1
|
Kim TH, Kim MY, Jo SH, Park JM, Ahn YH. Modulation of the transcriptional activity of peroxisome proliferator-activated receptor gamma by protein-protein interactions and post-translational modifications. Yonsei Med J 2013; 54:545-59. [PMID: 23549795 PMCID: PMC3635639 DOI: 10.3349/ymj.2013.54.3.545] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) belongs to a nuclear receptor superfamily; members of which play key roles in the control of body metabolism principally by acting on adipose tissue. Ligands of PPARγ, such as thiazolidinediones, are widely used in the treatment of metabolic syndromes and type 2 diabetes mellitus (T2DM). Although these drugs have potential benefits in the treatment of T2DM, they also cause unwanted side effects. Thus, understanding the molecular mechanisms governing the transcriptional activity of PPARγ is of prime importance in the development of new selective drugs or drugs with fewer side effects. Recent advancements in molecular biology have made it possible to obtain a deeper understanding of the role of PPARγ in body homeostasis. The transcriptional activity of PPARγ is subject to regulation either by interacting proteins or by modification of the protein itself. New interacting partners of PPARγ with new functions are being unveiled. In addition, post-translational modification by various cellular signals contributes to fine-tuning of the transcriptional activities of PPARγ. In this review, we will summarize recent advancements in our understanding of the post-translational modifications of, and proteins interacting with, PPARγ, both of which affect its transcriptional activities in relation to adipogenesis.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Mi-Young Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Seong-Ho Jo
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Joo-Man Park
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Ho Ahn
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Fujimoto A, Kosaka N, Hasegawa H, Suzuki H, Sugano S, Chiba J. Enhancement of antibody responses to native G protein-coupled receptors using E. coli GroEL as a molecular adjuvant in DNA immunization. J Immunol Methods 2011; 375:243-51. [PMID: 22123185 DOI: 10.1016/j.jim.2011.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/11/2011] [Accepted: 11/11/2011] [Indexed: 12/30/2022]
Abstract
Antibody-based drug research involves the preparation of polyclonal and monoclonal antibodies, especially those that are reactive with native G protein-coupled receptors (GPCRs) on the cell membrane. Here, we report that DNA immunization of mice with a plasmid that encodes endothelin A receptor (ETAR) fused to Escherichia coli (E. coli) GroEL at its C-terminus (ETAR-GroEL) induced very strong and specific antibody responses to native ETAR. Co-injection of plasmids that expressed ETAR and GroEL (ETAR+GroEL) induced significantly lower antibody responses compared with the ETAR-GroEL plasmid. Monoclonal antibodies that are prepared by using GroEL as a molecular adjuvant could be used in immunoassays, such as flow cytometry, western blotting, and immunoprecipitation, to detect both exogenous and endogenous ETAR. The adjuvant activity of GroEL might involve inflammatory cytokine mediators via Toll-like receptor 4 in addition to the anticipated carrier effect. DNA immunization using GroEL might become a standard method for producing antibodies that are useful for the functional analysis of GPCRs.
Collapse
Affiliation(s)
- Akira Fujimoto
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan.
| | | | | | | | | | | |
Collapse
|
3
|
STAGSTED JAN. Journey beyond immunology. Regulation of receptor internalization by major histocompatibility complex class I (MHC-I) and effect of peptides derived from MHC-I. APMIS 2011. [DOI: 10.1111/j.1600-0463.1998.tb05657.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Oncogenic tyrosine kinases target Dok-1 for ubiquitin-mediated proteasomal degradation to promote cell transformation. Mol Cell Biol 2011; 31:2552-65. [PMID: 21536658 DOI: 10.1128/mcb.05045-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cellular transformation induced by oncogenic tyrosine kinases is a multistep process involving activation of growth-promoting signaling pathways and inactivation of suppressor molecules. Dok-1 is an adaptor protein that acts as a negative regulator of tyrosine kinase-initiated signaling and opposes oncogenic tyrosine kinase-mediated cell transformation. Findings that its loss facilitates transformation induced by oncogenic tyrosine kinases suggest that Dok-1 inactivation could constitute an intermediate step in oncogenesis driven by these oncoproteins. However, whether Dok-1 is subject to regulation by oncogenic tyrosine kinases remained unknown. In this study, we show that oncogenic tyrosine kinases, including p210(bcr-abl) and oncogenic forms of Src, downregulate Dok-1 by targeting it for degradation through the ubiquitin-proteasome pathway. This process is dependent on the tyrosine kinase activity of the oncoproteins and is mediated primarily by lysine-dependent polyubiquitination of Dok-1. Importantly, restoration of Dok-1 levels strongly suppresses transformation of cells expressing oncogenic tyrosine kinases, and this suppression is more pronounced in the context of a Dok-1 mutant that is largely refractory to oncogenic tyrosine kinase-induced degradation. Our findings suggest that proteasome-mediated downregulation of Dok-1 is a key mechanism by which oncogenic tyrosine kinases overcome the inhibitory effect of Dok-1 on cellular transformation and tumor progression.
Collapse
|
5
|
Sun XJ, Liu F. Phosphorylation of IRS proteins Yin-Yang regulation of insulin signaling. VITAMINS AND HORMONES 2009; 80:351-87. [PMID: 19251044 DOI: 10.1016/s0083-6729(08)00613-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Growing evidence reveals that insulin signal pathway is not static, but is rather a dynamic, flexible, and fed in by negative (Yin) and positive (Yang) regulation in response to environmental changes. Normal insulin response reflects the balance between Yin and Yang regulation acting upon insulin signaling pathway. Conceivably, imbalance between the Yin and Yang results in abnormal insulin sensitivity such as insulin resistance. IRS-proteins are insulin receptor substrates that mediate insulin signaling via multiple tyrosyl phosphorylations. However, they are also substrates for many serine/threonine kinases downstream of other signaling network and become serine phosphorylated in response to various conditions such as inflammation, stress and over nutrients. The serine phosphorylation of IRS-proteins alters the capacities of IRS-proteins to be phosphorylated on tyrosyl, therefore, able to mediate insulin signaling. The unique structure of IRS-proteins render them idea molecules to fulfill the task to sense the environmental cues and integrate them into insulin sensitivity through serine/threonine phosphorylation. This review intends to summarize the role of IRS-proteins in insulin signaling with focuses on the role of Yin and Yang regulation of insulin signaling pathway. Understanding the dynamic of these complicated regulation net work not only provide us a complete picture of what happens in the normal conditions, but also pathaphysiological conditions such as obesity and insulin resistance.
Collapse
Affiliation(s)
- Xiao Jian Sun
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
6
|
Dok1 mediates high-fat diet-induced adipocyte hypertrophy and obesity through modulation of PPAR-gamma phosphorylation. Nat Med 2008; 14:188-93. [PMID: 18204460 DOI: 10.1038/nm1706] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 12/06/2007] [Indexed: 12/20/2022]
Abstract
Insulin receptor substrate (IRS)-1 and IRS-2 have dominant roles in the action of insulin, but other substrates of the insulin receptor kinase, such as Gab1, c-Cbl, SH2-B and APS, are also of physiological relevance. Although the protein downstream of tyrosine kinases-1 (Dok1) is known to function as a multisite adapter molecule in insulin signaling, its role in energy homeostasis has remained unclear. Here we show that Dok1 regulates adiposity. Expression of Dok1 in white adipose tissue was markedly increased in mice fed a high-fat diet, whereas adipocytes lacking this adapter were smaller and showed a reduced hypertrophic response to this dietary manipulation. Dok1-deficient mice were leaner and showed improved glucose tolerance and insulin sensitivity compared with wild-type mice. Embryonic fibroblasts from Dok1-deficient mice were impaired in adipogenic differentiation, and this defect was accompanied by an increased activity of the protein kinase ERK and a consequent increase in the phosphorylation of peroxisome proliferator-activated receptor (PPAR)-gamma on Ser112. Mutation of this negative regulatory site for the transactivation activity of PPAR-gamma blocked development of the lean phenotype caused by Dok1 ablation. These results indicate that Dok1 promotes adipocyte hypertrophy by counteracting the inhibitory effect of ERK on PPAR-gamma and may thus confer predisposition to diet-induced obesity.
Collapse
|
7
|
Lamkin TJ, Chin V, Yen A. All-trans retinoic acid induces p62DOK1 and p56DOK2 expression which enhances induced differentiation and G0 arrest of HL-60 leukemia cells. Am J Hematol 2006; 81:603-15. [PMID: 16823827 DOI: 10.1002/ajh.20667] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
p62(DOK1) (DOK1) and p56(DOK2) (DOK2) are sequence homologs that act as docking proteins downstream of receptor or nonreceptor tyrosine kinases. Originally identified in chronic myelogenous leukemia cells as a highly phosphorylated substrate for the chimeric p210(bcr-abl) protein, DOK1 was suspected to play a role in leukemogenesis. However, p62(DOK1-/-) fibroblast knockout cells were found to have enhanced MAPK signaling and proliferation due to growth factors, suggesting negative regulatory capabilities for DOK1. The role of DOK1 and DOK2 in leukemogeneis thus is enigmatic. The data in this report show that both the DOK1 and the DOK2 adaptor proteins are constitutively expressed in the myelomonoblastic leukemia cell line, HL-60, and that expression of both proteins is induced by the chemotherapeutic differentiation causing agents, all-trans retinoic acid (atRA) and 1,25-dihydroxyvitamin D3 (VD3). Ectopic expression of either protein enhances atRA- or VD3-induced growth arrest, differentiation, and G(0)/G(1) cell cycle arrest and results in increased ERK1/2 phosphorylation. DOK1 and DOK2 are similarly effective in these capabilities. The data provide evidence that DOK1 and DOK2 proteins have a similar role in regulating cell proliferation and differentiation and are positive regulators of the MAPK signaling pathway in this context.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/drug effects
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Calcitriol/pharmacology
- Cell Cycle/drug effects
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- DNA-Binding Proteins/drug effects
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drug Screening Assays, Antitumor
- Flow Cytometry/methods
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- HL-60 Cells
- Humans
- Leukemia, Myelomonocytic, Acute/drug therapy
- Leukemia, Myelomonocytic, Acute/metabolism
- MAP Kinase Signaling System/drug effects
- Mitogen-Activated Protein Kinase Kinases/drug effects
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Molecular Sequence Data
- Phenotype
- Phosphoproteins/drug effects
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- RNA-Binding Proteins/drug effects
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Resting Phase, Cell Cycle/drug effects
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Signal Transduction/drug effects
- Structure-Activity Relationship
- Time Factors
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Thomas J Lamkin
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
8
|
Okabe S, Fukuda S, Kim YJ, Niki M, Pelus LM, Ohyashiki K, Pandolfi PP, Broxmeyer HE. Stromal cell-derived factor-1alpha/CXCL12-induced chemotaxis of T cells involves activation of the RasGAP-associated docking protein p62Dok-1. Blood 2004; 105:474-80. [PMID: 15345598 DOI: 10.1182/blood-2004-03-0843] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Events mediating stromal cell-derived factor-1 (SDF-1alpha/CXCL12) chemotaxis of lymphocytes are not completely known. We evaluated intracellular signaling through RasGAP-associated protein p62Dok-1 (downstream of tyrosine kinase [Dok-1]) and associated proteins. SDF-1alpha/CXCL12 stimulated Dok-1 tyrosine phosphorylation and association with RasGAP, adaptor protein p46Nck, and Crk-L in Jurkat T cells. The phosphorylation of Dok-1 was blocked by pretreatment of cells with the src kinase inhibitor PP2. Src kinase family member Lck was implicated. SDF-1alpha/CXCL12 did not phosphorylate Dok-1 in J.CaM1.6 cells, a Jurkat derivative not expressing Lck, but did phosphorylate Dok-1 in J.CaM1.6 cells expressing Lck. SDF-1alpha/CXCL12 induced the tyrosine phosphorylation of Pyk2 and the association of Pyk2 with zeta chain-associated protein-70 kilodaltons (Zap-70) and Vav. SDF-1alpha/CXCL12 enhanced the association of RasGAP with Pyk2. CXCR4-expressing NIH3T3 and Baf3 cells transfected with full-length Dok-1 cDNA were suppressed in their responses to SDF-1alpha/CXCL12-induced chemotaxis; mitogen-activated protein (MAP) kinase activity was also decreased. Chemotaxis to SDF-1/CXCL12 was significantly enhanced in Dok-1(-/-) CD4+ and CD8+ splenic T cells. These results implicate Dok-1, Nck, Crk-L, and Src kinases-especially Lck, Pyk2, Zap-70, Vav, and Ras-GAP-in intracellular signaling by SDF-1alpha/CXCL12, and they suggest that Dok-1 plays an important role in SDF-1alpha/CXCL12-induced chemotaxis in T cells.
