1
|
Gurav MJ, Manasa J, Sanji AS, Megalamani PH, Chachadi VB. Lectin-glycan interactions: a comprehensive cataloguing of cancer-associated glycans for biorecognition and bio-alteration: a review. Glycoconj J 2024; 41:301-322. [PMID: 39218819 DOI: 10.1007/s10719-024-10161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive review meticulously compiles data on an array of lectins and their interactions with different cancer types through specific glycans. Crucially, it establishes the link between aberrant glycosylation and cancer types. This repository of lectin-defined glycan signatures, assumes paramount importance in the realm of cancer and its dynamic nature. Cancer, known for its remarkable heterogeneity and individualized behaviour, can be better understood through these glycan signatures. The current review discusses the important lectins and their carbohydrate specificities, especially recognizing glycans of cancer origin. The review also addresses the key aspects of differentially expressed glycans on normal and cancerous cell surfaces. Specific cancer types highlighted in this review include breast cancer, colon cancer, glioblastoma, cervical cancer, lung cancer, liver cancer, and leukaemia. The glycan profiles unveiled through this review hold the key to tailor-made treatment and precise diagnostics. It opens up avenues to explore the potential of targeting glycosyltransferases and glycosidases linked with cancer advancement and metastasis. Armed with knowledge about specific glycan expressions, researchers can design targeted therapies to modulate glycan profiles, potentially hampering the advance of this relentless disease.
Collapse
Affiliation(s)
- Maruti J Gurav
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - J Manasa
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - Ashwini S Sanji
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - Prasanna H Megalamani
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - Vishwanath B Chachadi
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India.
| |
Collapse
|
2
|
Lequesne L, Dano J, Rouaix A, Kropp C, Plaisance M, Gelhaye S, Lequesne ML, Piquet P, Avril A, Becher F, Orsini Delgado ML, Simon S. A Monoclonal Antibody with a High Affinity for Ricin Isoforms D and E Provides Strong Protection against Ricin Poisoning. Toxins (Basel) 2024; 16:412. [PMID: 39453188 PMCID: PMC11510859 DOI: 10.3390/toxins16100412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
Ricin is a highly potent toxin that has been used in various attempts at bioterrorism worldwide. Although a vaccine for preventing ricin poisoning (RiVax™) is in clinical development, there are currently no commercially available prophylaxis or treatments for ricin intoxication. Numerous studies have highlighted the potential of passive immunotherapy using anti-ricin monoclonal antibodies (mAbs) and have shown promising results in preclinical models. In this article, we describe the neutralizing and protective efficacy of a new generation of high-affinity anti-ricin mAbs, which bind and neutralize very efficiently both ricin isoforms D and E in vitro through cytotoxicity cell assays. In vivo, protection assay revealed that one of these mAbs (RicE5) conferred over 90% survival in a murine model challenged intranasally with a 5 LD50 of ricin and treated by intravenous administration of the mAbs 6 h post-intoxication. Notably, a 35% survival rate was observed even when treatment was administered 24 h post-exposure. Moreover, all surviving mice exhibited long-term immunity to high ricin doses. These findings offer promising results for the clinical development of a therapeutic candidate against ricin intoxication and may also pave the way for novel vaccination strategies against ricin or other toxins.
Collapse
Affiliation(s)
- Loïs Lequesne
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| | - Julie Dano
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| | - Audrey Rouaix
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| | - Camille Kropp
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| | - Marc Plaisance
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| | - Stéphanie Gelhaye
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| | - Marie-Lou Lequesne
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| | - Paloma Piquet
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| | - Arnaud Avril
- Microbiology and Infectious Diseases Department, French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France
| | - François Becher
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| | - Maria Lucia Orsini Delgado
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| | - Stéphanie Simon
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France; (L.L.); (M.L.O.D.)
| |
Collapse
|
3
|
Liu Y, Yang T, Rong J, Yuan J, Man L, Wei M, Fan J, Lan Y, Liu Y, Gong G, Lu Y, Song X, Wang Z, Huang L. Integrated analysis of natural glycans using a versatile pyrazolone-type heterobifunctional tag ANPMP. Carbohydr Polym 2024; 327:121617. [PMID: 38171699 DOI: 10.1016/j.carbpol.2023.121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/23/2023] [Accepted: 11/18/2023] [Indexed: 01/05/2024]
Abstract
Glycans mediate various biological processes through carbohydrate-protein interactions, and glycan microarrays have become indispensable tools for understanding these mechanisms. However, advances in functional glycomics are hindered by the absence of convenient and universal methods for obtaining natural glycan libraries with diverse structures from glycoconjugates. To address this challenge, we have developed an integrative approach that enables one-pot release and simultaneously capture, separation, structural characterization, and functional analysis of N/O-glycans. Using this approach, glycoconjugates are incubated with a pyrazolone-type heterobifunctional tag-ANPMP to obtain glycan-2ANPMP conjugates, which are then converted to glycan-AEPMP conjugates. We prepared a tagged glycan library from porcine gastric mucin, soy protein, human milk oligosaccharides, etc. Following derivatization by N-acetylation and permethylation, glycans were subjected to detailed structural characterization by ESI-MSn analysis, which revealed >83 highly pure glycan-AEPMPs containing various natural glycan epitopes. A shotgun microarray is constructed to study the fine details of glycan-bindings by proteins and antisera.
Collapse
Affiliation(s)
- Yuxia Liu
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Tong Yang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Jinqiao Rong
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Jinhang Yuan
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Lijuan Man
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Ming Wei
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Jiangbo Fan
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - Yao Lan
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Yinchuan Liu
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Guiping Gong
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Yu Lu
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Zhongfu Wang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China.
| | - Linjuan Huang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China.
| |
Collapse
|
4
|
Tian S, Zhou N. Gaining New Insights into Fundamental Biological Pathways by Bacterial Toxin-Based Genetic Screens. Bioengineering (Basel) 2023; 10:884. [PMID: 37627769 PMCID: PMC10451959 DOI: 10.3390/bioengineering10080884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Genetic screen technology has been applied to study the mechanism of action of bacterial toxins-a special class of virulence factors that contribute to the pathogenesis caused by bacterial infections. These screens aim to identify host factors that directly or indirectly facilitate toxin intoxication. Additionally, specific properties of certain toxins, such as membrane interaction, retrograde trafficking, and carbohydrate binding, provide robust probes to comprehensively investigate the lipid biosynthesis, membrane vesicle transport, and glycosylation pathways, respectively. This review specifically focuses on recent representative toxin-based genetic screens that have identified new players involved in and provided new insights into fundamental biological pathways, such as glycosphingolipid biosynthesis, protein glycosylation, and membrane vesicle trafficking pathways. Functionally characterizing these newly identified factors not only expands our current understanding of toxin biology but also enables a deeper comprehension of fundamental biological questions. Consequently, it stimulates the development of new therapeutic approaches targeting both bacterial infectious diseases and genetic disorders with defects in these factors and pathways.
Collapse
Affiliation(s)
- Songhai Tian
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Nini Zhou
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Sharma A, Gupta S, Sharma NR, Paul K. Expanding role of ribosome-inactivating proteins: From toxins to therapeutics. IUBMB Life 2023; 75:82-96. [PMID: 36121739 DOI: 10.1002/iub.2675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/26/2022] [Indexed: 02/02/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are toxic proteins with N-glycosidase activity. RIPs exert their action by removing a specific purine from 28S rRNA, thereby, irreversibly inhibiting the process of protein synthesis. RIPs can target both prokaryotic and eukaryotic cells. In bacteria, the production of RIPs aid in the process of pathogenesis whereas, in plants, the production of these toxins has been attributed to bolster defense against insects, viral, bacterial and fungal pathogens. In recent years, RIPs have been engineered to target a particular cell type, this has fueled various experiments testing the potential role of RIPs in many biomedical applications like anti-viral and anti-tumor therapies in animals as well as anti-pest agents in engineered plants. In this review, we present a comprehensive study of various RIPs, their mode of action, their significance in various fields involving plants and animals. Their potential as treatment options for plant infections and animal diseases is also discussed.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Biochemistry, DAV University, Jalandhar, Punjab, India
| | - Shelly Gupta
- Department of Biochemistry, School of Biosciences and Bioengineering, Lovely Professional University, Phagwara, Punjab, India
| | - Neeta Raj Sharma
- School of Biosciences and Bioengineering, Lovely Professional University, Phagwara, Punjab, India
| | - Karan Paul
- Department of Biochemistry, DAV University, Jalandhar, Punjab, India
| |
Collapse
|
6
|
Hu W, Zhang G, Zhou Y, Xia J, Zhang P, Xiao W, Xue M, Lu Z, Yang S. Recent development of analytical methods for disease-specific protein O-GlcNAcylation. RSC Adv 2022; 13:264-280. [PMID: 36605671 PMCID: PMC9768672 DOI: 10.1039/d2ra07184c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The enzymatic modification of protein serine or threonine residues by N-acetylglucosamine, namely O-GlcNAcylation, is a ubiquitous post-translational modification that frequently occurs in the nucleus and cytoplasm. O-GlcNAcylation is dynamically regulated by two enzymes, O-GlcNAc transferase and O-GlcNAcase, and regulates nearly all cellular processes in epigenetics, transcription, translation, cell division, metabolism, signal transduction and stress. Aberrant O-GlcNAcylation has been shown in a variety of diseases, including diabetes, neurodegenerative diseases and cancers. Deciphering O-GlcNAcylation remains a challenge due to its low abundance, low stoichiometry and extreme lability in most tandem mass spectrometry. Separation or enrichment of O-GlcNAc proteins or peptides from complex mixtures has been of great interest because quantitative analysis of protein O-GlcNAcylation can elucidate their functions and regulatory mechanisms in disease. However, valid and specific analytical methods are still lacking, and efforts are needed to further advance this direction. Here, we provide an overview of recent advances in various analytical methods, focusing on chemical oxidation, affinity of antibodies and lectins, hydrophilic interaction, and enzymatic addition of monosaccharides in conjugation with these methods. O-GlcNAcylation quantification has been described in detail using mass-spectrometric or non-mass-spectrometric techniques. We briefly summarized dysregulated changes in O-GlcNAcylation in disease.
