1
|
Konjalwar S, Ceyhan B, Rivera O, Nategh P, Neghabi M, Pavlovic M, Allani S, Ranji M. Demonstrating drug treatment efficacies by monitoring superoxide dynamics in human lung cancer cells with time-lapse fluorescence microscopy. JOURNAL OF BIOPHOTONICS 2024; 17:e202300331. [PMID: 37822188 DOI: 10.1002/jbio.202300331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Metformin hydrochloride, an antihyperglycemic agent, and sulindac, a nonsteroidal anti-inflammatory drug, are FDA-approved drugs known to exert anticancer effects. Previous studies demonstrated sulindac and metformin's anticancer properties through mitochondrial dysfunction and inhibition of mitochondrial electron transport chain complex I and key signaling pathways. In this study, various drugs were administered to A549 lung cancer cells, and results revealed that a combination of sulindac and metformin enhanced cell death compared to the administration of the drugs separately. To measure superoxide production over time, we employed a time-lapse fluorescence imaging technique using mitochondrial-targeted hydroethidine. Fluorescence microscopy data showed the most significant increases in superoxide production in the combination treatment of metformin and sulindac. Results showed significant differences between the combined drug treatment and control groups and between the positive control and control groups. This approach can be utilized to quantify the anticancer efficacy of drugs, creating possibilities for additional therapeutic options.
Collapse
Affiliation(s)
- Shalaka Konjalwar
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida, USA
| | - Busenur Ceyhan
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida, USA
| | - Oscar Rivera
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Boca Raton, Florida, USA
| | - Parisa Nategh
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida, USA
| | - Mehrnoosh Neghabi
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida, USA
| | - Mirjana Pavlovic
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida, USA
| | - Shailaja Allani
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Boca Raton, Florida, USA
| | - Mahsa Ranji
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
2
|
Yuan S, Schmidt HM, Wood KC, Straub AC. CoenzymeQ in cellular redox regulation and clinical heart failure. Free Radic Biol Med 2021; 167:321-334. [PMID: 33753238 DOI: 10.1016/j.freeradbiomed.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Coenzyme Q (CoQ) is ubiquitously embedded in lipid bilayers of various cellular organelles. As a redox cycler, CoQ shuttles electrons between mitochondrial complexes and extramitochondrial reductases and oxidases. In this way, CoQ is crucial for maintaining the mitochondrial function, ATP synthesis, and redox homeostasis. Cardiomyocytes have a high metabolic rate and rely heavily on mitochondria to provide energy. CoQ levels, in both plasma and the heart, correlate with heart failure in patients, indicating that CoQ is critical for cardiac function. Moreover, CoQ supplementation in clinics showed promising results for treating heart failure. This review provides a comprehensive view of CoQ metabolism and its interaction with redox enzymes and reactive species. We summarize the clinical trials and applications of CoQ in heart failure and discuss the caveats and future directions to improve CoQ therapeutics.
Collapse
Affiliation(s)
- Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heidi M Schmidt
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katherine C Wood
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Iglesias DE, Bombicino SS, Valdez LB, Boveris A. Nitric oxide interacts with mitochondrial complex III producing antimycin-like effects. Free Radic Biol Med 2015; 89:602-13. [PMID: 26456055 DOI: 10.1016/j.freeradbiomed.2015.08.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/28/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023]
Abstract
The effect of NO between cytochromes b and c of the mitochondrial respiratory chain were studied using submitochondrial particles (SMP) from bovine heart and GSNO and SPER-NO as NO sources. Succinate-cytochrome c reductase (complex II-III) activity (222 ± 4 nmol/min. mg protein) was inhibited by 51% in the presence of 500 μM GSNO and by 48% in the presence of 30 μM SPER-NO, in both cases at ~1.25 μM NO. Neither GSNO nor SPER-NO were able to inhibit succinate-Q reductase activity (complex II; 220 ± 9 nmol/min. mg protein), showing that NO affects complex III. Complex II-III activity was decreased (36%) when SMP were incubated with l-arginine and mtNOS cofactors, indicating that this effect is also produced by endogenous NO. GSNO (500 μM) reduced cytochrome b562 by 71%, in an [O2] independent manner. Hyperbolic increases in O2(•-) (up to 1.3 ± 0.1 nmol/min. mg protein) and H2O2 (up to 0.64 ± 0.05 nmol/min. mg protein) productions were observed with a maximal effect at 500 μM GSNO. The O2(•-)/H2O2 ratio was 1.98 in accordance with the stoichiometry of the O2(•-) disproportionation. Moreover, H2O2 production was increased by 72-74% when heart coupled mitochondria were exposed to 500 μM GSNO or 30 μM SPER-NO. SMP incubated in the presence of succinate showed an EPR signal (g=1.99) compatible with a stable semiquinone. This EPR signal was increased not only by antimycin but also by GSNO and SPER-NO. These signals were not modified under N2 atmosphere, indicating that they are not a consequence to the effect of NOx species on complex III area. These results show that NO interacts with ubiquinone-cytochrome b area producing antimycin-like effects. This behaviour comprises the inhibition of electron transfer, the interruption of the oxidation of cytochromes b, and the enhancement of [UQH(•)]ss which, in turn, leads to an increase in O2(•-) and H2O2 mitochondrial production rates.
