1
|
Lai S, Chen Y, Yang F, Xiao W, Liu Y, Wang C. Quantitative Site-Specific Chemoproteomic Profiling of Protein Lipoylation. J Am Chem Soc 2022; 144:10320-10329. [PMID: 35648456 DOI: 10.1021/jacs.2c01528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein lipoylation is an evolutionarily conserved post-translational modification from prokaryotes to eukaryotes. Lipoylation is implicated with several human diseases, including metabolic disorders, cancer, and Alzheimer's disease. While individual lipoylated proteins have been biochemically studied, a strategy for globally quantifying lipoylation with site-specific resolution in proteomes is still lacking. Herein, we developed a butyraldehyde-alkynyl probe to specifically label and enrich lipoylations in complexed biological samples. Combined with a chemoproteomic pipeline using customized tandem enzyme digestions and a biotin enrichment tag with enhanced ionization, we successfully quantified all known lipoylation sites in both Escherichia coli (E. coli) and human proteomes. The strategy enabled us to dissect the dependence of three evolutionarily related lipoylation sites in dihydrolipoamide acetyltransferase (ODP2) in E. coli and evaluated the functional connection between the de novo lipoylation synthetic pathway and the salvage pathway. Our chemoproteomic platform provides a useful tool to monitor the state of lipoylation in proteome samples, which will help decipher molecular mechanisms of lipoylation-related diseases.
Collapse
Affiliation(s)
- Shuchang Lai
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ying Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fan Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Weidi Xiao
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuan Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Yu D, Wang Z, Cupp-Sutton KA, Liu X, Wu S. Deep Intact Proteoform Characterization in Human Cell Lysate Using High-pH and Low-pH Reversed-Phase Liquid Chromatography. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2502-2513. [PMID: 31755044 PMCID: PMC7539543 DOI: 10.1007/s13361-019-02315-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 08/10/2019] [Accepted: 08/10/2019] [Indexed: 05/26/2023]
Abstract
Post-translational modifications (PTMs) play critical roles in biological processes and have significant effects on the structures and dynamics of proteins. Top-down proteomics methods were developed for and applied to the study of intact proteins and their PTMs in human samples. However, the large dynamic range and complexity of human samples makes the study of human proteins challenging. To address these challenges, we developed a 2D pH RP/RPLC-MS/MS technique that fuses high-resolution separation and intact protein characterization to study the human proteins in HeLa cell lysate. Our results provide a deep coverage of soluble proteins in human cancer cells. Compared to 225 proteoforms from 124 proteins identified when 1D separation was used, 2778 proteoforms from 628 proteins were detected and characterized using our 2D separation method. Many proteoforms with critically functional PTMs including phosphorylation were characterized. Additionally, we present the first detection of intact human GcvH proteoforms with rare modifications such as octanoylation and lipoylation. Overall, the increase in the number of proteoforms identified using 2DLC separation is largely due to the reduction in sample complexity through improved separation resolution, which enables the detection of low-abundance PTM-modified proteoforms. We demonstrate here that 2D pH RP/RPLC is an effective technique to analyze complex protein samples using top-down proteomics.
Collapse
Affiliation(s)
- Dahang Yu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA
| | - Xiaowen Liu
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA.
| |
Collapse
|
3
|
Huang J, Wang L, Zhao P, Xiang F, Liu J, Zhang S. Nanocopper-Doped Cross-Linked Lipoic Acid Nanoparticles for Morphology-Dependent Intracellular Catalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01337] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jingsheng Huang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Liang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Pengxiang Zhao
- Institute of Materials,
China Academy of Engineering Physics, No. 9, Huafengxincun, Jiangyou 621908, China
| | - Fuqing Xiang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiyong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
4
|
Rowland EA, Snowden CK, Cristea IM. Protein lipoylation: an evolutionarily conserved metabolic regulator of health and disease. Curr Opin Chem Biol 2017; 42:76-85. [PMID: 29169048 DOI: 10.1016/j.cbpa.2017.11.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023]
Abstract
Lipoylation is a rare, but highly conserved lysine posttranslational modification. To date, it is known to occur on only four multimeric metabolic enzymes in mammals, yet these proteins are staples in the core metabolic landscape. The dysregulation of these mitochondrial proteins is linked to a range of human metabolic disorders. Perhaps most striking is that lipoylation itself, the proteins that add or remove the modification, as well as the proteins it decorates are all evolutionarily conserved from bacteria to humans, highlighting the importance of this essential cofactor. Here, we discuss the biological significance of protein lipoylation, the importance of understanding its regulation in health and disease states, and the advances in mass spectrometry-based proteomic technologies that can aid these studies.
Collapse
Affiliation(s)
- Elizabeth A Rowland
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, United States
| | - Caroline K Snowden
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, United States
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, United States.
| |
Collapse
|
5
|
Conditional knock-out of lipoic acid protein ligase 1 reveals redundancy pathway for lipoic acid metabolism in Plasmodium berghei malaria parasite. Parasit Vectors 2017; 10:315. [PMID: 28655332 PMCID: PMC5488443 DOI: 10.1186/s13071-017-2253-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/19/2017] [Indexed: 11/04/2022] Open
Abstract
Background Lipoic acid is a cofactor for α-keto acid dehydrogenase system that is involved in the central energy metabolism. In the apicomplexan parasite, Plasmodium, lipoic acid protein ligase 1 (LplA1) and LplA2 catalyse the ligation of acquired lipoic acid to the dehydrogenase complexes in the mitochondrion. The enzymes LipB and LipA mediate lipoic acid synthesis and ligation to the enzymes in the apicoplast. These enzymes in the lipoic acid metabolism machinery have been shown to play important roles in the biology of Plasmodium parasites, but the relationship between the enzymes is not fully elucidated. Methods We used an anhydrotetracycline (ATc)-inducible transcription system to generate transgenic P. berghei parasites in which the lplA1 gene was conditionally knocked out (LplA1-cKO). Phenotypic changes and the lplA1 and lplA2 gene expression profiles of cloned LplA1-cKO parasites were analysed. Results LplA1-cKO parasites showed severely impaired growth in vivo in the first 8 days of infection, and retarded blood-stage development in vitro, in the absence of ATc. However, these parasites resumed viability in the late stage of infection and mounted high levels of parasitemia leading to the death of the hosts. Although lplA1 mRNA expression was regulated tightly by ATc during the whole course of infection, lplA2 mRNA expression was significantly increased in the late stage of infection only in the LplA1-cKO parasites that were not exposed to ATc. Conclusions The lplA2 gene can be activated as an alternative pathway to compensate for the loss of LplA1 activity and to maintain lipoic acid metabolism. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2253-y) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Abstract
Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as "swinging arms" that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like "arm" of biotin were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise, and the BioH esterase is responsible for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl acyl carrier protein of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyltransferase followed by sulfur insertion at carbons C-6 and C-8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized, and, thus, there is no transcriptional control of the synthetic genes. In contrast, transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system, exerted through BirA, a dual-function protein that both represses biotin operon transcription and ligates biotin to its cognate proteins.
Collapse
|
7
|
Abstract
Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as "swinging arms" that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid was discovered 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway, in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like "arm" of biotin, were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise and the BioH esterase for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl-ACP of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyl transferase, followed by sulfur insertion at carbons C6 and C8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized, and thus there is no transcriptional control of the synthetic genes. In contrast, transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system exerted through BirA, a dual-function protein that both represses biotin operon transcription and ligates biotin to its cognate protein.
