1
|
Ó'Fágáin C. Protein Stability: Enhancement and Measurement. Methods Mol Biol 2023; 2699:369-419. [PMID: 37647007 DOI: 10.1007/978-1-0716-3362-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This chapter defines protein stability, emphasizes its importance, and surveys the field of protein stabilization, with summary reference to a selection of 2014-2021 publications. One can enhance stability, particularly by protein engineering strategies but also by chemical modification and by other means. General protocols are set out on how to measure a given protein's (i) kinetic thermal stability and (ii) oxidative stability and (iii) how to undertake chemical modification of a protein in solution.
Collapse
Affiliation(s)
- Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
2
|
Aromatic Amino Acid Decarboxylase Deficiency: The Added Value of Biochemistry. Int J Mol Sci 2021; 22:ijms22063146. [PMID: 33808712 PMCID: PMC8003434 DOI: 10.3390/ijms22063146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
Aromatic amino acid decarboxylase (AADC) deficiency is a rare, autosomal recessive neurometabolic disorder caused by mutations in the DDC gene, leading to a deficit of AADC, a pyridoxal 5′-phosphate requiring enzyme that catalyzes the decarboxylation of L-Dopa and L-5-hydroxytryptophan in dopamine and serotonin, respectively. Although clinical and genetic studies have given the major contribution to the diagnosis and therapy of AADC deficiency, biochemical investigations have also helped the comprehension of this disorder at a molecular level. Here, we reported the steps leading to the elucidation of the functional and structural features of the enzyme that were useful to identify the different molecular defects caused by the mutations, either in homozygosis or in heterozygosis, associated with AADC deficiency. By revisiting the biochemical data available on the characterization of the pathogenic variants in the purified recombinant form, and interpreting them on the basis of the structure-function relationship of AADC, it was possible: (i) to define the enzymatic phenotype of patients harboring pathogenic mutations and at the same time to propose specific therapeutic managements, and (ii) to identify residues and/or regions of the enzyme relevant for catalysis and/or folding of AADC.
Collapse
|
3
|
Structural basis for divergent and convergent evolution of catalytic machineries in plant aromatic amino acid decarboxylase proteins. Proc Natl Acad Sci U S A 2020; 117:10806-10817. [PMID: 32371491 DOI: 10.1073/pnas.1920097117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Radiation of the plant pyridoxal 5'-phosphate (PLP)-dependent aromatic l-amino acid decarboxylase (AAAD) family has yielded an array of paralogous enzymes exhibiting divergent substrate preferences and catalytic mechanisms. Plant AAADs catalyze either the decarboxylation or decarboxylation-dependent oxidative deamination of aromatic l-amino acids to produce aromatic monoamines or aromatic acetaldehydes, respectively. These compounds serve as key precursors for the biosynthesis of several important classes of plant natural products, including indole alkaloids, benzylisoquinoline alkaloids, hydroxycinnamic acid amides, phenylacetaldehyde-derived floral volatiles, and tyrosol derivatives. Here, we present the crystal structures of four functionally distinct plant AAAD paralogs. Through structural and functional analyses, we identify variable structural features of the substrate-binding pocket that underlie the divergent evolution of substrate selectivity toward indole, phenyl, or hydroxyphenyl amino acids in plant AAADs. Moreover, we describe two mechanistic classes of independently arising mutations in AAAD paralogs leading to the convergent evolution of the derived aldehyde synthase activity. Applying knowledge learned from this study, we successfully engineered a shortened benzylisoquinoline alkaloid pathway to produce (S)-norcoclaurine in yeast. This work highlights the pliability of the AAAD fold that allows change of substrate selectivity and access to alternative catalytic mechanisms with only a few mutations.
Collapse
|
4
|
Truzzi DR, Alves SV, Netto LES, Augusto O. The Peroxidatic Thiol of Peroxiredoxin 1 is Nitrosated by Nitrosoglutathione but Coordinates to the Dinitrosyl Iron Complex of Glutathione. Antioxidants (Basel) 2020; 9:antiox9040276. [PMID: 32218363 PMCID: PMC7222187 DOI: 10.3390/antiox9040276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Protein S-nitrosation is an important consequence of NO●·metabolism with implications in physiology and pathology. The mechanisms responsible for S-nitrosation in vivo remain debatable and kinetic data on protein S-nitrosation by different agents are limited. 2-Cys peroxiredoxins, in particular Prx1 and Prx2, were detected as being S-nitrosated in multiple mammalian cells under a variety of conditions. Here, we investigated the kinetics of Prx1 S-nitrosation by nitrosoglutathione (GSNO), a recognized biological nitrosating agent, and by the dinitrosyl-iron complex of glutathione (DNIC-GS; [Fe(NO)2(GS)2]−), a hypothetical nitrosating agent. Kinetics studies following the intrinsic fluorescence of Prx1 and its mutants (C83SC173S and C52S) were complemented by product analysis; all experiments were performed at pH 7.4 and 25 ℃. The results show GSNO-mediated nitrosation of Prx1 peroxidatic residue (k+NOCys52 = 15.4 ± 0.4 M−1. s−1) and of Prx1 Cys83 residue (k+NOCys83 = 1.7 ± 0.4 M−1. s−1). The reaction of nitrosated Prx1 with GSH was also monitored and provided a second-order rate constant for Prx1Cys52NO denitrosation of k−NOCys52 = 14.4 ± 0.3 M−1. s−1. In contrast, the reaction of DNIC-GS with Prx1 did not nitrosate the enzyme but formed DNIC-Prx1 complexes. The peroxidatic Prx1 Cys was identified as the residue that more rapidly replaces the GS ligand from DNIC-GS (kDNICCys52 = 7.0 ± 0.4 M−1. s−1) to produce DNIC-Prx1 ([Fe(NO)2(GS)(Cys52-Prx1)]−). Altogether, the data showed that in addition to S-nitrosation, the Prx1 peroxidatic residue can replace the GS ligand from DNIC-GS, forming stable DNIC-Prx1, and both modifications disrupt important redox switches.