Collapse
Affiliation(s)
- Darío E Iglesias
- Institute of Biochemistry and Molecular Medicine, Physical Chemistry Division, School of Pharmacy and Biochemistry, University of Buenos Aires (IBIMOL, UBA-CONICET). Junín 956, C1113AAD Buenos Aires, Argentina.
| | - Silvina S Bombicino
- Institute of Biochemistry and Molecular Medicine, Physical Chemistry Division, School of Pharmacy and Biochemistry, University of Buenos Aires (IBIMOL, UBA-CONICET). Junín 956, C1113AAD Buenos Aires, Argentina
| | - Laura B Valdez
- Institute of Biochemistry and Molecular Medicine, Physical Chemistry Division, School of Pharmacy and Biochemistry, University of Buenos Aires (IBIMOL, UBA-CONICET). Junín 956, C1113AAD Buenos Aires, Argentina
| | - Alberto Boveris
- Institute of Biochemistry and Molecular Medicine, Physical Chemistry Division, School of Pharmacy and Biochemistry, University of Buenos Aires (IBIMOL, UBA-CONICET). Junín 956, C1113AAD Buenos Aires, Argentina
| |
Collapse
|
4
|
Janetzko J, Batey RA. Organoboron-Based Allylation Approach to the Total Synthesis of the Medium-Ring Dilactone (+)-Antimycin A1b. J Org Chem 2014; 79:7415-24. [DOI: 10.1021/jo501134d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John Janetzko
- Davenport Research Laboratories,
Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada
| | - Robert A. Batey
- Davenport Research Laboratories,
Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S
3H6, Canada
| |
Collapse
|
5
|
Electron Transport in the Mitochondrial Respiratory Chain. THE STRUCTURAL BASIS OF BIOLOGICAL ENERGY GENERATION 2014. [DOI: 10.1007/978-94-017-8742-0_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
The determination and analysis of site-specific rates of mitochondrial reactive oxygen species production. Methods Enzymol 2013; 526:189-217. [PMID: 23791102 DOI: 10.1016/b978-0-12-405883-5.00012-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) are widely implicated in physiological and pathological pathways. We propose that it is critical to understand the specific sites of mitochondrial ROS production and their mechanisms of action. Mitochondria possess at least eight distinct sites of ROS production in the electron transport chain and matrix compartment. In this chapter, we describe the nature of the mitochondrial ROS-producing machinery and the relative capacities of each site. We provide detailed methods for the measurement of H2O2 release and the conditions under which maximal rates from each site can be achieved in intact skeletal muscle mitochondria.
Collapse
|
7
|
Quinlan CL, Gerencser AA, Treberg JR, Brand MD. The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. J Biol Chem 2011; 286:31361-72. [PMID: 21708945 DOI: 10.1074/jbc.m111.267898] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Superoxide production from antimycin-inhibited complex III in isolated mitochondria first increased to a maximum then decreased as substrate supply was modulated in three different ways. In each case, superoxide production had a similar bell-shaped relationship to the reduction state of cytochrome b(566), suggesting that superoxide production peaks at intermediate Q-reduction state because it comes from a semiquinone in the outer quinone-binding site in complex III (Q(o)). Imposition of a membrane potential changed the relationships between superoxide production and b(566) reduction and between b(562) and b(566) redox states, suggesting that b(562) reduction also affects semiquinone concentration and superoxide production. To assess whether this behavior was consistent with the Q-cycle mechanism of complex III, we generated a kinetic model of the antimycin-inhibited Q(o) site. Using published rate constants (determined without antimycin), with unknown rate constants allowed to vary, the model failed to fit the data. However, when we allowed the rate constant for quinol oxidation to decrease 1000-fold and the rate constant for semiquinone oxidation by b(566) to depend on the b(562) redox state, the model fit the energized and de-energized data well. In such fits, quinol oxidation was much slower than literature values and slowed further when b(566) was reduced, and reduction of b(562) stabilized the semiquinone when b(566) was oxidized. Thus, superoxide production at Q(o) depends on the reduction states of b(566) and b(562) and fits the Q-cycle only if particular rate constants are altered when b oxidation is prevented by antimycin. These mechanisms limit superoxide production and short circuiting of the Q-cycle when electron transfer slows.
