1
|
Yeom JH, Shin E, Jin H, Liu H, Luo Y, Nam Y, Ryu M, Song W, Chi H, Kim J, Lee K, Bae J. Aptamer-conjugated gold nanoparticles platform as the intracellular delivery of antibodies for cancer therapy. J IND ENG CHEM 2023; 126:480-491. [DOI: 10.1016/j.jiec.2023.06.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
|
2
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Barakat S, Berksöz M, Zahedimaram P, Piepoli S, Erman B. Nanobodies as molecular imaging probes. Free Radic Biol Med 2022; 182:260-275. [PMID: 35240292 DOI: 10.1016/j.freeradbiomed.2022.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Camelidae derived single-domain antibodies (sdAbs), commonly known as nanobodies (Nbs), are the smallest antibody fragments with full antigen-binding capacity. Owing to their desirable properties such as small size, high specificity, strong affinity, excellent stability, and modularity, nanobodies are on their way to overtake conventional antibodies in terms of popularity. To date, a broad range of nanobodies have been generated against different molecular targets with applications spanning basic research, diagnostics, and therapeutics. In the field of molecular imaging, nanobody-based probes have emerged as a powerful tool. Radioactive or fluorescently labeled nanobodies are now used to detect and track many targets in different biological systems using imaging techniques. In this review, we provide an overview of the use of nanobodies as molecular probes. Additionally, we discuss current techniques for the generation, conjugation, and intracellular delivery of nanobodies.
Collapse
Affiliation(s)
- Sarah Barakat
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Melike Berksöz
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Pegah Zahedimaram
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Sofia Piepoli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| | - Batu Erman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| |
Collapse
|
4
|
Huang W, Zhou S, Tang B, Xu H, Wu X, Li N, Zan X, Geng W. Efficient delivery of cytosolic proteins by protein-hexahistidine-metal co-assemblies. Acta Biomater 2021; 129:199-208. [PMID: 33991683 DOI: 10.1016/j.actbio.2021.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/05/2023]
Abstract
Proteins play key roles in most biological processes, and protein dysfunction can cause various diseases. Over the past few decades, tremendous development has occurred in the protein therapeutic market due to the high specificity, low side effects, and low risk of proteins. Currently, all protein drugs on the market are based on extracellular targeting; more than 70% of intracellular targets remain un-druggable. Efficient delivery of cytosolic proteins is of significance for protein drugs, advanced biotechnology and molecular cell biology. Herein, we developed a co-assembly strategy for protein-hexahistidine-metal for intracellular protein delivery. Based on the coordinative interaction between His6 and metal ions, various proteins were encapsulated in situ into nanosized and positively charged protein encapsulation particles(Protein@HmA) through a co-assembly process with a high loading capacity and loading efficiency. Protein@HmA was able to deliver proteins with diverse physicochemical properties through multiple endocytosis pathways, and the protein could quickly escape from endosomes. In addition, the bioactivity of the loaded protein during co-assembly and the intracellular delivery processes were well preserved and could be properly exerted inside cells. Our results demonstrate that this strategy should be a valuable platform for protein delivery and has huge potential in protein-based theranostics. STATEMENT OF SIGNIFICANCE: Intracellular targets with protein drugs may provide a new way for the treatment of many refractory disease. Herein, we developed a co-assembly strategy for protein-hexahistidine-metal for efficient intracellular protein delivery. Based on the coordinative interaction between His6 and metal ions, various proteins were encapsulated in situ into nanosized and positively charged particles (Protein@HmA) with a high loading efficiency. Protein@HmA was able to deliver different proteins through multiple endocytosis pathways, and the protein could quickly escape from endosomes. In addition, the bioactivity of the loaded protein during co-assembly and the intracellular delivery processes were well preserved and could be properly exerted inside cells. This strategy should be a valuable platform for protein delivery and has huge potential in protein-based theranostics.
Collapse
Affiliation(s)
- Wenjuan Huang
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang Province 317000, PR China; School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, PR China
| | - Sijie Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, PR China
| | - Bojiao Tang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, PR China
| | - Hongyan Xu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, PR China
| | - Xiaoxiao Wu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, PR China
| | - Na Li
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, PR China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, PR China; Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, PR China.
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, PR China.
| |
Collapse
|
5
|
Le Saux S, Aubert‐Pouëssel A, Ouchait L, Mohamed KE, Martineau P, Guglielmi L, Devoisselle J, Legrand P, Chopineau J, Morille M. Nanotechnologies for Intracellular Protein Delivery: Recent Progress in Inorganic and Organic Nanocarriers. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sarah Le Saux
- ICGM Universite Montpellier ENSCM, CNRS Montpellier France
| | | | - Lyria Ouchait
- ICGM Universite Montpellier ENSCM, CNRS Montpellier France
| | | | | | | | | | | | - Joël Chopineau
- ICGM Universite Montpellier ENSCM, CNRS Montpellier France
| | - Marie Morille
- ICGM Universite Montpellier ENSCM, CNRS Montpellier France
| |
Collapse
|
6
|
Chong SE, Oh JH, Min K, Park S, Choi S, Ahn JH, Chun D, Lee HH, Yu J, Lee Y. Intracellular delivery of immunoglobulin G at nanomolar concentrations with domain Z-fused multimeric α-helical cell penetrating peptides. J Control Release 2021; 330:161-172. [PMID: 33340565 DOI: 10.1016/j.jconrel.2020.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/27/2020] [Accepted: 12/14/2020] [Indexed: 11/19/2022]
Abstract
A new vehicle is designed for the intracellular delivery of antibodies at nanomolar concentrations by combination of domain Z, a small affibody with strong binding affinity to Fc regions of immunoglobulin G (IgG), and the multimers of LK sequences, α-helical cell penetrating peptides (CPP) with powerful cell penetrating activities. Domain Z and multimeric LK are fused together to form LK-domain Z proteins. The LK-domain Z can bind with IgG at a specific ratio at nanomolar concentrations by simple mixing. The IgG/LK-domain Z complexes can successfully penetrate live cells at nanomolar concentration and the delivery efficiency is strongly dependent upon the concentrations of IgG/LK-domain Z complex as well as the species and subclasses of IgGs. The IgG/LK-domain Z complexes penetrate cells via ATP-dependent endocytosis pathway and the majority of delivered IgG seems to escape endosome to cytosol. Remarkably, the delivered IgGs are able to control the targeted intracellular signaling pathway as shown in the down-regulation of pro-survival genes by the delivery of anti-NF-κB using an LK-domain Z vehicle with a cathepsin B-cleavable linker between the LK sequence and domain Z. The simple but very efficient intracellular delivery method of antibodies at nanomolar concentrations is expected to facilitate profound understanding of cell mechanisms and development of new future therapeutics on the basis of intracellular antibodies.