Collapse
Affiliation(s)
- Daniela R. Truzzi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil;
- Correspondence:
| | - Simone V. Alves
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil; (S.V.A.); (L.E.S.N.)
| | - Luis E. S. Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil; (S.V.A.); (L.E.S.N.)
| | - Ohara Augusto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| |
Collapse
|
5
|
Montioli R, Battini R, Paiardini A, Tolve M, Bertoldi M, Carducci C, Leuzzi V, Borri Voltattorni C. A novel compound heterozygous genotype associated with aromatic amino acid decarboxylase deficiency: Clinical aspects and biochemical studies. Mol Genet Metab 2019; 127:132-137. [PMID: 31104889 DOI: 10.1016/j.ymgme.2019.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 11/25/2022]
Abstract
Aromatic amino acid decarboxylase (AADC) deficiency is a rare autosomal neurometabolic disorder caused by a deficit of AADC, a pyridoxal 5'-phosphate (PLP)-dependent enzyme, which catalyzes the synthesis of dopamine and serotonin. While many studies have highlighted the molecular defects of the homozygous pathogenic variants, so far only a study investigated heterozygous variants at protein level. Here, we report a clinical case of one AADC deficiency compound heterozygous patient bearing the A91V mutation and the novel C410G mutation. To elucidate its enzymatic phenotype, the A91V and C410G homodimers were first expressed in Escherichia coli, purified and characterized. Although both apo variants display an unaltered overall tertiary structure, they show a ̴ 20-fold decreased PLP binding affinity. The C410G mutation only causes a ̴ 4-fold decrease of the catalytic efficiency, while the A91V mutation causes a 1300-fold decrease of the kcat/Km, and changes in the holoAADC consisting in a marked alteration of the tertiary structure and the coenzyme microenvironment. Structural analyses of these mutations are in agreement with these data. Unfortunately, the C410G/A91V heterodimer was constructed, expressed and purified in rather modest amount. Anyway, measurements of decarboxylase activity indicate that its putative kcat value is lower than that predicted by averaging the kcat values of the two parental enzymes. This indicates a negative interallelic complementation between the C410G and A91V monomers. Overall, this study allowed to relate the clinical to the enzymatic phenotype of the patient and to extend knowledge in the clinical and molecular pathogenesis of AADC deficiency.
Collapse
Affiliation(s)
- Riccardo Montioli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Roberta Battini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Roma "La Sapienza", Roma, Italy
| | - Manuela Tolve
- Department of Experimental Medicine, University of Roma "La Sapienza", Roma, Italy; Clinical Pathology Unit, PoliclinicoUmberto 1, Roma, Italy
| | - Mariarita Bertoldi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carla Carducci
- Department of Experimental Medicine, University of Roma "La Sapienza", Roma, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, University of Roma "La Sapienza", Roma, Italy.
| | - Carla Borri Voltattorni
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
6
|
Abstract
This article defines protein stability, emphasizes its importance and surveys the field of protein stabilization, with summary reference to a selection of 2009-2015 publications. One can enhance stability by, in particular, protein engineering strategies and by chemical modification (including conjugation) in solution. General protocols are set out on how to measure a given protein's (1) kinetic thermal stability, and (2) oxidative stability, and (3) how to undertake chemical modification of a protein in solution.
Collapse
Affiliation(s)
- Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
7
|
Koniev O, Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 2015; 44:5495-551. [PMID: 26000775 DOI: 10.1039/c5cs00048c] [Citation(s) in RCA: 411] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation methodologies have proven to play a central enabling role in the recent development of biotherapeutics and chemical biology approaches. Recent endeavours in these fields shed light on unprecedented chemical challenges to attain bioselectivity, biocompatibility, and biostability required by modern applications. In this review the current developments in various techniques of selective bond forming reactions of proteins and peptides were highlighted. The utility of each endogenous amino acid-selective conjugation methodology in the fields of biology and protein science has been surveyed with emphasis on the most relevant among reported transformations; selectivity and practical use have been discussed.
Collapse
Affiliation(s)
- Oleksandr Koniev
- Laboratory of Functional Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | | |
Collapse
|
8
|
Encephalomyocarditis virus Leader protein hinge domain is responsible for interactions with Ran GTPase. Virology 2013; 443:177-85. [PMID: 23711384 DOI: 10.1016/j.virol.2013.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/28/2013] [Accepted: 05/02/2013] [Indexed: 11/21/2022]
Abstract
Encephalomyocarditis virus (EMCV), a Cardiovirus, initiates its polyprotein with a short 67 amino acid Leader (L) sequence. The protein acts as a unique pathogenicity factor, with anti-host activities which include the triggering of nuclear pore complex hyperphosphorylation and direct binding inhibition of the active cellular transport protein, Ran GTPase. Chemical modifications and protein mutagenesis now map the Ran binding domain to the L hinge-linker region, and in particular, to amino acids 35-40. Large deletions affecting this region were shown previously to diminish Ran binding. New point mutations, especially K35Q, D37A and W40A, preserve the intact L structure, abolish Ran binding and are deficient for nucleoporin (Nup) hyperphosphorylation. Ran itself morphs through multiple configurations, but reacts most effectively with L when in the GDP format, preferably with an empty nucleotide binding pocket. Therefore, L:Ran binding, mediated by the linker-hinge, is a required step in L-induced nuclear transport inhibition.
Collapse
|
9
|
Daidone F, Montioli R, Paiardini A, Cellini B, Macchiarulo A, Giardina G, Bossa F, Borri Voltattorni C. Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors. PLoS One 2012; 7:e31610. [PMID: 22384042 PMCID: PMC3285636 DOI: 10.1371/journal.pone.0031610] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 01/16/2012] [Indexed: 11/19/2022] Open
Abstract
Dopa decarboxylase (DDC), a pyridoxal 5'-phosphate (PLP) enzyme responsible for the biosynthesis of dopamine and serotonin, is involved in Parkinson's disease (PD). PD is a neurodegenerative disease mainly due to a progressive loss of dopamine-producing cells in the midbrain. Co-administration of L-Dopa with peripheral DDC inhibitors (carbidopa or benserazide) is the most effective symptomatic treatment for PD. Although carbidopa and trihydroxybenzylhydrazine (the in vivo hydrolysis product of benserazide) are both powerful irreversible DDC inhibitors, they are not selective because they irreversibly bind to free PLP and PLP-enzymes, thus inducing diverse side effects. Therefore, the main goals of this study were (a) to use virtual screening to identify potential human DDC inhibitors and (b) to evaluate the reliability of our virtual-screening (VS) protocol by experimentally testing the "in vitro" activity of selected molecules. Starting from the crystal structure of the DDC-carbidopa complex, a new VS protocol, integrating pharmacophore searches and molecular docking, was developed. Analysis of 15 selected compounds, obtained by filtering the public ZINC database, yielded two molecules that bind to the active site of human DDC and behave as competitive inhibitors with K(i) values ≥10 µM. By performing in silico similarity search on the latter compounds followed by a substructure search using the core of the most active compound we identified several competitive inhibitors of human DDC with K(i) values in the low micromolar range, unable to bind free PLP, and predicted to not cross the blood-brain barrier. The most potent inhibitor with a K(i) value of 500 nM represents a new lead compound, targeting human DDC, that may be the basis for lead optimization in the development of new DDC inhibitors. To our knowledge, a similar approach has not been reported yet in the field of DDC inhibitors discovery.