Collapse
Affiliation(s)
- Casey L Quinlan
- Buck Institute for Research on Aging, Novato, California 94945, USA.
| | | | | | | |
Collapse
|
8
|
Kokhan O, Shinkarev VP. All-atom molecular dynamics simulations reveal significant differences in interaction between antimycin and conserved amino acid residues in bovine and bacterial bc1 complexes. Biophys J 2011; 100:720-728. [PMID: 21281587 DOI: 10.1016/j.bpj.2010.12.3705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/09/2010] [Accepted: 12/13/2010] [Indexed: 11/17/2022] Open
Abstract
Antimycin A is the most frequently used specific and powerful inhibitor of the mitochondrial respiratory chain. We used all-atom molecular dynamics (MD) simulations to study the dynamic aspects of the interaction of antimycin A with the Q(i) site of the bacterial and bovine bc(1) complexes embedded in a membrane. The MD simulations revealed considerable conformational flexibility of antimycin and significant mobility of antimycin, as a whole, inside the Q(i) pocket. We conclude that many of the differences in antimycin binding observed in high-resolution x-ray structures may have a dynamic origin and result from fluctuations of protein and antimycin between multiple conformational states of similar energy separated by low activation barriers, as well as from the mobility of antimycin within the Q(i) pocket. The MD simulations also revealed a significant difference in interaction between antimycin and conserved amino acid residues in bovine and bacterial bc(1) complexes. The strong hydrogen bond between antimycin and conserved Asp-228 (bovine numeration) was observed to be frequently broken in the bacterial bc(1) complex and only rarely in the bovine bc(1) complex. In addition, the distances between antimycin and conserved His-201 and Lys-227 were consistently larger in the bacterial bc(1) complex. The observed differences could be responsible for a weaker interaction of antimycin with the bacterial bc(1) complex.
Collapse
Affiliation(s)
- Oleksandr Kokhan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Vladimir P Shinkarev
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
9
|
Mulkidjanian AY. Proton translocation by the cytochromebc1complexes of phototrophic bacteria: introducing the activated Q-cycle. Photochem Photobiol Sci 2007; 6:19-34. [PMID: 17200733 DOI: 10.1039/b517522d] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cytochrome bc1 complexes are proton-translocating, dimeric membrane ubiquinol:cytochrome c oxidoreductases that serve as "hubs" in the vast majority of electron transfer chains. After each ubiquinol molecule is oxidized in the catalytic center P at the positively charged membrane side, the two liberated electrons head out, according to the Mitchell's Q-cycle mechanism, to different acceptors. One is taken by the [2Fe-2S] iron-sulfur Rieske protein to be passed further to cytochrome c1. The other electron goes across the membrane, via the low- and high-potential hemes of cytochrome b, to another ubiquinone-binding site N at the opposite membrane side. It has been assumed that two ubiquinol molecules have to be oxidized by center P to yield first a semiquinone in center N and then to reduce this semiquinone to ubiquinol. This review is focused on the operation of cytochrome bc1 complexes in phototrophic purple bacteria. Their membranes provide a unique system where the generation of membrane voltage by light-driven, energy-converting enzymes can be traced via spectral shifts of native carotenoids and correlated with the electron and proton transfer reactions. An "activated Q-cycle" is proposed as a novel mechanism that is consistent with the available experimental data on the electron/proton coupling. Under physiological conditions, the dimeric cytochrome bc1 complex is suggested to be continually primed by prompt oxidation of membrane ubiquinol via center N yielding a bound semiquinone in this center and a reduced, high-potential heme b in the other monomer of the enzyme. Then the oxidation of each ubiquinol molecule in center P is followed by ubiquinol formation in center N, proton translocation and generation of membrane voltage.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia.
| |
Collapse
|
10
|
Geyer T, Helms V. A spatial model of the chromatophore vesicles of Rhodobacter sphaeroides and the position of the Cytochrome bc1 complex. Biophys J 2006; 91:921-6. [PMID: 16714339 PMCID: PMC1563750 DOI: 10.1529/biophysj.105.078501] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The photosynthetic apparatus of purple bacteria is generally considered a well-studied and understood system. However, recent atomic force microscopy images of flattened chromatophore vesicles from Rhodobacter sphaeroides restarted a debate about the stoichiometry and positions of the membrane proteins, with the interpretations of the observed images only partly being in agreement with earlier models. The most puzzling observation from the recent images is that the Cytochrome bc(1) complex, which is a central part of the photosynthetic apparatus, seems to be missing on the chromatophore vesicles, even when these were extracted from photosynthetically grown bacteria. From the available information on the geometry of the vesicle and of the proteins we reconstructed here a three-dimensional model vesicle at molecular resolution. Its central feature, also determining its diameter of approximately 45 nm, is an equatorial array of LH1 dimers, lined by a region of LH2 rings. This naturally puts the Cytochrome bc(1) complexes and the ATPase at the vesicle's poles. This spatial model may explain why the vesicle's endcaps with the bc(1) complexes are lost during the preparatory steps of the imaging process together with the ATPase and are therefore absent from the available images.