Collapse
|
8
|
Zay A, Choy FY, Patrick C, Sinclair G. Glycine cleavage enzyme complex: Molecular cloning and expression of the H-protein cDNA from cultured human skin fibroblasts. Biochem Cell Biol 2011; 89:299-307. [DOI: 10.1139/o10-156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human H-protein is one of four essential components (H-, L-, P-, and T-proteins) of the mammalian glycine cleavage enzyme complex and its function is involved in the pathogenesis and diagnosis of glycine encephalopathy. A transcript corresponding to the glycine cleavage H-protein functional gene was isolated from cultured human skin fibroblasts along with a transcript for a putative processed pseudogene on chromosome 2q33.3. Sequence analysis of the fibroblast H-protein functional gene transcript showed complete identity to that reported from human liver. The H-protein cDNA was subsequently cloned with a hexahistidine affinity tag in the Pichia pastoris plasmid vector pPICZαA and recombined into the yeast genome downstream of the alcohol oxidase promoter for methanol-induced expression. The recombinant H-protein was secreted into the culture medium and purified to homogeneity using a one-step nickel-nitrilotriacetic acid resin column. Approximately 4 mg of homogeneous H-protein was obtained from 1 L of culture medium. Since the attachment of a lipoic acid prosthetic group is required for H-protein function, we have expressed and purified E. coli lipoate protein ligase and succeeded in lipoylating H-protein, converting the apo-H-protein to the functional holo-H-protein. A lipoamide dehydrogenase assay was performed to confirm that the apo-H-protein was inactive, whereas the holo-H-protein was approximately 2.3-fold more active than free lipoic acid as a hydrogen donor in driving the reaction. The availability of copious amounts of human recombinant H-protein by using Pichia pastoris expression and affinity purification will facilitate the elucidation of the structure and function of the H-protein and its relationship to the P-, T-, and L-proteins in the glycine cleavage enzyme complex. In view of the fact that there is no detectable glycine cleavage enzyme activity in human skin fibroblasts, we speculate that a plausible function of the H-protein is to interact with the L-protein, which is also part of the l-ketoglutarate dehydrogenase complex present in fibroblasts.
Collapse
Affiliation(s)
- Agnes Zay
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Francis Y.M. Choy
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Chelsea Patrick
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Graham Sinclair
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| |
Collapse
|
9
|
Fujiwara K, Maita N, Hosaka H, Okamura-Ikeda K, Nakagawa A, Taniguchi H. Global conformational change associated with the two-step reaction catalyzed by Escherichia coli lipoate-protein ligase A. J Biol Chem 2010; 285:9971-9980. [PMID: 20089862 PMCID: PMC2843243 DOI: 10.1074/jbc.m109.078717] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/28/2009] [Indexed: 11/06/2022] Open
Abstract
Lipoate-protein ligase A (LplA) catalyzes the attachment of lipoic acid to lipoate-dependent enzymes by a two-step reaction: first the lipoate adenylation reaction and, second, the lipoate transfer reaction. We previously determined the crystal structure of Escherichia coli LplA in its unliganded form and a binary complex with lipoic acid (Fujiwara, K., Toma, S., Okamura-Ikeda, K., Motokawa, Y., Nakagawa, A., and Taniguchi, H. (2005) J Biol. Chem. 280, 33645-33651). Here, we report two new LplA structures, LplA.lipoyl-5'-AMP and LplA.octyl-5'-AMP.apoH-protein complexes, which represent the post-lipoate adenylation intermediate state and the pre-lipoate transfer intermediate state, respectively. These structures demonstrate three large scale conformational changes upon completion of the lipoate adenylation reaction: movements of the adenylate-binding and lipoate-binding loops to maintain the lipoyl-5'-AMP reaction intermediate and rotation of the C-terminal domain by about 180 degrees . These changes are prerequisites for LplA to accommodate apoprotein for the second reaction. The Lys(133) residue plays essential roles in both lipoate adenylation and lipoate transfer reactions. Based on structural and kinetic data, we propose a reaction mechanism driven by conformational changes.
Collapse
Affiliation(s)
- Kazuko Fujiwara
- Institute for Enzyme Research, University of Tokushima, Kuramotocho 3-chome, Tokushima 770-8503.
| | - Nobuo Maita
- Institute for Enzyme Research, University of Tokushima, Kuramotocho 3-chome, Tokushima 770-8503
| | - Harumi Hosaka
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Kazuko Okamura-Ikeda
- Institute for Enzyme Research, University of Tokushima, Kuramotocho 3-chome, Tokushima 770-8503
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Hisaaki Taniguchi
- Institute for Enzyme Research, University of Tokushima, Kuramotocho 3-chome, Tokushima 770-8503
| |
Collapse
|
10
|
Hasse D, Mikkat S, Hagemann M, Bauwe H. Alternative splicing produces an H-protein with better substrate properties for the P-protein of glycine decarboxylase. FEBS J 2009; 276:6985-91. [PMID: 19860829 DOI: 10.1111/j.1742-4658.2009.07406.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several thousand plant genes are known to produce multiple transcripts, but the precise function of most of the alternatively encoded proteins is not known. Alternative splicing has been reported for the H-protein subunit of glycine decarboxylase in the genus Flaveria. H-protein has no catalytic activity itself but is a substrate of the three enzymatically active subunits, P-, T- and L-protein. In C(4) species of Flaveria, two H-proteins originate from single genes in an organ-dependent manner. Here, we report on differences between the two alternative H-protein variants with respect to their interaction with the glycine-decarboxylating subunit, P-protein. Steady-state kinetic analyses of the alternative Flaveria H-proteins and artificially produced 'alternative' Arabidopsis H-proteins, using either pea mitochondrial matrix extracts or recombinant cyanobacterial P-protein, consistently demonstrate that the alternative insertion of two alanine residues at the N-terminus of the H-protein elevates the activity of P-protein by 20%in vitro, and could promote glycine decarboxylase activity in vivo.
Collapse
Affiliation(s)
- Dirk Hasse
- Department of Plant Physiology, University of Rostock, Germany
| | | | | | | |
Collapse
|
11
|
Spalding MD, Prigge ST. The amidase domain of lipoamidase specifically inactivates lipoylated proteins in vivo. PLoS One 2009; 4:e7392. [PMID: 19812687 PMCID: PMC2753649 DOI: 10.1371/journal.pone.0007392] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 09/16/2009] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In the 1950s, Reed and coworkers discovered an enzyme activity in Streptococcus faecalis (Enterococcus faecalis) extracts that inactivated the Escherichia. coli and E. faecalis pyruvate dehydrogenase complexes through cleavage of the lipoamide bond. The enzyme that caused this lipoamidase activity remained unidentified until Jiang and Cronan discovered the gene encoding lipoamidase (Lpa) through the screening of an expression library. Subsequent cloning and characterization of the recombinant enzyme revealed that lipoamidase is an 80 kDa protein composed of an amidase domain containing a classic Ser-Ser-Lys catalytic triad and a carboxy-terminal domain of unknown function. Here, we show that the amidase domain can be used as an in vivo probe which specifically inactivates lipoylated enzymes. METHODOLOGY/PRINCIPAL FINDINGS We evaluated whether Lpa could function as an inducible probe of alpha-ketoacid dehydrogenase inactivation using E. coli as a model system. Lpa expression resulted in cleavage of lipoic acid from the three lipoylated proteins expressed in E. coli, but did not result in cleavage of biotin from the sole biotinylated protein, the biotin carboxyl carrier protein. When expressed in lipoylation deficient E. coli, Lpa is not toxic, indicating that Lpa does not interfere with any other critical metabolic pathways. When truncated to the amidase domain, Lpa retained lipoamidase activity without acquiring biotinidase activity, indicating that the carboxy-terminal domain is not essential for substrate recognition or function. Substitution of any of the three catalytic triad amino acids with alanine produced inactive Lpa proteins. CONCLUSIONS/SIGNIFICANCE The enzyme lipoamidase is active against a broad range of lipoylated proteins in vivo, but does not affect the growth of lipoylation deficient E. coli. Lpa can be truncated to 60% of its original size with only a partial loss of activity, resulting in a smaller probe that can be used to study the effects of alpha-ketoacid dehydrogenase inactivation in vivo.