Collapse
Affiliation(s)
- Frederick Daidone
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| | - Riccardo Montioli
- Department of Life Sciences and Reproduction, University of Verona, Verona, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| | - Barbara Cellini
- Department of Life Sciences and Reproduction, University of Verona, Verona, Italy
| | - Antonio Macchiarulo
- Department of Chemistry and Drug Technology, University of Perugia, Perugia, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| | - Francesco Bossa
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| | | |
Collapse
|
10
|
Montioli R, Cellini B, Borri Voltattorni C. Molecular insights into the pathogenicity of variants associated with the aromatic amino acid decarboxylase deficiency. J Inherit Metab Dis 2011; 34:1213-24. [PMID: 21541720 DOI: 10.1007/s10545-011-9340-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/21/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
Abstract
Dopa decarboxylase (DDC or AADC) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the decarboxylation of L-aromatic amino acids into the corresponding aromatic amines. AADC deficiency is an inborn error of neurotransmitters biosynthesis with an autosomal recessive inheritance. About 30 pathogenic mutations have been identified, but the enzymatic phenotypes causing AADC deficiency are unknown, and the therapeutic management is challenging. Here, we report biochemical and bioinformatic analyses of the human wild-type DDC and the pathogenic variants G102S, F309L, S147R and A275T whose mutations concern amino acid residues at or near the active site. We found that the mutations cause, even if to different extents, a decreased PLP binding affinity (in the range 1.4-170-fold), an altered state of the bound coenzyme and of its microenvironment, and a reduced catalytic efficiency (in the range 17-930-fold). Moreover, as compared to wild-type, the external aldimines formed by the variants with L-aromatic amino acids exhibit different spectroscopic features, do not protect against limited proteolysis, and lead to the formation, in addition to aromatic amines, of cyclic-substrate adducts. This suggests that these external Schiff bases are not properly oriented and anchored, i.e., in a conformation not completely productive for decarboxylation. The external aldimines that the variants form with D-Dopa also appear not to be correctly located at their active site, as suggested by the rate constants of PLP-L-Dopa adduct production higher than that of the wild-type. The possible therapeutic implications of the data are discussed in the light of the molecular defects of the pathogenic variants.
Collapse
Affiliation(s)
- Riccardo Montioli
- Dipartimento di Scienze della Vita e della Riproduzione, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134, Verona, Italy
| | | | | |
Collapse
|
11
|
Abstract
This article defines protein stability, emphasizes its importance and surveys some notable recent publications (2004-2008) in the field of protein stability/stabilization. Knowledge of the factors stabilizing proteins has emerged from denaturation studies and from study of thermophilic (and other extremophilic) proteins. One can enhance stability by protein engineering strategies, the judicious use of solutes and additives, immobilization, and chemical modification in solution. General protocols are set out on how to measure the kinetic thermal stability of a given protein and how to undertake chemical modification of a protein in solution.
Collapse
Affiliation(s)
- Ciarán O'Fágáin
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland.
| |
Collapse
|
12
|
Jiang W, Han Y, Pan Q, Shen T, Liu C. Roles of exogenous divalent metals in the nucleolytic activity of Cu,Zn superoxide dismutase. J Inorg Biochem 2007; 101:667-77. [PMID: 17292965 DOI: 10.1016/j.jinorgbio.2006.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/25/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
It is well known that the wild type Cu,Zn superoxide dismutase (holo SOD) catalyzes the conversion of superoxide anion to peroxide hydrogen and dioxygen. However, a new function of holo SOD, i.e., nucleolytic activity has been found [W. Jiang, T. Shen, Y. Han, Q. Pan, C. Liu, J. Biol. Inorg. Chem. 11 (2006) 835-848], which is linked to the incorporation of exogenous divalent metals into the enzyme-DNA complex. In this study, the roles of exogenous divalent metals in the nucleolytic activity were explored in detail by a series of biochemical experiments. Based on a non-equivalent multi-site binding model, affinity of a divalent metal for the enzyme-DNA complex was determined by absorption titration, indicating that the complex can provide at least a high and a low affinity site for the metal ion. These mean that the holo SOD may use a "two exogenous metal ion pathway" as a mechanism in which both metal ions are directly involved in the catalytic process of DNA cleavage. In addition, the pH versus DNA cleavage rate profiles can be fitted to two ionizing-group models, indicating the presence of a general acid and a general base in catalysis. A model that requires histidine residues, metal-bound water molecules and two hydrated metal ions to operate in concert could be used to interpret the catalysis of DNA hydrolysis, supported by the dependences of loss of the nucleolytic activity on time and on the concentration of the specific chemical modifier to the histidine residues on the enzyme.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | |
Collapse
|
13
|
Kumar S, Sharma NS, Saharan MR, Singh R. Extracellular acid protease from Rhizopus oryzae: purification and characterization. Process Biochem 2005. [DOI: 10.1016/j.procbio.2004.06.047] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Facchini PJ, Huber-Allanach KL, Tari LW. Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. PHYTOCHEMISTRY 2000; 54:121-38. [PMID: 10872203 DOI: 10.1016/s0031-9422(00)00050-9] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A comprehensive survey of the extensive literature relevant to the evolution, physiology, biochemistry, regulation, and genetic engineering applications of plant aromatic L-amino acid decarboxylases (AADCs) is presented. AADCs catalyze the pyridoxal-5'-phosphate (PLP)-dependent decarboxylation of select aromatic L-amino acids in plants, mammals, and insects. Two plant AADCs, L-tryptophan decarboxylase (TDC) and L-tyrosine decarboxylase (TYDC), have attracted considerable attention because of their role in the biosynthesis of pharmaceutically important monoterpenoid indole alkaloids and benzylisoquinoline alkaloids, respectively. Although plant and animal AADCs share extensive amino acid homology, the enzymes display striking differences in their substrate specificities. AADCs from mammals and insects accept a broad range of aromatic L-amino acids, whereas TDC and TYDC from plants exhibit exclusive substrate specificity for L-amino acids with either indole or phenol side chains, but not both. Recent biochemical and kinetic studies on animal AADCs support basic features of the classic AADC reaction mechanism. The catalytic mechanism involves the formation of a Schiff base between PLP and an invariable lysine residue, followed by a transaldimination reaction with an aromatic L-amino acid substrate. Both TDC and TYDC are primarily regulated at the transcriptional level by developmental and environmental factors. However, the putative post-translational regulation of TDC via the ubiquitin pathway, by an ATP-dependent proteolytic process, has also been suggested. Isolated TDC and TYDC genes have been used to genetically alter the regulation of secondary metabolic pathways derived from aromatic amino acids in several plant species. The metabolic modifications include increased serotonin levels, reduced indole glucosinolate levels, redirected shikimate metabolism, increased indole alkaloid levels, and increased cell wall-bound tyramine levels.