Collapse
Affiliation(s)
- Tihamér Geyer
- Zentrum für Bioinformatik, Universität des Saarlandes, Saarbrücken, Germany.
| | | |
Collapse
|
11
|
Geyer T, Helms V. Reconstruction of a kinetic model of the chromatophore vesicles from Rhodobacter sphaeroides. Biophys J 2006; 91:927-37. [PMID: 16714340 PMCID: PMC1563771 DOI: 10.1529/biophysj.105.067561] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a molecular model of a chromatophore vesicle from Rhodobacter sphaeroides. These vesicles are ideal benchmark systems for molecular and systemic simulations, because they have been well studied, they are small, and they are naturally separated from their cellular environment. To set up a photosynthetic chain working under steady-state conditions, we compiled from the experimental literature the specific activities and geometries that have been determined for their constituents. This data then allowed defining the stoichiometries for all membrane proteins. This article contains the kinetic part of the reconstructed model, while the spatial reconstruction is presented in a companion article. By considering the transport properties of the Cytochrome c(2) and ubiquinone pools, we show that their size and oxidation states allow for an efficient buffering of the statistical fluctuations that arise from the small size of the vesicles. Stoichiometric and kinetic considerations indicate that a typical chromatophore vesicle of Rb. sphaeroides with a diameter of 45 nm should contain approximately five bc(1) monomers.
Collapse
Affiliation(s)
- Tihamér Geyer
- Zentrum für Bioinformatik, Universität des Saarlandes, Saarbrücken, Germany.
| | | |
Collapse
|
12
|
Covian R, Trumpower BL. Rapid Electron Transfer between Monomers when the Cytochrome bc1 Complex Dimer Is Reduced through Center N. J Biol Chem 2005; 280:22732-40. [PMID: 15833742 DOI: 10.1074/jbc.m413592200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have obtained evidence for electron transfer between cytochrome b subunits of the yeast bc(1) complex dimer by analyzing pre-steady state reduction of cytochrome b in the presence of center P inhibitors. The kinetics and extent of cytochrome b reduced by quinol in the presence of variable concentrations of antimycin decreased non-linearly and could only be fitted to a model in which electrons entering through one center N can equilibrate between the two cytochrome b subunits of the bc(1) complex dimer. The b(H) heme absorbance in a bc(1) complex inhibited at center P and preincubated with substoichiometric concentrations of antimycin showed a red shift upon the addition of substrate, which indicates that electrons from the uninhibited center N in one monomer are able to reach the b(H) heme at the antimycin-blocked site in the other. The extent of cytochrome b reduction by variable concentrations of menaquinol could only be fitted to a kinetic model that assumes electron equilibration between center N sites in the dimer. Kinetic simulations showed that non-rate-limiting electron equilibration between the two b(H) hemes in the dimer through the two b(L) hemes is possible upon reduction through one center N despite the thermodynamically unfavorable b(H) to b(L) electron transfer step. We propose that electron transfer between cytochrome b subunits minimizes the formation of semiquinone-ferrocytochrome b(H) complexes at center N and favors ubiquinol oxidation at center P by increasing the amount of oxidized cytochrome b.
Collapse
Affiliation(s)
- Raul Covian
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
13
|
Aklujkar M, Prince RC, Beatty JT. The puhE gene of Rhodobacter capsulatus is needed for optimal transition from aerobic to photosynthetic growth and encodes a putative negative modulator of bacteriochlorophyll production. Arch Biochem Biophys 2005; 437:186-98. [PMID: 15850558 DOI: 10.1016/j.abb.2005.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/10/2005] [Accepted: 03/11/2005] [Indexed: 10/25/2022]
Abstract
A conserved orf of previously unknown function (herein designated as puhE) is located 3' of the reaction centre H (puhA) gene in purple photosynthetic bacteria, in the order puhABCE in Rhodobacter capsulatus. Disruptions of R. capsulatus puhE resulted in a long lag in the growth of photosynthetic cultures inoculated with cells grown under high aeration, and increased the level of the peripheral antenna, light-harvesting complex 2 (LH2). The amount of the photosynthetic reaction centre (RC) and its core antenna, light-harvesting complex 1 (LH1), was reduced; however, there was no decrease in expression of a lacZ reporter fused to the puf (RC and LH1) promoter, in RC assembly in the absence of LH1, or in LH1 assembly in the absence of the RC. In strains that lack LH2, disruption of puhE increased the in vivo absorption at 780 nm, which we attribute to excess bacteriochlorophyll a (BChl) pigment production. This effect was seen in the presence and absence of PufQ, a protein that stimulates BChl biosynthesis. Expression of puhE from a plasmid reduced A(780) production in puhE mutants. We suggest that PuhE modulates BChl biosynthesis independently of PufQ, and that the presence of excess BChl in PuhE(-)LH2(+) strains results in excess LH2 assembly and also interferes with the adaptation of cells during the transition from aerobic respiratory to anaerobic photosynthetic growth.