Collapse
Affiliation(s)
- Wenhua Hu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| | - Guolin Zhang
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Yu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Wenjin Xiao
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Man Xue
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Zhaohui Lu
- Health Examination Center, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
7
|
Russell DF, Zhang W, Warnock TC, Neiman LL. Lectin binding and gel secretion within Lorenzinian electroreceptors of Polyodon. PLoS One 2022; 17:e0276854. [PMCID: PMC9671328 DOI: 10.1371/journal.pone.0276854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 10/16/2022] [Indexed: 11/19/2022] Open
Abstract
We imaged the carbohydrate-selective spatial binding of 8 lectins in the ampullary organs (AOs) of electroreceptors on the rostrum of freshwater paddlefish (Polyodon spathula), by fluorescence imaging and morphometry of frozen sections. A focus was candidate sites of secretion of the glycoprotein gel filling the lumen of AOs. The rostrum of Polyodon is an electrosensory appendage anterior of the head, covered with >50,000 AOs, each homologous with the ampulla of Lorenzini electroreceptors of marine rays and sharks. A large electrosensory neuroepithelium (EN) lines the basal pole of each AO’s lumen in Polyodon; support cells occupy most (97%) of an EN’s apical area, along with electrosensitive receptor cells. (1) Lectins WGA or SBA labeled the AO gel. High concentrations of the N-acetyl-aminocarbohydrate ligands of these lectins were reported in canal gel of ampullae of Lorenzini, supporting homology of Polyodon AOs. In cross sections of EN, WGA or SBA labeled cytoplasmic vesicles and organelles in support cells, especially apically, apparently secretory. Abundant phalloidin+ microvilli on the apical faces of support cells yielded the brightest label by lectins WGA or SBA. In parallel views of the apical EN surface, WGA labeled only support cells. We concluded that EN support cells massively secrete gel from their apical microvilli (and surface?), containing amino carbohydrate ligands of WGA or SBA, into the AO lumen. (2) Lectins RCA120 or ConA also labeled EN support cells, each differently. RCA120-fluorescein brightly labeled extensive Golgi tubules in the apical halves of EN cells. ConA did not label microvilli, but brightly labeled small vesicles throughout support cells, apparently non-secretory. (3) We demonstrated “sockets” surrounding the basolateral exteriors of EN receptor cells, as candidate glycocalyces. (4) We explored whether additional secretions may arise from non-EN epithelial cells of the interior ampulla wall. (5) Model: Gel is secreted mainly by support cells in the large EN covering each AO’s basal pole. Secreted gel is pushed toward the pore, and out. We modeled gel velocity as increasing ~11x, going distally in AOs (toward the narrowed neck and pore), due to geometrical taper of the ampulla wall. Gel renewal and accelerated expulsion may defend against invasion of the AO lumen by microbes or small parasites. (6) We surveyed lectin labeling of accessory structures, including papilla cells in AO necks, striated ectoderm epidermis, and sheaths on afferent axons or on terminal glia.
Collapse
Affiliation(s)
- David F. Russell
- Department of Biological Sciences, Neuroscience Program, Department of Physics and Astronomy, Ohio University, Athens, Ohio, United States of America
- * E-mail: ,
| | - Wenjuan Zhang
- Honors Tutorial College, Ohio University, Athens, Ohio, United States of America
| | - Thomas C. Warnock
- Department of Physics and Astronomy, Ohio University, Athens, Ohio, United States of America
| | - Lilia L. Neiman
- Department of Biological Sciences, Ohio University, Athens, Ohio, United States of America
| |
Collapse
|
8
|
Lu TL, Sher YP, Chen HC, Cheng WC, Hsu LH, Lee CC. Articulatin B chain induced dendritic cells maturation and driven type I T helper cells and cytotoxic T cells activation. Life Sci 2022; 302:120635. [PMID: 35569571 DOI: 10.1016/j.lfs.2022.120635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
AIMS Articulatin (AT), purified from the Chinese mistletoe (Viscum articulatum), belongs to the family of type II ribosome-inactivating proteins (RIPs) that contain two subunits, the A and B chains. The B chain of AT is believed to function by means of interacting with the galactose moiety of glycoproteins or glycolipids on the cell membrane and is internalized into cells through endocytosis. In the study, we aim to investigate the immunomodulatory effects of recombinant articulatin B chain (rATB) on mouse bone marrow-derived dendritic cells (BM-DCs). MAIN METHODS Detection of surface markers expression on BM-DCs by flow cytometry. Analysis of RNA and protein expression by RNAseq and Western blotting assays. Assessment of the adaptive immune responses using an in vivo mouse model. KEY FINDING Our study presents novel results showing the activation of mouse BM-DCs by rATB, which leads to the induction of CD80, CD86, and MHC II expression as well as primed type I CD4+ T cell differentiation and CD8+ T cell activation. RNAseq and Western blotting assays revealed rATB-induced BM-DC activation to be dependent on the MAPK and NF-κB signaling pathways. In a mouse model, rATB was observed to have adjuvant effects that induced an antigen-specific Th1 immune response. SIGNIFICANCE Based on in vitro and in vivo assays, this study shows rATB acting as a potential adjuvant that induces BM-DC activation and antigen-specific Th1 related immune response. rATB might have potential applicability in the development of vaccines against pathogens and tumors.
Collapse
Affiliation(s)
- Tzu-Li Lu
- Department of Medical Laboratory Science and Biotechnology, Taichung, Taiwan
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, Taichung, Taiwan
| | - Hui-Chen Chen
- Graduate Institute of Biomedical Sciences, Taichung, Taiwan; Department of Microbiology and Immunology, School of Medicine, Taichung, Taiwan
| | | | - Ling-Heng Hsu
- Graduate Institute of Biomedical Sciences, Taichung, Taiwan
| | - Chen-Chen Lee
- Graduate Institute of Biomedical Sciences, Taichung, Taiwan; Department of Microbiology and Immunology, School of Medicine, Taichung, Taiwan; Center of Drug Development, College of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
9
|
Uzawa H, Kondo S, Nagatsuka T, Miyaguchi H, Seto Y, Oshita A, Dohi H, Nishida Y, Saito M, Tamiya E. Assembly of Glycochips with Mammalian GSLs Mimetics toward the On-site Detection of Biological Toxins. ACS OMEGA 2021; 6:32597-32606. [PMID: 34901608 PMCID: PMC8655786 DOI: 10.1021/acsomega.1c04154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/01/2021] [Indexed: 05/09/2023]
Abstract
According to our previously proposed scheme, each of three kinds of glycosphingolipid (GSL) derivatives, that is, lactosyl ceramide [Lac-Cer (1)] and gangliosides [GM1-Cer (2) and GT1b-Cer (3)], was installed onto the glass surface modified with Au nanoparticles. In the present study, we tried to apply microwave irradiation to promote their installing reactions. Otherwise, this procedure takes a lot of time as long as a conventional self-assembled monolayer (SAM) technique is applied. Using an advanced microwave reactor capable of adjusting ambient temperatures within a desired range, various GSL glycochips were prepared from the derivatives (1)-(3) under different microwave irradiation conditions. The overall assembling process was programed with an IC controller to finish in 1 h, and the derived GSL glycochips were evaluated in the analysis of three kinds of biological toxins [a Ricinus agglutinin (RCA120), botulinum toxin (BTX), and cholera toxin (CTX)] using a localized surface plasmon resonance (LSPR) biosensor. In the LSPR analysis, most of the irradiated GSL chips showed an enhanced response to the targeting toxin when they were irradiated under optimal temperature conditions. Lac-Cer chips showed the highest response to RCA120 (an agglutinin with β-D-Gal specificity) when the microwave irradiation was conducted at 30-35 °C. Compared to our former Lac-Cer glycochips with the conventional SAM condition, their response was enhanced by 3.6 times. Analogously, GT1b chips gained an approximately 4.1 times enhancement in their response to botulinum type C toxin (BTX/C) when the irradiation was conducted around at 45-60 °C. In the LSPR evaluation of the GM1-Cer glycochips using CTX, an optimal condition also appeared at around 30-35 °C. On the other hand, the microwave irradiation did not lead to a notable increase compared to the former GM1-Cer chips derived with the SAM technique. Judging from these experimental results, the microwave irradiation effectively promotes the installing process for all the three kinds of the GSL derivatives, while the optimal thermal condition becomes different from each other. Many bacterial and botanic proteinous toxins are composed of such carbohydrate binding domains or subunits that can discriminate both the key epitope structure and the dimension of glycoconjugates on the host cell surface. It is assumed that the optimal irradiation and thermal conditions are required to array these semi-synthetic GSL derivatives on the Au nanoparticles in a proper density and geometry for tight adhesion with each of the biological toxins.
Collapse
Affiliation(s)
- Hirotaka Uzawa
- Nanomaterials
Research Institute, Tsukuba Center, Tsukuba Central, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Satoshi Kondo
- Nanomaterials
Research Institute, Tsukuba Center, Tsukuba Central, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Takehiro Nagatsuka
- Nanomaterials
Research Institute, Tsukuba Center, Tsukuba Central, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Hajime Miyaguchi
- National
Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Yasuo Seto
- National
Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Aguri Oshita
- Graduate
School of Environmental Horticulture, Chiba
University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
- Graduate
School of Advanced Integration Science, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522, Japan
| | - Hirofumi Dohi
- Graduate
School of Environmental Horticulture, Chiba
University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
- Graduate
School of Advanced Integration Science, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522, Japan
| | - Yoshihiro Nishida
- Graduate
School of Environmental Horticulture, Chiba
University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
- Graduate
School of Advanced Integration Science, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522, Japan
| | - Masato Saito
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiichi Tamiya
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Rudolph MJ, Poon AY, Kavaliauskiene S, Myrann AG, Reynolds-Peterson C, Davis SA, Sandvig K, Vance DJ, Mantis NJ. Structural Analysis of Toxin-Neutralizing, Single-Domain Antibodies that Bridge Ricin's A-B Subunit Interface. J Mol Biol 2021; 433:167086. [PMID: 34089718 DOI: 10.1016/j.jmb.2021.167086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 01/20/2023]
Abstract
Ricin toxin kills mammalian cells with notorious efficiency. The toxin's B subunit (RTB) is a Gal/GalNAc-specific lectin that attaches to cell surfaces and promotes retrograde transport of ricin's A subunit (RTA) to the trans Golgi network (TGN) and endoplasmic reticulum (ER). RTA is liberated from RTB in the ER and translocated into the cell cytoplasm, where it functions as a ribosome-inactivating protein. While antibodies against ricin's individual subunits have been reported, we now describe seven alpaca-derived, single-domain antibodies (VHHs) that span the RTA-RTB interface, including four Tier 1 VHHs with IC50 values <1 nM. Crystal structures of each VHH bound to native ricin holotoxin revealed three different binding modes, based on contact with RTA's F-G loop (mode 1), RTB's subdomain 2γ (mode 2) or both (mode 3). VHHs in modes 2 and 3 were highly effective at blocking ricin attachment to HeLa cells and immobilized asialofetuin, due to framework residues (FR3) that occupied the 2γ Gal/GalNAc-binding pocket and mimic ligand. The four Tier 1 VHHs also interfered with intracellular functions of RTB, as they neutralized ricin in a post-attachment cytotoxicity assay (e.g., the toxin was bound to cell surfaces before antibody addition) and reduced the efficiency of toxin transport to the TGN. We conclude that the RTA-RTB interface is a target of potent toxin-neutralizing antibodies that interfere with both extracellular and intracellular events in ricin's cytotoxic pathway.