Collapse
Affiliation(s)
- Maroya D Spalding
- Department of Biochemistry, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | | |
Collapse
|
12
|
Kikuchi G, Motokawa Y, Yoshida T, Hiraga K. Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2008; 84:246-63. [PMID: 18941301 DOI: 10.2183/pjab.84.246] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The glycine cleavage system catalyzes the following reversible reaction: Glycine + H(4)folate + NAD(+) <==> 5,10-methylene-H(4)folate + CO(2) + NH(3) + NADH + H(+)The glycine cleavage system is widely distributed in animals, plants and bacteria and consists of three intrinsic and one common components: those are i) P-protein, a pyridoxal phosphate-containing protein, ii) T-protein, a protein required for the tetrahydrofolate-dependent reaction, iii) H-protein, a protein that carries the aminomethyl intermediate and then hydrogen through the prosthetic lipoyl moiety, and iv) L-protein, a common lipoamide dehydrogenase. In animals and plants, the proteins form an enzyme complex loosely associating with the mitochondrial inner membrane. In the enzymatic reaction, H-protein converts P-protein, which is by itself a potential alpha-amino acid decarboxylase, to an active enzyme, and also forms a complex with T-protein. In both glycine cleavage and synthesis, aminomethyl moiety bound to lipoic acid of H-protein represents the intermediate that is degraded to or can be formed from N(5),N(10)-methylene-H(4)folate and ammonia by the action of T-protein. N(5),N(10)-Methylene-H(4)folate is used for the biosynthesis of various cellular substances such as purines, thymidylate and methionine that is the major methyl group donor through S-adenosyl-methionine. This accounts for the physiological importance of the glycine cleavage system as the most prominent pathway in serine and glycine catabolism in various vertebrates including humans. Nonketotic hyperglycinemia, a congenital metabolic disorder in human infants, results from defective glycine cleavage activity. The majority of patients with nonketotic hyperglycinemia had lesions in the P-protein gene, whereas some had mutant T-protein genes. The only patient classified into the degenerative type of nonketotic hyperglycinemia had an H-protein devoid of the prosthetic lipoyl residue. The crystallography of normal T-protein as well as biochemical characterization of recombinants of the normal and mutant T-proteins confirmed why the mutant T-proteins had lost enzyme activity. Putative mechanisms of cellular injuries including those in the central nervous system of patients with nonketotic hyperglycinemia are discussed.
Collapse
|
13
|
Fujiwara K, Hosaka H, Matsuda M, Okamura-Ikeda K, Motokawa Y, Suzuki M, Nakagawa A, Taniguchi H. Crystal structure of bovine lipoyltransferase in complex with lipoyl-AMP. J Mol Biol 2007; 371:222-34. [PMID: 17570395 DOI: 10.1016/j.jmb.2007.05.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 05/21/2007] [Accepted: 05/22/2007] [Indexed: 11/22/2022]
Abstract
Lipoic acid is an essential cofactor of the alpha-ketoacid dehydrogenase complexes and the glycine cleavage system. It is covalently attached to a specific lysine residue of the subunit of the complexes. The bovine lipoyltransferase (bLT) catalyzes the lipoic acid attachment reaction using lipoyl-AMP as a substrate, forming a lipoylated protein and AMP. To gain insights into the reaction mechanism at the atomic level, we have determined the crystal structure of bLT at 2.10 A resolution. Unexpectedly, the purified recombinant bLT contains endogenous lipoyl-AMP. The structure of bLT consists of N-terminal and C-terminal domains, and lipoyl-AMP is bound to the active site in the N-terminal domain, adopting a U-shaped conformation. The lipoyl moiety is buried in the hydrophobic pocket, forming van der Waals interactions, and the AMP moiety forms numerous hydrogen bonds with bLT in another tunnel-like cavity. These interactions work together to expose the C10 atom of lipoyl-AMP to the surface of the bLT molecule. The carbonyl oxygen atom of lipoyl-AMP interacts with the invariant Lys135. The interaction might stimulate the positive charge of the C10 atom of lipoyl-AMP, and consequently facilitate the nucleophilic attack by the lysine residue of the lipoate-acceptor protein, accompanying the bond cleavage between the carbonyl group and the phosphate group. We discuss the structural differences between bLT and the lipoate-protein ligase A from Escherichia coli and Thermoplasma acidophilum. We further demonstrate that bLT in mitochondria also contains endogenous lipoylmononucleotide, being ready for the lipoylation of apoproteins.
Collapse
Affiliation(s)
- Kazuko Fujiwara
- Institute for Enzyme Research, the University of Tokushima, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Allary M, Lu JZ, Zhu L, Prigge ST. Scavenging of the cofactor lipoate is essential for the survival of the malaria parasite Plasmodium falciparum. Mol Microbiol 2007; 63:1331-44. [PMID: 17244193 PMCID: PMC2796473 DOI: 10.1111/j.1365-2958.2007.05592.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Plasmodium falciparum possesses genes for lipoate biosynthesis and scavenging, but it is not known if these pathways are functional, nor what their relative contribution to the survival of intraerythrocytic parasites might be. We detected in parasite extracts four lipoylated proteins, one of which cross-reacted with antibodies against the E2 subunit of apicoplast-localized pyruvate dehydrogenase (PDH). Two highly divergent parasite lipoate ligase A homologues (LplA), LipL1 (previously identified as LplA) and LipL2, restored lipoate scavenging in lipoylation-deficient bacteria, indicating that Plasmodium has functional lipoate-scavenging enzymes. Accordingly, intraerythrocytic parasites scavenged radiolabelled lipoate and incorporated it into three proteins likely to be mitochondrial. Scavenged lipoate was not attached to the PDH E2 subunit, implying that lipoate scavenging drives mitochondrial lipoylation, while apicoplast lipoylation relies on biosynthesis. The lipoate analogue 8-bromo-octanoate inhibited LipL1 activity and arrested P. falciparum in vitro growth, decreasing the incorporation of radiolabelled lipoate into parasite proteins. Furthermore, growth inhibition was prevented by lipoate addition in the medium. These results are consistent with 8-bromo-octanoate specifically interfering with lipoate scavenging. Our study suggests that lipoate metabolic pathways are not redundant, and that lipoate scavenging is critical for Plasmodium intraerythrocytic survival.
