal tubules. 4. The urothelial cells covering the papilla and the renal calyces showed immunoreactivity to GST subunits 2-4 and 6-8. 5. Thus, in the nephron the class alpha GSTs were selectively expressed in the proximal tubules and the class mu and class pi GST in the thin loop of Henle and distal tubules. The cells in the collecting ducts and the urothelium, which have a different ontogeny than the nephron, do not show any corresponding differential distribution of the GST classes. 6. Cells in a given location were in some cases found to be non-reactive with a given antiserum in an otherwise immunoreactive cell population, demonstrating a spatial variation in GST expression. The immunoreactivity to the different forms of GST was predominantly cytoplasmic but a nuclear localization could also be demonstrated. 7. The panel of antibodies to GST may tentatively be used as markers in localizing lesions in restricted parts of the nephrons and to elucidate dynamic alterations in the tubular system in response to physiological and toxic agents.
Collapse
Affiliation(s)
- B Rozell
- Department of Histology, University of Göteborg, Sweden
| | | | | | | | | |
Collapse
|
9
|
A basis for differentiating among the multiple human Mu-glutathione S-transferases and molecular cloning of brain GSTM5. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)52957-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
Abstract
A new soluble 170-kDa protein (BP170) was found to be present exclusively in the brain of all the vertebrates that we studied by Western immunoblotting. It was not detected in peripheral rat tissues, including heart, kidney, liver, spleen, lung, muscle, adrenal, intestinal mucosa, sciatic nerve, or pituitary. In rat brain, its regional distribution was found to be heterogeneous, with its highest concentration in the cerebrum and its lowest in the hypothalamus, and 89% of it was in the post-microsomal fraction. BP170 constitutes at least 0.05% of the total brain cytosol proteins. Its level increases during development, being the lowest at 5 days and the highest at 90 days postnatal. BP170 is a single-chain polypeptide. It could be partially purified by precipitation with polyethylene glycol followed by column chromatography on Q Sepharose. Although BP170 was identified by an antiserum against puromycin-sensitive aminopeptidase (PSA), the two proteins differ in molecular weight, chromatographic properties, regional and subcellular distribution, developmental changes, immunoreactivity, and enzyme activity. Self-incubation or trypsin treatment of the partially purified BP170 generates no PSA activity, indicating that BP170 is not a PSA precursor. Furthermore, BP170 is neither an inhibitor nor an activator of PSA. Our data suggest that BP170 is a novel brain-specific protein not previously described.
Collapse
Affiliation(s)
- M P Hui
- Peptide Research Laboratory, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| | | | | |
Collapse
|
11
|
Abstract
The glutathione transferases, a family of multifunctional proteins, catalyze the glutathione conjugation reaction with electrophilic compounds biotransformed from xenobiotics, including carcinogens. In preneoplastic cells as well as neoplastic cells, specific molecular forms of glutathione transferase are known to be expressed and have been known to participate in the mechanisms of their resistance to drugs. In this article, following a brief description of recently identified molecular forms, we review new findings regarding the respective molecular forms involved in carcinogenesis and anticancer drug resistance, with particular emphasis on Pi class forms in preneoplastic tissues. The rat Pi class form, GST-P (GST 7-7), is strongly expressed not only in hepatic foci and hepatomas, but also in initiated cells that occur at the very early stages of chemical hepatocarcinogenesis, and is regarded as one of the most reliable markers for preneoplastic lesions in the rat liver. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-responsive element-like sequences have been identified in upstream regions of the GST-P gene, and oncogene products c-jun and c-fos are suggested to activate the gene. The Pi-class forms possess unique enzymatic properties, including broad substrate specificity, glutathione peroxidase activity toward lipid hydroperoxides, low sensitivity to organic anion inhibitors, and high sensitivity to active oxygen species. The possible functions of Pi class glutathione transferases in neoplastic tissues and drug-resistant cells are discussed.
Collapse
Affiliation(s)
- S Tsuchida
- Second Department of Biochemistry, Hirosaki University School of Medicine, Japan
| | | |
Collapse
|
12
|
Campbell E, Takahashi Y, Abramovitz M, Peretz M, Listowsky I. A distinct human testis and brain mu-class glutathione S-transferase. Molecular cloning and characterization of a form present even in individuals lacking hepatic type mu isoenzymes. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38830-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Lai HC, Qian B, Tu CP. Characterization of a variant rat glutathione S-transferase by cDNA expression in Escherichia coli. Arch Biochem Biophys 1989; 273:423-32. [PMID: 2673039 DOI: 10.1016/0003-9861(89)90501-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have isolated a glutathione S-transferase Yb1 subunit cDNA from a lambda gt11 cDNA collection constructed from rat testis poly(A) RNA enriched for glutathione S-transferase mRNA activities. This Yb1 cDNA, designated pGTR201, is identical to our liver Yb1 cDNA clone pGTR200 except for a shorter 5'-untranslated sequence. Active glutathione S-transferase is expressed from this Yb1 cDNA driven by the tac promoter on the plasmid construct pGTR201-KK. The expressed glutathione S-transferase protein begins with the third codon (Met) of the cDNA, and is missing the N-terminal proline of rat liver glutathione S-transferase 3-3. Therefore, our Escherichia coli expressed glutathione S-transferase protein represents a variant form of glutathione S-transferase 3-3 (Yb1Yb1), designated GST 3-3(-1). The expressed Yb1 subunits are assembled into a dimer as purified from sonicated E. coli crude extracts. In the absence of dithiothreitol three active isomers can be resolved by ion-exchange chromatography. The pure protein has an extinction coefficient of 9.21 x 10(4) M-1 cm-1 at 280 nm or E0.1% 280 = 1.78 and a pI at 8.65. It has a substrate specificity pattern similar to that of the authentic glutathione S-transferase 3-3. The GST 3-3(-1) has a KM of 202 microM for reduced GSH and of 36 microM for 1-chloro-2,4-dinitrobenzene. The turnover number for this conjugation reaction is 57 s-1. Results of kinetic studies of this reaction with GST 3-3(-1) are consistent with a sequential substrate binding mechanism. We conclude that the first amino acid proline of glutathione S-transferase 3-3 is not essential for enzyme activities.
Collapse
Affiliation(s)
- H C Lai
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | |
Collapse
|
14
|
Hsieh JC, Liu LF, Chen WL, Tam MF. Expression of Yb1 glutathione S-transferase using a baculovirus expression system. Biochem Biophys Res Commun 1989; 162:1147-54. [PMID: 2669745 DOI: 10.1016/0006-291x(89)90793-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A full-length cDNA clone was isolated for rat liver Yb1 glutathione S-transferase (EC 2.5.1.18). The coding sequence of Yb1 cDNA was inserted into a baculovirus vector for infection of Spodoptera frugiperda (SF9) cells. The enzymatically active recombinant Yb1 glutathione S-transferase protein has a native molecular weight of 42,000 daltons (by molecular sieve chromatography), a subunit molecular weight of 26,500 daltons (by SDS-polyacrylamide gel electrophoresis), a pI of 8.4 and an extinction coefficient E1%280 of 5.6 +/- 0.4.
Collapse
Affiliation(s)
- J C Hsieh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|