Collapse
Affiliation(s)
| | - Amanda Y Poon
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA; Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Simona Kavaliauskiene
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway
| | - Anne Grethe Myrann
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway
| | - Claire Reynolds-Peterson
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Simon A Davis
- New York Structural Biology Center, New York, NY, USA
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway
| | - David J Vance
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| |
Collapse
|
11
|
Vance DJ, Poon AY, Mantis NJ. Sites of vulnerability on ricin B chain revealed through epitope mapping of toxin-neutralizing monoclonal antibodies. PLoS One 2020; 15:e0236538. [PMID: 33166282 PMCID: PMC7652295 DOI: 10.1371/journal.pone.0236538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
Ricin toxin's B subunit (RTB) is a multifunctional galactose (Gal)-/N-acetylgalactosamine (GalNac)-specific lectin that promotes uptake and intracellular trafficking of ricin's ribosome-inactivating subunit (RTA) into mammalian cells. Structurally, RTB consists of two globular domains (RTB-D1, RTB-D2), each divided into three homologous sub-domains (α, β, γ). The two carbohydrate recognition domains (CRDs) are situated on opposite sides of RTB (sub-domains 1α and 2γ) and function non-cooperatively. Previous studies have revealed two distinct classes of toxin-neutralizing, anti-RTB monoclonal antibodies (mAbs). Type I mAbs, exemplified by SylH3, inhibit (~90%) toxin attachment to cell surfaces, while type II mAbs, epitomized by 24B11, interfere with intracellular toxin transport between the plasma membrane and the trans-Golgi network (TGN). Localizing the epitopes recognized by these two classes of mAbs has proven difficult, in part because of RTB's duplicative structure. To circumvent this problem, RTB-D1 and RTB-D2 were expressed as pIII fusion proteins on the surface of filamentous phage M13 and subsequently used as "bait" in mAb capture assays. We found that SylH3 captured RTB-D1 (but not RTB-D2) in a dose-dependent manner, while 24B11 captured RTB-D2 (but not RTB-D1) in a dose-dependent manner. We confirmed these domain assignments by competition studies with an additional 8 RTB-specific mAbs along with a dozen a single chain antibodies (VHHs). Collectively, these results demonstrate that type I and type II mAbs segregate on the basis of domain specificity and suggest that RTB's two domains may contribute to distinct steps in the intoxication pathway.
Collapse
Affiliation(s)
- David J. Vance
- Division of Infectious Disease, New York State Department of Health,Wadsworth Center, Albany, NY, United States of America
| | - Amanda Y. Poon
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY, United States of America
| | - Nicholas J. Mantis
- Division of Infectious Disease, New York State Department of Health,Wadsworth Center, Albany, NY, United States of America
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY, United States of America
| |
Collapse
|
12
|
Falach R, Sapoznikov A, Gal Y, Elhanany E, Evgy Y, Shifman O, Aftalion M, Ehrlich S, Lazar S, Sabo T, Kronman C, Mazor O. The low density receptor-related protein 1 plays a significant role in ricin-mediated intoxication of lung cells. Sci Rep 2020; 10:9007. [PMID: 32488096 PMCID: PMC7265403 DOI: 10.1038/s41598-020-65982-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/11/2020] [Indexed: 01/15/2023] Open
Abstract
Ricin, a highly lethal plant-derived toxin, is a potential biological threat agent due to its high availability, ease of production and the lack of approved medical countermeasures for post-exposure treatment. To date, no specific ricin receptors were identified. Here we show for the first time, that the low density lipoprotein receptor-related protein-1 (LRP1) is a major target molecule for binding of ricin. Pretreating HEK293 acetylcholinesterase-producer cells with either anti-LRP1 antibodies or with Receptor-Associated Protein (a natural LRP1 antagonist), or using siRNA to knock-down LRP1 expression resulted in a marked reduction in their sensitivity towards ricin. Binding assays further demonstrated that ricin bound exclusively to the cluster II binding domain of LRP1, via the ricin B subunit. Ricin binding to the cluster II binding domain of LRP1 was significantly reduced by an anti-ricin monoclonal antibody, which confers high-level protection to ricin pulmonary-exposed mice. Finally, we tested the contribution of LRP1 receptor to ricin intoxication of lung cells derived from mice. Treating these cells with anti-LRP1 antibody prior to ricin exposure, prevented their intoxication. Taken together, our findings clearly demonstrate that the LRP1 receptor plays an important role in ricin-induced pulmonary intoxications.
Collapse
Affiliation(s)
- Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 19 Reuven Lerer St., Ness-Ziona, 76100, Israel.
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 19 Reuven Lerer St., Ness-Ziona, 76100, Israel
| | - Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 19 Reuven Lerer St., Ness-Ziona, 76100, Israel
| | - Eytan Elhanany
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 19 Reuven Lerer St., Ness-Ziona, 76100, Israel
| | - Yentl Evgy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 19 Reuven Lerer St., Ness-Ziona, 76100, Israel
| | - Ohad Shifman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 19 Reuven Lerer St., Ness-Ziona, 76100, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 19 Reuven Lerer St., Ness-Ziona, 76100, Israel
| | - Sharon Ehrlich
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 19 Reuven Lerer St., Ness-Ziona, 76100, Israel
| | - Shlomi Lazar
- Department of Pharmacology, Israel Institute for Biological Research, 19 Reuven Lerer St., Ness-Ziona, 76100, Israel
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 19 Reuven Lerer St., Ness-Ziona, 76100, Israel
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 19 Reuven Lerer St., Ness-Ziona, 76100, Israel
| | - Ohad Mazor
- Department of Infectious Diseases, Israel Institute for Biological Research, 19 Reuven Lerer St., Ness-Ziona, 76100, Israel
| |
Collapse
|
13
|
Kinouchi S, Sato M, Furukawa H, Sato T. Suppression of Malignant Potentials of A549 Human Lung Cancer Cell Line by Downregulation of the β4-Galactosyltransferase 1 Gene Expression. Biol Pharm Bull 2020; 43:747-751. [PMID: 32023576 DOI: 10.1248/bpb.b19-01033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous study demonstrated that downregulation of transcription factor Specificity protein (Sp) 1 suppresses the malignant potentials of A549 human lung cancer cell line with the reduced β4-galactosylation of highly branched N-glycans on cell surface glycoproteins. The reduced β4-galactosylation was brought about by the decreased expression of the β4-galactosyltransferase 1 (β4GalT1) gene. Herein, we examined whether the reduced β4-galactosylation by decreasing the β4GalT1 gene expression suppresses the malignant potentials of A549 cells. In the β4GalT1-downregulated cells, the β4-galactosylation of highly branched N-glycans was reduced in several glycoproteins such as lysosome-associated membrane protein-1 and E-cadherin. The anchorage-independent growth and migratory ability of the β4GalT1-downregulated cells decreased when compared with the control cells. Furthermore, the phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) decreased in the β4GalT1-downregulated cells. These results indicate that downregulation of the β4GalT1 gene decreases the β4-galactosylation of highly branched N-glycans and the phosphorylation of p44/42 MAPK, and suppresses the malignant potentials of A549 cells.
Collapse
Affiliation(s)
- Saeka Kinouchi
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Miku Sato
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Haruna Furukawa
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Takeshi Sato
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| |
Collapse
|
14
|
Durrant C, Fuehring JI, Willemetz A, Chrétien D, Sala G, Ghidoni R, Katz A, Rötig A, Thelestam M, Ermonval M, Moore SEH. Defects in Galactose Metabolism and Glycoconjugate Biosynthesis in a UDP-Glucose Pyrophosphorylase-Deficient Cell Line Are Reversed by Adding Galactose to the Growth Medium. Int J Mol Sci 2020; 21:ijms21062028. [PMID: 32188137 PMCID: PMC7139386 DOI: 10.3390/ijms21062028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/28/2022] Open
Abstract
UDP-glucose (UDP-Glc) is synthesized by UGP2-encoded UDP-Glc pyrophosphorylase (UGP) and is required for glycoconjugate biosynthesis and galactose metabolism because it is a uridyl donor for galactose-1-P (Gal1P) uridyltransferase. Chinese hamster lung fibroblasts harboring a hypomrphic UGP(G116D) variant display reduced UDP-Glc levels and cannot grow if galactose is the sole carbon source. Here, these cells were cultivated with glucose in either the absence or presence of galactose in order to investigate glycoconjugate biosynthesis and galactose metabolism. The UGP-deficient cells display < 5% control levels of UDP-Glc/UDP-Gal and > 100-fold reduction of [6-3H]galactose incorporation into UDP-[6-3H]galactose, as well as multiple deficits in glycoconjugate biosynthesis. Cultivation of these cells in the presence of galactose leads to partial restoration of UDP-Glc levels, galactose metabolism and glycoconjugate biosynthesis. The Vmax for recombinant human UGP(G116D) with Glc1P is 2000-fold less than that of the wild-type protein, and UGP(G116D) displayed a mildly elevated Km for Glc1P, but no activity of the mutant enzyme towards Gal1P was detectable. To conclude, although the mechanism behind UDP-Glc/Gal production in the UGP-deficient cells remains to be determined, the capacity of this cell line to change its glycosylation status as a function of extracellular galactose makes it a useful, reversible model with which to study different aspects of galactose metabolism and glycoconjugate biosynthesis.
Collapse
Affiliation(s)
- Christelle Durrant
- INSERM U1149, Université de Paris, 16 rue Henri Huchard, 75018 Paris, France; (C.D.); (A.W.)
| | - Jana I. Fuehring
- Institute for Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Alexandra Willemetz
- INSERM U1149, Université de Paris, 16 rue Henri Huchard, 75018 Paris, France; (C.D.); (A.W.)
| | - Dominique Chrétien
- UMR1163, Université Paris Decartes, Sorbonnes Paris Cité, Institut Imagine, 24 Boulevard du Montparnasse, 75015 Paris, France; (D.C.); (A.R.)
| | - Giusy Sala
- “Aldo Ravelli” Research Center and Department of Health Sciences, University of Milan, 20146 Milan, Italy; (G.S.); (R.G.)
| | - Riccardo Ghidoni
- “Aldo Ravelli” Research Center and Department of Health Sciences, University of Milan, 20146 Milan, Italy; (G.S.); (R.G.)
| | - Abram Katz
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Agnès Rötig
- UMR1163, Université Paris Decartes, Sorbonnes Paris Cité, Institut Imagine, 24 Boulevard du Montparnasse, 75015 Paris, France; (D.C.); (A.R.)
| | - Monica Thelestam
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Myriam Ermonval
- Institut Pasteur, Department of Virology, 25 rue du Dr. Roux, 75015 Paris, France;
| | - Stuart E. H. Moore
- INSERM U1149, Université de Paris, 16 rue Henri Huchard, 75018 Paris, France; (C.D.); (A.W.)