Collapse
Affiliation(s)
| | | | | | - Sean T. Prigge
- For correspondence. ; Tel. (+1) 443 287 4822; Fax (+1) 410 955 0105
| |
Collapse
|
15
|
Abstract
A series of genetic, biochemical, and physiological studies in Escherichia coli have elucidated the unusual pathway whereby lipoic acid is synthesized. Here we describe the results of these investigations as well as the functions of enzyme proteins that are modified by covalent attachment of lipoic acid and the enzymes that catalyze the modification reactions. Some aspects of the synthesis and attachment mechanisms have strong parallels in the pathways used in synthesis and attachment of biotin and these are compared and contrasted. Homologues of the lipoic acid metabolism proteins are found in all branches of life, save the Archea, and thus these findings seem to have wide biological relevance.
Collapse
Affiliation(s)
- John E Cronan
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
16
|
Fujiwara K, Toma S, Okamura-Ikeda K, Motokawa Y, Nakagawa A, Taniguchi H. Crystal structure of lipoate-protein ligase A from Escherichia coli. Determination of the lipoic acid-binding site. J Biol Chem 2005; 280:33645-51. [PMID: 16043486 DOI: 10.1074/jbc.m505010200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoate-protein ligase A (LplA) catalyzes the formation of lipoyl-AMP from lipoate and ATP and then transfers the lipoyl moiety to a specific lysine residue on the acyltransferase subunit of alpha-ketoacid dehydrogenase complexes and on H-protein of the glycine cleavage system. The lypoyllysine arm plays a pivotal role in the complexes by shuttling the reaction intermediate and reducing equivalents between the active sites of the components of the complexes. We have determined the X-ray crystal structures of Escherichia coli LplA alone and in a complex with lipoic acid at 2.4 and 2.9 angstroms resolution, respectively. The structure of LplA consists of a large N-terminal domain and a small C-terminal domain. The structure identifies the substrate binding pocket at the interface between the two domains. Lipoic acid is bound in a hydrophobic cavity in the N-terminal domain through hydrophobic interactions and a weak hydrogen bond between carboxyl group of lipoic acid and the Ser-72 or Arg-140 residue of LplA. No large conformational change was observed in the main chain structure upon the binding of lipoic acid.
Collapse
Affiliation(s)
- Kazuko Fujiwara
- Institute for Enzyme Research, the University of Tokushima, Tokushima 770-8503, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Amano K, Leung PSC, Xu Q, Marik J, Quan C, Kurth MJ, Nantz MH, Ansari AA, Lam KS, Zeniya M, Coppel RL, Gershwin ME. Xenobiotic-induced loss of tolerance in rabbits to the mitochondrial autoantigen of primary biliary cirrhosis is reversible. THE JOURNAL OF IMMUNOLOGY 2004; 172:6444-52. [PMID: 15128836 DOI: 10.4049/jimmunol.172.10.6444] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous work has demonstrated that immunization of rabbits with the xenobiotic 6-bromohexanoate coupled to BSA breaks tolerance and induces autoantibodies to mitochondria in rabbits. Such immunized rabbits develop high-titer Abs to pyruvate dehydrogenase complex (PDC)-E2, the major autoantigen of primary biliary cirrhosis. In efforts to map the fine specificity of these autoantibodies, rabbits were immunized biweekly with 6-bromohexanoate-BSA and screened for reactivity using a unique xenobiotic-peptide-agarose microarray platform with an emphasis on identifying potential structures that mimic the molecular image formed by the association of lipoic acid with the immunodominant PDC-E2 peptide. Essentially, a total of 23 xenobiotics and lipoic acid were coupled to the 12-mer peptide backbones, PDC, a mutant PDC, and albumin. As expected, we succeeded in breaking tolerance using this small organic molecule coupled to BSA. However, unlike multiple experimental methods of breaking tolerance, we report in this study that, following continued immunization, the rabbits recover tolerance. With repeated immunization, the response to the rPDC-E2 protein increased with a gradual reduction in autoantibodies against the lipoic acid-peptide, i.e., the primary tolerance-breaking autoantigen. Detailed analysis of this system may provide strategies on how to restore tolerance in patients with autoimmune disease.
Collapse
MESH Headings
- Animals
- Autoantibodies/biosynthesis
- Autoantibodies/metabolism
- Autoantigens/immunology
- Binding Sites, Antibody
- Binding, Competitive/immunology
- Dihydrolipoyllysine-Residue Acetyltransferase
- Female
- Humans
- Hydrocarbons, Brominated/administration & dosage
- Hydrocarbons, Brominated/immunology
- Hydrocarbons, Brominated/metabolism
- Immunoglobulin G/metabolism
- Liver Cirrhosis, Biliary/enzymology
- Liver Cirrhosis, Biliary/immunology
- Mitochondria, Liver/enzymology
- Mitochondria, Liver/immunology
- Oligonucleotide Array Sequence Analysis
- Oligopeptides/administration & dosage
- Oligopeptides/immunology
- Pyruvate Dehydrogenase Complex/immunology
- Rabbits
- Self Tolerance
- Serum Albumin, Bovine/administration & dosage
- Serum Albumin, Bovine/immunology
- Thioctic Acid/immunology
- Thioctic Acid/metabolism
- Xenobiotics/administration & dosage
- Xenobiotics/immunology
- Xenobiotics/metabolism
Collapse
Affiliation(s)
- Katsushi Amano
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fujiwara K, Takeuchi S, Okamura-Ikeda K, Motokawa Y. Purification, characterization, and cDNA cloning of lipoate-activating enzyme from bovine liver. J Biol Chem 2001; 276:28819-23. [PMID: 11382754 DOI: 10.1074/jbc.m101748200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammals, lipoate-activating enzyme (LAE) catalyzes the activation of lipoate to lipoyl-nucleoside monophosphate. The lipoyl moiety is then transferred to the specific lysine residue of lipoate-dependent enzymes by the action of lipoyltransferase. We purified LAE from bovine liver mitochondria to apparent homogeneity. LAE activated lipoate with GTP at a 1000-fold higher rate than with ATP. The reaction absolutely required lipoate, GTP, and Mg(2+) ion, and the reaction product was lipoyl-GMP. LAE activated both (R)- and (S)-lipoate to the respective lipoyl-GMP, although a preference for (R)-lipoate was observed. Similarly, lipoyltransferase equally transferred both the (R)- and (S)-lipoyl moieties from the respectively activated lipoates to apoH-protein. Interestingly, however, only H-protein carrying (R)-lipoate was active in the glycine cleavage reaction. cDNA clones encoding a precursor LAE with a mitochondrial presequence were isolated. The predicted amino acid sequence of LAE is identical with that of xenobiotic-metabolizing/medium-chain fatty acid:CoA ligase-III, but an amino acid substitution due to a single nucleotide polymorphism was found. These results indicate that the medium-chain acyl-CoA synthetase in mitochondria has a novel function, the activation of lipoate with GTP.