Collapse
Affiliation(s)
- P J Facchini
- Department of Biological Sciences, University of Calgary, Alta., Canada.
| | | | | |
Collapse
|
15
|
Poupon A, Jebai F, Labesse G, Gros F, Thibault J, Mornon JP, Krieger M. Structure modelling and site-directed mutagenesis of the rat aromatic L-amino acid pyridoxal 5'-phosphate-dependent decarboxylase: a functional study. Proteins 1999; 37:191-203. [PMID: 10584065 DOI: 10.1002/(sici)1097-0134(19991101)37:2<191::aid-prot5>3.0.co;2-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pyridoxal-5'-phosphate-dependent enzymes (B6 enzymes) are grouped into three main families named alpha, beta, and gamma. Proteins in the alpha and gamma families share the same fold and might be distantly related, while those in the beta family exhibit specific structural features. The rat aromatic L-amino acid decarboxylase (AADC; EC(4.1.1.28)) catalyzes the synthesis of two important neurotransmitters: dopamine and serotonin. It binds the cofactor pyridoxal-5'-phosphate and belongs to the alpha family. Despite the low level of sequence identity (approximately 10%) shared by the rat AADC and the sequences of the enzymes belonging to the B6 enzymes family, including the known three-dimensional structures, a multiple sequence alignment was deduced. A model was built using segments belonging to seven of the eleven known structures. By homology, and based on knowledge of the biochemistry of the aspartate aminotransferase, structurally and functionally important residues were identified in the rat AADC. Site-directed mutagenesis of the conserved residues D271, T246, and C311 was carried out in order to confirm our predictions and highlight their functional role. Mutation of D271A and D271N resulted in complete loss of enzyme activity, while the D271E mutant exhibited 2% of the wild-type activity. Substitution of T246A resulted in 5% of the wild-type activity while the C311A mutant conserved 42% of the wild-type activity. A functional model of the AADC is discussed in view of the structural model and the complementary mutagenesis and labelling studies.
Collapse
Affiliation(s)
- A Poupon
- Laboratoire de Minéralogie-Cristallographie, CNRS, Université, Paris VI, France.
| | | | | | | | | | | | | |
Collapse
|
16
|
Dominici P, Moore PS, Castellani S, Bertoldi M, Voltattorni CB. Mutation of cysteine 111 in Dopa decarboxylase leads to active site perturbation. Protein Sci 1997; 6:2007-15. [PMID: 9300500 PMCID: PMC2143786 DOI: 10.1002/pro.5560060921] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cysteine 111 in Dopa decarboxylase (DDC) has been replaced by alanine or serine by site-directed mutagenesis. Compared to the wild-type enzyme, the resultant C111A and C111S mutant enzymes exhibit Kcat values of about 50% and 15%, respectively, at pH 6.8, while the K(m) values remain relatively unaltered for L-3,4-dihydroxyphenylalanine (L-Dopa) and L-5-hydroxytryptophan (L-5-HTP). While a significant decrease of the 280 nm optically active band present in the wild type is observed in mutant DDCs, their visible co-enzyme absorption and CD spectra are similar to those of the wild type. With respect to the wild type, the Cys-111-->Ala mutant displays a reduced affinity for pyridoxal 5'-phosphate (PLP), slower kinetics of reconstitution to holoenzyme, a decreased ability to anchor the external aldimine formed between D-Dopa and the bound co-enzyme, and a decreased efficiency of energy transfer between tryptophan residue(s) and reduced PLP. Values of pKa and pKb for the groups involved in catalysis were determined for the wild-type and the C111A mutant enzymes. The mutant showed a decrease in both pK values by about 1 pH unit, resulting in a shift of the pH of the maximum velocity from 7.2 (wild-type) to 6.2 (mutant). This change in maximum velocity is mirrored by a similar shift in the spectrophotometrically determined pK value of the 420-->390 nm transition of the external aldimine. These results demonstrate that the sulfhydryl group of Cys-111 is catalytically nonessential and provide strong support for previous suggestion that this residue is located at or near the PLP binding site (Dominici P, Maras B, Mei G, Borri Voltattorni C. 1991. Eur J Biochem 201:393-397). Moreover, our findings provide evidence that Cys-111 has a structural role in PLP binding and suggest that this residue is required for maintenance of proper active-site conformation.