Collapse
Affiliation(s)
- Seung-Eun Chong
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jae Hoon Oh
- ERATO Hamachi Innovative Molecular Technology for Neuroscience, Graduate School of Engineering, Kyoto University Katsura, Katsura Int'tech Center #308, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Kyungjin Min
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sohyun Park
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sejong Choi
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Joon Hyung Ahn
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dahyun Chun
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jaehoon Yu
- Department of Chemistry & Education, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Yan Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Kiełbik A, Szlasa W, Michel O, Szewczyk A, Tarek M, Saczko J, Kulbacka J. In Vitro Study of Calcium Microsecond Electroporation of Prostate Adenocarcinoma Cells. Molecules 2020; 25:E5406. [PMID: 33227916 PMCID: PMC7699241 DOI: 10.3390/molecules25225406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 02/08/2023] Open
Abstract
Electroporation, applied as a non-thermal ablation method has proven to be effective for focal prostate treatment. In this study, we performed pre-clinical research, which aims at exploring the specific impact of this so-called calcium electroporation on prostate cancer. First, in an in-vitro study of DU 145 cell lines, microsecond electroporation (μsEP) parameters were optimized. We determined hence the voltage that provides both high permeability and viability of these prostate cancer cells. Subsequently, we compared the effect of μsEP on cells' viability with and without calcium administration. For high-voltage pulses, the cell death's mechanism was evaluated using flow-cytometry and confocal laser microscopy. For lower-voltage pulses, the influence of electroporation on prostate cancer cell mobility was studied using scratch assays. Additionally, we applied calcium-binding fluorescence dye (Fluo-8) to observe the calcium uptake dynamic with the fluorescence microscopy. Moreover, the molecular dynamics simulation visualized the process of calcium ions inflow during μsEP. According to our results calcium electroporation significantly decreases the cells viability by promoting apoptosis. Furthermore, our data shows that the application of pulsed electric fields disassembles the actin cytoskeleton and influences the prostate cancer cells' mobility.
Collapse
Affiliation(s)
- Aleksander Kiełbik
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.K.); (W.S.)
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.K.); (W.S.)
| | - Olga Michel
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (O.M.); (A.S.); (J.S.)
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (O.M.); (A.S.); (J.S.)
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France;
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (O.M.); (A.S.); (J.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (O.M.); (A.S.); (J.S.)
| |
Collapse
|
8
|
Kiełbik A, Szlasa W, Saczko J, Kulbacka J. Electroporation-Based Treatments in Urology. Cancers (Basel) 2020; 12:E2208. [PMID: 32784598 PMCID: PMC7465806 DOI: 10.3390/cancers12082208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
The observation that an application of a pulsed electric field (PEF) resulted in an increased permeability of the cell membrane has led to the discovery of the phenomenon called electroporation (EP). Depending on the parameters of the electric current and cell features, electroporation can be either reversible or irreversible. The irreversible electroporation (IRE) found its use in urology as a non-thermal ablative method of prostate and renal cancer. As its mechanism is based on the permeabilization of cell membrane phospholipids, IRE (as well as other treatments based on EP) provides selectivity sparing extracellular proteins and matrix. Reversible EP enables the transfer of genes, drugs, and small exogenous proteins. In clinical practice, reversible EP can locally increase the uptake of cytotoxic drugs such as cisplatin and bleomycin. This approach is known as electrochemotherapy (ECT). Few in vivo and in vitro trials of ECT have been performed on urological cancers. EP provides the possibility of transmission of genes across the cell membrane. As the protocols of gene electrotransfer (GET) over the last few years have improved, EP has become a well-known technique for non-viral cell transfection. GET involves DNA transfection directly to the cancer or the host skin and muscle tissue. Among urological cancers, the GET of several plasmids encoding prostate cancer antigens has been investigated in clinical trials. This review brings into discussion the underlying mechanism of EP and an overview of the latest progress and development perspectives of EP-based treatments in urology.
Collapse
Affiliation(s)
- Aleksander Kiełbik
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.K.); (W.S.)
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.K.); (W.S.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| |
Collapse
|
9
|
Zhang C, Ötjengerdes RM, Roewe J, Mejias R, Marschall ALJ. Applying Antibodies Inside Cells: Principles and Recent Advances in Neurobiology, Virology and Oncology. BioDrugs 2020; 34:435-462. [PMID: 32301049 PMCID: PMC7391400 DOI: 10.1007/s40259-020-00419-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To interfere with cell function, many scientists rely on methods that target DNA or RNA due to the ease with which they can be applied. Proteins are usually the final executors of function but are targeted only indirectly by these methods. Recent advances in targeted degradation of proteins based on proteolysis-targeting chimaeras (PROTACs), ubiquibodies, deGradFP (degrade Green Fluorescent Protein) and other approaches have demonstrated the potential of interfering directly at the protein level for research and therapy. Proteins can be targeted directly and very specifically by antibodies, but using antibodies inside cells has so far been considered to be challenging. However, it is possible to deliver antibodies or other proteins into the cytosol using standard laboratory equipment. Physical methods such as electroporation have been demonstrated to be efficient and validated thoroughly over time. The expression of intracellular antibodies (intrabodies) inside cells is another way to interfere with intracellular targets at the protein level. Methodological strategies to target the inside of cells with antibodies, including delivered antibodies and expressed antibodies, as well as applications in the research areas of neurobiology, viral infections and oncology, are reviewed here. Antibodies have already been used to interfere with a wide range of intracellular targets. Disease-related targets included proteins associated with neurodegenerative diseases such as Parkinson's disease (α-synuclein), Alzheimer's disease (amyloid-β) or Huntington's disease (mutant huntingtin [mHtt]). The applications of intrabodies in the context of viral infections include targeting proteins associated with HIV (e.g. HIV1-TAT, Rev, Vif, gp41, gp120, gp160) and different oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV) and Epstein-Barr virus, and they have been used to interfere with various targets related to different processes in cancer, including oncogenic pathways, proliferation, cell cycle, apoptosis, metastasis, angiogenesis or neo-antigens (e.g. p53, human epidermal growth factor receptor-2 [HER2], signal transducer and activator of transcription 3 [STAT3], RAS-related RHO-GTPase B (RHOB), cortactin, vascular endothelial growth factor receptor 2 [VEGFR2], Ras, Bcr-Abl). Interfering at the protein level allows questions to be addressed that may remain unanswered using alternative methods. This review addresses why direct targeting of proteins allows unique insights, what is currently feasible in vitro, and how this relates to potential therapeutic applications.
Collapse
Affiliation(s)
- Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rina M Ötjengerdes
- Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Julian Roewe
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain TumorImmunology (D170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebeca Mejias
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrea L J Marschall
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Brunswick, Germany.
| |
Collapse
|
10
|
Barton SM, Janve VA, McClure R, Anderson A, Matsubara JA, Gore JC, Pham W. Lipopolysaccharide Induced Opening of the Blood Brain Barrier on Aging 5XFAD Mouse Model. J Alzheimers Dis 2020; 67:503-513. [PMID: 30584141 DOI: 10.3233/jad-180755] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of neurotherapeutics for many neurodegenerative diseases has largely been hindered by limited pharmacologic penetration across the blood-brain barrier (BBB). Previous attempts to target and clear amyloid-β (Aβ) plaques, a key mediator of neurodegenerative changes in Alzheimer's disease (AD), have had limited clinical success due to low bioavailability in the brain because of the BBB. Here we test the effects of inducing an inflammatory response to disrupt the BBB in the 5XFAD transgenic mouse model of AD. Lipopolysaccharide (LPS), a bacterial endotoxin recognized by the innate immune system, was injected at varying doses. 24 hours later, mice were injected with either thioflavin S, a fluorescent Aβ-binding small molecule or 30 nm superparamagnetic iron oxide (SPIO) nanoparticles, both of which are unable to penetrate the BBB under normal physiologic conditions. Our results showed that when pretreated with 3.0 mg/kg LPS, thioflavin S can be found in the brain bound to Aβ plaques in aged 5XFAD transgenic mice. Following the same LPS pretreatment, SPIO nanoparticles could also be found in the brain. However, when done on wild type or young 5XFAD mice, limited SPIO was detected. Our results suggest that the BBB in aged 5XFAD mouse model is susceptible to increased permeability mediated by LPS, allowing for improved delivery of the small molecule thioflavin S to target Aβ plaques and SPIO nanoparticles, which are significantly larger than antibodies used in clinical trials for immunotherapy of AD. Although this approach demonstrated efficacy for improved delivery to the brain, LPS treatment resulted in significant weight loss even at low doses, resulting from the induced inflammatory response. These findings suggest inducing inflammation can improve delivery of small and large materials to the brain for improved therapeutic or diagnostic efficacy. However, this approach must be balanced with the risks of systemic inflammation.
