1
|
Mahran R, Vello N, Komulainen A, Malakoutikhah M, Härmä H, Kopra K. Isothermal chemical denaturation assay for monitoring protein stability and inhibitor interactions. Sci Rep 2023; 13:20066. [PMID: 37973851 PMCID: PMC10654576 DOI: 10.1038/s41598-023-46720-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Thermal shift assay (TSA) with altered temperature has been the most widely used method for monitoring protein stability for drug research. However, there is a pressing need for isothermal techniques as alternatives. This urgent demand arises from the limitations of TSA, which can sometimes provide misleading ranking of protein stability and fail to accurately reflect protein stability under physiological conditions. Although differential scanning fluorimetry has significantly improved throughput in comparison to differential scanning calorimetry and differential static light scattering throughput, all these methods exhibit moderate sensitivity. In contrast, current isothermal chemical denaturation (ICD) techniques may not offer the same throughput capabilities as TSA, but it provides more precise information about protein stability and interactions. Unfortunately, ICD also suffers from limited sensitivity, typically in micromolar range. We have developed a novel method to overcome these challenges, namely throughput and sensitivity. The novel Förster Resonance Energy Transfer (FRET)-Probe as an external probe is highly applicable to isothermal protein stability monitoring but also to conventional TSA. We have investigated ICD for multiple proteins with focus on KRASG12C with covalent inhibitors and three chemical denaturants performed at nanomolar protein concentration. Data showed corresponding inhibitor-induced stabilization of KRASG12C to those reported by nucleotide exchange assay.
Collapse
Affiliation(s)
- Randa Mahran
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland.
| | - Niklas Vello
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | - Anita Komulainen
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | | | - Harri Härmä
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | - Kari Kopra
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| |
Collapse
|
2
|
Eo Y, Duong MTH, Ahn HC. Structural Comparison of hMDH2 Complexed with Natural Substrates and Cofactors: The Importance of Phosphate Binding for Active Conformation and Catalysis. Biomolecules 2022; 12:biom12091175. [PMID: 36139014 PMCID: PMC9496400 DOI: 10.3390/biom12091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
Malate dehydrogenase (MDH), which catalyzes a reversible conversion of L-malate to oxaloacetate, plays essential roles in common metabolic processes, such as the tricarboxylic acid cycle, the oxaloacetate–malate shuttle, and the glyoxylate cycle. MDH2 has lately been recognized as a promising anticancer target; however, the structural information for the human homologue with natural ligands is very limited. In this study, various complex structures of hMDH2, with its substrates and/or cofactors, were solved by X-ray crystallography, which could offer knowledge about the molecular and enzymatic mechanism of this enzyme and be utilized to design novel inhibitors. The structural comparison suggests that phosphate binds to the substrate binding site and brings the conformational change of the active loop to a closed state, which can secure the substate and cofactor to facilitate enzymatic activity.
Collapse
|
3
|
Heidelman M, Dhakal B, Gikunda M, Silva KPT, Risal L, Rodriguez AI, Abe F, Urayama P. Cellular NADH and NADPH Conformation as a Real-Time Fluorescence-Based Metabolic Indicator under Pressurized Conditions. Molecules 2021; 26:5020. [PMID: 34443607 PMCID: PMC8402201 DOI: 10.3390/molecules26165020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022] Open
Abstract
Cellular conformation of reduced pyridine nucleotides NADH and NADPH sensed using autofluorescence spectroscopy is presented as a real-time metabolic indicator under pressurized conditions. The approach provides information on the role of pressure in energy metabolism and antioxidant defense with applications in agriculture and food technologies. Here, we use spectral phasor analysis on UV-excited autofluorescence from Saccharomyces cerevisiae (baker's yeast) to assess the involvement of one or multiple NADH- or NADPH-linked pathways based on the presence of two-component spectral behavior during a metabolic response. To demonstrate metabolic monitoring under pressure, we first present the autofluorescence response to cyanide (a respiratory inhibitor) at 32 MPa. Although ambient and high-pressure responses remain similar, pressure itself also induces a response that is consistent with a change in cellular redox state and ROS production. Next, as an example of an autofluorescence response altered by pressurization, we investigate the response to ethanol at ambient, 12 MPa, and 30 MPa pressure. Ethanol (another respiratory inhibitor) and cyanide induce similar responses at ambient pressure. The onset of non-two-component spectral behavior upon pressurization suggests a change in the mechanism of ethanol action. Overall, results point to new avenues of investigation in piezophysiology by providing a way of visualizing metabolism and mitochondrial function under pressurized conditions.