Collapse
Affiliation(s)
- P Dominici
- Facoltà di Scienze Matematiche, Fisiche e Naturali, Università di Verona, Italy
| | | | | | | | | |
Collapse
|
17
|
Rapala-Kozik M, Kozik A. Mechanism of ligand-protein interaction in plant seed thiamine-binding proteins. Preliminary chemical identification of amino acid residues essential for thiamine binding to the buckwheat-seed protein. Biochimie 1996; 78:77-84. [PMID: 8818213 DOI: 10.1016/0300-9084(96)82636-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Thiamine-binding protein, isolated from buckwheat seeds, was chemically modified in an attempt to identify amino acid residues involved in protein-thiamine interaction. No evidence was found in support of specific roles of arginine residues, sulfhydryl groups, amino groups and tyrosine residues. Under carefully controlled reaction conditions (Tris pH 5-6), the modification with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide caused a complete loss of thiamine-binding capacity. Thus, the carboxyl groups seemed to be essential for binding, possibly for ionic interaction with protein-bound thiamine cation. A selective modification of histidine residues using diethylpyrocarbonate correlated with a loss of thiamine-binding capacity; the modification and the loss of binding capacity could be reversed with hydroxylamine; some ligand-protection against modification was observed. From Tsou analysis of diethylpyrocarbonate modification and resulting loss of thiamine-binding it was suggested that 1-2 of 20 histidine residues of the protein were essential for thiamine binding. The essential histidine(s) might be present in the binding site and possibly were involved in hydrogen bonding(s) with protein-bound thiamine molecule.
Collapse
Affiliation(s)
- M Rapala-Kozik
- Jan Zurzycki Institute of Molecular Biology, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
18
|
Huang Y, Dennis DT. Histidine residues 139, 363 and 500 are essential for catalytic activity of cofactor-independent phosphoglyceromutase from developing endosperm of the castor plant. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 229:395-402. [PMID: 7744062 DOI: 10.1111/j.1432-1033.1995.tb20480.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cofactor-independent phosphoglyceromutase (PGM) from castor is inactivated by diethyl pyrocarbonate, implicating histidine residues in the catalytic mechanism. Treatment of the inhibited enzyme with 1 M hydroxylamine at pH 7.0 restores the enzyme activity. Spectroscopic data indicate that the inactivation of PGM with diethyl pyrocarbonate is the result of formation of carbethoxyhistidine derivatives. The substrate, 3-phosphoglycerate, substantially protects the enzyme against diethyl pyrocarbonate inactivation, indicating that the histidine residues important in catalysis are at or near the active site of the enzyme. There are 12 conserved histidine residues in all plant PGMs that have been sequenced. In the castor PGM, these conserved histidine residues were changed to either valine (H12V) or alanine (H41A, H65A, H84A, H127A, H139A, H163A, H363A H433A, H471A, H500A and H540A) by in vitro mutagenesis. Expression of these mutant proteins in Escherichia coli produced seven soluble mutant proteins (mutations H41A, H65A, H84A, H139A, H363A, H500A and H540A) and five insoluble mutant proteins (mutations H12V, H127A, H163A, H433A and H471A). Among the seven soluble proteins, four possessed normal PGM activity (mutations H41A, H65A, H84A and H540A) and three (mutations H139A, H363A and H500A) had no catalytic activity. Along with the in-vitro-expressed wild-type enzyme, mutant enzymes [H139A]PGM, [H363A]PGM and [H500A]PGM were purified to homogeneity. Purified wild-type PGM expressed in E. coli was active and had a Km value very close to that of the enzyme purified from castor endosperm, while the three mutant enzymes remained inactive throughout purification. Therefore, histidine residues 139, 363 and 500 appear to be essential for the catalytic activity of the cofactor-independent enzyme, and may be located at the active site. Hence, although the cofactor-dependent and cofactor-independent PGMs have no homology in their primary amino acid sequences, both enzymes appear to utilize histidine residues to mediate the transfers of proton and phospho groups in the reaction, and thus may be functionally and mechanistically convergent.
Collapse
Affiliation(s)
- Y Huang
- Department of Biology, Queen's University, Ontario, Canada
| | | |
Collapse
|
19
|
Gibbons DL, Horowitz PM. Exposure of hydrophobic surfaces on the chaperonin GroEL oligomer by protonation or modification of His-401. J Biol Chem 1995; 270:7335-40. [PMID: 7706275 DOI: 10.1074/jbc.270.13.7335] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hydrophobic exposure on the chaperonin GroEL is increased 6-10-fold after the protein is treated with the His-reactive reagent diethyl pyrocarbonate (DEP), or the solution pH is lowered to 5.5. The induced hydrophobic surfaces have the same 1,1'-bis(4-anilino)naphthalene-5,5'-disulfonic acid (bis-ANS) binding characteristics as unperturbed GroEL: a Kd approximately equal to 3.5 microM, a maximum intensity at approximately 500 nm, and an average fluorescence lifetime of approximately 8.0 ns. The pKa for the pH-induced transition is 6.6, most likely attributable to the only histidine in GroEL, His-401, located in the intermediate domain. The modification of one histidine residue per monomer upon DEP treatment is supported by the correlation between the change in the absorbance at 242 nm for the N-carbethoxyhistidyl derivative and the increase in bis-ANS fluorescence. GroEL at pH 5.5 is tetradecameric and can capture urea-denatured rhodanese and release it as active enzyme. The GroEL-rhodanese and release it as active enzyme. The GroEL-rhodanese complex is more stable to dissociation by 2.25 M urea than the complex formed at pH 7.8. We propose that His-401 is in a conformationally sensitive region such that protonation or modification can lead to increased exposure of hydrophobic surfaces capable of binding folding intermediates.
Collapse
Affiliation(s)
- D L Gibbons
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760, USA
| | | |
Collapse
|
20
|
Huang Z, Dostal L, Rosazza JP. Purification and characterization of a ferulic acid decarboxylase from Pseudomonas fluorescens. J Bacteriol 1994; 176:5912-8. [PMID: 7928951 PMCID: PMC196807 DOI: 10.1128/jb.176.19.5912-5918.1994] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A ferulic acid decarboxylase enzyme which catalyzes the decarboxylation of ferulic acid to 4-hydroxy-3-methoxystyrene was purified from Pseudomonas fluorescens UI 670. The enzyme requires no cofactors and contains no prosthetic groups. Gel filtration estimated an apparent molecular mass of 40.4 (+/- 6%) kDa, whereas sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a molecular mass of 20.4 kDa, indicating that ferulic acid decarboxylase is a homodimer in solution. The purified enzyme displayed an optimum temperature range of 27 to 30 degrees C, exhibited an optimum pH of 7.3 in potassium phosphate buffer, and had a Km of 7.9 mM for ferulic acid. This enzyme also decarboxylated 4-hydroxycinnamic acid but not 2- or 3-hydroxycinnamic acid, indicating that a hydroxy group para to the carboxylic acid-containing side chain is required for the enzymatic reaction. The enzyme was inactivated by Hg2+, Cu2+, p-chloromercuribenzoic acid, and N-ethylmaleimide, suggesting that sulfhydryl groups are necessary for enzyme activity. Diethyl pyrocarbonate, a histidine-specific inhibitor, did not affect enzyme activity.