Collapse
Affiliation(s)
- Muktak Aklujkar
- Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Blvd., Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
14
|
Prince RC, Davidson E, Haith CE, Daldal F. Photosynthetic electron transfer in the absence of cytochrome c2 in Rhodopseudomonas capsulata: cytochrome c2 is not essential for electron flow from the cytochrome bc1 complex to the photochemical reaction center. Biochemistry 2002. [DOI: 10.1021/bi00366a034] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Aklujkar M, Harmer AL, Prince RC, Beatty JT. The orf162b sequence of Rhodobacter capsulatus encodes a protein required for optimal levels of photosynthetic pigment-protein complexes. J Bacteriol 2000; 182:5440-7. [PMID: 10986247 PMCID: PMC110987 DOI: 10.1128/jb.182.19.5440-5447.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2000] [Accepted: 07/10/2000] [Indexed: 11/20/2022] Open
Abstract
The orf162b sequence, the second open reading frame 3' of the reaction center (RC) H protein gene puhA in the Rhodobacter capsulatus photosynthesis gene cluster, is shown to be transcribed from a promoter located 5' of puhA. A nonpolar mutation of orf162b was generated by replacing most of the coding region with an antibiotic resistance cartridge. Although the mutant strain initiated rapid photosynthetic growth, growth slowed progressively and cultures often entered a pseudostationary phase. The amounts of the RC and light harvesting complex I (LHI) in cells obtained from such photosynthetic cultures were abnormally low, but these deficiencies were less severe when the mutant was grown to a pseudostationary phase induced by low aeration in the absence of illumination. The orf162b mutation did not significantly affect the expression of a pufB::lacZ translationally in-frame gene fusion under the control of the puf promoter, indicating normal transcription and translation of RC and LHI genes. Spontaneous secondary mutations in the strain with the orf162b disruption resulted in a bypass of the photosynthetic growth retardation and reduced the level of light harvesting complex II. These results and the presence of sequences similar to orf162b in other species indicate that the Orf162b protein is required for normal levels of the photosynthetic apparatus in purple photosynthetic bacteria.
Collapse
Affiliation(s)
- M Aklujkar
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
16
|
Leguijt T, Engels PW, Crielaard W, Albracht SP, Hellingwerf KJ. Abundance, subunit composition, redox properties, and catalytic activity of the cytochrome bc1 complex from alkaliphilic and halophilic, photosynthetic members of the family Ectothiorhodospiraceae. J Bacteriol 1993; 175:1629-36. [PMID: 8383662 PMCID: PMC203956 DOI: 10.1128/jb.175.6.1629-1636.1993] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complexes were demonstrated to be present in the membranes of the alkaliphilic and halophilic purple sulfur bacteria Ectothiorhodospira halophila, Ectothiorhodospira mobilis, and Ectothiorhodospira shaposhnikovii by protoheme extraction, immunoblotting, and electron paramagnetic resonance spectroscopy. The gy values of the Rieske [2Fe-2S] clusters observed in membranes of E. mobilis and E. halophila were 1.895 and 1.910, respectively. In E. mobilis membranes, the cytochrome bc1 complex was present in a stoichiometry of approximately 0.2 per reaction center. This complex was isolated and characterized. It contained four prosthetic groups: low-potential cytochrome b (cytochrome bL; Em = -142 mV), high-potential cytochrome b (cytochrome bH; Em = 116 mV), cytochrome c1 (Em = 341 mV), and a Rieske iron-sulfur cluster. The absorbance spectrum of cytochrome bL displayed an asymmetric alpha-band with a maximum at 564 nm and a shoulder at 559 nm. The alpha bands of cytochrome bH and cytochrome c1 peaked at 559.5 and 553 nm, respectively. These prosthetic groups were associated with three different polypeptides: cytochrome b, cytochrome c1, and the Rieske iron-sulfur protein, with apparent molecular masses of 43, 30, and 21 kDa, respectively. No evidence for the presence of a fourth subunit was obtained. Maximal ubiquinol-cytochrome c oxidoreductase activity of the purified complex was observed at pH 8; the turnover rate was 57 mol of cytochrome c reduced.(mol of cytochrome c1)-1.s-1. The complex showed a strikingly low sensitivity towards typical inhibitors of cytochrome bc1 complexes.