Collapse
Affiliation(s)
- Seiichi Okabe
- Department of Microbiology/Immunology and the Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Wick MJ, Dong LQ, Hu D, Langlais P, Liu F. Insulin receptor-mediated p62dok tyrosine phosphorylation at residues 362 and 398 plays distinct roles for binding GTPase-activating protein and Nck and is essential for inhibiting insulin-stimulated activation of Ras and Akt. J Biol Chem 2001; 276:42843-50. [PMID: 11551902 DOI: 10.1074/jbc.m102116200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A GTPase-activating protein (GAP)-associated 60-kDa protein has been found to undergo rapid tyrosine phosphorylation in response to insulin stimulation. However, whether this protein is a direct in vivo substrate for the insulin receptor (IR) tyrosine kinase and whether the tyrosine phosphorylation plays a role in insulin signaling remain to be established. Here we show that the insulin-stimulated tyrosine phosphorylation of the GAP-associated protein, now identified as p62(dok), is inhibited by Grb10, an adaptor protein that binds directly to the kinase domain of the IR, both in vitro and in cells. Replacing Tyr(362) and Tyr(398) with phenylalanine greatly decreased the IR-catalyzed p62(dok) tyrosine phosphorylation in vitro, suggesting that these two residues are the major IR-mediated phosphorylation sites. However, mutations at Tyr(362) and Tyr(398) only partially blocked insulin-stimulated p62(dok) tyrosine phosphorylation in cells, indicating that p62(dok) is also a target for other cellular tyrosine kinase(s) in addition to the IR. Replacing Tyr(362) with phenylalanine abolished the interaction between p62(dok) and Nck. Mutations at Tyr(362/398) of p62(dok) disrupted the interaction between p62(dok) and GAP and decreased the inhibitory effect of p62(dok) on the insulin-stimulated activation of Ras and Akt, but not mitogen-activated protein kinase. Furthermore, the inhibitory effect of p62(dok) on Akt phosphorylation could be blocked by coexpression of a constitutively active Ras. Taken together, our findings indicate that p62(dok) is a direct substrate for the IR tyrosine kinase and that phosphorylation at Tyr(362) and Tyr(398) plays an essential role for p62(dok) to interact with its effectors and negatively regulate the insulin signaling pathway.
Collapse
Affiliation(s)
- M J Wick
- Department of Pharmacology and Biochemistry, the University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
The 68 kDa Src substrate associated during mitosis (Sam68) is an RNA binding protein with Src homology (SH) 2 and 3 domain binding sites. We have recently found that Sam68 is a substrate of the insulin receptor (IR) and that Tyr-phosphorylated Sam68 associates with the SH2 domains of p85 PI3K. In the present work, using HTC-IR cells, we have found that insulin stimulation promotes the relocalization of Sam68 from the nucleus to the cytoplasm, and we have further studied the role of Sam68 in insulin receptor signaling complexes, by co-precipitating experiments. Thus, Sam68 is co-precipitated with p85 PI3K, IRS-1 and IR. The association of Sam68 with these complexes is mediated by the SH2 domains of PI3K. Moreover, we have found that Sam68 is a p120GAP associated protein after Tyr-phosphorylation by the IR. This association is mediated by the SH2 domains of GAP (preferentially the C-terminal SH2). Thus, Sam68 is linking p120GAP to PI3K signaling pathway. In fact, PI3K activity was increased in both anti-Sam68 and anti-GAP immmunoprecipitates upon insulin stimulation. We propose that the recruitment of the docking protein Sam68 to the PI3K pathway may serve to allow the association of other signaling molecules, i.e. p120GAP. In this way, these signaling complexes may modulate other signaling cascades of IR, such as p21Ras pathway.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, University of Seville and Investigation Unit, University Hospital Virgen Macarena, Av. Sanchez Pizjuan 4, 41009 Seville, Spain.
| | | |
Collapse
|
11
|
Di Cristofano A, Niki M, Zhao M, Karnell FG, Clarkson B, Pear WS, Van Aelst L, Pandolfi PP. p62(dok), a negative regulator of Ras and mitogen-activated protein kinase (MAPK) activity, opposes leukemogenesis by p210(bcr-abl). J Exp Med 2001; 194:275-84. [PMID: 11489947 PMCID: PMC2193466 DOI: 10.1084/jem.194.3.275] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2001] [Accepted: 06/12/2001] [Indexed: 12/31/2022] Open
Abstract
p62(dok) has been identified as a substrate of many oncogenic tyrosine kinases such as the chronic myelogenous leukemia (CML) chimeric p210(bcr-abl) oncoprotein. It is also phosphorylated upon activation of many receptors and cytoplamic tyrosine kinases. However, the biological functions of p62(dok) in normal cell signaling as well as in p210(bcr-abl) leukemogenesis are as yet not fully understood. Here we show, in hemopoietic and nonhemopoietic cells derived from p62(dok)-(/)- mice, that the loss of p62(dok) results in increased cell proliferation upon growth factor treatment. Moreover, Ras and mitogen-activated protein kinase (MAPK) activation is markedly sustained in p62(dok)-(/)- cells after the removal of growth factor. However, p62(dok) inactivation does not affect DNA damage and growth factor deprivation-induced apoptosis. Furthermore, p62(dok) inactivation causes a significant shortening in the latency of the fatal myeloproliferative disease induced by retroviral-mediated transduction of p210(bcr-abl) in bone marrow cells. These data indicate that p62(dok) acts as a negative regulator of growth factor-induced cell proliferation, at least in part through downregulating Ras/MAPK signaling pathway, and that p62(dok) can oppose leukemogenesis by p210(bcr-abl).
Collapse
MESH Headings
- Animals
- Cell Division
- Cells, Cultured
- DNA-Binding Proteins
- Enzyme Activation
- Fusion Proteins, bcr-abl/metabolism
- Gene Targeting
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/prevention & control
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinases/metabolism
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- RNA-Binding Proteins
- Signal Transduction
- ras Proteins/metabolism
Collapse
Affiliation(s)
| | - Masaru Niki
- Department of Human Genetics, Molecular Biology Program
| | - Mingming Zhao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Fredrick G. Karnell
- Department of Pathology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Bayard Clarkson
- Department of Medicine, Molecular Pharmacology and Therapeutics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | - Warren S. Pear
- Department of Pathology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | | | | |
Collapse
|
12
|
Zhao M, Schmitz AA, Qin Y, Di Cristofano A, Pandolfi PP, Van Aelst L. Phosphoinositide 3-kinase-dependent membrane recruitment of p62(dok) is essential for its negative effect on mitogen-activated protein (MAP) kinase activation. J Exp Med 2001; 194:265-74. [PMID: 11489946 PMCID: PMC2193463 DOI: 10.1084/jem.194.3.265] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2001] [Accepted: 06/12/2001] [Indexed: 11/29/2022] Open
Abstract
A major pathway by which growth factors, such as platelet-derived growth factor (PDGF), regulate cell proliferation is via the receptor tyrosine kinase/Ras/mitogen-activated protein kinase (MAPK) signaling cascade. The output of this pathway is subjected to tight regulation of both positive and negative regulators. One such regulator is p62(dok), the prototype of a newly identified family of adaptor proteins. We recently provided evidence, through the use of p62(dok)-deficient cells, that p62(dok) acts as a negative regulator of growth factor-induced cell proliferation and the Ras/MAPK pathway. We show here that reintroduction of p62(dok) into p62(dok)-(/)- cells can suppress the increased cell proliferation and prolonged MAPK activity seen in these cells, and that plasma membrane recruitment of p62(dok) is essential for its function. We also show that the PDGF-triggered plasma membrane translocation of p62(dok) requires activation of phosphoinositide 3-kinase (PI3-kinase) and binding of its pleckstrin homology (PH) domain to 3'-phosphorylated phosphoinositides. Furthermore, we demonstrate that p62(dok) can exert its negative effect on the PDGFR/MAPK pathway independently of its ability to associate with RasGAP and Nck. We conclude that p62(dok) functions as a negative regulator of the PDGFR/Ras/MAPK signaling pathway through a mechanism involving PI3-kinase-dependent recruitment of p62(dok) to the plasma membrane.