Collapse
Affiliation(s)
- Z Huang
- Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
21
|
Medina MA, del Castillo-Olivares A, Márquez J, Núñez de Castro I. Involvement of essential histidine residue(s) in the activity of Ehrlich cell plasma membrane NADH-ferricyanide oxidoreductase. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1190:20-4. [PMID: 8110817 DOI: 10.1016/0005-2736(94)90030-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The existence of histidine residue(s) implicated in the active site of NADH-ferricyanide oxidoreductase in plasma membrane vesicles isolated from Ehrlich ascites tumour cells is investigated. The shape of the pH-dependence curve of the enzyme activity suggests that one or more histidine residues are located at (or near) the active site of the enzyme. This hypothesis is supported by the following experimental data: the loss of activity after treatment with diethyl pyrocarbonate (DEPC) or photooxidation by using Rose bengal, and the strong inhibition caused by Zn2+ ions at micromolar concentrations. The combined arguments support the statement that histidine plays an essential role in the catalytic activity of NADH-ferricyanide oxidoreductase from Ehrlich ascites tumour cells.
Collapse
Affiliation(s)
- M A Medina
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Málaga, Spain
| | | | | | | |
Collapse
|
22
|
Shen B, Hutchinson CR. Tetracenomycin F1 monooxygenase: oxidation of a naphthacenone to a naphthacenequinone in the biosynthesis of tetracenomycin C in Streptomyces glaucescens. Biochemistry 1993; 32:6656-63. [PMID: 8329392 DOI: 10.1021/bi00077a019] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tetracenomycin (Tcm) F1 monooxygenase, which catalyzes the oxidation of the naphthacenone Tcm F1 to the 5,12-naphthacenequinone Tcm D3 in the biosynthesis of the anthracycline antibiotic Tcm C in Streptomyces glaucescens, has been purified to homogeneity and characterized. Gel filtration chromatography yields a molecular weight of 37,500 whereas SDS-PAGE gives a single band with a molecular weight of 12,500, indicating that the Tcm F1 monooxygenase is a homotrimer in solution. The N-terminal sequence of the enzyme establishes that it is encoded by the tcmH gene. The monooxygenase displays an optimal pH of 7.5 and has a Km of 7.47 +/- 0.67 microM and Vmax of 473 +/- 10 nmol.min-1.mg-1. Formally, the Tcm F1 monooxygenase can be classified as an internal monooxygenase that requires only O2 for the enzymatic oxidation. Yet, it apparently does not possess any of the prosthetic groups of known monooxygenases, such as flavin or heme groups, nor does it utilize metal ions. It is inactivated by p-chloromercuribenzoic acid, N-ethylmaleimide, and diethyl pyrocarbonate, suggesting that sulfhydryl groups and histidine residues are essential for the enzyme activity.
Collapse
Affiliation(s)
- B Shen
- School of Pharmacy, University of Wisconsin, Madison 53706
| | | |
Collapse
|
23
|
Malashkevich VN, Filipponi P, Sauder U, Dominici P, Jansonius JN, Borri Voltattorni C. Crystallization and preliminary X-ray analysis of pig kidney DOPA decarboxylase. J Mol Biol 1992; 224:1167-70. [PMID: 1569572 DOI: 10.1016/0022-2836(92)90477-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DOPA decarboxylase from pig kidney, an alpha 2 dimeric enzyme of Mr = 107,000, has been crystallized by the vapour diffusion method with ammonium sulphate as precipitant. The crystals belong to the space group P6(2) (or its enantiomer P6(4)) and have unit cell dimensions of a = b = 155.9 A, c = 87.7 A, alpha = beta = 90 degrees, gamma = 120 degrees. They diffract to 2.6 A resolution. There is one dimeric molecule per asymmetric unit. Rotation function studies have revealed the orientation of the non-crystallographic 2-fold axis of the dimer in the asymmetric unit.
Collapse
Affiliation(s)
- V N Malashkevich
- Department of Structural Biology, Biocentre, University of Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Smith DM, Thomas NR, Gani D. A comparison of pyridoxal 5'-phosphate dependent decarboxylase and transaminase enzymes at a molecular level. EXPERIENTIA 1991; 47:1104-18. [PMID: 1765122 DOI: 10.1007/bf01918374] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pyridoxal 5'-phosphate is a coenzyme for a number of enzymes which catalyse reactions at C alpha of amino acid substrates including transaminases, decarboxylases and serine hydroxymethyltransferase. Using the X-ray coordinates for a transaminase, aspartate aminotransferase, and the results of stereochemical and mechanistic studies for decarboxylases and serine hydroxymethyltransferase, an active-site structure for the decarboxylase group is constructed. The structure of the active-site is further refined through active-site pyridoxyllysine peptide sequence comparison and a 3-D catalytic mechanism for the L-alpha-amino acid decarboxylases is proposed. The chemistry of serine hydroxymethyltransferase is re-examined in the light of the proposed decarboxylase mechanism.