Collapse
Affiliation(s)
- Martin Heidelman
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| | - Bibek Dhakal
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| | - Millicent Gikunda
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| | - Kalinga Pavan Thushara Silva
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| | - Laxmi Risal
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| | - Andrew I. Rodriguez
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan;
| | - Paul Urayama
- Department of Physics, Miami University, Oxford, OH 45056, USA; (M.H.); (B.D.); (M.G.); (K.P.T.S.); (L.R.); (A.I.R.)
| |
Collapse
|
4
|
Cao S, Zhou Z, Li H, Jia M, Liu Y, Wang M, Zhang M, Zhang S, Chen J, Xu J, Knutson JR. A fraction of NADH in solution is "dark": Implications for metabolic sensing via fluorescence lifetime. Chem Phys Lett 2019; 726:18-21. [PMID: 32921799 PMCID: PMC7486008 DOI: 10.1016/j.cplett.2019.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The metabolic cofactor and energy carrier NADH (nicotinamide adenine dinucleotide, reduced) has fluorescence yield and lifetime that depends strongly on conformation, a fact that has enabled metabolic monitoring of cells via FLIM (Fluorescence Lifetime Microscopy). Using femtosecond fluorescence upconversion, we show that this molecule in solution participates in ultrafast self-quenching along with both bulk solvent relaxation and spectral relaxation on 1.4 and 26 ps timescales. This, in effect, means up to a third of NADH is effectively "dark" for FLIM in the 400-500 nm observation window commonly employed. Methods to compensate for, avoid or measure dark species corrections are outlined.
Collapse
Affiliation(s)
- Simin Cao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Zhongneng Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Haoyang Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Menghui Jia
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Yangyi Liu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Mengyu Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Mengjie Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jay R. Knutson
- Laboratory for Advanced Microscopy and Biophotonics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
5
|
Protein-bound NAD(P)H Lifetime is Sensitive to Multiple Fates of Glucose Carbon. Sci Rep 2018; 8:5456. [PMID: 29615678 PMCID: PMC5883019 DOI: 10.1038/s41598-018-23691-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
While NAD(P)H fluorescence lifetime imaging (FLIM) can detect changes in flux through the TCA cycle and electron transport chain (ETC), it remains unclear whether NAD(P)H FLIM is sensitive to other potential fates of glucose. Glucose carbon can be diverted from mitochondria by the pentose phosphate pathway (via glucose 6-phosphate dehydrogenase, G6PDH), lactate production (via lactate dehydrogenase, LDH), and rejection of carbon from the TCA cycle (via pyruvate dehydrogenase kinase, PDK), all of which can be upregulated in cancer cells. Here, we demonstrate that multiphoton NAD(P)H FLIM can be used to quantify the relative concentrations of recombinant LDH and malate dehydrogenase (MDH) in solution. In multiple epithelial cell lines, NAD(P)H FLIM was also sensitive to inhibition of LDH and PDK, as well as the directionality of LDH in cells forced to use pyruvate versus lactate as fuel sources. Among the parameters measurable by FLIM, only the lifetime of protein-bound NAD(P)H (τ2) was sensitive to these changes, in contrast to the optical redox ratio, mean NAD(P)H lifetime, free NAD(P)H lifetime, or the relative amount of free and protein-bound NAD(P)H. NAD(P)H τ2 offers the ability to non-invasively quantify diversions of carbon away from the TCA cycle/ETC, which may support mechanisms of drug resistance.