Collapse
Affiliation(s)
- K Fujiwara
- Institute for Enzyme Research, the University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | |
Collapse
|
19
|
Choy F, Sharp L, Applegarth DA. Glycine cleavage enzyme complex: Rabbit H-protein cDNA sequence analysis and comparison to human, cow, and chicken. Biochem Cell Biol 2000. [DOI: 10.1139/o00-081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The H-protein is one of the four essential components (H-, L-, P-, and T-proteins) of the mammalian glycine cleavage enzyme complex, the major degradative pathway of glycine. We have isolated the full-length cDNA of the H-protein gene from the rabbit (Oryctolagus caniculus) by reverse transcription of liver poly-A mRNA and determined its nucleotide sequence (GenBank Acc. No. BankIt 318281 AF 231451). Similar to that in human, the rabbit H-protein gene possesses a 519-bp open reading frame that translates a 173-amino-acid (aa) protein. This reading frame is comprised of a 48-aa mitochondrial targeting sequence and a 125-aa residue that constitutes the mature mitochondrial matrix protein. In the mature protein region, there is a 95.5% nucleotide and 98.4% amino-acid sequence similarity to human. This conservation was also noted in the mature protein of the cow (Bos taurus) and chicken (Gallus domesticus), where there are a 94.1% and 85.3% nucleotide similarities, and 95.2% and 85.6% amino-acid sequence similarities, respectively. However, the targeting region is not as well conserved. Comparison of the rabbit targeting sequence to that in human, cow, and chicken reveals 84.0%, 79.2%, and 72.9% nucleotide, and 72.9%, 75.0%, and 54.2% amino-acid sequence similarities, respectively. These findings suggest that within the H-protein gene, the regions encoding the mitochondrial targeting and matrix protein may have evolved differently. Gene diversification in the former may reflect the species specificity in targeting proteins destined for the mitochondria, whereas homology in the latter suggests a very similar structure-function of the mature H-protein among these species. This homology in structure-function likely accounts for the observation that non-human H-protein can replace the human protein in the activity assay of the glycine cleavage enzyme system. This includes the biochemical diagnosis of non-ketotic hyperglycinemia (NKH) resulting from defects other than the H-protein, e.g., mutation(s) in the P-protein.Key words: glycine cleavage enzyme, H-protein, sequence comparison, non-ketotic hyperglycinemia.
Collapse
|
20
|
Fujiwara K, Suzuki M, Okumachi Y, Okamura-Ikeda K, Fujiwara T, Takahashi E, Motokawa Y. Molecular cloning, structural characterization and chromosomal localization of human lipoyltransferase gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:761-7. [PMID: 10103005 DOI: 10.1046/j.1432-1327.1999.00204.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lipoyltransferase catalyzes the transfer of the lipoyl group from lipoyl-AMP to the lysine residue of the lipoate-dependent enzymes. We isolated human lipoyltransferase cDNA and genomic DNA. The cDNA insert contained a 1119-base pair open reading frame encoding a precursor peptide of 373 amino acids. Predicted amino acid sequence of the protein shares 88 and 31% identity with bovine lipoyltransferase and Escherichia coli lipoate-protein ligase A, respectively. Northern blot analyses of poly(A)+ RNA indicated a major species of about 1.5 kb. mRNA levels of lipoyltransferase were highest in skeletal muscle and heart, showing good correlation with those of dihydrolipoamide acyltransferase subunits of pyruvate, 2-oxoglutarate and branched-chain 2-oxo acid dehydrogenase complexes and H-protein of the glycine cleavage system which accept lipoic acid as a prosthetic group. The human lipoyltransferase gene is a single copy gene composed of four exons and three introns spanning approximately 8 kb of genomic DNA. Some alternatively spliced mRNA species were found by 5'-RACE analysis, and the most abundant species lacks the third exon. The human lipoyltransferase gene was localized to chromosome band 2q11.2 by fluorescence in situ hybridization.
Collapse
Affiliation(s)
- K Fujiwara
- Institute for Enzyme Research, University of Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Fujiwara K, Okamura-Ikeda K, Motokawa Y. Cloning and expression of a cDNA encoding bovine lipoyltransferase. J Biol Chem 1997; 272:31974-8. [PMID: 9405389 DOI: 10.1074/jbc.272.51.31974] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lipoyltransferase catalyzes the transfer of the lipoyl group from lipoyl-AMP to the specific lysine residue of the lipoate-dependent enzymes. We have isolated lipoyltransferase I (LipTI) and II (LipTII) from bovine liver (Fujiwara, K., Okamura-Ikeda, K., and Motokawa, Y. (1994) J. Biol. Chem. 269, 16605-16609). N-terminal amino acid sequences of LipTI and LipTII were identical except that LipTI had an additional Asn residue on the N terminus. We cloned LipTII cDNA from a bovine liver cDNA library. The cDNA insert contained a 1119-base pair open reading frame encoding a precursor peptide of 373 amino acids including a mitochondrial targeting signal of 26 amino acids. The calculated molecular mass of the mature protein is 39,137 Da. The predicted amino acid sequence showed 35% identity with that of Escherichia coli lipoate-protein ligase A. Northern and Southern blot analyses showed a single band, and a single species of mRNA for lipoyltransferase was found by reverse transcription-polymerase chain reaction. Recombinant LipTII was expressed in E. coli and purified to apparent homogeneity. The Kmapp values of the recombinant enzyme for lipoyl-AMP and apoH-protein were comparable with those of native LipTII. An antibody raised against recombinant enzyme cross-reacted with LipTI and LipTII in a similar manner. The results suggest that LipTI and LipTII are derived from the same translated product but processed differently.
Collapse
Affiliation(s)
- K Fujiwara
- Institute for Enzyme Research, the University of Tokushima, Tokushima 770, Japan
| | | | | |
Collapse
|
22
|
Kure S, Tada K, Narisawa K. Nonketotic hyperglycinemia: biochemical, molecular, and neurological aspects. THE JAPANESE JOURNAL OF HUMAN GENETICS 1997; 42:13-22. [PMID: 9183995 DOI: 10.1007/bf02766917] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nonketotic hyperglycinemia (NKH) is a metabolic disorder with autosomal recessive inheritance, causing severe, frequently lethal, neurological symptoms in the neonatal period. The metabolic lesion of NKH is in the glycine cleavage system (GCS), a complex enzyme system with four enzyme components; P-, T-, H-, and L-protein. The enzymatic analysis revealed that 86% of the patients with NKH are deficient of P-protein activity. The cDNA clones encoding all four components were isolated and their primary structures were determined. Several mutations have been identified in P- and T-protein genes: One missense mutation, S564I, in P-protein gene accounts for 70% of the mutant alleles in Finland where the incidence of NKH is unusually high. The immunochemical and in situ hybridization analyses revealed that the strong GCS expression was observed in rat hippocampus, olfactory bulbus, and cerebellum. The distribution resembled that of N-methyl-D-aspartic acid (NMDA) receptor which has binding site for glycine. It is, therefore, suggested that the neurological disturbance in NKH may be caused by excitoneurotoxicity through the NMDA receptor allosterically activated by high concentration of glycine. Based on the hypothesis the NMDA antagonists such as ketamine and dextromethorphan were administered to the patients. We treated three neonatal case with dextromethorphan and it ameliorated their findings on electroencephalogram and behavior in two out of three patients. Thus the GCS is suggested to play a role in regulation of glycine level around the NMDA receptor.