Collapse
Affiliation(s)
- D M Smith
- Department of Chemistry, University, St. Andrews, Fife, Scotland
| | | | | |
Collapse
|
25
|
Dominici P, Maras B, Mei G, Borri Voltattorni C. Affinity labeling of pig kidney 3,4-dihydroxyphenylalanine (Dopa) decarboxylase with N-(bromoacetyl)pyridoxamine 5'-phosphate. Modification of an active-site cysteine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 201:393-7. [PMID: 1935936 DOI: 10.1111/j.1432-1033.1991.tb16296.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pig kidney 3,4-dihydroxyphenylalanine (Dopa) decarboxylase is inactivated by N-(bromoacetyl)pyridoxamine 5'-phosphate (BAPMP) in a reaction which follows first-order kinetics at pH 7.5 and 25 degrees C. The concentration dependence of inactivation reveals saturation kinetics with an apparent Ki of 0.16 mM and kinact of 0.086 min-1 at saturating inhibitor concentration. Enzyme can be protected from inactivation by pyridoxal 5'-phosphate. Inactivation of enzyme by [14C]BAPMP proceeds with the incorporation of a stoichiometric amount of labeled inhibitor. Proteolytic digestions of the radioactively labeled enzyme followed by high-performance liquid chromatography allow the isolation of the modified peptide corresponding to the sequence Ala-Ala-Ser-Pro-Ala-Cys-Thr-Glu-Leu in which cysteine (Cys111) is the modified residue. The conservation of this residue and also of an extended region around it in all Dopa decarboxylases so far sequenced is underlined. The overall conclusion of these findings is that Cys111 may be at, or near, the pyridoxal-5'-phosphate binding site of pig kidney Dopa decarboxylase and plays a critical role in the catalytic function of the enzyme. Furthermore, fluorescence studies of BAPMP-modified apoenzyme provide useful information on the microenvironment of the affinity label at its binding site.
Collapse
Affiliation(s)
- P Dominici
- Dipartimento di Medicina Sperimentale, Università di Perugia, Italy
| | | | | | | |
Collapse
|
26
|
Gani D. A structural and mechanistic comparison of pyridoxal 5'-phosphate dependent decarboxylase and transaminase enzymes. Philos Trans R Soc Lond B Biol Sci 1991; 332:131-9. [PMID: 1678532 DOI: 10.1098/rstb.1991.0041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stereochemical studies of three pyridoxal phosphate dependent decarboxylases and serine hydroxymethyltransferase have allowed the dispositions of conjugate acids that operate at the C alpha and C-4' positions of intermediate quinoids to be determined. Kinetic work with the decarboxylase group has determined that two different acids are involved, a monoprotic acid and a polyprotic acid. The use of solvent kinetic isotope effects allowed the resolution of chemical steps in the reaction coordinate profile for decarboxylation and abortive transamination and pH-sensitivities gave the molecular pKa of the monoprotic base. Thus the epsilon-ammonium group of the internal aldimine-forming lysine residue operates at C-4'-si-face of the coenzyme and the imidazolium side chain of an active site histidine residue protonates at C alpha from the 4'-si-face. Histidine serves two other functions, as a base in generating nitrogen nucleophiles during both transaldimination processes and as a binding group for the alpha-carboxyl group of substrates. The latter role for histidine was determined by comparison of the sequences for decarboxylase active site tetrapeptides (e.g. -S-X-H-K-) with that for aspartate aminotransferase (e.g. -S-X-A-K-) where it was known, from X-ray studies, that the serine and lysine residues interact with the coenzyme. By using the Dunathan Postulate, the conformation of the external aldimine was modified, and without changing the tetrapeptide conformation, the alanine residue was altered to a histidine. This model for the active site of a pyridoxal dependent decarboxylase was consistent with all available stereochemical and mechanistic data.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D Gani
- Chemistry Department, The University, St Andrews, Fife, U.K
| |
Collapse
|
27
|
Jay D, Zamorano R, Muñoz E, Gleason R, Boldu JL. Study of the interaction of cadmium with membrane-bound succinate dehydrogenase. J Bioenerg Biomembr 1991; 23:381-9. [PMID: 2050657 DOI: 10.1007/bf00762229] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cadmium ions inhibit membrane-bound succinate dehydrogenase with a second-order rate constant of 10.42 mM-1 s-1 at pH 7.35 and 25 degrees C. Succinate and malonate protect the enzyme against cadmium ion inhibition. The protection pattern exerted by succinate and malonate suggests that the group modified by cadmium is located at the active site. The pH curve of inactivation by Cd2+ indicates the involvement of an amino acid residue with pKa of 7.23.
Collapse
Affiliation(s)
- D Jay
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México, D.F., Mexico
| | | | | | | | | |
Collapse
|
28
|
Abstract
The maintenance or stabilization of protein or enzyme function is of vital importance in Biotechnology. Investigations of thermophilic organisms, studies of denaturation and the use of enzymes in organic solvents have each contributed to an understanding of protein stability. Enzymes can reliably and reproducibly be stabilized by variety of means including immobilization, use of additives, chemical modification in solution and protein engineering. Examples of each of these are discussed. With these recent advances it appears that a rational strategy for achieving a particular stabilized enzyme or protein may be within reach.
Collapse
Affiliation(s)
- C O Fágáin
- School of Biological Sciences, Dublin City University, Dublin 9, Ireland
| | | |
Collapse
|
29
|
Dominici P, Filipponi P, Schininà ME, Barra D, Borri Voltattorni C. Pig kidney dopa decarboxylase. Structure and function. Ann N Y Acad Sci 1990; 585:162-72. [PMID: 2162642 DOI: 10.1111/j.1749-6632.1990.tb28051.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- P Dominici
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | | | | | | | | |
Collapse
|
30
|
Panara F, Pasqualini S, Antonielli M. Multiple forms of barley root acid phosphatase: purification and some characteristics of the major cytoplasmic isoenzyme. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1037:73-80. [PMID: 2294973 DOI: 10.1016/0167-4838(90)90103-m] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The major acid phosphatase form (orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2) was purified from the soluble extract of barley roots. The enzyme is homogeneous on polyacrylamide gel electrophoresis and moves as a single band of Mr approximately 38,000 in the presence of sodium dodecyl sulphate. The molecular weight of the native enzyme was Mr 77,600 and 79,000 as determined, respectively, by gel filtration on a Sephadex G-100 column and by density gradient ultracentrifugation. The isoelectric point was about 6.28. The enzyme is competitively inhibited by molybdate (Ki = 9 x 10(-7) M). NaF, Ag(+), Hg(2+), Pb(2+) and Zn(2+) are also inhibitors, while other cations showed no effect. The enzyme hydrolyzes a wide variety of natural and synthetic phosphate esters. In particular, the enzyme seems to be active on ATP, o-phosphotyrosine, o-phosphoserine and glucose 1-phosphate. The pH dependence studies between pH 4-8 using p-nitrophenylphosphate as substrate and diethylpyrocarbonate inactivation indicate the presence of essential histidine residue at the active site.