- Correspondence:
| |
Collapse
|
15
|
Preparation of Fluorescent Recombinant Shiga Toxin B Subunit and Its Application to Flow Cytometry. Methods Mol Biol 2020; 2132:463-474. [PMID: 32306353 DOI: 10.1007/978-1-0716-0430-4_45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Shiga toxin (Stx) is a major virulence factor of enterohemorrhagic Escherichia coli (E. coli). Stx consists of one enzymatic A subunit and five B subunits (StxB) that are involved in binding. The StxB pentamer specifically recognizes a glycosphingolipid, globotriaosylceramide (Gb3), as a receptor; therefore, it can be used as a probe to detect Gb3. This chapter describes the preparation of recombinant Stx1B proteins using E. coli, their conjugation with fluorescent dyes, and their application for flow cytometry. The prepared fluorescent StxB proteins bound to cells of several lines, including the HeLa human cervix adenocarcinoma cell line and the THP-1 human monocytic leukemia cell line. Furthermore, the probe was useful for confirmation of several sphingolipid-deficient HeLa cell lines that were constructed using genome editing.
Collapse
|
16
|
Cummings RD. "Stuck on sugars - how carbohydrates regulate cell adhesion, recognition, and signaling". Glycoconj J 2019; 36:241-257. [PMID: 31267247 DOI: 10.1007/s10719-019-09876-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
We have explored the fundamental biological processes by which complex carbohydrates expressed on cellular glycoproteins and glycolipids and in secretions of cells promote cell adhesion and signaling. We have also explored processes by which animal pathogens, such as viruses, bacteria, and parasites adhere to glycans of animal cells and initiate disease. Glycans important in cell signaling and adhesion, such as key O-glycans, are essential for proper animal development and cellular differentiation, but they are also involved in many pathogenic processes, including inflammation, tumorigenesis and metastasis, and microbial and parasitic pathogenesis. The overall hypothesis guiding these studies is that glycoconjugates are recognized and bound by a growing class of proteins called glycan-binding proteins (GBPs or lectins) expressed by all types of cells. There is an incredible variety and diversity of GBPs in animal cells involved in binding N- and O-glycans, glycosphingolipids, and proteoglycan/glycosaminoglycans. We have specifically studied such molecular determinants recognized by selectins, galectins, and many other C-type lectins, involved in leukocyte recruitment to sites of inflammation in human tissues, lymphocyte trafficking, adhesion of human viruses to human cells, structure and immunogenicity of glycoproteins on the surfaces of human parasites. We have also explored the molecular basis of glycoconjugate biosynthesis by exploring the enzymes and molecular chaperones required for correct protein glycosylation. From these studies opportunities for translational biology have arisen, involving production of function-blocking antibodies, anti-glycan specific antibodies, and synthetic glycoconjugates, e.g. glycosulfopeptides, that specifically are recognized by GBPs. This invited short review is based in part on my presentation for the IGO Award 2019 given by the International Glycoconjugate Organization in Milan.
Collapse
Affiliation(s)
- Richard D Cummings
- Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
17
|
Tian S, Muneeruddin K, Choi MY, Tao L, Bhuiyan RH, Ohmi Y, Furukawa K, Furukawa K, Boland S, Shaffer SA, Adam RM, Dong M. Genome-wide CRISPR screens for Shiga toxins and ricin reveal Golgi proteins critical for glycosylation. PLoS Biol 2018; 16:e2006951. [PMID: 30481169 PMCID: PMC6258472 DOI: 10.1371/journal.pbio.2006951] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
Glycosylation is a fundamental modification of proteins and membrane lipids. Toxins that utilize glycans as their receptors have served as powerful tools to identify key players in glycosylation processes. Here, we carried out Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9-mediated genome-wide loss-of-function screens using two related bacterial toxins, Shiga-like toxins (Stxs) 1 and 2, which use a specific glycolipid, globotriaosylceramide (Gb3), as receptors, and the plant toxin ricin, which recognizes a broad range of glycans. The Stxs screens identified major glycosyltransferases (GTs) and transporters involved in Gb3 biosynthesis, while the ricin screen identified GTs and transporters involved in N-linked protein glycosylation and fucosylation. The screens also identified lysosomal-associated protein transmembrane 4 alpha (LAPTM4A), a poorly characterized four-pass membrane protein, as a factor specifically required for Stxs. Mass spectrometry analysis of glycolipids and their precursors demonstrates that LAPTM4A knockout (KO) cells lack Gb3 biosynthesis. This requirement of LAPTM4A for Gb3 synthesis is not shared by its homolog lysosomal-associated protein transmembrane 4 beta (LAPTM4B), and switching the domains between them determined that the second luminal domain of LAPTM4A is required, potentially acting as a specific "activator" for the GT that synthesizes Gb3. These screens also revealed two Golgi proteins, Transmembrane protein 165 (TMEM165) and Transmembrane 9 superfamily member 2 (TM9SF2), as shared factors required for both Stxs and ricin. TMEM165 KO and TM9SF2 KO cells both showed a reduction in not only Gb3 but also other glycosphingolipids, suggesting that they are required for maintaining proper levels of glycosylation in general in the Golgi. In addition, TM9SF2 KO cells also showed defective endosomal trafficking. These studies reveal key Golgi proteins critical for regulating glycosylation and glycolipid synthesis and provide novel therapeutic targets for blocking Stxs and ricin toxicity.
Collapse
Affiliation(s)
- Songhai Tian
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Khaja Muneeruddin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, Massachusetts, United States of America
| | - Mei Yuk Choi
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Liang Tao
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robiul H. Bhuiyan
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Matsumoto, Kasugai, Aichi, Japan
| | - Yuhsuke Ohmi
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Matsumoto, Kasugai, Aichi, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Matsumoto, Kasugai, Aichi, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Matsumoto, Kasugai, Aichi, Japan
| | - Sebastian Boland
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Scott A. Shaffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, Massachusetts, United States of America
| | - Rosalyn M. Adam
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
18
|
Sato T, Takano R, Tokunaka K, Saiga K, Tomura A, Sugihara H, Hayashi T, Imamura Y, Morita M. Type VI collagen α1 chain polypeptide in non-triple helical form is an alternative gene product of COL6A1. J Biochem 2018; 164:173-181. [PMID: 29659864 DOI: 10.1093/jb/mvy040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/31/2018] [Indexed: 01/08/2023] Open
Abstract
Expression of type IV collagen α1 chain in non-triple helical form, NTH α1(IV), is observed in cultured human cells, human placenta and rabbit tissues. Biological functions of NTH α1(IV) are most likely to be distinct from type IV collagen, since their biochemical characteristics are quite different. To explore the biological functions of NTH α1(IV), we prepared some anti-NTH α1(IV) antibodies. In the course of characterization of these antibodies, one antibody, #141, bound to a polypeptide of 140 kDa in size in addition to NTH α1(IV). In this study, we show evidence that the 140 kDa polypeptide is a novel non-triple helical polypeptide of type VI collagen α1 chain encoded by COL6A1, or NTH α1(VI). Expression of NTH α1(VI) is observed in supernatants of several human cancer cell lines, suggesting that the NTH α1(VI) might be involved in tumourigenesis. Reactivity with lectins indicates that sugar chains of NTH α1(VI) are different from those of the α1(VI) chain in triple helical form of type VI collagen, suggesting a synthetic mechanism and a mode of action of NTH α1(VI) is different from type VI collagen.
Collapse
Affiliation(s)
- Takamichi Sato
- Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd, 3-31-12, Shimo, Kita-ku, Tokyo 115-0042, Japan
| | - Ryo Takano
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2655-1, Nakanomachi, Hachioji city, Tokyo 192-0015, Japan
| | - Kazuhiro Tokunaka
- Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd, 3-31-12, Shimo, Kita-ku, Tokyo 115-0042, Japan
| | - Kan Saiga
- Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd, 3-31-12, Shimo, Kita-ku, Tokyo 115-0042, Japan
| | - Arihiro Tomura
- Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd, 3-31-12, Shimo, Kita-ku, Tokyo 115-0042, Japan
| | - Hidemitsu Sugihara
- Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd, 3-31-12, Shimo, Kita-ku, Tokyo 115-0042, Japan
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, Liaoning, China
| | - Yasutada Imamura
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2655-1, Nakanomachi, Hachioji city, Tokyo 192-0015, Japan
| | - Makoto Morita
- Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd, 3-31-12, Shimo, Kita-ku, Tokyo 115-0042, Japan
| |
Collapse
|
19
|
Structural Characterization and Interaction with RCA 120 of a Highly Sulfated Keratan Sulfate from Blue Shark (Prionace glauca) Cartilage. Mar Drugs 2018; 16:md16040128. [PMID: 29662015 PMCID: PMC5923415 DOI: 10.3390/md16040128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 01/21/2023] Open
Abstract
As an important glycosaminoglycan, keratan sulfate (KS) mainly exists in corneal and cartilage, possessing various biological activities. In this study, we purified KS from blue shark (Prionace glauca) cartilage and prepared KS oligosaccharides (KSO) through keratanase II-catalyzed hydrolysis. The structures of KS and KSO were characterized using multi-dimensional nuclear magnetic resonance (NMR) spectra and liquid chromatography-mass spectrometry (LC-MS). Shark cartilage KS was highly sulfated and modified with ~2.69% N-acetylneuraminic acid (NeuAc) through α(2,3)-linked to galactose. Additionally, KS exhibited binding affinity to Ricinus communis agglutinin I (RCA120) in a concentration-dependent manner, a highly toxic lectin from beans of the castor plant. Furthermore, KSO from dp2 to dp8 bound to RCA120 in the increasing trend while the binding affinity of dp8 was superior to polysaccharide. These results define novel structural features for KS from Prionace glauca cartilage and demonstrate the potential application on ricin-antidote exploitation.
Collapse
|
20
|
A Supercluster of Neutralizing Epitopes at the Interface of Ricin's Enzymatic (RTA) and Binding (RTB) Subunits. Toxins (Basel) 2017; 9:toxins9120378. [PMID: 29168727 PMCID: PMC5744098 DOI: 10.3390/toxins9120378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/10/2017] [Accepted: 11/18/2017] [Indexed: 12/29/2022] Open
Abstract
As part of an effort to engineer ricin antitoxins and immunotherapies, we previously produced and characterized a collection of phage-displayed, heavy chain-only antibodies (VHHs) from alpacas that had been immunized with ricin antigens. In our initial screens, we identified nine VHHs directed against ricin toxin’s binding subunit (RTB), but only one, JIZ-B7, had toxin-neutralizing activity. Linking JIZ-B7 to different VHHs against ricin’s enzymatic subunit (RTA) resulted in several bispecific antibodies with potent toxin-neutralizing activity in vitro and in vivo. JIZ-B7 may therefore be an integral component of a future VHH-based neutralizing agent (VNA) for ricin toxin. In this study, we now localize, using competitive ELISA, JIZ-B7’s epitope to a region of RTB’s domain 2 sandwiched between the high-affinity galactose/N-acetylgalactosamine (Gal/GalNAc)-binding site and the boundary of a neutralizing hotspot on RTA known as cluster II. Analysis of additional RTB (n = 8)- and holotoxin (n = 4)-specific VHHs from a recent series of screens identified a “supercluster” of neutralizing epitopes at the RTA-RTB interface. Among the VHHs tested, toxin-neutralizing activity was most closely associated with epitope proximity to RTA, and not interference with RTB’s ability to engage Gal/GalNAc receptors. We conclude that JIZ-B7 is representative of a larger group of potent toxin-neutralizing antibodies, possibly including many described in the literature dating back several decades, that recognize tertiary and possibly quaternary epitopes located at the RTA-RTB interface and that target a region of vulnerability on ricin toxin.