Collapse
Affiliation(s)
- S Kure
- Department of Pediatrics and Biochemical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
23
|
Wada H, Shintani D, Ohlrogge J. Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production. Proc Natl Acad Sci U S A 1997; 94:1591-6. [PMID: 9037098 PMCID: PMC19836 DOI: 10.1073/pnas.94.4.1591] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/1996] [Accepted: 12/18/1996] [Indexed: 02/03/2023] Open
Abstract
The function of acyl carrier protein (ACP) in mitochondria isolated from pea leaves has been investigated. When pea leaf mitochondria were labeled with [2-14C] malonic acid in vitro, radioactivity was incorporated into fatty acids, and, simultaneously, ACP was acylated. [1-14C]Acetate was much less effective as a precursor for fatty acid synthesis, suggesting that mitochondria do not possess acetyl-CoA carboxylase. The incorporation of radioactivity from [2-14C]malonate into fatty acids and the labeling of ACP were inhibited by cerulenin and required ATP and Mg2+. These findings indicate that plant mitochondria contain not only ACP, but all enzymes required for de novo fatty acid synthesis. Over 30% of the radioactive products from pea mitochondria labeled with [2-14C]malonate were recovered in H protein, which is a subunit of glycine decarboxylase and contains lipoic acid as an essential constituent. In similar experiments, the H protein of Neurospora mitochondria was also labeled by [2-14C]malonate. The labeling of pea H protein was inhibited by addition of cerulenin into the assay medium. Together, these findings indicate that ACP is involved in the de novo synthesis of fatty acids in plant mitochondria and that a major function of this pathway is production of lipoic acid precursors.
Collapse
Affiliation(s)
- H Wada
- Department of Botany and Plant Pathology, Michigan State University, East Lansing 48824, USA
| | | | | |
Collapse
|
24
|
Kopriva S, Bauwe H. H-protein of glycine decarboxylase is encoded by multigene families in Flaveria pringlei and F. cronquistii (Asteraceae). MOLECULAR & GENERAL GENETICS : MGG 1995; 249:111-6. [PMID: 8552027 DOI: 10.1007/bf00290242] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In Flaveria pringlei and F. cronquistii unlike other plants, H-protein of the glycine cleavage system is encoded by small multigene families. From leaf cDNA libraries and by reverse transcription of mRNA with subsequent polymerase chain reaction (PCR) amplification, we have obtained three different H-protein cDNA clones from each species. The relative levels of total H-protein mRNA, as well as of different H-protein transcripts, have been determined in leaves, stems, and roots of F. pringlei. Stems, with a total of 22% relative to leaves, contain substantial amounts of H-protein transcripts. The corresponding level in roots is relatively low (2.3% relative to leaves) but easily detectable. One of the transcripts occurs only in leaves (HFP20) and another one (HFP13) is present exclusively in photosynthesizing organs. Only one of the H-protein transcripts (HFP4) was found in all three organs, in leaves, stems, and roots of F. pringlei.
Collapse
Affiliation(s)
- S Kopriva
- Department of Molecular Cell Biology, Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | | |
Collapse
|
25
|
Quinn JP, Mendelson SC, Paterson JM, McAllister J, Morrison CF. Transcriptional control of neuropeptide gene expression in sensory neurons, using the preprotachykinin-A gene as a model. Can J Physiol Pharmacol 1995; 73:957-62. [PMID: 8846436 DOI: 10.1139/y95-132] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Control of neuropeptide gene expression in sensory neurons is determined in part by a variety of tissue-specific, developmental, and stimulus-induced transcription factors that interact with the promoters of these genes. We have analysed the regulation of the rat preprotachykinin-A (rPPT) gene, which is expressed in a subset of dorsal root ganglia neurons. A region of the promoter encompassing approximately 1300 base pairs spanning the transcriptional start site has been analysed in detail both by functional analysis of promoter activity in clonal cell lines and dorsal root ganglia neurons grown in culture and by in vitro characterisation of transcription factor interaction with this region. Interestingly our analysis indicates an important role in rPPT gene expression for the E box transcription factor family. This class of transcription factor has been demonstrated to be a major determinant of calcitonin gene related peptide (CGRP) expression, which is also expressed in dorsal root ganglia neurons often under similar conditions as rPPT. In addition, multiple regulatory domains have been identified in the rPPT promoter, which act as activators in a variety of cell types. These elements are silenced in the context of the rPPT promoter in many non-neuronal cells. Therefore, tissue-specific expression of reporter genes directed by the rPPT promoter in transient transfection is determined in part by a variety of silencer elements, which act to repress the function of several domains that act as constitutive enhancers of expression in a wide range of cells. Removal or modulation of silencer elements in the rPPT promoter allows activity in a wider variety of cell types. We postulate that control of rPPT gene expression is the results of dynamic interplay of both positive and negative regulatory elements, a phenomenon observed in several other neuronal-specific genes, including that encoding CGRP.
Collapse
Affiliation(s)
- J P Quinn
- Medical Research Council Brain Metabolism Unit, Royal Edinburgh Hospital, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- K Fujiwara
- Institute for Enzyme Research, University of Tokushima, Japan
| | | | | |
Collapse
|
27
|
Toh H, Kondo H, Tanabe T. Molecular evolution of biotin-dependent carboxylases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 215:687-96. [PMID: 8102604 DOI: 10.1111/j.1432-1033.1993.tb18080.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amino-acid sequences of three functional units from various biotin-dependent carboxylases, biotin carboxylase, biotin-carboxyl-carrier protein and carboxyl transferase, were investigated by computer-assisted sequence comparison to obtain information about the structure, function, and molecular evolution of the enzymes. Biotin-dependent carboxylases, except transcarboxylase and oxaloacetate decarboxylase which lack biotin carboxylase, exert their catalytic activities through the three functional units. The three functional units correspond with functional domains or subunits of the enzymes, and the genetic information for the units is encoded in different ways from enzyme to enzyme. It is known that biotin carboxylase is homologous to carbamoyl-phosphate synthetase, and that the biotin-carboxyl-carrier protein is homologous to lipoic-acid-binding domain. The evolutionary relationships between the functional units and their homologues were described. A model for the evolutionary history of the enzymes was proposed by molecular phylogenetic analysis, which shows how a wide variety of domain and/or subunit structures for the enzymes may have been established. A repeated structure was found in biotin-carboxyl-carrier protein, and the secondary structure of the protein was predicted using the observed sequence similarity with a lipoic-acid-binding domain.
Collapse
Affiliation(s)
- H Toh
- Protein Engineering Research Institute, Osaka, Japan
| | | | | |
Collapse
|
28
|
Mérand V, Forest E, Gagnon J, Monnet C, Thibault P, Neuburger M, Douce R. Characterization of the primary structure of H-protein from Pisum sativum and location of a lipoic acid residue by combined liquid chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. BIOLOGICAL MASS SPECTROMETRY 1993; 22:447-56. [PMID: 8357858 DOI: 10.1002/bms.1200220805] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A purified extract of H-protein, a subunit of the glycine cleavage complex of the pea leaf mitochondria, was investigated by liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS), using both continuous flow fast atom bombardment (CF-FAB) and electrospray ionization (ESI) mass spectrometry. Determination of the molecular weight of the entire protein, a 14 kDa subunit of the glycine decarboxylase complex, was achieved by ESI mass spectrometry and revealed covalent binding of the protein to the stabilizing agent beta-mercapto-ethanol. On-line LC/MS analysis of peptides arising from the endoproteinase Glu-C digestion of the H-protein was achieved using capillary columns (0.25 mm i.d.), and permitted confirmation of the previously reported sequence deduced from cDNA cloning experiments. The detailed interpretation of data extracted from these LC/MS experiments facilitated identification of peptides containing modified amino acid residues. In particular the identification of a lipoic acid cofactor, a rather unusual modified lysine residue which interacts with different active sites in the enzyme complex, was achieved using both LC/CF-FAB-MS and LC/ESI-MS. The exact location of this modified lysine residue was determined by obtaining fragment spectra of multiply protonated precursor ions of selected peptides, using on-line LC/MS/MS techniques.