Collapse
Affiliation(s)
- Shawn M Barton
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Vaibhav A Janve
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Richard McClure
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Adam Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Ingram Cancer Center, Nashville, TN, USA.,Vanderbilt Institute of Chemical Biology, Nashville, TN, USA
| | - Wellington Pham
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Ingram Cancer Center, Nashville, TN, USA.,Vanderbilt Institute of Chemical Biology, Nashville, TN, USA.,Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, TN, USA
| |
Collapse
|
11
|
Alex A, Piano V, Polley S, Stuiver M, Voss S, Ciossani G, Overlack K, Voss B, Wohlgemuth S, Petrovic A, Wu Y, Selenko P, Musacchio A, Maffini S. Electroporated recombinant proteins as tools for in vivo functional complementation, imaging and chemical biology. eLife 2019; 8:48287. [PMID: 31310234 PMCID: PMC6656429 DOI: 10.7554/elife.48287] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
Delivery of native or chemically modified recombinant proteins into mammalian cells shows promise for functional investigations and various technological applications, but concerns that sub-cellular localization and functional integrity of delivered proteins may be affected remain high. Here, we surveyed batch electroporation as a delivery tool for single polypeptides and multi-subunit protein assemblies of the kinetochore, a spatially confined and well-studied subcellular structure. After electroporation into human cells, recombinant fluorescent Ndc80 and Mis12 multi-subunit complexes exhibited native localization, physically interacted with endogenous binding partners, and functionally complemented depleted endogenous counterparts to promote mitotic checkpoint signaling and chromosome segregation. Farnesylation is required for kinetochore localization of the Dynein adaptor Spindly. In cells with chronically inhibited farnesyl transferase activity, in vitro farnesylation and electroporation of recombinant Spindly faithfully resulted in robust kinetochore localization. Our data show that electroporation is well-suited to deliver synthetic and chemically modified versions of functional proteins, and, therefore, constitutes a promising tool for applications in chemical and synthetic biology.
Collapse
Affiliation(s)
- Amal Alex
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Valentina Piano
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Soumitra Polley
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Marchel Stuiver
- In-Cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Berlin, Germany
| | - Stephanie Voss
- Chemical Genomics Centre, Max Planck Society, Dortmund, Germany
| | - Giuseppe Ciossani
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Katharina Overlack
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Beate Voss
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sabine Wohlgemuth
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Arsen Petrovic
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Yaowen Wu
- Chemical Genomics Centre, Max Planck Society, Dortmund, Germany.,Department of Chemistry, Umeå University, Umeå, Sweden
| | - Philipp Selenko
- In-Cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Berlin, Germany.,Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
12
|
Slastnikova TA, Ulasov AV, Rosenkranz AA, Sobolev AS. Targeted Intracellular Delivery of Antibodies: The State of the Art. Front Pharmacol 2018; 9:1208. [PMID: 30405420 PMCID: PMC6207587 DOI: 10.3389/fphar.2018.01208] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
A dominant area of antibody research is the extension of the use of this mighty experimental and therapeutic tool for the specific detection of molecules for diagnostics, visualization, and activity blocking. Despite the ability to raise antibodies against different proteins, numerous applications of antibodies in basic research fields, clinical practice, and biotechnology are restricted to permeabilized cells or extracellular antigens, such as membrane or secreted proteins. With the exception of small groups of autoantibodies, natural antibodies to intracellular targets cannot be used within living cells. This excludes the scope of a major class of intracellular targets, including some infamous cancer-associated molecules. Some of these targets are still not druggable via small molecules because of large flat contact areas and the absence of deep hydrophobic pockets in which small molecules can insert and perturb their activity. Thus, the development of technologies for the targeted intracellular delivery of antibodies, their fragments, or antibody-like molecules is extremely important. Various strategies for intracellular targeting of antibodies via protein-transduction domains or their mimics, liposomes, polymer vesicles, and viral envelopes, are reviewed in this article. The pitfalls, challenges, and perspectives of these technologies are discussed.
Collapse
Affiliation(s)
- Tatiana A. Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A. V. Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A. A. Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - A. S. Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
13
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 436] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
14
|
Van der Poorten O, Legrand B, Vezenkov LL, García-Pindado J, Bettache N, Knuhtsen A, Pedersen DS, Sánchez-Navarro M, Martinez J, Teixidó M, Garcia M, Tourwé D, Amblard M, Ballet S. Indoloazepinone-Constrained Oligomers as Cell-Penetrating and Blood-Brain-Barrier-Permeating Compounds. Chembiochem 2018; 19:696-705. [PMID: 29377388 DOI: 10.1002/cbic.201700678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 12/29/2022]
Abstract
Non-cationic and amphipathic indoloazepinone-constrained (Aia) oligomers have been synthesized as new vectors for intracellular delivery. The conformational preferences of the [l-Aia-Xxx]n oligomers were investigated by circular dichroism (CD) and NMR spectroscopy. Whereas Boc-[l-Aia-Gly]2,4 -OBn oligomers 12 and 13 and Boc-[l-Aia-β3 -h-l-Ala]2,4 -OBn oligomers 16 and 17 were totally or partially disordered, Boc-[l-Aia-l-Ala]2 -OBn (14) induced a typical turn stabilized by C5 - and C7 -membered H-bond pseudo-cycles and aromatic interactions. Boc-[l-Aia-l-Ala]4 -OBn (15) exhibited a unique structure with remarkable T-shaped π-stacking interactions involving the indole rings of the four l-Aia residues forming a dense hydrophobic cluster. All of the proposed FITC-6-Ahx-[l-Aia-Xxx]4 -NH2 oligomers 19-23, with the exception of FITC-6-Ahx-[l-Aia-Gly]4 -NH2 (18), were internalized by MDA-MB-231 cells with higher efficiency than the positive references penetratin and Arg8 . In parallel, the compounds of this series were successfully explored in an in vitro blood-brain barrier (BBB) permeation assay. Although no passive diffusion permeability was observed for any of the tested Ac-[l-Aia-Xxx]4 -NH2 oligomers in the PAMPA model, Ac-[l-Aia-l-Arg]4 -NH2 (26) showed significant permeation in the in vitro cell-based human model of the BBB, suggesting an active mechanism of cell penetration.