Collapse
|
21
|
Rosenfeld R, Alcalay R, Mechaly A, Lapidoth G, Epstein E, Kronman C, J Fleishman S, Mazor O. Improved antibody-based ricin neutralization by affinity maturation is correlated with slower off-rate values. Protein Eng Des Sel 2017; 30:611-617. [PMID: 28472478 DOI: 10.1093/protein/gzx028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/18/2017] [Indexed: 01/03/2023] Open
Abstract
While potent monoclonal antibodies against ricin were introduced over the years, the question whether increasing antibody affinity enables better toxin neutralization was not fully addressed yet. The aim of this study was to characterize the contribution of antibody affinity to the ricin neutralization potential of the antibody. cHD23 monoclonal antibody that targets the toxin B-subunit and interferes with its binding to membranal receptors, was isolated. In order to create antibody clones with improved affinity toward ricin, a scFv-phage display library containing mutated versions of the variable regions of cHD23 was constructed and clones with improved binding of ricin were isolated. Structural modeling of these mutants suggests that the inserted mutations may increase the antibody conformational flexibility thus improving its ability to bind ricin. While it was found that the selected clones exhibited improved neutralization of ricin, the correlation between the KD values and potency was only minor (r = 0.55). However, a positive correlation (r = 0.84) exist between the off-rate values (koff) of the affinity matured clones and their ability to neutralize ricin. As cell membranes display inordinately large amounts of potential surface binding sites for ricin, it is suggested that antibodies with improved off-rate values block the ability of the toxin to bind to target receptors, in a highly efficient manner. Currently, antibody-based therapy is the most effective treatment for ricin intoxication and it is anticipated that the findings of this study will provide useful information and a possible strategy to design an improved antibody-based therapy for the toxin.
Collapse
Affiliation(s)
- Ronit Rosenfeld
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Lerrer St., Ness-Ziona 74100, Israel
| | - Ron Alcalay
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Lerrer St., Ness-Ziona 74100, Israel
| | - Adva Mechaly
- Department of Infectious Diseases, Israel Institute for Biological Research, Lerrer St., Ness-Ziona 74100, Israel
| | - Gideon Lapidoth
- Department of Biomolecular Sciences, Weizmann Institute of Science, 234 Herzel St., Rehovot 7610001, Israel
| | - Eyal Epstein
- Department of Biotechnology, Israel Institute for Biological Research, Lerrer St., Ness-Ziona 74100, Israel
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Lerrer St., Ness-Ziona 74100, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, 234 Herzel St., Rehovot 7610001, Israel
| | - Ohad Mazor
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Lerrer St., Ness-Ziona 74100, Israel
| |
Collapse
|
22
|
Gal Y, Mazor O, Falach R, Sapoznikov A, Kronman C, Sabo T. Treatments for Pulmonary Ricin Intoxication: Current Aspects and Future Prospects. Toxins (Basel) 2017; 9:E311. [PMID: 28972558 PMCID: PMC5666358 DOI: 10.3390/toxins9100311] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor beans), is one of the most lethal toxins known, particularly if inhaled. Ricin is considered a potential biological threat agent due to its high availability and ease of production. The clinical manifestation of pulmonary ricin intoxication in animal models is closely related to acute respiratory distress syndrome (ARDS), which involves pulmonary proinflammatory cytokine upregulation, massive neutrophil infiltration and severe edema. Currently, the only post-exposure measure that is effective against pulmonary ricinosis at clinically relevant time-points following intoxication in pre-clinical studies is passive immunization with anti-ricin neutralizing antibodies. The efficacy of this antitoxin treatment depends on antibody affinity and the time of treatment initiation within a limited therapeutic time window. Small-molecule compounds that interfere directly with the toxin or inhibit its intracellular trafficking may also be beneficial against ricinosis. Another approach relies on the co-administration of antitoxin antibodies with immunomodulatory drugs, thereby neutralizing the toxin while attenuating lung injury. Immunomodulators and other pharmacological-based treatment options should be tailored according to the particular pathogenesis pathways of pulmonary ricinosis. This review focuses on the current treatment options for pulmonary ricin intoxication using anti-ricin antibodies, disease-modifying countermeasures, anti-ricin small molecules and their various combinations.
Collapse
Affiliation(s)
- Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ohad Mazor
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| |
Collapse
|
23
|
A vital sugar code for ricin toxicity. Cell Res 2017; 27:1351-1364. [PMID: 28925387 PMCID: PMC5674155 DOI: 10.1038/cr.2017.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/12/2022] Open
Abstract
Ricin is one of the most feared bioweapons in the world due to its extreme toxicity and easy access. Since no antidote exists, it is of paramount importance to identify the pathways underlying ricin toxicity. Here, we demonstrate that the Golgi GDP-fucose transporter Slc35c1 and fucosyltransferase Fut9 are key regulators of ricin toxicity. Genetic and pharmacological inhibition of fucosylation renders diverse cell types resistant to ricin via deregulated intracellular trafficking. Importantly, cells from a patient with SLC35C1 deficiency are also resistant to ricin. Mechanistically, we confirm that reduced fucosylation leads to increased sialylation of Lewis X structures and thus masking of ricin-binding sites. Inactivation of the sialyltransferase responsible for modifications of Lewis X (St3Gal4) increases the sensitivity of cells to ricin, whereas its overexpression renders cells more resistant to the toxin. Thus, we have provided unprecedented insights into an evolutionary conserved modular sugar code that can be manipulated to control ricin toxicity.
Collapse
|
24
|
Jonnada M, El Rassi Z. Poly (N-acryloxysuccinimide-co-ethylene glycol dimethacrylate) precursor monolith and its post polymerization modification with alkyl ligands, trypsin and lectins for reversed-phase chromatography, miniaturized enzyme reactors and lectin affinity chromato. Electrophoresis 2017; 38:2870-2879. [DOI: 10.1002/elps.201700221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/03/2017] [Accepted: 08/01/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Murthy Jonnada
- Department of chemistry; Oklahoma State University; Stillwater OK USA
| | - Ziad El Rassi
- Department of chemistry; Oklahoma State University; Stillwater OK USA
| |
Collapse
|
25
|
Muramoto K, Tange R, Ishii T, Miyauchi K, Sato T. Downregulation of Transcription Factor Sp1 Suppresses Malignant Properties of A549 Human Lung Cancer Cell Line with Decreased β4-Galactosylation of Highly Branched N-Glycans. Biol Pharm Bull 2017; 40:1282-1288. [PMID: 28529241 DOI: 10.1248/bpb.b17-00212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Dramatic changes in the glycan structures of cell surface proteins have been observed upon malignant transformation of cells as induced by the altered expression levels of glycosyltransferases. Such changes are closely associated with the malignant properties of cancer cells. Transcription factor Sp1 regulates the gene expression of various molecules including glycosyltransferases. Herein, we investigated whether or not Sp1-downregulation affects to N-glycosylation of glycoproteins and malignant properties of A549 human lung cancer cell line. We established a stable clone whose Sp1-expression level was reduced to 50% of a control clone by RNA interference. Lectin blotting revealed that the β4-galactosylation of highly branched N-glycans decreases mainly in cell adhesion molecule, E-cadherin. The analysis of underlying mechanism for decreased β4-galactosylation of N-glycans showed that the gene expression level of β4-galactosyltransferase (β4GalT) 1 decreases dramatically by downregulation of Sp1 without changes in those of β4GalT2 and N-acetylglucosaminyltransferase V. Mutations in the Sp1-binding sites of the β4GalT1 gene promoter showed that the promoter activity decreases significantly, indicating that the gene expression is regulated by Sp1. These results indicate that the β4-galactosylation of highly branched N-glycans decreases by downregulation of Sp1 through the reduced expression of the β4GalT1 gene. Furthermore, the Sp1-downregulated cells showed the suppression of the anchorage-independent growth in soft agar and migratory activity when compared to the control cells. The present study demonstrates that downregulation of Sp1 suppresses the malignant properties of A549 cells through the decreased β4-galactosylation of highly branched N-glycans.
Collapse
Affiliation(s)
- Kodai Muramoto
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Riho Tange
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Takayuki Ishii
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Kana Miyauchi
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Takeshi Sato
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| |
Collapse
|
26
|
Rong Y, Van Slyke G, Vance DJ, Westfall J, Ehrbar D, Mantis NJ. Spatial location of neutralizing and non-neutralizing B cell epitopes on domain 1 of ricin toxin's binding subunit. PLoS One 2017; 12:e0180999. [PMID: 28700745 PMCID: PMC5507285 DOI: 10.1371/journal.pone.0180999] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/23/2017] [Indexed: 12/14/2022] Open
Abstract
Ricin toxin’s binding subunit (RTB) is a galactose-/N-acetylgalactosamine (Gal/GalNac)-specific lectin that mediates uptake and intracellular trafficking of ricin within mammalian cells. Structurally, RTB consists of two globular domains, each divided into three homologous sub-domains (α, β, γ). In this report, we describe five new murine IgG monoclonal antibodies (mAbs) against RTB: MH3, 8A1, 8B3, LF1, and LC5. The mAbs have similar binding affinities (KD) for ricin holotoxin, but displayed a wide range of in vitro toxin-neutralizing activities. Competition ELISAs indicate that the two most potent toxin-neutralizing mAbs (MH3, 8A1), as well as one of the moderate toxin-neutralizing mAbs (LF1), recognize distinct epitopes near the low affinity Gal recognition domain in RTB subdomain 1α. Evaluated in a mouse model of systemic ricin challenge, all five mAbs afforded some benefit against intoxication, but only MH3 was protective. However, neither MH3 nor 24B11, another well-characterized mAb against RTB subdomain 1α, could passively protect mice against a mucosal (intranasal) ricin challenge. This is in contrast to SylH3, a previously characterized mAb directed against an epitope near RTB’s high affinity Gal/GalNac recognition element in sub-domain 2γ, which protected animals against systemic and mucosal ricin exposure. SylH3 was significantly more effective than MH3 and 24B11 at blocking ricin attachment to host cell receptors, suggesting that mucosal immunity to ricin is best imparted by antibodies that target RTB’s high affinity Gal/GalNac recognition element in subdomain 2γ, not the low affinity Gal recognition domain in subdomain 1α.