Collapse
|
6
|
Korge P, Calmettes G, Weiss JN. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio. Free Radic Biol Med 2016; 96:22-33. [PMID: 27068062 PMCID: PMC4912463 DOI: 10.1016/j.freeradbiomed.2016.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/11/2016] [Accepted: 04/06/2016] [Indexed: 01/21/2023]
Abstract
Reactive oxygen species (ROS) production by isolated complex I is steeply dependent on the NADH/NAD(+) ratio. We used alamethicin-permeabilized mitochondria to study the substrate-dependence of matrix NADH and ROS production when complex I is inhibited by piericidin or rotenone. When complex I was inhibited in the presence of malate/glutamate, membrane permeabilization accelerated O2 consumption and ROS production due to a rapid increase in NADH generation that was not limited by matrix NAD(H) efflux. In the presence of inhibitor, both malate and glutamate were required to generate a high enough NADH/NAD(+) ratio to support ROS production through the coordinated activity of malate dehydrogenase (MDH) and aspartate aminotransferase (AST). With malate and glutamate present, the rate of ROS production was closely related to local NADH generation, whereas in the absence of substrates, ROS production was accelerated by increase in added [NADH]. With malate alone, oxaloacetate accumulation limited NADH production by MDH unless glutamate was also added to promote oxaloacetate removal via AST. α-ketoglutarate (KG) as well as AST inhibition also reversed NADH generation and inhibited ROS production. If malate and glutamate were provided before rather than after piericidin or rotenone, ROS generation was markedly reduced due to time-dependent efflux of CoA. CoA depletion decreased KG oxidation by α-ketoglutarate dehydrogenase (KGDH), such that the resulting increase in [KG] inhibited oxaloacetate removal by AST and NADH generation by MDH. These findings were largely obscured in intact mitochondria due to robust H2O2 scavenging and limited ability to control substrate concentrations in the matrix. We conclude that in mitochondria with inhibited complex I, malate/glutamate-stimulated ROS generation depends strongly on oxaloacetate removal and on the ability of KGDH to oxidize KG generated by AST.
Collapse
Affiliation(s)
- Paavo Korge
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Guillaume Calmettes
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - James N Weiss
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2008; 95:46-57. [PMID: 19179090 DOI: 10.1016/j.jphotobiol.2008.12.010] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 12/17/2008] [Accepted: 12/17/2008] [Indexed: 11/20/2022]
Abstract
Reduced nicotinamide adenine dinucleotide, NADH, is a major electron donor in the oxidative phosphorylation and glycolytic pathways in cells. As a result, there has been recent resurgence in employing intrinsic NADH fluorescence as a natural probe for a range of cellular processes that include apoptosis, cancer pathology, and enzyme kinetics. Here, we report on two-photon fluorescence lifetime and polarization imaging of intrinsic NADH in breast cancer (Hs578T) and normal (Hs578Bst) cells for quantitative analysis of the concentration and conformation (i.e., free-to-enzyme-bound ratios) of this coenzyme. Two-photon fluorescence lifetime imaging of intracellular NADH indicates sensitivity to both cell pathology and inhibition of the respiratory chain activities using potassium cyanide (KCN). Using a newly developed non-invasive assay, we estimate the average NADH concentration in cancer cells (168+/-49 microM) to be approximately 1.8-fold higher than in breast normal cells (99+/-37 microM). Such analyses indicate changes in energy metabolism and redox reactions in normal breast cells upon inhibition of the respiratory chain activity using KCN. In addition, time-resolved associated anisotropy of cellular autofluorescence indicates population fractions of free (0.18+/-0.08) and enzyme-bound (0.82+/-0.08) conformations of intracellular NADH in normal breast cells. These fractions are statistically different from those in breast cancer cells (free: 0.25+/-0.08; bound: 0.75+/-0.08). Comparative studies on the binding kinetics of NADH with mitochondrial malate dehydrogenase and lactate dehydrogenase in solution mimic our findings in living cells. These quantitative studies demonstrate the potential of intracellular NADH dynamics (rather than intensity) imaging for probing mitochondrial anomalies associated with neurodegenerative diseases, cancer, diabetes, and aging. Our approach is also applicable to other metabolic and signaling pathways in living cells, without the need for cell destruction as in conventional biochemical assays.