Collapse
Affiliation(s)
- T Leguijt
- E. C. Slater Institute for Biochemical and Microbiological Research, University of Amsterdam, Department of Microbiology, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Güner S, Robertson DE, Yu L, Qiu ZH, Yu CA, Knaff DB. The Rhodospirillum rubrum cytochrome bc1 complex: redox properties, inhibitor sensitivity and proton pumping. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1058:269-79. [PMID: 1646633 DOI: 10.1016/s0005-2728(05)80247-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A detergent-solubilized, three-subunit-containing cytochrome bc1 complex, isolated from the photosynthetic bacterium R. rubrum, has been shown to be highly sensitive to stigmatellin, myxothiazol, antimycin A and UHDBT, four specific inhibitors of these complexes. Oxidation-reduction titrations have allowed the determination of Em values for all the electron-carrying prosthetic groups in the complex. Antimycin A has been shown to produce a red shift in the alpha-band absorbance maximum of one of the cytochrome b hemes in the complex and stigmatellin has been shown to alter both the Em and EPR g-values of the Rieske iron-sulfur protein in the complex. Western blots have revealed antigenic similarities between the cytochrome subunits of the R. rubrum complex and those of the related photosynthetic bacteria, Rb. capsulatus and Rb. sphaeroides. The R. rubrum complex has been incorporated into liposomes. These liposomes exhibit respiratory control and are able to couple electron transfer from quinol to cytochrome c to proton translocation across the liposome membrane in a manner consistent with a Q-cycle mechanism. It can thus be concluded that neither electron transport nor coupled proton translocation by the cytochrome bc1 complex requires more than three subunits in R. rubrum.
Collapse
Affiliation(s)
- S Güner
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock 79409-1061
| | | | | | | | | | | |
Collapse
|
18
|
McCurley JP, Miki T, Yu L, Yu CA. EPR characterization of the cytochrome b-c1 complex from Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1020:176-86. [PMID: 2173951 DOI: 10.1016/0005-2728(90)90049-a] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
EPR characteristics of cytochrome c1, cytochromes b-565 and b-562, the iron-sulfur cluster, and an antimycin-sensitive ubisemiquinone radical of purified cytochrome b-c1 complex of Rhodobacter sphaeroides have been studied. The EPR specra of cytochrome c1 shows a signal at g = 3.36 flanked with shoulders. The oxidized form of cytochrome b-562 shows a broad EPR signal at g = 3.49, while oxidized cytochrome b-565 shows a signal at g = 3.76, similar to those of two b cytochromes in the mitochondrial complex. The distribution of cytochromes b-565 and b-562 in the isolated complex is 44 and 56%, respectively. Antimycin and 2,5-dibromo-3-methyl-6-isopropyl-1,4-benzoquinone (DBMIB) have little effect on the g = 3.76 signal, but they cause a slight downfield and upfield shifts of the g = 3.49 signal, respectively. 5-Undecyl-6-hydroxyl-4,7-dioxobenzothiazole (UHDBT) shifts the g = 3.49 signal downfield to g = 3.56 and sharpens the g = 3.76 signal slightly. Myxothiazol causes an upfield shift of both g = 3.49 and g = 3.76 signals. EPR characteristics of the reduced iron-sulfur cluster in bacterial cytochrome b-c1 complex are: gx = 1.8 with a small shoulder at g = 1.76, gy = 1.89 and gz = 2.02, similar to those observed with the mitochondrial enzyme. The gx = 1.8 signal decreased and the shoulder increased concurrently as the redox potential decreased, indicating that the environment of the iron-sulfur cluster is sensitive to the redox state of the complex. UHDBT sharpens the gz and and shifts it downfield from g = 2.02 to 2.03, and shifts gx upfield from g = 1.80 to 1.78. UHDBT also causes an upfield shift of gy but to a much lesser extent compared to the other two signals. Addition of DBMIB causes a downfield shift of the gy from 1.89 to 1.94 and broadens the gx signal with an upfield to g = 1.75. Myxothiazol and antimycin show little effect on the gy and gz signals, but they broaden and shift the gx signal upfield to g = 1.74. However, the myxothiazol effect is partially reversed by UHDBT. An antimycin-sensitive ubisemiquinone radical was detected in the cytochrome b-c1 complex. At pH 8.4, the antimycin-sensitive ubisemiquinone radical has a maximal concentration of 0.66 mol per mol complex at 100 mV.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J P McCurley
- Department of Biochemistry, OAES, Oklahoma State University, Stillwater 74078
| | | | | | | |
Collapse
|
19
|