Collapse
Affiliation(s)
- Yinghui Rong
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Greta Van Slyke
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - David J. Vance
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Jennifer Westfall
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Dylan Ehrbar
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
27
|
Sugar-Binding Profiles of Chitin-Binding Lectins from the Hevein Family: A Comprehensive Study. Int J Mol Sci 2017; 18:ijms18061160. [PMID: 28556796 PMCID: PMC5485984 DOI: 10.3390/ijms18061160] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 04/28/2017] [Accepted: 05/21/2017] [Indexed: 01/16/2023] Open
Abstract
Chitin-binding lectins form the hevein family in plants, which are defined by the presence of single or multiple structurally conserved GlcNAc (N-acetylglucosamine)-binding domains. Although they have been used as probes for chito-oligosaccharides, their detailed specificities remain to be investigated. In this study, we analyzed six chitin-binding lectins, DSA, LEL, PWM, STL, UDA, and WGA, by quantitative frontal affinity chromatography. Some novel features were evident: WGA showed almost comparable affinity for pyridylaminated chitotriose and chitotetraose, while LEL and UDA showed much weaker affinity, and DSA, PWM, and STL had no substantial affinity for the former. WGA showed selective affinity for hybrid-type N-glycans harboring a bisecting GlcNAc residue. UDA showed extensive binding to high-mannose type N-glycans, with affinity increasing with the number of Man residues. DSA showed the highest affinity for highly branched N-glycans consisting of type II LacNAc (N-acetyllactosamine). Further, multivalent features of these lectins were investigated by using glycoconjugate and lectin microarrays. The lectins showed substantial binding to immobilized LacNAc as well as chito-oligosaccharides, although the extents to which they bound varied among them. WGA showed strong binding to heavily sialylated glycoproteins. The above observations will help interpret lectin-glycoprotein interactions in histochemical studies and glyco-biomarker investigations.
Collapse
|
28
|
Abstract
Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, CA 92093-0687, USA
| |
Collapse
|
29
|
Application of Peak Intensity Analysis to Measurements of Protein Binding to Lipid Vesicles and Erythrocytes Using Fluorescence Correlation Spectroscopy: Dependence on Particle Size. J Membr Biol 2016; 250:77-87. [PMID: 27837242 DOI: 10.1007/s00232-016-9938-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) is a sensitive analytical tool for investigation of processes accompanied by changes in the mobility of molecules and complexes. In the present work, peak intensity analysis (PIA) in combination with the solution stirring using FCS setup was applied to explore the interaction between fluorescently labeled protein ligands and corresponding receptors located on membranes. In the system composed of biotinylated liposomes and fluorescently labeled streptavidin as a ligand, PIA allowed us to determine the optimum receptor concentration and demonstrate the essential dependence of the binding efficacy on the length of the linker between the biotin group and the polar head group of the lipid. The binding was dependent on the size of liposomes which was varied by lipid extrusion through filters of different pore diameters. The sensitivity of the method was higher with the liposomes of larger sizes. The PIA approach can be applied not only to liposomes but also to relatively large objects, e.g., erythrocytes or Sepharose beads derivatized with lactose as a receptor for the binding of viscumin and ricin.
Collapse
|
30
|
Chandrasekaran EV, Xue J, Xia J, Khaja SD, Piskorz CF, Locke RD, Neelamegham S, Matta KL. Novel interactions of complex carbohydrates with peanut (PNA), Ricinus communis (RCA-I), Sambucus nigra (SNA-I) and wheat germ (WGA) agglutinins as revealed by the binding specificities of these lectins towards mucin core-2 O-linked and N-linked glycans and related structures. Glycoconj J 2016; 33:819-36. [PMID: 27318477 DOI: 10.1007/s10719-016-9678-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
Plant lectins through their multivalent quaternary structures bind intrinsically flexible oligosaccharides. They recognize fine structural differences in carbohydrates and interact with different sequences in mucin core 2 or complex-type N-glycan chain and also in healthy and malignant tissues. They are used in characterizing cellular and extracellular glycoconjugates modified in pathological processes. We study here, the complex carbohydrate-lectin interactions by determining the effects of substituents in mucin core 2 tetrasaccharide Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAcα-O-R and fetuin glycopeptides on their binding to agarose-immobilized lectins PNA, RCA-I, SNA-I and WGA. Briefly, in mucin core 2 tetrasaccharide (i) structures modified by α2-3/6-Sialyl LacNAc, LewisX and α1-3-Galactosyl LacNAc resulted in regular binding to PNA whereas compounds with 6-sulfo LacNAc displayed no-binding; (ii) strucures bearing α2-6-sialyl 6-sulfo LacNAc, or 6-sialyl LacdiNAc carbohydrates displayed strong binding to SNA-I; (iii) structures with α2-3/6-sialyl, α1-3Gal LacNAc or LewisX were non-binder to RCA-I and compounds with 6-sulfo LacNAc only displayed weak binding; (iv) structures containing LewisX, 6-Sulfo LewisX, α2-3/6-sialyl LacNAc, α2-3/6-sialyl 6-sulfo LacNAc and GalNAc Lewis-a were non-binding to WGA, those with α1-2Fucosyl, α1-3-Galactosyl LacNAc, α2-3-sialyl T-hapten plus 3'/6'sulfo LacNAc displayed weak binding, and compounds with α2-3-sialyl T-hapten, α2.6-Sialyl LacdiNAc, α2-3-sialyl D-Fucβ1-3 GalNAc and Fucα-1-2 D-Fucβ-1-3GalNAc displaying regular binding and GalNAc LewisX and LacdiNAc plus D-Fuc β-1-3 GalNAcα resulting in tight binding. RCA-I binds Fetuin triantennary asialoglycopeptide 100 % after α-2-3 and 25 % after α-2-6 sialylation, 30 % after α-1-2 and 100 % after α-1-3 fucosylation, and 50 % after α-1-3 galactosylation. WGA binds 3-but not 6-Fucosyl chitobiose core. Thus, information on the influence of complex carbohydrate chain constituents on lectin binding is apparently essential for the potential application of lectins in glycoconjugate research.
Collapse
Affiliation(s)
- E V Chandrasekaran
- Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.
| | - Jun Xue
- Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Jie Xia
- Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Siraj D Khaja
- Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Conrad F Piskorz
- Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Robert D Locke
- Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, State University of New York, Buffalo, NY, 14260, USA
| | - Khushi L Matta
- Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.
- Department of Chemical and Biological Engineering, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
31
|
Authier F, Djavaheri-Mergny M, Lorin S, Frénoy JP, Desbuquois B. Fate and action of ricin in rat liverin vivo: translocation of endocytosed ricin into cytosol and induction of intrinsic apoptosis by ricin B-chain. Cell Microbiol 2016; 18:1800-1814. [DOI: 10.1111/cmi.12621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/13/2022]
Affiliation(s)
- François Authier
- Service information scientifique et technique (IST) de l'Inserm; Paris France
| | | | - Séverine Lorin
- Inserm UMR-S-1193; Université Paris-Saclay; 92296 Châtenay-Malabry France
| | - Jean-Pierre Frénoy
- CNRS UMR 8601, Centre Universitaire des Saints-Pères; Université Paris-Descartes; Paris France
| | - Bernard Desbuquois
- Inserm U 1016 and CNRS UMR 8104; Université Paris-Descartes, Institut Cochin; Paris France
| |
Collapse
|
32
|
Olofsson S, Datema R. New Virus-Selective Inhibitor of Terminal Glycosylation Increasing Immunological Reactivity of a Viral Glycoprotein. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029000100104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In previous reports we have shown that certain nucleoside analogues may be phosphorylated by herpesvirus-specified thymidine kinases, thereby acquiring an ability to act as virus-selective inhibitors of terminal glycosylation. In the present paper we report that the antiviral nucleoside analogue 5-propyl-2′-deoxyuridine induced a pattern of glycosylation inhibition, which resulted in an increased availability of the HSV-1-specified glycoprotein gC-1 for neutralizing antibodies. This effect, which was absent in cells infected with a thymidine kinase-deficient HSV mutant, was correlated with a decrease in the proportion of highly branched N-linked oligosaccharides associated with gC-1.
Collapse
Affiliation(s)
- S. Olofsson
- Department of Clinical Virology, University of Göteborg, Guldhedsgatan 10B, S-413 46 Göteborg, Sweden
| | - R. Datema
- Department of Virology, Bristol-Myers PRDD, 5 Research Parkway, Wallingford, Connecticut 06492-7660, USA
| |
Collapse
|
33
|
Identification of Antigenic Glycans from Schistosoma mansoni by Using a Shotgun Egg Glycan Microarray. Infect Immun 2016; 84:1371-1386. [PMID: 26883596 DOI: 10.1128/iai.01349-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/12/2016] [Indexed: 01/01/2023] Open
Abstract
Infection of mammals by the parasitic helminth Schistosoma mansoni induces antibodies to glycan antigens in worms and eggs, but the differential nature of the immune response among infected mammals is poorly understood. To better define these responses, we used a shotgun glycomics approach in which N-glycans from schistosome egg glycoproteins were prepared, derivatized, separated, and used to generate an egg shotgun glycan microarray. This array was interrogated with sera from infected mice, rhesus monkeys, and humans and with glycan-binding proteins and antibodies to gather information about the structures of antigenic glycans, which also were analyzed by mass spectrometry. A major glycan antigen targeted by IgG from different infected species is the FLDNF epitope [Fucα3GalNAcβ4(Fucα3)GlcNAc-R], which is also recognized by the IgG monoclonal antibody F2D2. The FLDNF antigen is expressed by all life stages of the parasite in mammalian hosts, and F2D2 can kill schistosomula in vitro in a complement-dependent manner. Different antisera also recognized other glycan determinants, including core β-xylose and highly fucosylated glycans. Thus, the natural shotgun glycan microarray of schistosome eggs is useful in identifying antigenic glycans and in developing new anti-glycan reagents that may have diagnostic applications and contribute to developing new vaccines against schistosomiasis.
Collapse
|
34
|
An International Proficiency Test to Detect, Identify and Quantify Ricin in Complex Matrices. Toxins (Basel) 2015; 7:4987-5010. [PMID: 26703726 PMCID: PMC4690109 DOI: 10.3390/toxins7124859] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/08/2015] [Accepted: 11/16/2015] [Indexed: 12/14/2022] Open
Abstract
While natural intoxications with seeds of Ricinus communis (R. communis) have long been known, the toxic protein ricin contained in the seeds is of major concern since it attracts attention of those intending criminal, terroristic and military misuse. In order to harmonize detection capabilities in expert laboratories, an international proficiency test was organized that aimed at identifying good analytical practices (qualitative measurements) and determining a consensus concentration on a highly pure ricin reference material (quantitative measurements). Sample materials included highly pure ricin as well as the related R. communis agglutinin (RCA120) spiked into buffer, milk and meat extract; additionally, an organic fertilizer naturally contaminated with R. communis shred was investigated in the proficiency test. The qualitative results showed that either a suitable combination of immunological, mass spectrometry (MS)-based and functional approaches or sophisticated MS-based approaches alone successfully allowed the detection and identification of ricin in all samples. In terms of quantification, it was possible to determine a consensus concentration of the highly pure ricin reference material. The results provide a basis for further steps in quality assurance and improve biopreparedness in expert laboratories worldwide.