Collapse
Affiliation(s)
- V Mérand
- Institut de Biologie Structurale, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Brocklehurst SM, Perham RN. Prediction of the three-dimensional structures of the biotinylated domain from yeast pyruvate carboxylase and of the lipoylated H-protein from the pea leaf glycine cleavage system: a new automated method for the prediction of protein tertiary structure. Protein Sci 1993; 2:626-39. [PMID: 8518734 PMCID: PMC2142356 DOI: 10.1002/pro.5560020413] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A new, automated, knowledge-based method for the construction of three-dimensional models of proteins is described. Geometric restraints on target structures are calculated from a consideration of homologous template structures and the wider knowledge base of unrelated protein structures. Three-dimensional structures are calculated from initial partly folded states by high-temperature molecular dynamics simulations followed slow cooling of the system (simulated annealing) using nonphysical potentials. Three-dimensional models for the biotinylated domain from the pyruvate carboxylase of yeast and the lipoylated H-protein from the glycine cleavage system of pea leaf were constructed, based on the known structures of two lipoylated domains of 2-oxo acid dehydrogenase multienzyme complexes. Despite their weak sequence similarity, the three proteins are predicted to have similar three-dimensional structures, representative of a new protein module. Implications for the mechanisms of posttranslational modification of these proteins and their catalytic function are discussed.
Collapse
Affiliation(s)
- S M Brocklehurst
- Department of Biochemistry, University of Cambridge, United Kingdom
| | | |
Collapse
|
30
|
Reed KE, Cronan JE. Lipoic acid metabolism in Escherichia coli: sequencing and functional characterization of the lipA and lipB genes. J Bacteriol 1993; 175:1325-36. [PMID: 8444795 PMCID: PMC193218 DOI: 10.1128/jb.175.5.1325-1336.1993] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Two genes, lipA and lipB, involved in lipoic acid biosynthesis or metabolism were characterized by DNA sequence analysis. The translational initiation site of the lipA gene was established, and the lipB gene product was identified as a 25-kDa protein. Overproduction of LipA resulted in the formation of inclusion bodies, from which the protein was readily purified. Cells grown under strictly anaerobic conditions required the lipA and lipB gene products for the synthesis of a functional glycine cleavage system. Mutants carrying a null mutation in the lipB gene retained a partial ability to synthesize lipoic acid and produced low levels of pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase activities. The lipA gene product failed to convert protein-bound octanoic acid moieties to lipoic acid moieties in vivo; however, the growth of both lipA and lipB mutants was supported by either 6-thiooctanoic acid or 8-thiooctanoic acid in place of lipoic acid. These data suggest that LipA is required for the insertion of the first sulfur into the octanoic acid backbone. LipB functions downstream of LipA, but its role in lipoic acid metabolism remains unclear.
Collapse
Affiliation(s)
- K E Reed
- Department of Microbiology, University of Illinois, Urbana-Champaign 61801
| | | |
Collapse
|
31
|
Fujiwara K, Okamura-Ikeda K, Motokawa Y. Expression of mature bovine H-protein of the glycine cleavage system in Escherichia coli and in vitro lipoylation of the apoform. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)88657-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Okamura-Ikeda K, Fujiwara K, Motokawa Y. Molecular cloning of a cDNA encoding chicken T-protein of the glycine cleavage system and expression of the functional protein in Escherichia coli. Effect of mRNA secondary structure in the translational initiation region on expression. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36957-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Turner S, Ireland R, Rawsthorne S. Cloning and characterization of the P subunit of glycine decarboxylase from pea (Pisum sativum). J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42773-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Fujiwara K, Okamura-Ikeda K, Motokawa Y. Lipoylation of H-protein of the glycine cleavage system. The effect of site-directed mutagenesis of amino acid residues around the lipoyllysine residue on the lipoate attachment. FEBS Lett 1991; 293:115-8. [PMID: 1959641 DOI: 10.1016/0014-5793(91)81164-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
H-protein of the glycine cleavage system has lipoic acid on the Lys59 residue. Comparison of amino acid sequences around the lipoate attachment site of H-proteins from various sources and acyltransferases of alpha-keto acid dehydrogenase complexes indicated that Gly43, Glu56, Glu63 and Gly70 of bovine H-protein are highly conserved among these proteins. Modification of these conserved residues by site-directed mutagenesis indicated that Glu56 and Gly70 are important for the lipoylation of H-protein and suggested that the proper conformation around the lipoic acid attachment site is required for the association of H-protein to the enzyme responsible for the lipoylation.
Collapse
Affiliation(s)
- K Fujiwara
- Institute for Enzyme Research, University of Tokushima, Japan
| | | | | |
Collapse
|
35
|
Vanden Boom TJ, Reed KE, Cronan JE. Lipoic acid metabolism in Escherichia coli: isolation of null mutants defective in lipoic acid biosynthesis, molecular cloning and characterization of the E. coli lip locus, and identification of the lipoylated protein of the glycine cleavage system. J Bacteriol 1991; 173:6411-20. [PMID: 1655709 PMCID: PMC208974 DOI: 10.1128/jb.173.20.6411-6420.1991] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We report the isolation and genetic characterization of novel Tn10dTc and Tn1000dKn insertion mutations in and near the lip locus of the Escherichia coli chromosome. The Tn10dTc and Tn1000dKn mutations define two genes, lipA and lipB, involved in lipoic acid biosynthesis. Two representative alleles (lip-2 and lip-9) from the previously reported genetic class of lipoic acid auxotrophic mutants (A. A. Herbert and J. R. Guest, J. Gen. Microbiol. 53:363-381, 1968) were assigned to the lipA complementation group. We have cloned the E. coli lip locus and developed a recombinant plasmid-based genetic system for fine-structure physical-genetic mapping of mutations in this region of the E. coli chromosome. We also report that a recombinant plasmid containing a 5.2-kbp PvuII restriction fragment from the E. coli lip locus produced three proteins of approximately 8, 12, and 36 kDa by using either a maxicell or in vitro transcription translation expression system. The 36-kDa protein was identified as the gene product encoded by the lipA locus. Finally, we have identified a previously unreported lipoylated protein that functions in the glycine cleavage system of E. coli.