Collapse
Affiliation(s)
- Olivier Van der Poorten
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Baptiste Legrand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, 15 Avenue Charles Flahault, 34093, Montpellier, Cedex 5, France
| | - Lubomir L Vezenkov
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, 15 Avenue Charles Flahault, 34093, Montpellier, Cedex 5, France
| | - Júlia García-Pindado
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, 15 Avenue Charles Flahault, 34093, Montpellier, Cedex 5, France
| | - Astrid Knuhtsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Daniel Sejer Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Macarena Sánchez-Navarro
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, 15 Avenue Charles Flahault, 34093, Montpellier, Cedex 5, France
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Marcel Garcia
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, 15 Avenue Charles Flahault, 34093, Montpellier, Cedex 5, France
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, 15 Avenue Charles Flahault, 34093, Montpellier, Cedex 5, France
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
15
|
Conic S, Desplancq D, Ferrand A, Fischer V, Heyer V, Reina San Martin B, Pontabry J, Oulad-Abdelghani M, Babu N K, Wright GD, Molina N, Weiss E, Tora L. Imaging of native transcription factors and histone phosphorylation at high resolution in live cells. J Cell Biol 2018; 217:1537-1552. [PMID: 29440513 PMCID: PMC5881509 DOI: 10.1083/jcb.201709153] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/15/2017] [Accepted: 01/18/2018] [Indexed: 01/16/2023] Open
Abstract
Conic et al. introduce a versatile antibody-based imaging approach to track endogenous nuclear factors in living cells. It allows efficient intracellular delivery of any fluorescent dye–conjugated antibody, or Fab fragment, into a variety of cell types. The dynamics of nuclear targets or posttranslational modifications can be monitored with high precision using confocal and super-resolution microscopy. Fluorescent labeling of endogenous proteins for live-cell imaging without exogenous expression of tagged proteins or genetic manipulations has not been routinely possible. We describe a simple versatile antibody-based imaging approach (VANIMA) for the precise localization and tracking of endogenous nuclear factors. Our protocol can be implemented in every laboratory allowing the efficient and nonharmful delivery of organic dye-conjugated antibodies, or antibody fragments, into different metazoan cell types. Live-cell imaging permits following the labeled probes bound to their endogenous targets. By using conventional and super-resolution imaging we show dynamic changes in the distribution of several nuclear transcription factors (i.e., RNA polymerase II or TAF10), and specific phosphorylated histones (γH2AX), upon distinct biological stimuli at the nanometer scale. Hence, considering the large panel of available antibodies and the simplicity of their implementation, VANIMA can be used to uncover novel biological information based on the dynamic behavior of transcription factors or posttranslational modifications in the nucleus of single live cells.
Collapse
Affiliation(s)
- Sascha Conic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | | | - Alexia Ferrand
- Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Veronique Fischer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Vincent Heyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Bernardo Reina San Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Julien Pontabry
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institute of Epigenetics and Stem Cells, München, Germany
| | - Mustapha Oulad-Abdelghani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Kishore Babu N
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Nacho Molina
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Etienne Weiss
- Institut de Recherche de l'ESBS, UMR 7242, Illkirch, France
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
16
|
Akimov SA, Volynsky PE, Galimzyanov TR, Kuzmin PI, Pavlov KV, Batishchev OV. Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore. Sci Rep 2017; 7:12152. [PMID: 28939906 PMCID: PMC5610326 DOI: 10.1038/s41598-017-12127-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
Lipid membranes serve as effective barriers allowing cells to maintain internal composition differing from that of extracellular medium. Membrane permeation, both natural and artificial, can take place via appearance of transversal pores. The rearrangements of lipids leading to pore formation in the intact membrane are not yet understood in details. We applied continuum elasticity theory to obtain continuous trajectory of pore formation and closure, and analyzed molecular dynamics trajectories of pre-formed pore reseal. We hypothesized that a transversal pore is preceded by a hydrophobic defect: intermediate structure spanning through the membrane, the side walls of which are partially aligned by lipid tails. This prediction was confirmed by our molecular dynamics simulations. Conversion of the hydrophobic defect into the hydrophilic pore required surmounting some energy barrier. A metastable state was found for the hydrophilic pore at the radius of a few nanometers. The dependence of the energy on radius was approximately quadratic for hydrophobic defect and small hydrophilic pore, while for large radii it depended on the radius linearly. The pore energy related to its perimeter, line tension, thus depends of the pore radius. Calculated values of the line tension for large pores were in quantitative agreement with available experimental data.
Collapse
Affiliation(s)
- Sergey A Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia. .,National University of Science and Technology "MISiS", 4 Leninskiy prospekt, Moscow, 119049, Russia.
| | - Pavel E Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Timur R Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia.,National University of Science and Technology "MISiS", 4 Leninskiy prospekt, Moscow, 119049, Russia
| | - Peter I Kuzmin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Konstantin V Pavlov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia.,Federal Research and Clinical Center of Physical-Chemical Medicine, 1a Malaya Pirogovskaya, Moscow, 119435, Russia
| | - Oleg V Batishchev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia.,Moscow Institute of Physics and Technology, 9 Institutsky lane, 141700, Dolgoprudniy, Russia
| |
Collapse
|
17
|
|
18
|
Abraham A, Natraj U, Karande AA, Gulati A, Murthy MRN, Murugesan S, Mukunda P, Savithri HS. Intracellular delivery of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles. Sci Rep 2016; 6:21803. [PMID: 26905902 PMCID: PMC4764859 DOI: 10.1038/srep21803] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/01/2016] [Indexed: 01/30/2023] Open
Abstract
The therapeutic potential of antibodies has not been fully exploited as they fail to cross cell membrane. In this article, we have tested the possibility of using plant virus based nanoparticles for intracellular delivery of antibodies. For this purpose, Sesbania mosaic virus coat protein (CP) was genetically engineered with the B domain of Staphylococcus aureus protein A (SpA) at the βH-βI loop, to generate SeMV loop B (SLB), which self-assembled to virus like particles (VLPs) with 43 times higher affinity towards antibodies. CP and SLB could internalize into various types of mammalian cells and SLB could efficiently deliver three different monoclonal antibodies–D6F10 (targeting abrin), anti-α-tubulin (targeting intracellular tubulin) and Herclon (against HER2 receptor) inside the cells. Such a mode of delivery was much more effective than antibodies alone treatment. These results highlight the potential of SLB as a universal nanocarrier for intracellular delivery of antibodies.
Collapse
Affiliation(s)
- Ambily Abraham
- Department of Biochemistry, Indian Institute of Science, Karnataka, India
| | - Usha Natraj
- Department of Biochemistry, Indian Institute of Science, Karnataka, India
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Science, Karnataka, India
| | - Ashutosh Gulati
- Molecular Biophysics Unit, Indian Institute of Science, Karnataka, India
| | - Mathur R N Murthy
- Molecular Biophysics Unit, Indian Institute of Science, Karnataka, India
| | | | | | | |
Collapse
|
19
|
Yamada Y, Perez SMV, Tabata M, Abe J, Yasuzaki Y, Harashima H. Efficient and High-Speed Transduction of an Antibody into Living Cells Using a Multifunctional Nanocarrier System to Control Intracellular Trafficking. J Pharm Sci 2015; 104:2845-54. [DOI: 10.1002/jps.24310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 11/13/2014] [Accepted: 11/21/2014] [Indexed: 12/24/2022]
|
20
|
|
21
|
Funamoto D, Asai D, Sato K, Yamaguchi Y, Kim CW, Sato H, Nakhaei E, Matsumoto S, Yoshikawa T, Sasaki K, Yamamoto T, Kishimura A, Mori T, Katayama Y. Antibody Internalization into Living Cells via Crosslinker-mediated Endocytosis. CHEM LETT 2015. [DOI: 10.1246/cl.141157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daiki Funamoto
- Graduate School of System Life Sciences, Kyushu University
| | - Daisuke Asai
- Department of Microbiology, St. Marianna University School of Medicine
| | - Kazuki Sato
- Department of Environmental Science, Fukuoka Women’s University
| | - Yoko Yamaguchi
- Department of Environmental Science, Fukuoka Women’s University
| | - Chan Woo Kim
- Graduate School of System Life Sciences, Kyushu University
| | - Hikari Sato
- Graduate School of System Life Sciences, Kyushu University
| | - Elnaz Nakhaei
- Graduate School of System Life Sciences, Kyushu University
| | | | | | - Koichi Sasaki
- Graduate School of System Life Sciences, Kyushu University
| | | | | | - Takeshi Mori
- Graduate School of System Life Sciences, Kyushu University
| | | |
Collapse
|
22
|
Panov PV, Akimov SA, Batishchev OV. Isoprenoid lipid chains increase membrane resistance to pore formation. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2014. [DOI: 10.1134/s1990747814050067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
He H, Liang Q, Shin MC, Lee K, Gong J, Ye J, Liu Q, Wang J, Yang V. Significance and strategies in developing delivery systems for bio-macromolecular drugs. Front Chem Sci Eng 2013. [DOI: 10.1007/s11705-013-1362-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Freund G, Sibler AP, Desplancq D, Oulad-Abdelghani M, Vigneron M, Gannon J, Van Regenmortel MH, Weiss E. Targeting endogenous nuclear antigens by electrotransfer of monoclonal antibodies in living cells. MAbs 2013; 5:518-22. [PMID: 23765067 PMCID: PMC3906305 DOI: 10.4161/mabs.25084] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Antibodies are valuable tools for functional studies in vitro, but their use in living cells remains challenging because they do not naturally cross the cell membrane. Here, we present a simple and highly efficient method for the intracytoplasmic delivery of any antibody into cultured cells. By following the fate of monoclonal antibodies that bind to nuclear antigens, it was possible to image endogenous targets and to show that inhibitory antibodies are able to induce cell growth suppression or cell death. Our electrotransfer system allowed the cancer cells we studied to be transduced without loss of viability and may have applications for a variety of intracellular immuno-interventions.