Collapse
|
35
|
Worbs S, Skiba M, Söderström M, Rapinoja ML, Zeleny R, Russmann H, Schimmel H, Vanninen P, Fredriksson SÅ, Dorner BG. Characterization of Ricin and R. communis Agglutinin Reference Materials. Toxins (Basel) 2015; 7:4906-34. [PMID: 26703723 PMCID: PMC4690106 DOI: 10.3390/toxins7124856] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/07/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Abstract
Ricinus communis intoxications have been known for centuries and were attributed to the toxic protein ricin. Due to its toxicity, availability, ease of preparation, and the lack of medical countermeasures, ricin attracted interest as a potential biological warfare agent. While different technologies for ricin analysis have been established, hardly any universally agreed-upon "gold standards" are available. Expert laboratories currently use differently purified in-house materials, making any comparison of accuracy and sensitivity of different methods nearly impossible. Technically challenging is the discrimination of ricin from R. communis agglutinin (RCA120), a less toxic but highly homologous protein also contained in R. communis. Here, we established both highly pure ricin and RCA120 reference materials which were extensively characterized by gel electrophoresis, liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI MS/MS), and matrix-assisted laser desorption ionization-time of flight approaches as well as immunological and functional techniques. Purity reached >97% for ricin and >99% for RCA120. Different isoforms of ricin and RCA120 were identified unambiguously and distinguished by LC-ESI MS/MS. In terms of function, a real-time cytotoxicity assay showed that ricin is approximately 300-fold more toxic than RCA120. The highly pure ricin and RCA120 reference materials were used to conduct an international proficiency test.
Collapse
Affiliation(s)
- Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| | - Martin Skiba
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| | - Martin Söderström
- VERIFIN (Finnish Institute for Verification of the ChemicalWeapons Convention), Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, Helsinki 05600, Finland.
| | - Marja-Leena Rapinoja
- VERIFIN (Finnish Institute for Verification of the ChemicalWeapons Convention), Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, Helsinki 05600, Finland.
| | - Reinhard Zeleny
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, 2440 Geel, Belgium.
| | - Heiko Russmann
- Bundeswehr Research Institute for Protective Technologies and NBC Protection, Humboldtstr. 100, 29633 Munster, Germany.
| | - Heinz Schimmel
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, 2440 Geel, Belgium.
| | - Paula Vanninen
- VERIFIN (Finnish Institute for Verification of the ChemicalWeapons Convention), Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, Helsinki 05600, Finland.
| | - Sten-Åke Fredriksson
- FOI, Swedish Defence Research Agency, CBRN Defence and Security, Cementvagen 20, 901 82 Umeå, Sweden.
| | - Brigitte G Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| |
Collapse
|
36
|
Scillitani G, Mentino D. Comparative glycopattern analysis of mucins in the Brunner's glands of the guinea-pig and the house mouse (Rodentia). Acta Histochem 2015; 117:612-23. [PMID: 26105998 DOI: 10.1016/j.acthis.2015.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/28/2015] [Accepted: 06/04/2015] [Indexed: 12/18/2022]
Abstract
The mucins secreted by the Brunner's glands and the duodenal goblet cells of the Guinea-pig and the house mouse were compared by conventional and FITC-conjugated lectin histochemistry. Methylation/saponification and sialidase digestion were performed prior to lectin binding to detect the residues subterminal to sulfated groups and sialic acid, respectively. In the Guinea-pig the Brunner's glands produce class-III stable sulfosialomucins. Sialic acid is mostly 2,6-linked to galactose or to N-acetylgalactosamine and is in part O-acetylated in C7, C8, and C9. Sulfated groups are probably linked to sialic acid and N-acetylgalactosamine. Terminal residuals of N-acetylglucosamine, galactose, N-acetylgalactosamine and fucose linked in α1,2, α1,3, and α1,4 are also present. Duodenal goblet cells of the Guinea-pig present a lower number of residuals in respect to the Brunner's glandular ones, with sialic acid and N-acetylgalactosamine subterminal to sulfated groups. In the house mouse the Brunner's glands produce class-III stable neutral mucins, binding to same lectins as in the Guinea-pig except for those specific to sialic acid. A diversity of fucosylated residuals higher than in the Guinea-pig is observed. The mouse duodenal goblet cells lack stable class-III mucins, have little sialic acid and present a lower number of residuals in respect to the correspondent Brunner's glands. Regulation of the acidic intestinal microenvironment, prevention of pathologies and hosting of microflora can explain the observed results and the differences observed between the two rodents.
Collapse
|
37
|
Accogli G, Douet C, Ambruosi B, Martino NA, Uranio MF, Deleuze S, Dell'Aquila ME, Desantis S, Goudet G. Differential expression and localization of glycosidic residues in in vitro- and in vivo-matured cumulus-oocyte complexes in equine and porcine species. Mol Reprod Dev 2014; 81:1115-35. [PMID: 25511183 DOI: 10.1002/mrd.22432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/09/2014] [Indexed: 11/10/2022]
Abstract
Glycoprotein oligosaccharides play major roles during reproduction, yet their function in gamete interactions is not fully elucidated. Identification and comparison of the glycan pattern in cumulus-oocyte complexes (COCs) from species with different efficiencies of in vitro spermatozoa penetration through the zona pellucida (ZP) could help clarify how oligosaccharides affect gamete interactions. We compared the expression and localization of 12 glycosidic residues in equine and porcine in vitro-matured (IVM) and preovulatory COCs by means of lectin histochemistry. The COCs glycan pattern differed between animals and COC source (IVM versus preovulatory). Among the 12 carbohydrate residues investigated, the IVM COCs from these two species shared: (a) sialo- and βN-acetylgalactosamine (GalNAc)-terminating glycans in the ZP; (b) sialylated and fucosylated glycans in cumulus cells; and (c) GalNAc and N-acetylglucosamine (GlcNAc) glycans in the ooplasm. Differences in the preovulatory COCs of the two species included: (a) sialoglycans and GlcNAc terminating glycans in the equine ZP versus terminal GalNAc and internal GlcNAc in the porcine ZP; (b) terminal galactosides in equine cumulus cells versus terminal GlcNAc and fucose in porcine cohorts; and (c) fucose in the mare ooplasm versus lactosamine and internal GlcNAc in porcine oocyte cytoplasm. Furthermore, equine and porcine cumulus cells and oocytes contributed differently to the synthesis of ZP glycoproteins. These results could be attributed to the different in vitro fertilization efficiencies between these two divergent, large-animal models.
Collapse
Affiliation(s)
- Gianluca Accogli
- Section of Veterinary Clinics and Animal Productions, Department Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mentino D, Mastrodonato M, Rossi R, Scillitani G. Histochemical and structural characterization of egg extra-cellular matrix in bufonid toads, Bufo bufo and Bufotes balearicus: molecular diversity versus morphological uniformity. Microsc Res Tech 2014; 77:910-7. [PMID: 25091902 DOI: 10.1002/jemt.22414] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/11/2014] [Accepted: 07/25/2014] [Indexed: 11/09/2022]
Abstract
The extra-cellular matrix of fertilized eggs in the bufonid toads Bufo bufo and Bufotes balearicus was studied to clear the relationships between structural and molecular diversity. Histochemical (PAS, AB pH 2.5 and pH 1.0, Beta-elimination PAS) and lectin-histochemical (Con A, WGA, Succinyl-WGA, PNA, RCA-1, DBA, SBA, AAA, UEA-I, LTA) techniques were used and the observations were made under light and electron microscopy. Both species present a fertilization envelope (FE) and two jelly layers (J1 and J2). The fibers of J2 are shared among the eggs of a clutch in a jelly ribbon. The FE of both species presents neutral glycoproteins, mostly N-linked. In B. bufo there are also residuals of mannose and/or glucose and N-acetylglucosamine. In the FE fibers run parallel to egg's surface or are in bundles or looser hanks with no clear orientation. The J1 layer of both species presents sialosulfoglycoproteins, mostly O-linked, with lactosaminylated, galactosaminylated, glycosaminylated, and fucosylated residuals. A lower amount of galactosaminylated residuals is observed in B. balearicus in respect to B. bufo, whereas the opposite is seen in the amount of fucosylated residuals. The J2 layer is similar in composition to J1 but in B. balearicus there are no glucosaminylated residuals. J layers present fibers and granules that reduce towards J2 . Several microorganisms, in particular blue algae, are observed in the J2 layer of both species. In respect to other species, B. bufo and B. balearicus have a lower number of jelly layers, but a comparable number of glycan types.
Collapse
Affiliation(s)
- Donatella Mentino
- Department of Biology, Section of Animal and Environmental Biology, Laboratory of Histology and Comparative Anatomy, University of Bari, I-70125, Bari, Italy
| | | | | | | |
Collapse
|
39
|
Yu Y, Lasanajak Y, Song X, Hu L, Ramani S, Mickum ML, Ashline DJ, Prasad BVV, Estes MK, Reinhold VN, Cummings RD, Smith DF. Human milk contains novel glycans that are potential decoy receptors for neonatal rotaviruses. Mol Cell Proteomics 2014; 13:2944-60. [PMID: 25048705 DOI: 10.1074/mcp.m114.039875] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human milk contains a rich set of soluble, reducing glycans whose functions and bioactivities are not well understood. Because human milk glycans (HMGs) have been implicated as receptors for various pathogens, we explored the functional glycome of human milk using shotgun glycomics. The free glycans from pooled milk samples of donors with mixed Lewis and Secretor phenotypes were labeled with a fluorescent tag and separated via multidimensional HPLC to generate a tagged glycan library containing 247 HMG targets that were printed to generate the HMG shotgun glycan microarray (SGM). To investigate the potential role of HMGs as decoy receptors for rotavirus (RV), a leading cause of severe gastroenteritis in children, we interrogated the HMG SGM with recombinant forms of VP8* domains of the RV outer capsid spike protein VP4 from human neonatal strains N155(G10P[11]) and RV3(G3P[6]) and a bovine strain, B223(G10P[11]). Glycans that were bound by RV attachment proteins were selected for detailed structural analyses using metadata-assisted glycan sequencing, which compiles data on each glycan based on its binding by antibodies and lectins before and after exo- and endo-glycosidase digestion of the SGM, coupled with independent MS(n) analyses. These complementary structural approaches resulted in the identification of 32 glycans based on RV VP8* binding, many of which are novel HMGs, whose detailed structural assignments by MS(n) are described in a companion report. Although sialic acid has been thought to be important as a surface receptor for RVs, our studies indicated that sialic acid is not required for binding of glycans to individual VP8* domains. Remarkably, each VP8* recognized specific glycan determinants within a unique subset of related glycan structures where specificity differences arise from subtle differences in glycan structures.