Collapse
|
8
|
Blinova K, Levine RL, Boja ES, Griffiths GL, Shi ZD, Ruddy B, Balaban RS. Mitochondrial NADH fluorescence is enhanced by complex I binding. Biochemistry 2008; 47:9636-45. [PMID: 18702505 DOI: 10.1021/bi800307y] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mitochondrial NADH fluorescence has been a useful tool in evaluating mitochondrial energetics both in vitro and in vivo. Mitochondrial NADH fluorescence is enhanced several-fold in the matrix through extended fluorescence lifetimes (EFL). However, the actual binding sites responsible for NADH EFL are unknown. We tested the hypothesis that NADH binding to Complex I is a significant source of mitochondrial NADH fluorescence enhancement. To test this hypothesis, the effect of Complex I binding on NADH fluorescence efficiency was evaluated in purified protein, and in native gels of the entire porcine heart mitochondria proteome. To avoid the oxidation of NADH in these preparations, we conducted the binding experiments under anoxic conditions in a specially designed apparatus. Purified intact Complex I enhanced NADH fluorescence in native gels approximately 10-fold. However, no enhancement was detected in denatured individual Complex I subunit proteins. In the Clear and Ghost native gels of the entire mitochondrial proteome, NADH fluorescence enhancement was localized to regions where NADH oxidation occurred in the presence of oxygen. Inhibitor and mass spectroscopy studies revealed that the fluorescence enhancement was specific to Complex I proteins. No fluorescence enhancement was detected for MDH or other dehydrogenases in this assay system, at physiological mole fractions of the matrix proteins. These data suggest that NADH associated with Complex I significantly contributes to the overall mitochondrial NADH fluorescence signal and provides an explanation for the well established close correlation of mitochondrial NADH fluorescence and the metabolic state.
Collapse
Affiliation(s)
- Ksenia Blinova
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Senisterra GA, Soo Hong B, Park HW, Vedadi M. Application of high-throughput isothermal denaturation to assess protein stability and screen for ligands. ACTA ACUST UNITED AC 2008; 13:337-42. [PMID: 18448703 DOI: 10.1177/1087057108317825] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many diseases in humans are caused by mutations that decrease the stability of specific proteins or increase their susceptibility to aggregation. Consequently, the availability of high-throughput methods for assessing protein stability and aggregation properties under physiological conditions (e.g., 37 degrees C) is necessary to analyze physicochemical properties under conditions that are closer to in vivo models. Therefore, the authors have explored the use of isothermal denaturation (ITD) in a 384-well format to evaluate the reproducibility of the method in assessing the stability of proteins at temperatures below the melting temperature and detecting the binding of ligands. Under the conditions tested, the authors were able to assess the stability of citrate synthase and malate dehydrogenase at different constant temperatures and detect the binding of oxaloacetate and nicotinamide adenine dinucleotide to these 2 enzymes, respectively, using the 384-well format. The ITD experiments detected ligand binding to these proteins at about 4 times lower concentration compared with techniques that measure changes in melting temperature. The data show that ITD can be applied to screen libraries of a relatively large number of compounds or detect small stability differences between protein variants.