Collapse
Affiliation(s)
- Guillaume Freund
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242; CNRS/Université de Strasbourg, Illkirch, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Magnetic nanoparticles for tumor imaging and therapy: a so-called theranostic system. Pharm Res 2013; 30:2445-58. [PMID: 23344909 DOI: 10.1007/s11095-013-0982-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
Abstract
In this review, we discussed the establishment of a so-called "theranostic" system by instituting the basic principles including the use of: [1] magnetic iron oxide nanoparticles (MION)-based drug carrier; [2] intra-arterial (I.A.) magnetic targeting; [3] macromolecular drugs with unmatched therapeutic potency and a repetitive reaction mechanism; [4] cell-penetrating peptide-mediated cellular drug uptake; and [5] heparin/protamine-regulated prodrug protection and tumor-specific drug re-activation into one single drug delivery system to overcome all possible obstacles, thereby achieving a potentially non-invasive, magnetic resonance imaging-guided, clinically enabled yet minimally toxic brain tumor drug therapy. By applying a topography-optimized I.A. magnetic targeting to dodge rapid organ clearance of the carrier during its first passage into the circulation, tumor capture of MION was enriched by >350 folds over that by conventional passive enhanced permeability and retention targeting. By adopting the prodrug strategy, we observed by far the first experimental success in a rat model of delivering micro-gram quantity of the large β-galactosidase model protein selectively into a brain tumor but not to the ipsi- or contra-lateral normal brain regions. With the therapeutic regimens of most toxin/siRNA drugs to fully (>99.9%) eradicate a tumor being in the nano-molar range, the prospects of reaching this threshold become practically accomplishable.
Collapse
|
26
|
Abstract
Peptide based drug design efforts have gained renewed interest with the discovery of cargo-carrying or cell-penetrating peptides. Understanding the translocation mechanism of these peptides and identifying the residues or elements that contribute to uptake can provide valuable clues toward the design of novel peptides. To this end, we have performed steered molecular dynamics (SMD) simulations on the pVEC peptide from murine vascular endothelial-cadherin protein and its two variants. Translocation was found to occur in three stages, adsorption via the cationic residues, inclusion of the whole peptide inside the membrane accompanied by formation of a water defect, and exit of both peptide and water molecules from the bilayer. Our simulation results suggest that the precise order in which the hydrophobic, cationic, and the polar regions are located in the amphipathic pVEC peptide contributes to its uptake mechanism. These results present new opportunities for the design of novel cell-penetrating and antimicrobial peptides.
Collapse
|
27
|
Gorrea E, Carbajo D, Gutiérrez-Abad R, Illa O, Branchadell V, Royo M, Ortuño RM. Searching for new cell-penetrating agents: hybrid cyclobutane-proline γ,γ-peptides. Org Biomol Chem 2012; 10:4050-7. [PMID: 22514076 DOI: 10.1039/c2ob25220a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two generations of hybrid γ,γ-peptides containing cyclobutane amino acids and cis-γ-amino-L-proline joined in alternation have been synthesized and their capacity to cross the eukaryotic cell membrane has been evaluated. The first generation consists of di-, tetra- and hexapeptides, and their properties have been analyzed as well as the influence of peptide length and chirality of the cyclobutane residues. Results have shown that the absolute configuration of the cyclobutane amino acid does not have a relevant influence. The second generation consists of hybrid γ,γ-hexapeptides with a common backbone and distinct side chains introduced with different linkage types through the α-amino group (N(α)) of the proline monomers. These peptides have been shown to be non-toxic towards HeLa cells and to internalize them effectively, the best results being obtained for the peptides with a spacer of five carbons between the N(α) atom and the guanidinium group. The introduction of cyclobutane residues inside the sequence affords a good balance between charge and hydrophobicity, reducing the number of positive charges. This results in lower toxicity and similar cell-uptake properties when compared to previously described peptide agents.
Collapse
Affiliation(s)
- Esther Gorrea
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Dionisio N, Albarran L, Berna-Erro A, Hernandez-Cruz J, Salido G, Rosado J. Functional role of the calmodulin- and inositol 1,4,5-trisphosphate receptor-binding (CIRB) site of TRPC6 in human platelet activation. Cell Signal 2011; 23:1850-6. [DOI: 10.1016/j.cellsig.2011.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 06/27/2011] [Indexed: 12/17/2022]
|
29
|
A peptide derived from herpes simplex virus type 1 glycoprotein H: membrane translocation and applications to the delivery of quantum dots. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:925-34. [PMID: 21664490 DOI: 10.1016/j.nano.2011.04.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 03/31/2011] [Accepted: 04/15/2011] [Indexed: 12/28/2022]
Abstract
UNLABELLED Cell membranes are impermeable to most molecules that are not actively imported by living cells, including all macromolecules and even small molecules whose physiochemical properties prevent passive membrane diffusion. However, recently, we have seen the development of increasingly sophisticated methodology for intracellular drug delivery. Cell-penetrating peptides (CPPs), short peptides believed to enter cells by penetrating cell membranes, have attracted great interest in the hope of enhancing gene therapy, vaccine development and drug delivery. Nevertheless, to achieve an efficient intracellular delivery, further strategies to bypass the endocytotic pathway must be investigated. We report on a novel peptide molecule derived from glycoprotein gH of herpes simplex type I virus that is able to traverse the membrane bilayer and to transport a cargo into the cytoplasm with novel properties in comparison with existing CPPs. We use as cargo molecule quantum dots that do not significantly traverse the membrane bilayer on their own. FROM THE CLINICAL EDITOR Cell-penetrating peptides have recently attracted great interest in optimizing gene therapy, vaccine development and drug delivery. In this study, a peptide derived from glycoprotein gH of herpes simplex I is investigated from this standpoint.