Collapse
Affiliation(s)
- F Panara
- Istituto de Biologia Cellulara, Università di Perugia, Italy
| | | | | |
Collapse
|
31
|
Abstract
Histidine-21 is the sole histidine present in the A chain of diphtheria toxin and recent evidence suggests that it is involved in NAD+ binding. Fluorimetric assays of NAD+ binding and diethylpyrocarbonate modification performed at different pH values provide further insights on the role of this residue and indicate that its pKa value is 6.3. Conformational changes of subunit A of diphtheria toxin have been detected by analysis of tryptophan fluorescence in the pH 2.5-4 and pH 9-10.5 ranges. This indicates that histidine-21 is unlikely to be involved in the low pH-driven conformational change of diphtheria toxin.
Collapse
|
32
|
Dominici P, Simmaco M, Tancini B, Barra D, Borri Voltattorni C. Pig kidney dopa decarboxylase: inactivation by iodoacetamide and sequence of the carboxyamidomethylcysteine-containing peptide. JOURNAL OF ENZYME INHIBITION 1989; 3:67-76. [PMID: 2487323 DOI: 10.3109/14756368909030365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pig kidney 3,4-dihydroxyphenylalanine (Dopa) decarboxylase is inactivated by iodoacetamide following pseudo-first order reaction kinetics. The apparent first order rate constant for inactivation is proportional to the concentration of iodoacetamide and a second order rate constant of 37 M-1 min-1 is obtained at pH 6.8 and 25 degrees C. Cyanogen bromide fragmentation of iodo(1-14C)acetamide - modified inactivated Dopa decarboxylase followed by trypsin digestion yields a single radioactive peptide. Automated Edman degradation reveals a heptapeptide sequence which contains labeled carboxyamidomethylcysteine. This finding and the results of the incorporation of the label from ido (1-14C)acetamide into the enzyme clearly indicate that the modification of 1 mol of SH per mol of enzyme dimer is responsible for the inactivation process. The labeled peptide, which was located by means of limited proteolysis on the fragment corresponding to the COOH-terminal third of the enzyme, has been aligned with a 7 amino acid stretch of Drosophila enzyme. Although this region appears highly conserved in the Dopa decarboxylase enzymes, the cysteinyl residue is not conserved. This observation together with the spectral binding properties of the iodoacetamide inactivated enzyme argue against a functional role for the modifiable cysteine in the mechanism of action of pig kidney enzyme. It is suggested that the loss of pig kidney decarboxylase activity produced by iodoacetamide modification might be attributable to steric hindrance. This could be due to the presence of the bulky acetamidic group on a cysteine residue at, or near, the active center or in a site of strategic importance to the maintenance of the active site topography.
Collapse
Affiliation(s)
- P Dominici
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | | | | | | | | |
Collapse
|
33
|
Kim YS, Park C. Inactivation of Acinetobacter calcoaceticus acetate kinase by diethylpyrocarbonate. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 956:103-9. [PMID: 2844264 DOI: 10.1016/0167-4838(88)90255-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acetate kinase purified from Acinetobacter calcoaceticus was inhibited by diethylpyrocarbonate with a second-order rate constant of 620 M-1.min-1 at pH 7.4 at 30 degrees C and showed a concomitant increase in absorbance at 240 nm due to the formation of N-carbethoxyhistidyl derivative. Activity could be restored by hydroxylamine and the pH curve of inactivation indicates the involvement of a residue with a pKa of 6.64. Complete inactivation of acetate kinase required the modification of seven residues per molecule of enzyme. Statistical analysis showed that among the seven modifiable residues, only one is essential for activity. 5,5'-dithiobis(2-nitrobenzoic acid), p-chloromercuryphenylsulfonate, N-ethylmaleimide and phenylglyoxal did not affect the enzyme activity. These results suggest that the inactivation is due to the modification of one histidine residue. The substrates, acetate and ATP, protected the enzyme against inactivation, indicating that the modified histidine residue is located at or near the active site.
Collapse
Affiliation(s)
- Y S Kim
- Department of Biochemistry, College of Science, Yonsei University, Seoul, Korea
| | | |
Collapse
|
34
|
Tancini B, Dominici P, Simmaco M, Schininà ME, Barra D, Voltattorni CB. Limited tryptic proteolysis of pig kidney 3,4-dihydroxyphenylalanine decarboxylase. Arch Biochem Biophys 1988; 260:569-76. [PMID: 3124758 DOI: 10.1016/0003-9861(88)90483-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pig kidney 3,4-dihydroxyphenylalanine (Dopa) decarboxylase can be nicked by trypsin with complete loss of its catalytic activity. The original dimer of subunit molecular weight of about 52,000 yields fragments of Mr 38,000 and 14,000, as seen on sodium dodecyl sulfate-gel electrophoresis. Though inactive, the nicked protein retains its native molecular weight and its capacity to bind pyridoxal-5'-phosphate (pyridoxal-P), is recognized by an antiserum raised against the native enzyme, and forms Schiff's base intermediates with aromatic amino acids in L and D forms. Thus, the nicked protein appears to be in a conformation--closely resembling that of the original enzyme--which consists of a tight association of the two tryptic fragments. Dissociation and separation of the two fragments can be achieved under denaturing conditions on a reverse-phase HPLC column. The pyridoxal-P binding site is located on the larger fragment. No NH2-terminal residue is detected in either the intact enzyme or the larger fragment, whereas analysis of the smaller fragment yields a sequence of the first 50 amino acid residues. These data indicate that the smaller fragment is located at about one-third from the COOH terminus of Dopa decarboxylase, while the larger fragment constitutes the aminic portion of the molecule. The site of trypsin cleavage seems to be in a region of the enzyme particularly susceptible to proteolysis. The results of these studies contribute to a better understanding of the structural properties of pig kidney Dopa decarboxylase and may constitute an important step toward the elucidation of the enzyme's primary structure.
Collapse
Affiliation(s)
- B Tancini
- Institute of Biological Chemistry, Faculty of Pharmacy, University of Perugia, Italy
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Bame KJ, Rome LH. Acetyl-coenzyme A:alpha-glucosaminide N-acetyltransferase. Evidence for an active site histidine residue. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67500-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|