Collapse
Affiliation(s)
- Mingming Zhao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Molecular and Cell Biology Graduate Program, State University of New York at Stony Brook, Stony Brook, New York 11733
| | | | - Yi Qin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Antonio Di Cristofano
- Department of Human Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | - Pier Paolo Pandolfi
- Department of Human Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Molecular and Cell Biology Graduate Program, State University of New York at Stony Brook, Stony Brook, New York 11733
| |
Collapse
|
13
|
Marandi S, De Keyser N, Saliez A, Maernoudt AS, Sokal EM, Stilmant C, Rider MH, Buts JP. Insulin signal transduction in rat small intestine: role of MAP kinases in expression of mucosal hydrolases. Am J Physiol Gastrointest Liver Physiol 2001; 280:G229-40. [PMID: 11208545 DOI: 10.1152/ajpgi.2001.280.2.g229] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The postreceptor events regulating the signal of insulin downstream in rat intestinal cells have not yet been analyzed. Our objectives were to identify the nature of receptor substrates and phosphorylated proteins involved in the signaling of insulin and to investigate the mechanism(s) by which insulin enhances intestinal hydrolases. In response to insulin, the following proteins were rapidly phosphorylated on tyrosine residues: 1) insulin receptor substrates-1 (IRS-1), -2, and -4; 2) phospholipase C-isoenzyme-gamma; 3) the Ras-GTPase-activating protein (GAP) associated with Rho GAP and p62(Src); 4) the insulin receptor beta-subunit; 5) the p85 subunits of phosphatidylinositol 3-kinase (PI 3-kinase); 6) the Src homology 2 alpha-collagen protein; 7) protein kinase B; 8) mitogen-activated protein (MAP) kinase-1 and -2; and 9) growth receptor-bound protein-2. Compared with controls, insulin enhanced the intestinal activity of MAP kinase-2 and protein kinase B by two- and fivefold, respectively, but did not enhance p70/S6 ribosomal kinase. Administration of an antireceptor antibody or MAP-kinase inhibitor PD-98059 but not a PI 3-kinase inhibitor (wortmannin) to sucklings inhibited the effects of insulin on mucosal mass and enzyme expression. We conclude that normal rat enterocytes express all of the receptor substrates and mediators involved in different insulin signaling pathways and that receptor binding initiates a signal enhancing brush-border membrane hydrolase, which appears to be regulated by the cascade of MAP kinases but not by PI 3-kinase.
Collapse
Affiliation(s)
- S Marandi
- Laboratory of Pediatric Gastroenterology and Nutrition, Christian de Duve Institute of Cellular and Molecular Pathology, Université Catholique de Louvain, 1200 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sattler M, Verma S, Pride YB, Salgia R, Rohrschneider LR, Griffin JD. SHIP1, an SH2 domain containing polyinositol-5-phosphatase, regulates migration through two critical tyrosine residues and forms a novel signaling complex with DOK1 and CRKL. J Biol Chem 2001; 276:2451-8. [PMID: 11031258 DOI: 10.1074/jbc.m006250200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SHIP1 is an SH2 domain containing inositol-5-phosphatase that appears to be a negative regulator of hematopoiesis. The tyrosine kinase oncogene BCR/ABL drastically reduces expression of SHIP1. The major effect of re-expressing SHIP1 in BCR/ABL-transformed cells is reduction of hypermotility. To investigate the potential signaling pathways involving SHIP1 in hematopoietic cells, we overexpressed SHIP1 in a murine BCR/ABL-transformed Ba/F3 cell line and identified SHIP1-associated proteins. SHIP1 was found to form a novel signaling complex with BCR/ABL that includes DOK1 (p62(DOK)), phosphatidylinositol 3-kinase (PI3K), and CRKL, each of which has been previously shown to regulate migration in diverse cell types. We found that DOK1 binds directly through its PTB domain to SHIP1. Direct interaction of SHIP1 with CRKL was mediated through the CRKL-SH2 domain. Co-precipitation experiments suggest that Tyr(917) and Tyr(1020) in SHIP1 are likely to mediate interactions with DOK1. In contrast to wild type SHIP1, expression of tyrosine mutant SHIP1 by transient transfection did not alter migration. PI3K was likely linked to this complex by CRKL. Thus, this complex may serve to generate a very specific set of phosphoinositol products, possibly involved in regulating migration. Overall, these data suggest that proteins that interact with SHIP1 through Tyr(917) and Tyr(1020), such as DOK1 and SHC, are likely to be involved in the regulation of SHIP1 dependent migration.
Collapse
Affiliation(s)
- M Sattler
- Dana-Farber Cancer Institute, Department of Adult Oncology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Yoshida K, Yamashita Y, Miyazato A, Ohya K, Kitanaka A, Ikeda U, Shimada K, Yamanaka T, Ozawa K, Mano H. Mediation by the protein-tyrosine kinase Tec of signaling between the B cell antigen receptor and Dok-1. J Biol Chem 2000; 275:24945-52. [PMID: 10823839 DOI: 10.1074/jbc.m909012199] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A variety of growth factor receptors induce the tyrosine phosphorylation of a nonreceptor protein-tyrosine kinase Tec as well as that of a Tec-binding protein of 62 kDa. Given the similarity in properties between this 62-kDa protein and p62(Dok-1), the possibility that these two proteins are identical was investigated. Overexpression of a constitutively active form of Tec in a pro-B cell line induced the hyperphosphorylation of endogenous Dok-1. Tec also associated with Dok-1 in a phosphorylation-dependent manner in 293 cells. Tec mediated marked phosphorylation of Dok-1 both in vivo and in vitro, and this effect required both the Tec homology and Src homology 2 domains of Tec in addition to its kinase activity. Expression of Dok-1 in 293 cells induced inhibition of Ras activity, suggesting that Dok-1 is a negative regulator of Ras. In the immature B cell line Ramos, cross-linking of the B cell antigen receptor (BCR) resulted in tyrosine phosphorylation of Dok-1, and this effect was markedly inhibited by expression of dominant negative mutants of Tec. Furthermore, overexpression of Dok-1 inhibited activation of the c-fos promoter induced by stimulation of the BCR. These results suggest that Tec is an important mediator of signaling from the BCR to Dok-1.
Collapse
Affiliation(s)
- K Yoshida
- Division of Functional Genomics, Departments of Hematology and Cardiology, Jichi Medical School, Kawachi-gun, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Choi WS, Sung CK. Characterization of insulin receptor substrate 3 in rat liver derived cells. Biochem Biophys Res Commun 2000; 272:953-8. [PMID: 10860857 DOI: 10.1006/bbrc.2000.2869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In rat liver derived HTC cells transfected with and expressing human insulin receptors, there are multiple p60-70 proteins that are tyrosine phosphorylated following insulin treatment of cells. Employing antibodies to insulin receptor substrate 3 (alpha-IRS-3), we found that IRS-3 is a major p60 phosphoprotein that is tyrosine phosphorylated following insulin treatment of cells and interacts with phosphatidylinositol-3-kinase (PI3K). Majority of IRS-3 when phosphorylated appears to interact with PI3K. Tyrosine phosphorylation of IRS-3 is robust at 2 min and steadily increases up to 30-90 min of insulin treatment. Following insulin treatment of cells, some high molecular weight phosphoproteins are coimmunoprecipitated with alpha-IRS-3. In summary, IRS-3 is the major p60 protein that is tyrosine phosphorylated and interacts with PI3K in HTC rat liver derived cells following insulin treatment of cells. Unlike related IRS-1/2 that is transiently phosphorylated, IRS-3 shows robust and prolonged tyrosine phosphorylation upon insulin treatment of cells and may play a role in delayed and/or prolonged insulin actions.
Collapse
Affiliation(s)
- W S Choi
- Department of Physiology and Biophysics, University of Southern California, Los Angeles 90033, USA
| | | |
Collapse
|
17
|
Langlais P, Dong LQ, Hu D, Liu F. Identification of Grb10 as a direct substrate for members of the Src tyrosine kinase family. Oncogene 2000; 19:2895-903. [PMID: 10871840 DOI: 10.1038/sj.onc.1203616] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Treatment of cells with insulin and protein tyrosine phosphatase inhibitors such as vanadate and pervanadate resulted in the tyrosine phosphorylation of Grb10, a Src homology 2 (SH2) and pleckstrin homology domain-containing adaptor protein which binds to a number of receptor tyrosine kinases including the insulin receptor (IR). Although Grb10 binds directly to the kinase domain of the IR, our data show that Grb10 is not a direct substrate for the IR tyrosine kinase. Consistent with this finding, Grb10 tyrosine phosphorylation in cells was inhibited by herbimycin A, a relatively specific inhibitor for members of the Src tyrosine kinase family, and by the expression of dominant negative Src or Fyn. In addition, Grb10 tyrosine phosphorylation was stimulated by expression of constitutively active Src or Fyn in cells and by incubation with purified Src or Fyn in vitro. The insulin stimulated or Src/Fyn-mediated tyrosine phosphorylation in vivo was significantly reduced when Grb10 tyrosine 67 was changed to glycine. This mutant form of Grb10 bound with higher affinity to the IR in cells than that of the wild-type protein, suggesting that tyrosine phosphorylation of Grb10 may normally negatively regulate its binding to the IR. Our data show that Grb10 is a new substrate for members of the Src tyrosine kinase family and that the tyrosine phosphorylation of the protein may play a potential role in cell signaling processes mediated by these kinases. Oncogene (2000).
Collapse
Affiliation(s)
- P Langlais
- Department of Pharmacology and Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, TX 78229, USA
| | | | | | | |
Collapse
|
18
|
Goldwaser I, Gefel D, Gershonov E, Fridkin M, Shechter Y. Insulin-like effects of vanadium: basic and clinical implications. J Inorg Biochem 2000; 80:21-5. [PMID: 10885459 DOI: 10.1016/s0162-0134(00)00035-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Most mammalian cells contain vanadium at a concentration of about 20 nM, the bulk of which is probably in the reduced vanadyl (+4) form. Although this trace element is essential and should be present in the diet in minute quantities, no known physiological role for vanadium has been found thus far. In the late 1970s the vanadate ion was shown to act as an efficient inhibitor of Na+,K+-ATPase as well as of other related phosphohydrolases. In 1980 vanadium was reported to mimic the metabolic effects of insulin in rat adipocytes. During the last decade, vanadium has been found to act in an insulin-like manner in all three main target tissues of the hormone, namely skeletal muscles, adipose, and liver. Subsequent studies revealed that the action of vanadium salts is mediated through insulin-receptor independent alternative pathway(s). The investigation of the antidiabetic potency of vanadium soon ensued. Vanadium therapy was shown to normalize blood glucose levels in STZ-rats and to cure many hyperglycemia-related deficiencies. Therapeutic effects of vanadium were then demonstrated in type II diabetic rodents, which do not respond to exogenously administered insulin. Finally, clinical studies indicated encouraging beneficial effects. A major obstacle, however, is overcoming vanadium toxicity. Recently, several organically chelated vanadium compounds were found more potent and less toxic than vanadium salts in vivo. Such a newly discovered organic chelator of vanadium is described in this review.