Collapse
|
30
|
Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for delivery of biologicals. J Control Release 2011; 151:220-8. [DOI: 10.1016/j.jconrel.2010.11.004] [Citation(s) in RCA: 1102] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 10/19/2010] [Indexed: 11/29/2022]
|
31
|
Zbidi H, Jardin I, Woodard GE, Lopez JJ, Berna-Erro A, Salido GM, Rosado JA. STIM1 and STIM2 are located in the acidic Ca2+ stores and associates with Orai1 upon depletion of the acidic stores in human platelets. J Biol Chem 2011; 286:12257-70. [PMID: 21321120 PMCID: PMC3069429 DOI: 10.1074/jbc.m110.190694] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/11/2011] [Indexed: 11/06/2022] Open
Abstract
Mammalian cells accumulate Ca2+ into agonist-sensitive acidic organelles, vesicles that possess a vacuolar proton-ATPase. Acidic Ca2+ stores include secretory granules and lysosome-related organelles. Current evidence clearly indicates that acidic Ca2+ stores participate in cell signaling and function, including the activation of store-operated Ca2+ entry in human platelets upon depletion of the acidic stores, although the mechanism underlying the activation of store-operated Ca2+ entry controlled by the acidic stores remains unclear. STIM1 has been presented as the endoplasmic reticulum Ca2+ sensor, but its role sensing intraluminal Ca2+ concentration in the acidic stores has not been investigated. Here we report that STIM1 and STIM2 are expressed in the lysosome-related organelles and dense granules in human platelets isolated by immunomagnetic sorting. Depletion of the acidic Ca2+ stores using the specific vacuolar proton-ATPase inhibitor, bafilomycin A1, enhanced the association between STIM1 and STIM2 as well as between these proteins and the plasma membrane channel Orai1. Depletion of the acidic Ca2+ stores also induces time-dependent co-immunoprecipitation of STIM1 with the TRPC proteins hTRPC1 and hTRPC6, as well as between Orai1 and both TRPC proteins. In addition, bafilomycin A1 enhanced the association between STIM2 and SERCA3. These findings demonstrate the location of STIM1 and STIM2 in the acidic Ca2+ stores and their association with Ca2+ channels and ATPases upon acidic stores discharge.
Collapse
Affiliation(s)
- Hanene Zbidi
- From the Department of Physiology (Cell Physiology Research Group) University of Extremadura, 10003 Cáceres, Spain
| | - Isaac Jardin
- From the Department of Physiology (Cell Physiology Research Group) University of Extremadura, 10003 Cáceres, Spain
| | | | - Jose J. Lopez
- Hémostase et Dynamique Cellulaire Vasculaire U770, INSERM, 94276 Le Kremlin-Bicêtre, France
| | - Alejandro Berna-Erro
- From the Department of Physiology (Cell Physiology Research Group) University of Extremadura, 10003 Cáceres, Spain
| | - Ginés M. Salido
- From the Department of Physiology (Cell Physiology Research Group) University of Extremadura, 10003 Cáceres, Spain
| | - Juan A. Rosado
- From the Department of Physiology (Cell Physiology Research Group) University of Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
32
|
Goparaju GN, Satishchandran C, Gupta PK. The effect of the structure of small cationic peptides on the characteristics of peptide-DNA complexes. Int J Pharm 2009; 369:162-9. [DOI: 10.1016/j.ijpharm.2008.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Accepted: 10/21/2008] [Indexed: 11/24/2022]
|
33
|
Kwon YM, Li Y, Naik S, Liang JF, Huang Y, Park YJ, Yang VC. The ATTEMPTS delivery systems for macromolecular drugs. Expert Opin Drug Deliv 2008; 5:1255-66. [DOI: 10.1517/17425240802498059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Jardin I, Lopez JJ, Salido GM, Rosado JA. Orai1 mediates the interaction between STIM1 and hTRPC1 and regulates the mode of activation of hTRPC1-forming Ca2+ channels. J Biol Chem 2008; 283:25296-25304. [PMID: 18644792 DOI: 10.1074/jbc.m802904200] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Orai1 and hTRPC1 have been presented as essential components of store-operated channels mediating highly Ca(2+) selective I(CRAC) and relatively Ca(2+) selective I(SOC), respectively. STIM1 has been proposed to communicate the Ca(2+) content of the intracellular Ca(2+) stores to the plasma membrane store-operated Ca(2+) channels. Here we present evidence for the dynamic interaction between endogenously expressed Orai1 and both STIM1 and hTRPC1 regulated by depletion of the intracellular Ca(2+) stores, using the pharmacological tools thapsigargin plus ionomycin, or by the physiological agonist thrombin, independently of extracellular Ca(2+). In addition we report that Orai1 mediates the communication between STIM1 and hTRPC1, which is essential for the mode of activation of hTRPC1-forming Ca(2+) permeable channels. Electrotransjection of cells with anti-Orai1 antibody, directed toward the C-terminal region that mediates the interaction with STIM1, and stabilization of an actin cortical barrier with jasplakinolide prevented the interaction between STIM1 and hTRPC1. Under these conditions hTRPC1 was no longer involved in store-operated calcium entry but in diacylglycerol-activated non-capacitative Ca(2+) entry. These findings support the functional role of the STIM1-Orai1-hTRPC1 complex in the activation of store-operated Ca(2+) entry.
Collapse
Affiliation(s)
- Isaac Jardin
- Department of Physiology, Cellular Physiology Research Group, University of Extremadura, 10071 Caceres, Spain
| | - José J Lopez
- Department of Physiology, Cellular Physiology Research Group, University of Extremadura, 10071 Caceres, Spain
| | - Gines M Salido
- Department of Physiology, Cellular Physiology Research Group, University of Extremadura, 10071 Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, Cellular Physiology Research Group, University of Extremadura, 10071 Caceres, Spain.
| |
Collapse
|
35
|
You J, Hu FQ, Du YZ, Yuan H. Improved cytotoxicity of doxorubicin by enhancing its nuclear delivery mediated via nanosized micelles. NANOTECHNOLOGY 2008; 19:255103. [PMID: 21828645 DOI: 10.1088/0957-4484/19/25/255103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
For antitumor drugs with an intracellular action site in the nucleus, effective internalization of the drugs into cancer cells and accumulation in the nucleus should be the determinant step for high antitumor activity. We synthesized a novel chitosan derivative by grafting stearic acid onto chitosan. The derivative can form self-aggregated micelles with about 50 nm size in the aqueous medium, and then can load a poorly soluble antitumor drug (doxorubicin, DOX) with high entrapment efficiency and drug loading. DOX release from the micelles was retarded significantly as a result of the encapsulation of the micelles. DOX concentration in nuclei was increased significantly via the transport of the micelles. Consequently, cytotoxicity of DOX loaded micelles was improved sharply due to the accumulation of the drug in its intracellular action site. The present micelles are a promising carrier candidate for effective therapy of antitumor drugs with the action site in the nucleus.
Collapse
Affiliation(s)
- Jian You
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | |
Collapse
|
36
|
Torchilin VP. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev 2008; 60:548-58. [PMID: 18053612 DOI: 10.1016/j.addr.2007.10.008] [Citation(s) in RCA: 333] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 10/01/2007] [Indexed: 12/16/2022]
Abstract
Cell-penetrating peptides (CPPs) including TAT peptide (TATp) have been successfully used for intracellular delivery of a broad variety of cargoes including various nanoparticulate pharmaceutical carriers (liposomes, micelles, nanoparticles). Here, we will consider the main results in this area, with a special emphasis on TATp-mediated delivery of liposomes and DNA. We will also address the development of "smart" stimuli-sensitive nanocarriers, where cell-penetrating function can be activated by the decreased pH only inside the biological target minimizing thus the interaction of drug-loaded nanocarriers with non-target cells.