Collapse
|
10
|
Vishwasrao HD, Heikal AA, Kasischke KA, Webb WW. Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy. J Biol Chem 2005; 280:25119-26. [PMID: 15863500 DOI: 10.1074/jbc.m502475200] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Global analysis of fluorescence and associated anisotropy decays of intrinsic tissue fluorescence offers a sensitive and non-invasive probe of the metabolically critical free/enzyme-bound states of intracellular NADH in neural tissue. Using this technique, we demonstrate that the response of NADH to the metabolic transition from normoxia to hypoxia is more complex than a simple increase in NADH concentration. The concentration of free NADH, and that of an enzyme bound form with a relatively low lifetime, increases preferentially over that of other enzyme bound NADH species. Concomitantly, the intracellular viscosity is reduced, likely due to the osmotic swelling of mitochondria. These conformation and environmental changes effectively decrease the tissue fluorescence average lifetime, causing the usual total fluorescence increase measurements to significantly underestimate the calculated concentration increase. This new discrimination of changes in NADH concentration, conformation, and environment provides the foundation for quantitative functional imaging of neural energy metabolism.
Collapse
Affiliation(s)
- Harshad D Vishwasrao
- Howard Hughes Medical Institute, Center for Neurobiology & Behavior, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
11
|
Kapp E, Whiteley C. Protein ligand interactions:isoquinoline alkaloids as inhibitors for lactate and malate dehydrogenase. JOURNAL OF ENZYME INHIBITION 1991; 4:233-43. [PMID: 2037868 DOI: 10.3109/14756369109035847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Kinetic analysis has shown that isoquinoline, papaverine and berberine act as reversible competitive inhibitors to muscle lactate dehydrogenase and mitochondrial malate dehydrogenase with respect to the coenzyme NADH. The inhibitor constants Ki vary from 7.5 microM and 12.6 microM berberine interaction with malate dehydrogenase and lactate dehydrogenase respectively to 91.4 microM and 196.4 microM with papaverine action on these two enzymes. Isoquinoline was a poor inhibitor with Ki values of 200 microM (MDH) to 425 microM (LDH). No inhibition was observed for both enzymes in terms of their respective second substrate (oxaloacetic acid - malate dehydrogenase; pyruvate - lactate dehydrogenase). A fluorimetric analysis of the binding of the three alkaloids show that the dissociation constants (Kd) for malate dehydrogenase are 2.8 microM (berberine), 46 microM (papaverine) and 86 microM (isoquinoline); the corresponding values for lactate dehydrogenase are 3.1 microM, 52 microM and 114 microM. In all cases the number of binding sites averaged at 2 (MDH) and 4 (LDH). The binding of the alkaloids takes place at sites close to the coenzyme binding site. No conformational non equivalence of subunits is evident.
Collapse
Affiliation(s)
- E Kapp
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | | |
Collapse
|
12
|
Hönes G, Hönes J, Hauser M. Studies of enzyme-ligand complexes using dynamic fluorescence anisotropy. II. The coenzyme-binding site of malate dehydrogenase. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1986; 367:103-8. [PMID: 3964442 DOI: 10.1515/bchm3.1986.367.1.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coenzyme-binding site in mitochondrial malate dehydrogenase from pig heart was studied using dynamic fluorescence anisotropy decay. The dynamics of the fluorescent ligands NADH and 6-cyano-7-hydroxy-4,8-dimethylcoumarin were used to detect conformational changes at the dihydronicotinamide-and at the adenosine-binding sites, respectively. Addition of the natural substrate L-malate to the complex from enzyme and NADH does not influence the complete immobilization of the dihydronicotinamide group, whereas the stereoisomer D-malate and the substrate-analogue hydroxymalonate form ternary complexes with highly mobile dihydronicotinamide. The dynamics of the fluorescent adenosine-analogue are not influenced by formation of complexes with substrate and substrate-analogues. Thus the conformational changes at the dihydronicotinamide-binding site remain local and are not transmitted to the adenosine-binding site.
Collapse
|
13
|
Jurgensen S, Wood D, Mahler J, Harrison J. The immobilization of mitochondrial malate dehydrogenase on Sepharose beads and the demonstration of catalytically active subunits. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)69791-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|