Collapse
Affiliation(s)
- I Goldwaser
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
19
|
Winnay JN, Brüning JC, Burks DJ, Kahn CR. Gab-1-mediated IGF-1 signaling in IRS-1-deficient 3T3 fibroblasts. J Biol Chem 2000; 275:10545-50. [PMID: 10744748 DOI: 10.1074/jbc.275.14.10545] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insulin receptor substrate (IRS) family of proteins mediate a variety of intracellular signaling events by serving as signaling platforms downstream of several receptor tyrosine kinases including the insulin and insulin-like growth factor-1 (IGF-1) receptors. Recently, several new members of this family have been identified including IRS-3, IRS-4, and growth factor receptor-binding protein 2-associated binder-1 (Gab-1). 3T3 cell lines derived from IRS-1-deficient embryos exhibit a 70-80% reduction in IGF-1-stimulated S-phase entry and a parallel decrease in the induction of the immediate-early genes c-fos and egr-1 but unaltered activation of the mitogen-activated protein kinases extracellular signal-regulated kinase-1 and extracellular signal-regulated kinase-2. Reconstitution of IRS-1 expression in IRS-1-deficient fibroblasts by retroviral mediated gene transduction is capable of restoring these defects. Overexpression of Gab-1 in IRS-1-deficient fibroblasts also results in the restoration of egr-1 induction to levels similar to those achieved by IRS-1 reconstitution and markedly increases IGF-1-stimulated S-phase progression. Gab-1 is capable of regulating these biological end points despite the absence of IGF-1 stimulated tyrosine phosphorylation. These data provide evidence that Gab-1 may serve as a unique signaling intermediate in insulin/IGF-1 signaling for induction of early gene expression and stimulation of mitogenesis without direct tyrosine phosphorylation.
Collapse
Affiliation(s)
- J N Winnay
- Division of Cellular and Molecular Physiology, Joslin Diabetes Center and the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
20
|
Sánchez-Margalet V. Stimulation of glycogen synthesis by insulin requires S6 kinase and phosphatidylinositol-3-kinase in HTC-IR cells. J Cell Physiol 2000; 182:182-8. [PMID: 10623881 DOI: 10.1002/(sici)1097-4652(200002)182:2<182::aid-jcp6>3.0.co;2-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In order to study the role of phosphatidylinositol-3-kinase (PI3K), PKB, FRAP, S6 kinase, and MAP kinase in insulin-stimulated glycogen synthesis, we used a specific inhibitor of PI3K, LY294002, the immunosuppressant inhibitor of FRAP, rapamycin, and the inhibitor of MAPK kinase (MEK)/MAPK, PD98059, in rat HTC hepatoma cells overexpressing human insulin receptors. The PI3K inhibitor LY294002 completely blocks insulin-stimulated glycogen synthesis by inhibiting glycogen synthase, PKB (Akt-1), and FRAP (RAFT) autophosphorylation, as well as p70 S6 kinase activation, whereas insulin receptor substrates tyrosine phosphorylation and MEK activity were not affected. However, rapamycin only partially blocks insulin-stimulated glycogen synthesis by partial inhibition of glycogen synthase, whereas it completely blocks S6 kinase activation and FRAP autophosphorylation, but does not affect either PKB autophosphorylation, MEK activity, or insulin receptor tyrosine phosphorylation. Insulin-stimulated glycogen synthesis and glycogen synthase were not affected by the MEK/MAPK inhibitor PD98059. These data suggest that the PI3K, and not the MAPK pathway plays an important role in the insulin-stimulated glycogen synthesis in the hepatocyte, partly mediated by FRAP and S6 kinase activation. However, the inhibition of FRAP and S6 kinase activation is not sufficient to block insulin-stimulated glycogen synthesis, suggesting an important role of a branching pathway upstream of S6 kinase and downstream of PI3K, which is probably mediated by PKB in the signaling of the insulin receptor in hepatoma HTC cells.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina, Universidad de Sevilla; Unidad de Investigación del Hospital Universitario Virgen Macarena, Sevilla, Spain.
| |
Collapse
|
21
|
Berg KL, Siminovitch KA, Stanley ER. SHP-1 regulation of p62(DOK) tyrosine phosphorylation in macrophages. J Biol Chem 1999; 274:35855-65. [PMID: 10585470 DOI: 10.1074/jbc.274.50.35855] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SHP-1 plays key roles in the modulation of hematopoietic cell signaling. To ascertain the impact of SHP-1 on colony-stimulating factor-1 (CSF-1)-mediated survival and proliferative signaling, we compared the CSF-1 responses of primary bone marrow macrophages (BMM) from wild-type and SHP-1-deficient motheaten (me/me) mice. CSF-1-induced protein tyrosine phosphorylation levels were similar in wild-type and me/me BMM, except for the constitutive hyperphosphorylation of a 62-kDa phosphoprotein (pp62) in me/me macrophages. pp62 was identified as the RASGAP-associated p62(DOK) and was shown to be the major CSF-1R-associated tyrosine-phosphorylated protein in CSF-1-treated BMM. p62(DOK) was found to be constitutively associated with SHP-1 in BMM and in 293T cells, co-expressing p62(dok) and either wild-type or catalytically inert SHP-1 (SHP-1 C453S). In both cell types, the interaction of SHP-1 with p62(DOK) occurred independently of p62(DOK) tyrosine phosphorylation, but only the tyrosine-phosphorylated p62(DOK) was bound by SHP-1 C453S in a far Western analysis. These findings suggest a constitutive association of SHP-1 and p62(DOK) that is either conformation-dependent or indirect as well as a direct, inducible association of the SHP-1 catalytic domain with tyrosine-phosphorylated p62(DOK). p62(DOK) hyperphosphorylation is not associated with altered CSF-1-induced RAS signaling or proliferation. However, whereas wild-type macrophages undergo cell death following CSF-1 removal, me/me macrophages exhibit prolonged survival in the absence of growth factor. Thus, p62(DOK) is a major SHP-1 substrate whose tyrosine phosphorylation correlates with growth factor-independent survival in macrophages.
Collapse
Affiliation(s)
- K L Berg
- Department of Developmental Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
22
|
Cong F, Yuan B, Goff SP. Characterization of a novel member of the DOK family that binds and modulates Abl signaling. Mol Cell Biol 1999; 19:8314-25. [PMID: 10567556 PMCID: PMC84915 DOI: 10.1128/mcb.19.12.8314] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A novel member of the p62(dok) family of proteins, termed DOKL, is described. DOKL contains features of intracellular signaling molecules, including an N-terminal PH (pleckstrin homology) domain, a central PTB (phosphotyrosine binding) domain, and a C-terminal domain with multiple potential tyrosine phosphorylation sites and proline-rich regions, which might serve as docking sites for SH2- and SH3-containing proteins. The DOKL gene is predominantly expressed in bone marrow, spleen, and lung, although low-level expression of the RNA can also be detected in other tissues. DOKL and p62(dok) bind through their PTB domains to the Abelson tyrosine kinase in a kinase-dependent manner in both yeast and mammalian cells. DOKL is phosphorylated by the Abl tyrosine kinase in vivo. In contrast to p62(dok), DOKL lacks YxxP motifs in the C terminus and does not bind to Ras GTPase-activating protein (RasGAP) upon phosphorylation. Overexpression of DOKL, but not p62(dok), suppresses v-Abl-induced mitogen-activated protein (MAP) kinase activation but has no effect on constitutively activated Ras- and epidermal growth factor-induced MAP kinase activation. The inhibitory effect requires the PTB domain of DOKL. Finally, overexpression of DOKL in NIH 3T3 cells inhibits the transforming activity of v-Abl. These results suggest that DOKL may modulate Abl function.
Collapse
Affiliation(s)
- F Cong
- Department of Biological Sciences, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
23
|
Ye F, Cayre YE, Thang MN. Evidence for a novel RasGAP-associated protein of 105 kDa in both mature trophoblasts and differentiating choriocarcinoma cells. Biochem Biophys Res Commun 1999; 263:523-7. [PMID: 10491325 DOI: 10.1006/bbrc.1999.1399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel tyrosine-phosphorylated, RasGAP-associated protein of 105 kDa (p105) is found in normal human term placental trophoblasts, as well as in JEG-3 human choriocarcinoma cells induced to differentiate by okadaic acid (OA). This p105 RasGAP-associated protein is distinct from other RasGAP-associated proteins described so far, none of which has either a molecular size close to p105 or a trophoblastic cell origin. The p105 appears, accompanied by p120 and p100 RasGAP expression, after OA treatment of JEG-3 cells but is almost undetectable in the absence of stimulation. Moreover, the p105 is the first discovered RasGAP-associated protein bound to p100 RasGAP. The natural occurrence of the p105 in normal mature trophoblasts isolated from human term placenta suggests that it may be linked to the differentiation state of human trophoblasts. Hence, this p105 RasGAP-associated protein might be considered a marker of human trophoblast differentiation.
Collapse
Affiliation(s)
- F Ye
- Institut Nationale de la Santé et de la Recherche Médicale U. 417, Hôpital Saint-Antoine, Paris, 75012, France.
| | | | | |
Collapse
|
24
|
Chaika OV, Chaika N, Volle DJ, Hayashi H, Ebina Y, Wang LM, Pierce JH, Lewis RE. Mutation of tyrosine 960 within the insulin receptor juxtamembrane domain impairs glucose transport but does not inhibit ligand-mediated phosphorylation of insulin receptor substrate-2 in 3T3-L1 adipocytes. J Biol Chem 1999; 274:12075-80. [PMID: 10207032 DOI: 10.1074/jbc.274.17.12075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CSF-1 is equipotent to insulin in its ability to stimulate 2-[3H]deoxyglucose uptake in 3T3-L1 adipocytes expressing the colony stimulating factor-1 receptor/insulin receptor chimera (CSF1R/IR). However, CSF-1-stimulated glucose uptake and glycogen synthesis is reduced by 50% in comparison to insulin in 3T3-L1 cells expressing a CSF1R/IR mutated at Tyr960 (CSF1R/IRA960). CSF-1-treated adipocytes expressing the CSF1R/IRA960 were impaired in their ability to phosphorylate insulin receptor substrate 1 (IRS-1) but not in their ability to phosphorylate IRS-2. Immunoprecipitation of IRS proteins followed by Western blotting revealed that the intact CSF1R/IR co-precipitates with IRS-2 from CSF-1-treated cells. In contrast, the CSF1R/IRA960 co-precipitates poorly with IRS-2. These observations suggest that Tyr960 is important for interaction of the insulin receptor cytoplasmic domain with IRS-2, but it is not essential to the ability of the insulin receptor tyrosine kinase to use IRS-2 as a substrate. These observations also suggest that in 3T3-L1 adipocytes, tyrosine phosphorylation of IRS-2 by the insulin receptor tyrosine kinase is not sufficient for maximal stimulation of receptor-regulated glucose transport or glycogen synthesis.