Collapse
|
37
|
Costantini DL, Hu M, Reilly RM. Update:Peptide Motifs for Insertion of Radiolabeled Biomolecules into Cells and Routing to the Nucleus for Cancer Imaging or Radiotherapeutic Applications. Cancer Biother Radiopharm 2008; 23:3-24. [DOI: 10.1089/cbr.2007.0430] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Danny L. Costantini
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Meiduo Hu
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Raymond M. Reilly
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Torchilin V. Intracellular delivery of protein and peptide therapeutics. DRUG DISCOVERY TODAY. TECHNOLOGIES 2008; 5:e95-e103. [PMID: 24981097 DOI: 10.1016/j.ddtec.2009.01.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Many proteins and peptides are used as highly specific and effective therapeutic agents. Their use is, however, complicated by their instability and side effects. Because many protein and peptide drugs have their therapeutic targets inside cells, there is also an important task to bring these drugs into target cells without subjecting them to the lysosomal degradation. This review describes current approaches to the intracellular delivery of protein and peptide drugs. Various drug delivery systems and methods are considered allowing for safe and effective transport of protein and peptide drugs into the cell cytoplasm.:
Collapse
Affiliation(s)
- Vladimir Torchilin
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
39
|
You J, Hu FQ, Du YZ, Yuan H, Ye BF. High cytotoxicity and resistant-cell reversal of novel paclitaxel loaded micelles by enhancing the molecular-target delivery of the drug. NANOTECHNOLOGY 2007; 18:495101. [PMID: 20442465 DOI: 10.1088/0957-4484/18/49/495101] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Many antitumor drugs, such as paclitaxel (PTX), are widely used in cancer chemotherapy. However, their clinical use is limited by systemic toxicity, rapid blood clearance, and the occurrence of resistance. To increase the therapeutic index of these drugs, the antitumor drug PTX was encapsulated in novel micelles with glycolipid-like structure, which were formed by stearate grafted chitosan oligosaccharide in aqueous medium. The micelles could load the poorly soluble antitumor drug (PTX) with high entrapment efficiency and drug loading. PTX release was retarded as a result of the encapsulation of the micelles. PTX loaded micelles present excellent internalization into tumor cells as well as resistant cells and subsequently reside in cytoplasm, which results in increased intracellular accumulation of PTX in its molecular-target site. Consequently, cytotoxicity of PTX loaded micelles was improved sharply and resistant cells were reversed. In conclusion, high cytotoxicity can be obtained and resistant cells can be reversed by enhancing PTX's molecular-target delivery and accumulation via the encapsulation of the micelles. The present micelles are a promising carrier candidate for effective therapy of antitumor drugs with the target molecule in cytoplasm.
Collapse
Affiliation(s)
- Jian You
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | | | |
Collapse
|
40
|
Müller-Hartmann H, Faust N, Kazinski M, Kretzschmar T. High-throughput transfection and engineering of primary cells and cultured cell lines – an invaluable tool for research as well as drug development. Expert Opin Drug Discov 2007; 2:1453-65. [DOI: 10.1517/17460441.2.11.1453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Yuan TF. Electroporation: an arsenal of application. Cytotechnology 2007; 54:71-6. [PMID: 19003020 PMCID: PMC2267498 DOI: 10.1007/s10616-007-9082-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022] Open
Abstract
Electroporation is a way to induce nanometersized membrane pore for exogenous substances delivery into cytoplasm using an artificial electric field. Now it was widely used for molecules transfer especially in molecular experiments and genetic aspects. In recent years, modern electroporation on the embryo was developed, whose most important point is that it adopts low energy and rectangular pulse that could obtain high transfection efficiency and low damage to the embryo. This paper reviewed on the pool of application: from lab works to human clinical treatments.
Collapse
Affiliation(s)
- Ti-Fei Yuan
- Department of Biological Science and Biotechnology, Life Science School, Sun Yat-Sen (ZhongShan) University, P.O. Box A075#, XinGangXi Road 135, HaiZhu District, 510275, Guangzhou, China,
| |
Collapse
|
42
|
Intercellular imaging by a polyarginine derived cell penetrating peptide labeled magnetic resonance contrast agent, diethylenetriamine pentaacetic acid gadolinium. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200701010-00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
43
|
Farrera-Sinfreu J, Giralt E, Royo M, Albericio F. Cell-penetrating proline-rich peptidomimetics. Methods Mol Biol 2007; 386:241-267. [PMID: 18604949 DOI: 10.1007/978-1-59745-430-8_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cell-penetrating peptides (CPPs) offer potential as delivery agents for the cellular administration of drugs. However, the pharmacological utility of CPPs that are derived from natural amino acids is limited by their rapid metabolic degradation, low membrane permeability, and toxicity. Various peptidomimetics able to overcome these problems have been described, including peptides formed by D-amino acids and beta-peptides. This chapter summarizes the synthesis of gamma-proline-derived peptides and polyproline dendrimers for drug delivery applications, and includes descriptions of several modifications in the gamma-peptides (mimicking the side chains of the alpha-amino acids) or modulating the dendrimer surface. 5(6)-Carboxyfluorescein labeling of the aforementioned peptidomimetics for use in cell translocation studies is also described. Furthermore, different protocols for the study of the drug delivery capabilities of these compounds are reviewed, including enzymatic stability studies, cellular uptake measurements by plate fluorimetry and flow cytometry, confocal laser scanning microscopy, and cytotoxicity assays.
Collapse
|
44
|
Abstract
Intracellular delivery of various drugs, including DNA, and drug carriers can sharply increase the efficiency of various treatment protocols. However, the receptor-mediated endocytosis of drugs, drug carriers, and DNA results in their lysosomal delivery and significant degradation. The problem can be solved and therapy efficacy still further increased if the approaches for direct intracytoplasmic delivery that bypass the endocytic pathway are developed. This is especially important for many anticancer drugs (proapoptotic drugs whose primary action site is the mitochondrial membrane) and gene therapy (nuclear or mitochondrial genomes should be targeted). This review considers several current approaches for intracellular drug delivery: the use of pH-sensitive liposomes, the use of cell-penetrating proteins and peptides, and the use of immunoliposomes targeting intracellular antigens. Among intracellular targets, nuclei (gene therapy), mitochondria (proapoptotic cancer therapy and targeting of the mitochondrial genome), and lysosomes (lysosomal targeting of enzymes for the therapy of the lysosomal storage diseases) are considered. Examples of successful intracellular and organelle-specific delivery of biologically active molecules, including DNA, are presented; unanswered questions, challenges, and future trends are also discussed.
Collapse
Affiliation(s)
- Vladimir P Torchilin
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, USA.
| |
Collapse
|
45
|
López JJ, Salido GM, Pariente JA, Rosado JA. Interaction of STIM1 with endogenously expressed human canonical TRP1 upon depletion of intracellular Ca2+ stores. J Biol Chem 2006; 281:28254-64. [PMID: 16870612 DOI: 10.1074/jbc.m604272200] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
STIM1 (stromal interaction molecule 1) has recently been proposed to communicate the intracellular Ca(2+) stores with the plasma membrane to mediate store-operated Ca(2+) entry. Here we describe for the first time that Ca(2+) store depletion stimulates rapid STIM1 surface expression and association with endogenously expressed human canonical TRP1 (hTRPC1) independently of rises in cytosolic free Ca(2+) concentration. These events require the support of the actin cytoskeleton in human platelets, as reported for the coupling between type II inositol 1,4,5-trisphosphate receptor in the Ca(2+) stores and hTRPC1 in the plasma membrane, which has been suggested to underlie the activation of store-operated Ca(2+) entry in these cells. Electrotransjection of cells with anti-STIM1 antibody, directed toward the N-terminal sequence that includes the Ca(2+)-binding region, prevented the migration of STIM1 toward the plasma membrane, the interaction between STIM1 and hTRPC1, the coupling between hTRPC1 and type II inositol 1,4,5-trisphosphate receptor, and reduced store-operated Ca(2+) entry. These findings provide evidence for a role of STIM1 in the activation of store-operated Ca(2+) entry probably acting as a Ca(2+) sensor.