Collapse
Affiliation(s)
- Ying Yu
- From the ‡Department of Biochemistry and the National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Yi Lasanajak
- From the ‡Department of Biochemistry and the National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Xuezheng Song
- From the ‡Department of Biochemistry and the National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Liya Hu
- §Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Sasirekha Ramani
- ¶Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Megan L Mickum
- From the ‡Department of Biochemistry and the National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - David J Ashline
- ‖Glycomics Center, University of New Hampshire, Durham, New Hampshire 03824
| | - B V Venkataram Prasad
- §Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030; ¶Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Mary K Estes
- ¶Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Vernon N Reinhold
- ‖Glycomics Center, University of New Hampshire, Durham, New Hampshire 03824
| | - Richard D Cummings
- From the ‡Department of Biochemistry and the National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, Georgia 30322;
| | - David F Smith
- From the ‡Department of Biochemistry and the National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, Georgia 30322;
| |
Collapse
|
40
|
Tagawa M, Shirane K, Yu L, Sato T, Furukawa S, Mizuguchi H, Kuji R, Kawamura K, Takahashi N, Kato K, Hayakawa S, Sawada S, Furukawa K. Enhanced expression of the β4-galactosyltransferase 2 gene impairs mammalian tumor growth. Cancer Gene Ther 2014; 21:219-27. [DOI: 10.1038/cgt.2014.21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 01/09/2023]
|
41
|
Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses. Proc Natl Acad Sci U S A 2014; 111:E2241-50. [PMID: 24843157 DOI: 10.1073/pnas.1323162111] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Influenza viruses bind to host cell surface glycans containing terminal sialic acids, but as studies on influenza binding become more sophisticated, it is becoming evident that although sialic acid may be necessary, it is not sufficient for productive binding. To better define endogenous glycans that serve as viral receptors, we have explored glycan recognition in the pig lung, because influenza is broadly disseminated in swine, and swine have been postulated as an intermediary host for the emergence of pandemic strains. For these studies, we used the technology of "shotgun glycomics" to identify natural receptor glycans. The total released N- and O-glycans from pig lung glycoproteins and glycolipid-derived glycans were fluorescently tagged and separated by multidimensional HPLC, and individual glycans were covalently printed to generate pig lung shotgun glycan microarrays. All viruses tested interacted with one or more sialylated N-glycans but not O-glycans or glycolipid-derived glycans, and each virus demonstrated novel and unexpected differences in endogenous N-glycan recognition. The results illustrate the repertoire of specific, endogenous N-glycans of pig lung glycoproteins for virus recognition and offer a new direction for studying endogenous glycan functions in viral pathogenesis.
Collapse
|
42
|
Kinetic Characterization of a Panel of High-Affinity Monoclonal Antibodies Targeting Ricin and Recombinant Re-Formatting for Biosensor Applications. Antibodies (Basel) 2014. [DOI: 10.3390/antib3020215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
43
|
Abstract
Lectin-probed western blot analysis, the so-called lectin blot analysis, is a useful method to yield basic information on the glycan structures of glycoproteins, based on the carbohydrate-binding specificities of lectins. By lectin blot analysis, researchers can directly analyze the glycan structures without releasing the glycans from glycoproteins. Here, the author describes protocols for standard analysis, and applies analysis in combination with glycosidase digestion of blot.
Collapse
|
44
|
Nagatsuka T, Uzawa H, Sato K, Kondo S, Izumi M, Yokoyama K, Ohsawa I, Seto Y, Neri P, Mori H, Nishida Y, Saito M, Tamiya E. Localized surface plasmon resonance detection of biological toxins using cell surface oligosaccharides on glyco chips. ACS APPLIED MATERIALS & INTERFACES 2013; 5:4173-80. [PMID: 23668627 DOI: 10.1021/am4002937] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have detected biological toxins using localized surface plasmon resonance (LSPR) and synthetic glycosyl ceramides (β-lactoside, globosyl trisaccharide (Gb3), or GM1 pentasaccharide) attached to gold (Au) nanoparticles. The particle diameters ranged from 5-100 nm. The detection sensitivity for three toxins (ricin, Shiga toxin, and cholera toxin) was found to depend not only on the attached glycoside but also on the diameter of the Au nanoparticles. For the detection of ricin, the 20-nm β-lactoside-coated Au nanoparticle exhibited the highest LSPR response, whereas 40-nm Gb3- and GM1-coated Au nanoparticles gave the best results for Shiga toxin and cholera toxin, respectively. In addition, a blocking process on the nanoparticle surface greatly improved the detection sensitivity for cholera toxin. The LSPR system enabled us to detect ricin at 30 ng/mL, Shiga toxin at 10 ng/mL, and the cholera toxin at 20 ng/mL.
Collapse
Affiliation(s)
- Takehiro Nagatsuka
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The functional interaction between CDK11p58 and β-1,4-galactosyltransferase I involved in astrocyte activation caused by lipopolysaccharide. Inflammation 2013; 35:1365-77. [PMID: 22527143 DOI: 10.1007/s10753-012-9450-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glial cells are mediating the main activation of the central nervous system (CNS), being astrocytes the mayor glial cells in the brain. Glial activation may result beneficial since it could promote tissue repair and pathogen elimination. However, excessive glial activation mechanism can also have do harm to the tissue. β-1,4-Galactosyltransferase I (β-1,4-GalT-I) is a key inflammatory mediator that participates in the initiation and maintenance of inflammatory reaction in some diseases. Moreover, CDK11(p58) has been reported to be associated with β-1,4-GalT-I. We have found that CDK11(p58) and β-1,4-GalT-I are induced in lipopolysaccharide (LPS)-challenged rat primary astrocytes in a affinis dose- and time-dependent manner. CDK11(p58) regulates the expression of β-1,4-GalT-I by interacting with it. After the knockdown of CDK11(p58) expression, the expression of β-1,4-GalT-I decreases, and astrocyte activation downregulates. Inversely, the expression of β-1,4-GalT-I increases, and astrocyte activation enhances due to the overexpression of CDK11(p58). Knockdown of β-1,4-GalT-I reduces the activation potentiation caused by the overexpression of CDK11(p58), illustrating the function of CDK11(p58) to promote astrocyte activation depends on β-1,4-GalT-I. The interaction between CDK11(p58) and β-1,4-GalT-I to upregulate astrocyte activation is related to activating p38 and JNK pathways. These findings indicated that the functional interaction between CDK11(p58) and β-1,4-GalT-I may play an important role during astrocyte activation after LPS administration.
Collapse
|
46
|
Izquierdo L, Güther MLS, Ferguson MAJ. Creation and characterization of glycosyltransferase mutants of Trypanosoma brucei. Methods Mol Biol 2013; 1022:249-75. [PMID: 23765667 DOI: 10.1007/978-1-62703-465-4_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The survival strategies of protozoan parasites frequently involve the participation of glycoconjugates. Trypanosoma brucei expresses complex glycoproteins throughout its life cycle and a review of its repertoire of glycosidic linkages suggests a minimum of 38 glycosyltransferase activities. Here we describe a functional characterization workflow in which we create glycosyltransferase null or conditional null mutants in both the bloodstream and procyclic life-cycle forms of the parasite. Subsequently, we characterize the biochemical phenotype of the mutant strains generated and assign precise functions to the genes involved in glycoconjugate biosynthesis and processing in T. brucei. In this way, a comprehensive picture of -T. brucei glycosylation associated genes, their specificities and their relationship to similar genes in other organisms can be obtained.
Collapse
Affiliation(s)
- Luis Izquierdo
- Barcelona Centre for International Health Research, (CRESIB, Hospital Clinic-Universitat de Barcelona), Barcelona, Spain
| | | | | |
Collapse
|
47
|
Yu Y, Mishra S, Song X, Lasanajak Y, Bradley KC, Tappert MM, Air GM, Steinhauer DA, Halder S, Cotmore S, Tattersall P, Agbandje-McKenna M, Cummings RD, Smith DF. Functional glycomic analysis of human milk glycans reveals the presence of virus receptors and embryonic stem cell biomarkers. J Biol Chem 2012; 287:44784-99. [PMID: 23115247 DOI: 10.1074/jbc.m112.425819] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human milk contains a large diversity of free glycans beyond lactose, but their functions are not well understood. To explore their functional recognition, here we describe a shotgun glycan microarray prepared from isolated human milk glycans (HMGs), and our studies on their recognition by viruses, antibodies, and glycan-binding proteins (GBPs), including lectins. The total neutral and sialylated HMGs were derivatized with a bifunctional fluorescent tag, separated by multidimensional HPLC, and archived in a tagged glycan library, which was then used to print a shotgun glycan microarray (SGM). This SGM was first interrogated with well defined GBPs and antibodies. These data demonstrated both the utility of the array and provided preliminary structural information (metadata) about this complex glycome. Anti-TRA-1 antibodies that recognize human pluripotent stem cells specifically recognized several HMGs that were then further structurally defined as novel epitopes for these antibodies. Human influenza viruses and Parvovirus Minute Viruses of Mice also specifically recognized several HMGs. For glycan sequencing, we used a novel approach termed metadata-assisted glycan sequencing (MAGS), in which we combine information from analyses of glycans by mass spectrometry with glycan interactions with defined GBPs and antibodies before and after exoglycosidase treatments on the microarray. Together, these results provide novel insights into diverse recognition functions of HMGs and show the utility of the SGM approach and MAGS as resources for defining novel glycan recognition by GBPs, antibodies, and pathogens.
Collapse
Affiliation(s)
- Ying Yu
- Department of Biochemistry and the Glycomics Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Selvaraju S, El Rassi Z. Tandem lectin affinity chromatography monolithic columns with surface immobilised concanavalin A, wheat germ agglutinin and Ricinus communis
agglutinin-I for capturing sub-glycoproteomics from breast cancer and disease-free human sera. J Sep Sci 2012; 35:1785-95. [DOI: 10.1002/jssc.201200230] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Ziad El Rassi
- Department of Chemistry; Oklahoma State University; Stillwater OK USA
| |
Collapse
|
49
|
Affiliation(s)
- Sujit S. Mahajan
- a UC Chemical and Biosensors Group, Department of Chemistry , University of Cincinnati , Cincinnati , OH , 45221-0172 , USA
| | - Suri S. Iyer
- a UC Chemical and Biosensors Group, Department of Chemistry , University of Cincinnati , Cincinnati , OH , 45221-0172 , USA
| |
Collapse
|
50
|
Geisler C, Jarvis DL. Effective glycoanalysis with Maackia amurensis lectins requires a clear understanding of their binding specificities. Glycobiology 2012; 21:988-93. [PMID: 21863598 DOI: 10.1093/glycob/cwr080] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|