Collapse
Affiliation(s)
- O V Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Gustafson TA, Moodie SA, Lavan BE. The insulin receptor and metabolic signaling. Rev Physiol Biochem Pharmacol 1999; 137:71-190. [PMID: 10207305 DOI: 10.1007/3-540-65362-7_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- T A Gustafson
- Metabolex, Inc., Section of Signal Transduction, Hayward, CA 94545, USA
| | | | | |
Collapse
|
26
|
Bhat A, Johnson KJ, Oda T, Corbin AS, Druker BJ. Interactions of p62(dok) with p210(bcr-abl) and Bcr-Abl-associated proteins. J Biol Chem 1998; 273:32360-8. [PMID: 9822717 DOI: 10.1074/jbc.273.48.32360] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 62-kDa Ras GTPase-activating protein (RasGAP)-associated protein is tyrosine-phosphorylated under a variety of circumstances including growth factor stimulation and in cells transformed by activated tyrosine kinases. A cDNA for p62(dok), reported to be the RasGAP-associated 62-kDa protein, was recently cloned from Abl-transformed cells. In this study, the interactions of p62(dok) with Bcr-Abl and associated proteins were examined. In 32D myeloid cells and Rat-1 fibroblasts transformed by p210(bcr-abl), p62(dok) is tyrosine-phosphorylated and co-immunoprecipitates with Bcr-Abl, RasGAP, and CrkL, a Src homology 2 (SH2) and SH3 domain-containing adaptor protein. Tyrosine-phosphorylated p62(dok) from cells expressing p210(bcr-abl) bound directly to the SH2 domains of Abl and CrkL in a gel overlay assay. Previous work has shown that an SH2 domain deletion mutant of Bcr-Abl is defective in transforming fibroblasts but remains capable of inducing myeloid growth factor independence. In both fibroblasts and myeloid cells expressing this mutant, p62(dok) is underphosphorylated as compared with cells expressing full-length p210(bcr-abl) but remains capable of associating with Bcr-Abl. However, in a gel overlay assay, p62(dok) from cells expressing the SH2 domain deletion was incapable of associating directly with SH2 domains of Abl and CrkL. Interestingly, no direct binding between Bcr-Abl and p62(dok) could be demonstrated in a yeast two-hybrid assay. These data suggest that indirect interactions mediate the interaction between Bcr-Abl and p62(dok) and that the SH2 domain of Bcr-Abl is required for hyperphosphorylation of p62(dok). Further, hyperphosphorylation of p62(dok) correlates with the ability of Bcr-Abl to transform fibroblasts but not with the induction of growth factor independence in myeloid cells.
Collapse
Affiliation(s)
- A Bhat
- Division of Hematology and Medical Oncology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | |
Collapse
|
27
|
Nishiuma T, Hara K, Tsujishita Y, Kaneko K, Shii K, Yonezawa K. Characterization of the phosphoproteins and protein kinase activity in mTOR immunoprecipitates. Biochem Biophys Res Commun 1998; 252:440-4. [PMID: 9826548 DOI: 10.1006/bbrc.1998.9671] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mammalian target of rapamycin, mTOR, has been shown to be an upstream regulator of translational effectors. In the present study, in order to detect potential molecules involved in the mTOR signaling, an in vitro phosphorylation assay using mTOR immunoprecipitates from HEK293 cells was carried out. In addition to the autophosphorylation of mTOR, 32P incorporation into 80-kDa (pp80) and 175-kDa (pp175) bands was observed in mTOR immunoprecipitates. The protein kinase activity toward the recombinant eIF-4E binding protein 1 (4E-BP1) was also detected as previously described. When mTOR immunoprecipitates from HEK293 cells were prepared in the presence of a detergent, Nonidet P-40, the 4E-BP1 kinase activity and 32P incorporation into pp175 dramatically diminished, while the phosphorylation of mTOR and 32P incorporation into pp80 did not change. These results raised a possibility that mTOR may associate with protein cofactors, some of which may be involved in the regulation of kinase activities associated with mTOR.
Collapse
Affiliation(s)
- T Nishiuma
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Kobe, Nada-ku, 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Insulin-like effects of vanadium: Mechanisms of action, clinical and basic implications. ACTA ACUST UNITED AC 1998. [DOI: 10.1007/bf02443478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Jabado N, Jauliac S, Pallier A, Bernard F, Fischer A, Hivroz C. Sam68 Association with p120GAP in CD4+ T Cells Is Dependent on CD4 Molecule Expression. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.6.2798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
p120 GTPase-activating protein (p120GAP) is a major negative regulator of p21ras activity in several cell types including T cells. Catalytic activity of this enzyme is regulated in part by its interaction with several associated tyrosine-phosphorylated proteins. Sam68 was initially described as associated with p120GAP. It has been further established that Sam68 is a substrate of src kinases in mitosis and that it is not associated with p120GAP in transformed fibroblasts. We describe herein that Sam68 associates with p120GAP and PLCγ1 in human mature T cells and in a T cell line expressing the CD4 molecule HUT78 CD4+. This association is present in nonactivated cells and increases after anti-CD3 activation. It is dependent on CD4 expression and, in part, on the association of CD4 with p56lck, as shown by the strongly decreased association of Sam68 with p120GAP in the CD4− mutants, HUT78 CD4−, and by the reduced association of Sam68 with both p120GAP and p56lck in the HUT78 T cell line expressing a CD4 mutant unable to interact with p56lck, HUT78 C420/22. We propose that recruitment of Sam68, via CD4/p56lck, to the inner face of the plasma membrane may permit, via its docking properties, the correct association of key signaling molecules including PLCγ1 and p120GAP. This formation of transduction modules will enable the activation of different signaling cascades including the p21ras pathway and an array of downstream events, ultimately leading to T cell activation.
Collapse
Affiliation(s)
- Nada Jabado
- Institut National de la Santé et de la Recherche Médicale, Unité 429, Pavillon Kirmisson, Hôpital Necker-Enfants Malades, Paris, France
| | - Sébastien Jauliac
- Institut National de la Santé et de la Recherche Médicale, Unité 429, Pavillon Kirmisson, Hôpital Necker-Enfants Malades, Paris, France
| | - Annaïck Pallier
- Institut National de la Santé et de la Recherche Médicale, Unité 429, Pavillon Kirmisson, Hôpital Necker-Enfants Malades, Paris, France
| | - Frédéric Bernard
- Institut National de la Santé et de la Recherche Médicale, Unité 429, Pavillon Kirmisson, Hôpital Necker-Enfants Malades, Paris, France
| | - Alain Fischer
- Institut National de la Santé et de la Recherche Médicale, Unité 429, Pavillon Kirmisson, Hôpital Necker-Enfants Malades, Paris, France
| | - Claire Hivroz
- Institut National de la Santé et de la Recherche Médicale, Unité 429, Pavillon Kirmisson, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
30
|
Okada Y, Yoshida M, Baba S, Shii K. Development of vanadate sensitive human erythrocytes insulin receptor tyrosine phosphatase assay. Diabetes Res Clin Pract 1998; 41:157-63. [PMID: 9829343 DOI: 10.1016/s0168-8227(98)00076-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to investigate the effect of sodium orthovanadate on the alterations of human erythrocytes insulin receptor autophosphorylation. Human erythrocytes were incubated with insulin in a cell system and then lysed. The autophosphorylated insulin receptors were measured with the aid of a two-site immunofluorometric assay and using a monoclonal anti-insulin receptor antibody to label the insulin receptors and a monoclonal anti-phosphotyrosine antibody to assess tyrosine phosphorylation. When the erythrocytes were treated with insulin and then reincubated in insulin-free medium, vanadate completely inhibited insulin receptor dephosphorylation, although it had no effect on in vitro receptor autophosphorylation. Thus insulin receptor tyrosine phosphatase activity is postulated to be [% (autophosphorylated insulin receptors with vanadate - autophosphorylated insulin receptors without vanadate)/total insulin receptors] under overall steady conditions in a cell system. Using this assay, the insulin receptor tyrosine phosphatase activities of 25 control and 32 diabetic subjects were studied. There was no significant difference in insulin receptor tyrosine phosphatase activity between control subjects and diabetic subjects (0.173 +/- 0.062 vs 0.209 - +/- 0.057 autophosphorylated insulin receptors units/insulin receptors units). The assay used in this study requires only 0.6 ml of whole blood, and so should be a useful tool for detecting patients who are insulin-resistant due to abnormal insulin receptor tyrosine phosphatase activity.
Collapse
Affiliation(s)
- Y Okada
- Hyogo Institute of Clinical Research, Akashi, Japan
| | | | | | | |
Collapse
|
31
|
Inoue G, Cheatham B, Emkey R, Kahn CR. Dynamics of insulin signaling in 3T3-L1 adipocytes. Differential compartmentalization and trafficking of insulin receptor substrate (IRS)-1 and IRS-2. J Biol Chem 1998; 273:11548-55. [PMID: 9565570 DOI: 10.1074/jbc.273.19.11548] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of the insulin receptor to phosphorylate multiple substrates and their subcellular localization are two of the determinants that contribute to diversity of signaling. We find that insulin receptor substrate (IRS)-1 is 2-fold more concentrated in the intracellular membrane (IM) compartment than in cytosol, whereas IRS-2 is 2-fold more concentrated in cytosol than in IM. Insulin stimulation induces rapid tyrosine phosphorylation of both IRS-1 and IRS-2. This occurs mainly in the IM compartment, even though IRS-2 is located predominantly in cytosol. Furthermore, after insulin stimulation, both IRS-1 and IRS-2 translocate from IM to cytosol with a t1/2 of 3.5 min. Using an in vitro reconstitution assay, we have demonstrated an association between IRS-1 and internal membranes and have shown that the dissociation of IRS-1 from IM is dependent on serine/threonine phosphorylation of IM. By comparison, within 1 min after insulin stimulation, 40% of the total pool of the 85-kDa subunit of phosphatidylinositol 3-kinase (p85) is recruited from cytosol to IM, the greater part of which can be accounted for by binding to IRS-1 present in the IM. The p85 binding and phosphatidylinositol 3-kinase activity associated with IRS-2 rapidly decrease in both IM and cytosol, whereas those associated with IRS-1 stay at a relatively high level in IM and increase with time in cytosol despite a return of p85 to the cytosol and decreasing tyrosine phosphorylation of cytosolic IRS-1. These data indicate that IRS-1 and IRS-2 are differentially distributed in the cell and move from IM to cytosol following insulin stimulation. Insulin-stimulated IRS-1 and IRS-2 signaling occurs mainly in the IM and shows different kinetics; IRS-1-mediated signaling is more stable, whereas IRS-2-mediated signaling is more transient. These differences in substrate utilization and compartmentalization may contribute to the complexity and diversity of the insulin signaling network.