Collapse
Affiliation(s)
- José J López
- Department of Physiology, Cellular Physiology Research Group, University of Extremadura, 10071 Cáceres, Spain
| | | | | | | |
Collapse
|
46
|
Gupta B, Torchilin VP. Transactivating transcriptional activator-mediated drug delivery. Expert Opin Drug Deliv 2006; 3:177-90. [PMID: 16506946 DOI: 10.1517/17425247.3.2.177] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell-penetrating peptides (CPPs) are peptide vectors that can traverse through the plasma membrane barrier without breaching the integrity of the cell, and deliver various cargoes inside cell. The range of cargoes that can be delivered intracellularly by CPPs encompasses a broad variety of hydrophilic molecules, such as peptides, proteins, antibodies, imaging agents, DNA and even nanosized entities, including polymer-based systems, solid nanoparticles and liposomes. Multiple studies have focused on CPPs such as transactivating transcriptional activator peptide (TATp), penetratin, VP22, transportan and synthetic oligoarginines because of their high inherent potential as intracellular delivery vectors. However, the TATp remains the most popular CPP used for a variety of purposes. This review article attempts to bring together the available data on TAT-mediated intracellular uptake of a broad range of molecules and nanoparticles. It also considers potential practical applications of this approach.
Collapse
Affiliation(s)
- Bhawna Gupta
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | | |
Collapse
|
47
|
Abstract
Modern clinical treatments of childhood acute lymphoblastic leukemia (ALL) employ enzyme-based methods for depletion of blood asparagine in combination with standard chemotherapeutic agents. Significant side effects can arise in these protocols and, in many cases, patients develop drug-resistant forms of the disease that may be correlated with up-regulation of the enzyme glutamine-dependent asparagine synthetase (ASNS). Though the precise molecular mechanisms that result in the appearance of drug resistance are the subject of active study, potent ASNS inhibitors may have clinical utility in treating asparaginase-resistant forms of childhood ALL. This review provides an overview of recent developments in our understanding of (a) the structure and catalytic mechanism of ASNS, and (b) the role that ASNS may play in the onset of drug-resistant childhood ALL. In addition, the first successful, mechanism-based efforts to prepare and characterize nanomolar ASNS inhibitors are discussed, together with the implications of these studies for future efforts to develop useful drugs.
Collapse
Affiliation(s)
| | - Michael S. Kilberg
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32611;
| |
Collapse
|
48
|
Hu M, Chen P, Wang J, Chan C, Scollard DA, Reilly RM. Site-specific conjugation of HIV-1 tat peptides to IgG: a potential route to construct radioimmunoconjugates for targeting intracellular and nuclear epitopes in cancer. Eur J Nucl Med Mol Imaging 2005; 33:301-10. [PMID: 16258763 DOI: 10.1007/s00259-005-1908-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 07/04/2005] [Indexed: 11/29/2022]
Abstract
PURPOSE Our objective was to study the cellular and nuclear uptake of (123)I-mouse IgG ((123)I-mIgG) linked to peptides [GRKKRRQRRRPPQGYGC] harbouring the membrane-translocating and nuclear import sequences of HIV-1 tat protein. METHODS Carbohydrates on mIgG were oxidized by NaIO(4), then reacted with a 40-fold excess of peptides. Displacement of binding of anti-mouse IgG (Fab specific; alpha-mFab) to (123)I-mIgG by tat-mIgG or mIgG was compared. Internalization and nuclear translocation of (123)I-tat-mIgG in MDA-MB-468, MDA-MB-231 or MCF-7 breast cancer cells were measured. The immunoreactivity of imported tat-mIgG was evaluated by measuring binding of (123)I-alpha-mFab to cell lysate and by displacement of binding of (123)I-mIgG to alpha-mFab by cell lysate. Biodistribution and nuclear uptake of (123)I-tat-mIgG, (123)I-mIgG and (123)I-tat were compared in mice bearing s.c. MDA-MB-468 tumours. RESULTS There was a 15-fold decrease in affinity of alpha-mFab for tat-mIgG compared with mIgG. Internalized radioactivity imported into the nucleus for (123)I-tat-mIgG in MDA-MB-468, MDA-MB-231 and MCF-7 cells was 61.5+/-0.6%, 60.3+/-3.6% and 64.7+/-1.0%, respectively. The binding of (123)I-alpha-mFab to lysate from MDA-MB-468 cells importing tat-mIgG was 17-fold higher than that for cells not exposed to tat-mIgG. Imported tat-mIgG competed with tat-mIgG for displacement of binding of (123)I-mIgG to alpha-mFab. Conjugation of mIgG to tat peptides did not change tissue distribution. Nuclear localization for (123)I-tat-mIgG in MDA-MB-468 tumours was 28.1+/-5.6%, and for liver, spleen and kidneys it was 41.7+/-2.7%, 13.8+/-0.8% and 36.9+/-3.3%, respectively. CONCLUSION (123)I-tat-mIgG radioimunoconjugates suggest a route to the design of radiopharmaceuticals exploiting intracellular and nuclear epitopes.
Collapse
Affiliation(s)
- Meiduo Hu
- Division of Nuclear Medicine, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Tréhin R, Merkle HP. Chances and pitfalls of cell penetrating peptides for cellular drug delivery. Eur J Pharm Biopharm 2004; 58:209-23. [PMID: 15296950 DOI: 10.1016/j.ejpb.2004.02.018] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 02/24/2004] [Indexed: 11/17/2022]
Abstract
Over the past decade, several classes and/or prototypes of cell penetrating peptides (CPP) have been identified and investigated in multiple aspects. CPP represent peptides, which show the ability to cross the plasma membrane of mammalian cells, and may thus give rise to the intracellular delivery of problematic therapeutic cargos, such as peptides, proteins, oligonucleotides, plasmids and even nanometer-sized particles, which otherwise cannot cross the plasma membrane. Most of the currently recognized CPP are of cationic nature and derived from viral, insect or mammalian proteins endowed with membrane translocation properties. The exact mechanisms underlying the translocation of CPP across the cellular membrane are still poorly understood. However, several similarities in translocation can be found. Early studies on CPP translocation mechanisms tended to suggest that the internalization of these peptides was neither significantly inhibited by low temperature, depletion of the cellular adenosine triphosphate (ATP) pool, nor by inhibitors of endocytosis. Moreover, chemical modification of the peptide sequence, such as the synthesis of retro-, enantio- or retroenantio-analogs, appeared not to affect the internalization properties. Therefore, translocation was concluded to result from direct, physical transfer through the lipid bilayer of the cell membrane. Later studies, however, showed convincing evidence for the involvement of endocytosis as the dominating mechanism for cellular internalization. In addition to describing the general properties of the commonly recognized classes of CPP, in this review we will also point out some limitations and typical pitfalls of CPP as carriers for therapeutics. In particular we will comment on emerging discrepancies with the current dogma, on cell-to-cell variability, biological barrier permeability, metabolic fate, toxicity and immunogenicity of CPP.
Collapse
Affiliation(s)
- Rachel Tréhin
- Center for Molecular Imaging Research (CMIR), Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | | |
Collapse
|
50
|
Martinez CY, Hollenbeck PJ. Transfection of primary central and peripheral nervous system neurons by electroporation. Methods Cell Biol 2004; 71:339-51. [PMID: 12884698 DOI: 10.1016/s0091-679x(03)01016-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Neurons are difficult cells to transfect. Many methods that work routinely for immortalized tissue culture cells or primary cultures of nonneuronal cells are ineffective, toxic, or both when applied to neurons. This chapter describes a protocol that optimizes electroporation-based transfection of chick embryonic peripheral and central neurons. The key features required for successful electroporation and recovery of transfected neurons are high cell density, correct applied voltage and pulse duration, and the presence of calcium ions in the electroporation medium. Less important features are temperature, postporation rest, and the general composition of the electroporation medium. We emphasize the rationale for each element in our method and provide information useful for optimizing the procedure for other neurons.
Collapse
Affiliation(s)
- Cecilia Y Martinez
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47906, USA
| | | |
Collapse
|