Collapse
Affiliation(s)
- T J Vanden Boom
- Department of Microbiology, University of Illinois at Urbana-Champaign 61801
| | | | | |
Collapse
|
36
|
Fujiwara K, Okamura-Ikeda K, Hayasaka K, Motokawa Y. The primary structure of human H-protein of the glycine cleavage system deduced by cDNA cloning. Biochem Biophys Res Commun 1991; 176:711-6. [PMID: 2025283 DOI: 10.1016/s0006-291x(05)80242-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A full-length cDNA encoding the human H-protein of the glycine cleavage system has been isolated from a lambda gt11 human fetal liver cDNA library. The cDNA insert was 1091 base pairs with an open reading frame of 519 base pairs which encoded a 125-amino acid mature human H-protein with a 48-amino acid presequence. Human H-protein is 97%, 86%, and 46% identical to the bovine, chicken, and pea H-protein, respectively.
Collapse
Affiliation(s)
- K Fujiwara
- Institute for Enzyme Research, University of Tokushima, Japan
| | | | | | | |
Collapse
|
37
|
Isolation and sequence determination of cDNA encoding T-protein of the glycine cleavage system. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67736-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
38
|
The glycine cleavage system. Occurrence of two types of chicken H-protein mRNAs presumably formed by the alternative use of the polyadenylation consensus sequences in a single exon. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)49990-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
The glycine cleavage system. Molecular cloning of the chicken and human glycine decarboxylase cDNAs and some characteristics involved in the deduced protein structures. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)49991-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Stauffer LT, Steiert PS, Steiert JG, Stauffer GV. An Escherichia coli protein with homology to the H-protein of the glycine cleavage enzyme complex from pea and chicken liver. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1991; 2:13-7. [PMID: 1802033 DOI: 10.3109/10425179109008434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nucleotide sequence of an Escherichia coli gene which presumably encodes the H-protein of the glycine cleavage (GCV) enzyme complex is presented. The gene, designated gcvH, encodes a polypeptide of 128 amino acids with a calculated molecular weight of 13,665 daltons. The translation start site was determined by N-terminal amino acid sequence analysis of a gcvH-lacZ encoded fusion protein. The E. coli H-protein shows extensive homology with the H-proteins from the pea (Pisum sativum) and the chicken liver GCV enzyme complexes. 85 of 128 amino acid residues are identical or chemically similar between the E. coli and the pea H-proteins, and 74 of 128 amino acid residues are identical or chemically similar between the E. coli and the chicken liver H-proteins. All three proteins have identical amino acid sequences from residues 61-65. This sequence contains the lysyl residue involved in lipoic acid attachment in the chicken liver H-protein.
Collapse
Affiliation(s)
- L T Stauffer
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | | | | | |
Collapse
|
41
|
Leung PS, Iwayama T, Coppel RL, Gershwin ME. Site-directed mutagenesis of lysine within the immunodominant autoepitope of PDC-E2. Hepatology 1990; 12:1321-8. [PMID: 1701753 DOI: 10.1002/hep.1840120612] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The major autoantigens of PBC have been identified as the four closely related mitochondrial enzymes PDC-E2, BCKD-E2 OGDC-E2 and protein X. A major structural similarity of these enzymes is the presence of one or more lipoyl domains. The immunodominant epitope of each autoantigen has either been postulated or been demonstrated to be located within the lipoate binding region. However, it is not clear whether the binding of lipoic acid to the epitope is necessary for autoantibody recognition. To address this issue we have constructed by oligonucleotide site-directed mutatagenesis three mutants in the lipoyl domain of human PDC-E2. Because lipoic acid is covalently bound to the zeta-amino group of the lysine residue of PDC-E2, the mutants were designed to replace the lysine residue in the lipoyl domain with glutamine, a negatively charged amino acid; histidine, a positively charged amino acid; and tyrosine, an aromatic amino acid. Binding reactivity of sera from patients with PBC were analyzed by enzyme-linked immunosorbent assay, immunoblotting and specific absorption against each of the three mutants and control clones. All data were compared with parallel studies with a control recombinant clone, the liver-specific F alloantigen. We believe the recognition of the lipoyl domain is a reflection of the surface-exposed, hydrophilic and relatively mobile nature of this region of the autoantigen. Further studies on direct assay for the presence of lipoic acid will be needed to clarify these issues.
Collapse
Affiliation(s)
- P S Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis 95616
| | | | | | | |
Collapse
|
42
|
Fujiwara K, Okamura-Ikeda K, Motokawa Y. cDNA sequence, in vitro synthesis, and intramitochondrial lipoylation of H-protein of the glycine cleavage system. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)38186-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
43
|
Griffin TA, Wynn RM, Chuang DT. Expression and assembly of mature apotransacylase (E2b) of bovine branched-chain alpha-keto acid dehydrogenase complex in Escherichia coli. Demonstration of transacylase activity and modification by lipoylation. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38512-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
44
|
Teuber L. Naturally Occurring 1,2-Dithiolanes and 1,2,3-Trithianes. Chemical and Biological Properties. ACTA ACUST UNITED AC 1990. [DOI: 10.1080/01961779008048732] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
|
46
|
Kim Y, Oliver DJ. Molecular cloning, transcriptional characterization, and sequencing of cDNA encoding the H-protein of the mitochondrial glycine decarboxylase complex in peas. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40127-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
47
|
Yeaman SJ, Bassendine MF, Fittes D, Hodgson DR, Heseltine L, Brown HJ, Mutimer DJ, James OF, Fussey SP. Regulation of the alpha-keto acid dehydrogenase complexes and their involvement in primary biliary cirrhosis. Ann N Y Acad Sci 1989; 573:183-91. [PMID: 2634346 DOI: 10.1111/j.1749-6632.1989.tb14996.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- S J Yeaman
- Department of Biochemistry and Genetics, University of Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
James OF, Yeaman SJ, Bassendine MF. Molecular aspects of the M2 autoantigens in primary biliary cirrhosis: what a difference a year makes. Hepatology 1989; 10:247-51. [PMID: 2473023 DOI: 10.1002/hep.1840100219] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- O F James
- Department of Medicine, Medical School, University of Newcastle Upon Tyne, United Kingdom
| | | | | |
Collapse
|
49
|
Browner MF, Taroni F, Sztul E, Rosenberg LE. Sequence Analysis, Biogenesis, and Mitochondrial Import of the α-Subunit of Rat Liver Propionyl-CoA Carboxylase. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)63910-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
50
|
Hiraga K, Kure S, Yamamoto M, Ishiguro Y, Suzuki T. Cloning of cDNA encoding human H-protein, a constituent of the glycine cleavage system. Biochem Biophys Res Commun 1988; 151:758-62. [PMID: 3348809 DOI: 10.1016/s0006-291x(88)80345-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A cDNA that encodes human H-protein, a constituent protein of the glycine cleavage system, was cloned with anti-rat H-protein antibody as a probe from a human liver cDNA library constructed with an expression vector, lambda gt11. The longest size of cDNA of the isolated clones was about 750 base long (lambda HH15B9). On the other hand, we determined the primary structure of human H-protein from the amino terminal Ser by the 12th Val, including a hexapeptide, -Glu-Lys-His-Glu-Trp-Val-. In addition to the finding that most cDNA inserts cloned hybridized with the synthetic DNA probe composed of the possible sequences for the hexapeptide, we confirmed that lambda HH15B9 encodes the partial primary structure of H-protein in an open reading frame.
Collapse
Affiliation(s)
- K Hiraga
- Department of Biochemistry, Toyama Medical and Pharmaceutical, University School of Medicine, Japan
| | | | | | | | | |
Collapse
|