Collapse
Affiliation(s)
- G Inoue
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
32
|
Sung CK, Choi WS, Sanchez-Margalet V. Guanosine triphosphatase-activating protein-associated protein, but not src-associated protein p68 in mitosis, is a part of insulin signaling complexes. Endocrinology 1998; 139:2392-8. [PMID: 9564850 DOI: 10.1210/endo.139.5.6019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The insulin receptor, following insulin stimulation of cells, triggers formation of various signaling complexes. In rat HTC hepatoma cells overexpressing normal human insulin receptors (HTC-IR), p85 regulatory subunit of phosphatidylinositol-3-kinase (PI3K) forms signaling complexes containing the insulin receptor, insulin receptor substrate 1 (IRS-1), guanosine triphosphatase-activating protein (GAP) and 60-70 kDa phosphotyrosine proteins (p60-70). In the present study, we demonstrate that p60-70 interacts directly with the p85 subunit via src homology 2 domain of the latter. Employing antibodies specific to two p85 isoforms, p85alpha and p85beta, we demonstrate that HTC-IR cells express both p85 isoforms, and these isoforms induce the formation of similar signaling complexes in response to insulin. p60-70, present in both alpha-p85alpha and alpha-p85beta immunoprecipitates, is a GAP-associated protein, but is distinct from the p68 src-associated protein in mitosis (Sam68) by several criteria. These data suggest that 1) GAP-associated protein, but not Sam68, is a part of insulin signaling complexes; and 2) p85alpha and p85beta form similar, but distinct, insulin receptor signaling complexes.
Collapse
Affiliation(s)
- C K Sung
- Department of Physiology and Biophysics, University of Southern California School of Medicine, Los Angeles 90033, USA.
| | | | | |
Collapse
|
33
|
Rafnar T, Peebles RS, Brummet ME, Catipović B, Imani F, MacGlashan DW, Marsh DG. Stimulation of the high-affinity IgE receptor results in the tyrosine phosphorylation of a 60 kD protein which is associated with the protein-tyrosine kinase, Csk. Mol Immunol 1998; 35:249-57. [PMID: 9736341 DOI: 10.1016/s0161-5890(98)00028-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The protein tyrosine kinase Csk downregulates the activity of the Src family of kinases and has a negative effect on signal transduction through several Src kinase-associated receptors. Because the Src-family kinase Lyn plays a pivotal role in FcepsilonRI-mediated cellular activation, we examined whether Csk is involved in FcepsilonRI signaling events. Using anti-Csk antibodies and recombinant fusion proteins we detected a single tyrosine-phosphorylated protein of 60 kD (herein referred to as 'p60') that associates with the SH2 domain of Csk after stimulation of the FcepsilonRI. p60 phosphorylation reached a maximum within one minute and remained constant while the receptors were aggregated; disaggregation of the receptors resulted in rapid dephosphorylation of p60. The phosphorylation of p60 was only detected after activation by IgE and antigen and not by stimulation with PMA and/or ionomycin. Phosphorylated p60 was associated entirely with the membrane fraction of the cells. A considerable fraction of Csk was associated with the membrane in both unstimulated and stimulated cells, this fraction did not change upon activation. p60 coprecipitated with Csk from both unstimulated and FcepsilonRI stimulated cells and was phosphorylated by the immunocomplex. Total kinase activity of Csk immunoprecipitates increased upon FcepsilonRI stimulation. p60 did not react with antibodies to a number of known signaling molecules, including the recently cloned, GAP-associated protein, p62dok. Our data demonstrate that Csk associates with a membrane-anchored protein complex that is directly involved in FcepsilonRI signal transduction.
Collapse
Affiliation(s)
- T Rafnar
- Division of Clinical Immunology, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Yeh TC, Li W, Keller GA, Roth RA. Disruption of a putative SH3 domain and the proline-rich motifs in the 53-kDa substrate of the insulin receptor kinase does not alter its subcellular localization or ability to serve as a substrate. J Cell Biochem 1998; 68:139-50. [PMID: 9443070 DOI: 10.1002/(sici)1097-4644(19980201)68:2<139::aid-jcb1>3.0.co;2-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The recently identified 53-kDa substrate of the insulin receptor family was further characterized in several retroviral-generated stable cell lines overexpressing the wild type and various mutant forms of the protein. To facilitate the study of its subcellular localization in NIH3T3 cells overexpressing insulin receptor, a myc epitope-tag was added to the carboxy terminus of the 53-kDa protein. Like the endogenous protein in Chinese hamster ovary cells, the expressed myc-tagged 53-kDa protein was found partially in the particulate fraction and was tyrosine phosphorylated in insulin-stimulated cells. Immunofluorescence studies showed for the first time that a fraction of the 53-kDa protein was localized to the plasma membrane. Confocal microscopy of cells double-labeled with antibodies to the insulin receptor and the myc epitope showed the two proteins co-localize at the plasma membrane at the level of light microscopy. Further analyses of the protein sequence of the 53-kDa substrate revealed the presence of a putative SH3 domain and two proline-rich regions, putative binding sites for SH3 and WW domains. Disruption of these three motifs by the introduction of previously characterized point mutations did not affect the membrane localization of the 53-kDa protein, its ability to serve as substrate of the insulin receptor, or its colocalization with the insulin receptor, suggesting these domains are not important in the subcellular targeting of the protein and instead may function in the interaction with subsequent signaling proteins.
Collapse
Affiliation(s)
- T C Yeh
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305, USA
| | | | | | | |
Collapse
|
35
|
White MF, Yenush L. The IRS-signaling system: a network of docking proteins that mediate insulin and cytokine action. Curr Top Microbiol Immunol 1997; 228:179-208. [PMID: 9401207 DOI: 10.1007/978-3-642-80481-6_8] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M F White
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
36
|
Kaburagi Y, Satoh S, Tamemoto H, Yamamoto-Honda R, Tobe K, Veki K, Yamauchi T, Kono-Sugita E, Sekihara H, Aizawa S, Cushman SW, Akanuma Y, Yazaki Y, Kadowaki T. Role of insulin receptor substrate-1 and pp60 in the regulation of insulin-induced glucose transport and GLUT4 translocation in primary adipocytes. J Biol Chem 1997; 272:25839-44. [PMID: 9325314 DOI: 10.1074/jbc.272.41.25839] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In muscle and fat, glucose transport occurs through the translocation of GLUT4 from an intracellular pool to the cell surface. Phosphatidylinositol (PI) 3-kinase has been shown to be required in this process. Insulin is thought to activate this enzyme by stimulating its association with tyrosine-phosphorylated proteins such as insulin receptor substrate (IRS)-1, IRS-2, Grb2-associated binder-1, and pp60. To study the role of these endogenous substrates in glucose transport, we analyzed adipocytes from IRS-1 null mice that we previously generated (Tamemoto, H., Kadowaki, T., Tobe, K., Yagi, T., Sakura, H., Hayakawa, T., Terauchi, Y., Ueki, K., Kaburagi, Y., Satoh, S., Sekihara, H., Yoshioka, S., Horikoshi, H., Furuta, Y. , Ikawa, Y., Kasuga, M., Yazaki Y., and Aizawa S. (1994) Nature 372, 182-186). In adipocytes from these mice, we showed that: 1) insulin-induced PI 3-kinase activity in the antiphosphotyrosine immunoprecipitates was 54% of wild-type; 2) pp60 was the major tyrosine-phosphorylated protein that associated with PI 3-kinase, whereas tyrosine phosphorylaion of IRS-2 as well as its association with this enzyme was almost undetectable; and 3) glucose transport and GLUT4 translocation at maximal insulin stimulation were decreased to 52 and 68% of those from wild-type. These data suggest that both IRS-1 and pp60 play a major role in insulin-induced glucose transport in adipocytes, and that pp60 is predominantly involved in regulating this process in the absence of IRS-1.
Collapse
Affiliation(s)
- Y Kaburagi
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schmitz U, Ishida M, Berk BC. Angiotensin II stimulates tyrosine phosphorylation of phospholipase C-gamma-associated proteins. Characterization of a c-Src-dependent 97-kD protein in vascular smooth muscle cells. Circ Res 1997; 81:550-7. [PMID: 9314836 DOI: 10.1161/01.res.81.4.550] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stimulation of phospholipase C-gamma (PLC-gamma) is a critical event in angiotensin II (Ang II) signal transduction. We have previously shown that in rat aortic smooth muscle (RASM) cells Ang II stimulates tyrosine phosphorylation of PLC-gamma via activation of c-Src. Because we failed to demonstrate a direct association between c-Src and PLC-gamma, we hypothesized that a linker protein mediates the interaction between these molecules. To identify PLC-gamma-associated proteins, RASM cells were labeled with [32P]orthophosphate and stimulated with 100 nmol/L Ang II for 5 minutes. PLC-gamma was immunoprecipitated, and associated proteins were characterized by autoradiography and Western blotting with anti-phosphotyrosine antibodies. Ang II stimulated the phosphorylation of 47-, 60-, 84-, and 97-kD PLC-gamma-associated proteins. Because Ang II increased tyrosine phosphorylation of only the 97-kD protein, we characterized p97 further. An important role for Src in tyrosine phosphorylation of p97 was suggested by findings that p97 phosphorylation was inhibited by the selective Src-family kinase inhibitor CP-118,556, diminished in mouse aortic smooth muscle (MASM) cells from c-Src knockout mice compared with wild-type MASM cells, and increased in v-Src-transformed NIH-3T3 cells compared with wild-type NIH-3T3 cells. These studies are the first to define a PLC-gamma-associated protein that may be required for Ang II-mediated signal transduction.
Collapse
Affiliation(s)
- U Schmitz
- Department of Medicine, University of Washington, Seattle 98195-7710, USA
| | | | | |
Collapse
|
38
|
Abstract
The metabolic effects of insulin are initiated by the binding of insulin to the extracellular domain of the insulin receptor within the plasma membrane of muscle and adipose and liver cells. The subsequent activation of the intracellular tyrosine protein kinase activity of the receptor leads to autophosphorylation of the receptor as well as phosphorylation of a number of intracellular proteins. This gives rise to the activation of Ras and phosphatidylinositol 3-kinase and hence to the activation of a number of serine/threanine protein kinases. Many of these kinases appear to be arranged in cascades, including a cascade that results in the activation of mitogen-activated protein kinase and another that may result in the activation of protein kinase B, leading to the inhibition of glycogen synthase kinase-3 and the activation of the 70 kiloDalton ribosomal S6 protein kinase (p70 S6 kinase). We have explored the role of these early events in the the stimulation of glycogen, fatty acid, and protein synthesis by insulin in rat epididymal fat cells. Comparisons have been made between the metabolic effects of insulin and those of epidermal growth factor, since these 2 agents have contrasting effects on p70 S6 kinase and mitogen-activated protein kinase. The effects of wortmannin (which inhibits phosphatidylinositol 3-kinase), and rapamycin (which blocks the activation of p70 S6 kinase) have also been studied. These and other studies indicate that the mitogen-activated protein kinase cascade is probably not important in the acute metabolic effects of insulin, but may have a role in the regulation of gene transcription and hence the more long-term effects of insulin. The short-term metabolic effects of insulin appear to involve at least 3 distinct signaling pathways: (1) those leading to increases in glucose transport and the activation of glycogen synthase, acetyl-CoA carboxylase, eukaryotic initiation factor-2B, and phosphodiesterase, which may involve phosphatidylinositol 3-kinase and protein kinase B; (2) those leading to some of the effects of insulin on protein synthesis (formation of eukaryotic initiation factor-4F complex, S6 phosphorylation, and activation of eukaryotic elongation factor-2), which may involve phosphatidylinositol 3-kinase and p70 S6 kinase; and finally, (3) that leading to the activation of pyruvate dehydrogenase, which is unique in apparently not requiring activation of phosphatidylinositol 3-kinase.
Collapse
Affiliation(s)
- S K Moule
- Department of Biochemistry, University of Bristol School of Medical Sciences, UK
| | | |
Collapse
|
39
|
Smith-Hall J, Pons S, Patti ME, Burks DJ, Yenush L, Sun XJ, Kahn CR, White MF. The 60 kDa insulin receptor substrate functions like an IRS protein (pp60IRS3) in adipose cells. Biochemistry 1997; 36:8304-10. [PMID: 9204876 DOI: 10.1021/bi9630974] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The 60 kDa insulin receptor substrate in rat adipocytes that binds to the PI-3 kinase displays several functional characteristics in common with the IRS proteins; so we propose the name pp60(IRS3) to distinguish it from other tyrosine phosphorylated proteins of similar size. During insulin stimulation, p85 associated with pp60(IRS3) more rapidly than with IRS-1 or IRS-2. In mice lacking IRS-1, p85 associated more strongly with pp60(IRS3) than with IRS-2, suggesting that pp60(IRS3) provides an alternate pathway in these cells. Synthetic peptides containing two phosphorylated YMPM motifs displace pp60(IRS3) and IRS-1 from alphap85 immune complexes, suggesting that pp60(IRS3), like IRS-1, engages both SH2 domains in p85. Moreover, pp60(IRS3) binds to immobilized peptides containing a phosphorylated NPXY motif, suggesting that it contains a PTB domain with similar specificity to that in IRS-1. The cloning of pp60(IRS3) will reveal a new member of the IRS protein family which mediates insulin receptor signals in a narrow range of tissues.
Collapse
Affiliation(s)
- J Smith-Hall
- Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chaika OV, Chaika N, Volle DJ, Wilden PA, Pirrucello SJ, Lewis RE. CSF-1 receptor/insulin receptor chimera permits CSF-1-dependent differentiation of 3T3-L1 preadipocytes. J Biol Chem 1997; 272:11968-74. [PMID: 9115260 DOI: 10.1074/jbc.272.18.11968] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A chimeric growth factor receptor (CSF1R/IR) was constructed by splicing cDNA sequences encoding the extracellular ligand binding domain of the human colony stimulating factor-1 (CSF-1) receptor to sequences encoding the transmembrane and cytoplasmic domains of the human insulin receptor. The addition of CSF-1 to cells transfected with the CSF1R/IR chimera cDNA stimulated the tyrosine phosphorylation of a protein that was immunoprecipitated by an antibody directed against the carboxyl terminus of the insulin receptor. Phosphopeptide maps of the 32P-labeled CSF1R/IR protein revealed the same pattern of phosphorylation observed in 32P-labeled insulin receptor beta subunits. CSF-1 stimulated the tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and Shc in cells expressing the CSF1R/IR chimera. Lipid accumulation and the expression of a differentiation-specific marker demonstrated that 3T3-L1 preadipocytes undergo CSF-1-dependent differentiation when transfected with the CSF1R/IR chimera cDNA but not when transfected with the expression vector alone. A 12-amino acid deletion within the juxtamembrane region of the CSF1R/IR (CSF1R/IRDelta960) blocked CSF-1-stimulated phosphorylation of IRS-1 and Shc but did not inhibit CSF-1-mediated differentiation of 3T3-L1 preadipocytes. These observations indicate that adipocyte differentiation can be initiated by intracellular pathways that do not require tyrosine phosphorylation of IRS-1 or Shc.
Collapse
Affiliation(s)
- O V Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | |
Collapse
|
41
|
Yamanashi Y, Baltimore D. Identification of the Abl- and rasGAP-associated 62 kDa protein as a docking protein, Dok. Cell 1997; 88:205-11. [PMID: 9008161 DOI: 10.1016/s0092-8674(00)81841-3] [Citation(s) in RCA: 290] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A 62 kDa protein is highly phosphorylated in many cells containing activated tyrosine kinases. This protein, characterized mainly by its avid association with rasGAP, has proved elusive. Anti-phosphotyrosine antibody was used to purify p62. From peptide sequence, molecular cloning revealed a cDNA encoding a novel protein, p62dok, with little homology to others but with a prominent set of tyrosines and nearby sequences suggestive of SH2 binding sites. In cells, v-Abl tyrosine kinase binds and strongly phosphorylates p62dok, which then binds rasGAP. A monoclonal antibody, 2C4, to the rasGAP-associated p62 reacts with p62dok. Thus, p62dok appears to be the long-sought major substrate of many tyrosine kinases.
Collapse
Affiliation(s)
- Y Yamanashi
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
42
|
Smith RM, Harada S, Jarett L. Insulin internalization and other signaling pathways in the pleiotropic effects of insulin. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 173:243-80. [PMID: 9127955 DOI: 10.1016/s0074-7696(08)62479-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Insulin is the major anabolic hormone in humans and affects multiple cellular processes. Insulin rapidly regulates short-term effects on carbohydrate, lipid, and protein metabolism and is also a potent growth factor controlling cell proliferation and differentiation. The metabolic and growth-related effects require insulin binding to its receptor and receptor phosphorylation. Evidence suggests these events result in subsequent substrate phosphorylation and activation of multiple signaling pathways involving Src homology domain-containing proteins and the internalization of the insulin:receptor complex. The role of insulin internalization in insulin action is largely speculative. For more than two decades, extensive investigation has been carried out by numerous laboratories of the mechanisms by which insulin causes its pleiotropic responses and the cellular processing of insulin receptors. This chapter reviews our current knowledge of the phosphorylation signaling pathways activated by insulin and presents evidence that substrates other than insulin receptor substrate-1 are involved in insulin's regulation of immediate-early gene expression. We also review the mechanisms involved in insulin internalization and present evidence that internalization may play a key role in insulin action through both signal transduction processes and translocation of insulin to the cell cytoplasm and nucleus.
Collapse
Affiliation(s)
- R M Smith
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | |
Collapse
|
43
|
Inoue G, Cheatham B, Kahn CR. Different pathways of postreceptor desensitization following chronic insulin treatment and in cells overexpressing constitutively active insulin receptors. J Biol Chem 1996; 271:28206-11. [PMID: 8910437 DOI: 10.1074/jbc.271.45.28206] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have reported previously that substitution of the transmembrane domain of the insulin receptor with that of the erbB-2 oncogene (IRerbV-->E) results in constitutive activation of the insulin receptor kinase. Compared to NIH3T3 cells overexpressing wild-type insulin receptors (IRwt), cells overexpressing IRerbV-->E displayed a decrease in IRS-1 protein content by 55%, but basal tyrosine phosphorylation of IRS-1 was increased. This resulted in an increased association of IRS-1 with the p85 subunit of phosphatidylinositol 3-kinase, increased phosphatidylinositol 3-kinase activity in anti-IRS-1 immunoprecipitates, constitutive activation of p70 S6 protein kinase, and an increased association of Grb2 with Shc in the absence of ligand. However, Grb2 association with IRS-1 could not be detected in the basal or insulin-stimulated states, and mitogen-activated protein kinase (MAPK) activity could not be stimulated by insulin, epidermal growth factor, or platelet-derived growth factor. In contrast to IRerbV-->E, the insulin receptor content and its tyrosine phosphorylation were significantly decreased in IRwt cells chronically stimulated (>24 h) with insulin. With decreased IRS-1 content, tyrosine phosphorylation of IRS-1 was decreased by over 75%, leading to decreased IRS-1-associated PI 3-kinase and Grb2. In addition, Grb2 association with Shc and activation of MAPK and the p70 S6 kinase were insensitive to insulin stimulation. By contrast, association of Grb2 with Shc and activation of MAPK, but not the p70 S6 kinase, could be stimulated by epidermal growth factor or platelet-derived growth factor. These data suggest that there are multiple levels of postreceptor desensitization to insulin action. These are used somewhat differently in these two different models, probably due in part to the difference in receptor down-regulation.
Collapse
Affiliation(s)
- G Inoue
- Research Division, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
44
|
Noguchi T, Matozaki T, Fujioka Y, Yamao T, Tsuda M, Takada T, Kasuga M. Characterization of a 115-kDa protein that binds to SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in Chinese hamster ovary cells. J Biol Chem 1996; 271:27652-8. [PMID: 8910355 DOI: 10.1074/jbc.271.44.27652] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SH-PTP2, a non-transmembrane-type protein-tyrosine phosphatase with two Src homology 2 domains, was previously shown to play a positive signaling role in the insulin-induced activation of Ras and mitogen-activated protein kinase. SH-PTP2 was shown to associate with a 115-kDa tyrosine-phosphorylated protein (pp115), as well as with insulin receptor substrate 1, in insulin-stimulated Chinese hamster ovary cells that overexpress human insulin receptors (CHO-IR cells). In vivo and in vitro binding experiments revealed that SH-PTP2 bound to pp115 through one or both of its SH2 domains. The pp115 protein was partially purified from insulin-stimulated CHO-IR cells that overexpress a catalytically inactive SH-PTP2 by a combination of immunoaffinity and lectin-affinity chromatography. A monoclonal antibody to pp115 was then generated by injecting the partially purified protein into mice. Experiments with this monoclonal antibody revealed that pp115 is a transmembrane protein with a domain exposed on the cell surface and that it binds to SH-PTP2 in response to insulin. The insulin receptor kinase appeared to phosphorylate pp115 on tyrosine residues both in vivo and in vitro. The extent of tyrosine phosphorylation of pp115 associated with SH-PTP2 was greatly increased in CHO-IR cells that overexpress catalytically inactive SH-PTP2 compared with that observed in CHO-IR cells overexpressing wild-type SH-PTP2. Furthermore, recombinant SH-PTP2 preferentially dephosphorylated pp115 in vitro, indicating that SH-PTP2 may catalyze the dephosphorylation of phosphotyrosine residues in pp115 after it binds to this protein. These results suggest that pp115 may act as a transmembrane anchor to which SH-PTP2 binds in response to insulin. Furthermore, pp115 may be a physiological substrate for both the insulin receptor kinase and SH-PTP2.
Collapse
Affiliation(s)
- T Noguchi
- Second Department of Internal Medicine, Kobe University School of Medicine, Kusunoki-cho, Chuo-ku, Kobe 650, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Catipović B, Schneck JP, Brummet ME, Marsh DG, Rafnar T. Csk is constitutively associated with a 60-kDa tyrosine-phosphorylated protein in human T cells. J Biol Chem 1996; 271:9698-703. [PMID: 8621646 DOI: 10.1074/jbc.271.16.9698] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The protein-tyrosine kinase Csk is one of the main down-regulators of the Src family of kinases. Csk may be involved in the down-regulation of T cell receptor (TCR) signaling by C-terminal tyrosine phosphorylation of Lck and Fyn; however, it is not known how Csk activity is regulated or how it targets these Src family members. We used Jurkat T cells and normal human T cells to examine proteins that bind to the SH2 domain of Csk. In both Jurkat and normal T cells, the Src homology 2 (SH2) domain of Csk bound constitutively to a tyrosine-phosphorylated protein of 60 kDa (p60). The 60-kDa protein was detected in Csk immunoprecipitates from both unstimulated and CD3-stimulated cells. In addition to p60, a protein of 190 kDa coprecipitated with Csk, and both proteins were phosphorylated on tyrosine residues by the immunocomplex. Small amounts of GTPase-activating protein (GAP) were detected in anti-Csk immunoprecipitates, suggesting that p60 may be a GAP-associated protein. Our data demonstrate that the SH2 domain of Csk specifically associates with at least two tyrosine-phosphorylated proteins in normal human T cells, that this association is independent of TCR/CD3 activation, and that Csk may be a part of a multiprotein complex containing GAP.
Collapse
Affiliation(s)
- B Catipović
- Division of Clinical Immunology, Johns Hopkins Asthma and Allergy Center, The John Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
46
|
Saltiel AR. Diverse signaling pathways in the cellular actions of insulin. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:E375-85. [PMID: 8638681 DOI: 10.1152/ajpendo.1996.270.3.e375] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Insulin is one of the most important regulators of glucose and lipid homeostasis. Many of its cellular actions are mediated by changes in protein phosphorylation. The consequences of these phosphorylation events extend from a series of different short-term metabolic actions to longer-term effects of the hormone on cellular growth and differentiation. Although the insulin receptor itself is a tyrosine kinase that is activated upon hormone binding, the ensuing changes in phosphorylation occur predominantly on serine and threonine residues. Moreover, insulin can simultaneously stimulate the phosphorylation of some proteins and the dephosphorylation of others. These paradoxical effects of insulin suggest that separate signal transduction pathways may emanate from the receptor itself to produce the pleiotropic actions of the hormone.
Collapse
Affiliation(s)
- A R Saltiel
- Department of Signal Transduction, Parke-Davis Pharmaceutical Research, Warner-Lambert, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
47
|
Yeh TC, Ogawa W, Danielsen AG, Roth RA. Characterization and cloning of a 58/53-kDa substrate of the insulin receptor tyrosine kinase. J Biol Chem 1996; 271:2921-8. [PMID: 8621681 DOI: 10.1074/jbc.271.6.2921] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A monoclonal antibody has been produced which immunoprecipitates 58- and 53-kDa proteins which are rapidly tyrosine phosphorylated in insulin-treated cells. These proteins can also be tyrosine phosphorylated in vitro by the isolated human insulin receptor. Increased tyrosine phosphorylation of these proteins is also observed in cells expressing a transforming chicken c-Src (mutant Phe-527) and in cells with the activated tyrosine kinase domains of the Drosophila insulin receptor, human insulin-like growth factor I receptor, and human insulin receptor-related receptor. P58/53 did not appear to associate with either the GTPase activating protein of Ras (called GAP) or the phosphatidylinositol 3-kinase by either co-immunoprecipitation experiments or in Far Westerns with the SH2 domains of these two proteins. Since p58/53 did not appear, by immunoblotting, to be related to any previously described tyrosine kinase substrate such as the SH2 containing proteins SHC and the tyrosine phosphatase Syp, the protein was purified in sufficient amounts to obtain peptide sequence. This sequence was utilized to isolate a cDNA clone that encodes a previously uncharacterized 53-kDa protein which, when expressed in mammalian cells, is tyrosine phosphorylated by the insulin receptor.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal
- Base Sequence
- CHO Cells
- Chickens
- Cloning, Molecular
- Cricetinae
- Drosophila/enzymology
- GTPase-Activating Proteins
- Gene Expression
- Genes, src
- Humans
- Intracellular Signaling Peptides and Proteins
- Molecular Sequence Data
- Molecular Weight
- Phosphatidylinositol 3-Kinases
- Phosphoproteins/biosynthesis
- Phosphoproteins/metabolism
- Phosphorylation
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Phosphotyrosine
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Proteins/metabolism
- Receptor, IGF Type 1/biosynthesis
- Receptor, IGF Type 1/metabolism
- Receptor, Insulin/biosynthesis
- Receptor, Insulin/metabolism
- Transfection
- Tumor Suppressor Protein p53/biosynthesis
- Tumor Suppressor Protein p53/metabolism
- Vanadates/pharmacology
- ras GTPase-Activating Proteins
Collapse
Affiliation(s)
- T C Yeh
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
48
|
Seger R, Biener Y, Feinstein R, Hanoch T, Gazit A, Zick Y. Differential activation of mitogen-activated protein kinase and S6 kinase signaling pathways by 12-O-tetradecanoylphorbol-13-acetate (TPA) and insulin. Evidence for involvement of a TPA-stimulated protein-tyrosine kinase. J Biol Chem 1995; 270:28325-30. [PMID: 7499332 DOI: 10.1074/jbc.270.47.28325] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AG-18, an inhibitor of protein-tyrosine kinases, was employed to study the role of tyrosine-phosphorylated proteins in insulin- and phorbol ester-induced signaling cascades. When incubated with Chinese hamster ovary cells overexpressing the insulin receptor, AG-18 reversibly inhibited insulin-induced tyrosine phosphorylation of insulin receptor substate-1, with minimal effects either on receptor autophosphorylation or on phosphorylation of Shc64. Under these conditions, AG-18 inhibited insulin-stimulated phosphorylation of the ribosomal protein S6, while no inhibition of insulin-induced activation of mitogen-activated protein kinase (MAPK) kinase or MAPK was detected. In contrast, 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced activation of MAPK kinase and MAPK and phosphorylation of S6 were inhibited by AG-18. This correlated with inhibition of TPA-stimulated tyrosine phosphorylation of several proteins, the most prominent ones being pp114 and pp120. We conclude that Tyr-phosphorylated insulin receptor substrate-1 is the main upstream regulator of insulin-induced S6 phosphorylation by p70s6k, whereas MAPK signaling seems to be activated in these cells primarily through the adaptor molecule Shc. In contrast, TPA-induced S6 phosphorylation is mediated by the MAPK/p90rsk cascade. A key element of this TPA-stimulated signaling pathway is an AG-18-sensitive protein-tyrosine kinase.
Collapse
Affiliation(s)
- R Seger
- Department of Membrane Research, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
49
|
Issad T, Combettes M, Ferre P. Isoproterenol inhibits insulin-stimulated tyrosine phosphorylation of the insulin receptor without increasing its serine/threonine phosphorylation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:108-15. [PMID: 8529629 DOI: 10.1111/j.1432-1033.1995.108_c.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of a beta-adrenergic agonist (isoproterenol) on the tyrosine kinase activity of the insulin receptor was studied in intact adipocytes. Isoproterenol treatment rapidly (5 min) inhibited the insulin-induced autophosphorylation of the insulin receptor on tyrosine residues in intact adipocytes. The effect of insulin on the phosphorylation of cellular proteins on tyrosine residues was also inhibited by isoproterenol. In order to understand the mechanism responsible for this inhibition, two-dimensional phosphopeptide mapping of the insulin receptor was performed. The pattern of phosphorylation of the insulin receptor in freshly isolated adipocytes showed marked differences from that previously observed in cultured cells overexpressing insulin receptors. These differences include a larger proportion of receptors being phosphorylated on the three tyrosines from the kinase domain and no apparent phosphorylation of the two tyrosines close to the C-terminus after insulin stimulation. Isoproterenol markedly inhibited the effect of insulin on the phosphorylation of the three tyrosines from the kinase domain. However, this inhibition was not associated with an increase in the phosphorylation of serine/threonine peptides. Thus, this direct analysis of insulin receptor phosphorylation sites in intact adipocytes does no support the idea that beta-adrenegic agents inhibit the tyrosine kinase activity of the receptor through a serine/threonine phosphorylation-dependent mechanism.
Collapse
Affiliation(s)
- T Issad
- Institut National de la Santé et de la Recherche Médicale Unité 342, Université René Descartes, Paris, France
| | | | | |
Collapse
|
50
|
Danielsen AG, Liu F, Hosomi Y, Shii K, Roth RA. Activation of protein kinase C alpha inhibits signaling by members of the insulin receptor family. J Biol Chem 1995; 270:21600-5. [PMID: 7545165 DOI: 10.1074/jbc.270.37.21600] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Stimulation of the activity of protein kinase C by pretreatment of cells with phorbol esters was tested for its ability to inhibit signaling by four members of the insulin receptor family, including the human insulin and insulin-like growth factor-I receptors, the human insulin receptor-related receptor, and the Drosophila insulin receptor. Activation of overexpressed protein kinase C alpha resulted in a subsequent inhibition of the ligand-stimulated increase in antiphosphotyrosine-precipitable phosphatidylinositol 3-kinase mediated by the kinase domains of all four receptors. This inhibition varied from 97% for the insulin receptor-related receptor to 65% for the Drosophila insulin receptor. In addition, the activation of protein kinase C alpha inhibited the in situ ligand-stimulated increase in tyrosine phosphorylation of the GTPase-activating protein-associated p60 protein as well as Shc mediated by these receptors. The mechanism for this inhibition was further studied in the case of the insulin-like growth factor-I receptor. Although the in situ phosphorylation of insulin-receptor substrate-1 and p60 by this receptor was inhibited by prior stimulation of protein kinase C alpha, the in vitro tyrosine phosphorylation of these two substrates by this receptor was not decreased by prior stimulation of the protein kinase C alpha in the cells that served as a source of the substrates. Finally, the insulin-like growth factor-I-stimulated increase in cell proliferation was found to be inhibited by prior activation of protein kinase C alpha.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A G Danielsen
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | |
Collapse
|