Venturoli G, Gabellini N, Oesterhelt D, Melandri BA. Kinetics of photosynthetic electron transfer in artificial vesicles reconstituted with purified complexes from Rhodobacter capsulatus. II. Direct electron transfer between the reaction center and the bc1 complex and role of cytochrome c2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 189:95-103. [PMID: 2158893 DOI: 10.1111/j.1432-1033.1990.tb15464.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. The cyclic photosynthetic chain of Rhodobacter capsulatus has been reconstituted incorporating into phospholipid liposomes containing ubiquinone-10 two multiprotein complexes: the reaction center and the ubiquinol-cytochrome-c2 reductase (or bc1 complex). 2. In the presence of cytochrome c2 added externally, at concentrations in the range 10-10(4) nM, a flash-induced cyclic electron transfer can be observed. In the presence of antimycin, an inhibitor of the quinone-reducing site of the bc1 complex, the reduction of cytochrome b561 is a consequence of the donation of electrons to the photo-oxidized reaction center. At low ionic strength (10 mM KCl) and at concentrations of cytochrome c2 lower than 1 microM, the rate of this reaction is limited by the concentration of cytochrome c2. At higher concentrations the reduction rate of cytochrome b561 is controlled by the concentration of quinol in the membrane, and, therefore, is increased when the ubiquinone pool is progressively reduced. At saturating concentrations of cytochrome c2 and optimal redox poise, the half-time for cytochrome b561 reduction is about 3 ms. 3. At high ionic stength (200 mM KCl), tenfold higher concentrations of cytochrome c2 are required for promoting equivalent rates of cytochrome-b561 reduction. If the absolute values of these rates are compared with those of the cytochrome-c2-reaction-center electron transfer, it can be concluded that the reaction of oxidized cytochrome c2 with the bc1 complex is rate-limiting and involves electrstatic interactions. 4. A significant rate of intercomplex electron transfer can be observed also in the absence of cytochrome c2; in this case the electron donor to the recation center is the cytochrome c1 of the oxidoreductase complex. The oxidation of cytochrome c1 triggers a normal electron transfer within the bc1 complex. The intercomplex reaction follows second-order kinetics and is slowed at high ionic strength, suggesting a collisional interaction facilitated by electrostatic attraction. From the second-order rate constant of this process, a minimal bidimensional diffusion coefficient for the complexes in the membrane equal to 3 X 10(-11) cm2 s-1 can be evaluated.
Collapse
Affiliation(s)
- G Venturoli
- Dipartimento di Biologia, Università di Bologna, Italy
| | | | | | | |
Collapse
|
20
|
Andrews KM, Crofts AR, Gennis RB. Large-scale purification and characterization of a highly active four-subunit cytochrome bc1 complex from Rhodobacter sphaeroides. Biochemistry 1990; 29:2645-51. [PMID: 2161250 DOI: 10.1021/bi00463a004] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A highly active, large-scale preparation of ubiquinol:cytochrome c2 oxidoreductase (EC 1.10.2.2; cytochrome bc1 complex) has been obtained from Rhodobacter sphaeroides. The enzyme was solubilized from chromatophores by using dodecyl maltoside in the presence of glycerol and was purified by anion-exchange and gel filtration chromatography. The procedure yields 35 mg of pure bc1 complex from 4.5 g of membrane protein, and its consistently results in an enzyme preparation that catalyzes the reduction of horse heart cytochrome c with a turnover of 250-350 (mumol of cyt c reduced).(mumol of cyt c1)-1.s-1. The turnover number is at least double that of the best preparation reported in the literature [Ljungdahl, P. O., Pennoyer, J. D., Robertson, D. C., & Trumpower, B. L. (1987) Biochim. Biophys. Acta 891, 227-241]. The scale is increased 25-fold, and the yield is markedly improved by using this protocol. Four polypeptide subunits were observed by SDS-PAGE, with Mr values of 40K, 34K, 24K, and 14K. N-Terminal amino acid sequences were obtained for cytochrome c1, the iron-sulfur protein subunit, and for cytochrome b and were identical with the expected protein sequences deduced from the DNA sequence of the fbc operon, with the exceptions that a 22-residue fragment is processed off of the N-terminus of cytochrome c1 and the N-terminal methionine residue is cleaved off both the b cytochrome and iron-sulfur protein subunits. Western blotting experiments indicate that subunit IV is not a contaminating light-harvesting complex polypeptide.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K M Andrews
- Department of Biochemistry, University of Illinois, Urbana 61801
| | | | | |
Collapse
|
21
|
Zannoni D. The respiratory chains of pathogenic pseudomonads. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 975:299-316. [PMID: 2667644 DOI: 10.1016/s0005-2728(89)80337-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- D Zannoni
- Department of Biology, University of Bologna, Italy
| |
Collapse
|
22
|
Joliot P, VermSglio A, Joliot A. Evidence for supercomplexes between reaction centers, cytochrome c2 and cytochrome bc1 complex in Rhodobacter sphaeroides whole cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80341-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Jones MR, Jackson JB. Proton release by the quinol oxidase site of the cytochrome b/c1 complex following single turnover flash excitation of intact cells of Rhodobacter capsulatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80198-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Drachev L, Kaurov B, Mamedov M, Mulkidjanian A, Semenov A, Shinkarev V, Skulachev V, Verkhovsky M. Flash-induced electrogenic events in the photosynthetic reaction center and bc1 complexes of Rhodobacter sphaeroides chromatophores. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80421-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Robertson DE, Dutton PL. The nature and magnitude of the charge-separation reactions of ubiquinol cytochrome c2 oxidoreductase. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 935:273-91. [PMID: 2844257 DOI: 10.1016/0005-2728(88)90223-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The transdielectric charge separation reaction catalyzed by the ubiquinol-cytochrome c2 oxidoreductase is achieved in two fractional steps. We present a detailed analysis which addresses the nature of the charge transferred, the redox groups directly involved in charge separation and the contributions of each to the full charge separation catalyzed by the enzyme. Accounting for light saturation effects, reaction centers unconnected to cytochrome c2 and the fraction of total cytochrome bc1 turning over per flash permits detailed quantitation of: (1) the red carotenoid bandshift associated with electron transfer between ubiquinol at site Qz and the high- (2Fe2S center, cytochrome c1) and low-potential (cytochrome bL, cytochrome bH) components of cytochrome bc1; (2) the blue bandshift accompanying reduction of cytochrome bH by ubiquinol via site Qc (the reverse of the physiological reaction); and (3) the effect of delta psi on the Qc-cytochrome bH redox equilibrium. Studies were performed at pH values above and below the redox-linked pK values of the redox centers known to be involved in each reaction at equilibrium. The conclusions of this study may be summarized as follows: (1) there is no transdielectric charge separation apparent in the redox reactions between Qz and cytochrome bL, 2Fe2S and cytochrome c1 (in agreement with Glaser, E. and Crofts, A.R. (1984) Biochim. Biophys. Acta 766, 223-235), i.e., charge separation accompanies electron transfer between cytochrome bL and cytochrome bH; (2) the redox reactions between cytochrome bL and cytochrome bH and between cytochrome bH and Qc constitute the full electrogenic span; (3) electron transfer between cytochrome bL and cytochrome bH contributes approx. 60% of this span; (4) electron transfer between cytochrome bH and Qc contributes 45-55% as calculated from the blue bandshift or the delta psi-dependent equilibrium shift; (5) there is no discernable pH dependence of the Qz-cytochrome bH or Qc-cytochrome bH charge-separation reactions; (6) cytochrome bL, Qz, 2Fe2S, and cytochrome c1 are on the periplasmic side out of the low dielectric part of the membrane while cytochrome bH is buried in the low dielectric medium; (7) electron transfer is the predominant if not the sole contributor to charge separation; (8) Qz and Qc are on opposite sides of the membrane dielectric profile.
Collapse
Affiliation(s)
- D E Robertson
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
26
|
Venturoli G, Fernández-Velasco JG, Crofts AR, Andrea Melandri B. The effect of the size of the quinone pool on the electrogenic reactions in the ubiquinol-cytochrome c2 oxidoreductase of Rhodobacter capsulatus. Pool behaviour at the quinone reductase site. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1988. [DOI: 10.1016/0005-2728(88)90222-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Willms I, Malkin R, Chain RK. Oxidation-reduction reactions of cytochrome b6 in a liposome-incorporated cytochrome b6-f complex. Arch Biochem Biophys 1987; 258:248-58. [PMID: 2821919 DOI: 10.1016/0003-9861(87)90342-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The chloroplast cytochrome b6-f complex, incorporated into phospholipid vesicles, shows proton translocation with an observed H+/e- ratio of approximately 2. The oxidation-reduction behavior of cytochrome b6 during electron transport from duroquinol to plastocyanin is affected by incorporation. The most obvious effect of incorporation is an increase in the duration of a steady-state level of cytochrome b6 that persists during electron transport. Reagents that decrease activity increase the duration of the steady state while reagents that stimulate activity decrease this time. Uncoupling conditions yield cytochrome kinetics similar to those in the unincorporated complex. 2,5-Dibromo-3-methyl-6-isopropyl-p-benzoquinone and 5-n-undecyl-4,7-dioxobenzothiazole inhibited reduction of cytochrome b6 in the incorporated complex, but this apparent inhibition was due to a rapid oxidation of the cytochrome by these compounds.
Collapse
Affiliation(s)
- I Willms
- Division of Molecular Plant Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
28
|
Davidson E, Prince RC, Daldal F, Hauska G, Marrs BL. Rhodobacter capsulatus MT113: A single mutation results in the absence of c-type cytochromes and in the absence of the cytochrome bc1 complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1987. [DOI: 10.1016/0005-2728(87)90156-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Protonmotive activity of the cytochrome bc1 complex in chromatophores of Rhodobacter capsulatus in the presence of myxothiazol and antimycin A. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1987. [DOI: 10.1016/0005-2728(87)90026-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
de Vries S. The pathway of electron transfer in the dimeric QH2: cytochrome c oxidoreductase. J Bioenerg Biomembr 1986; 18:195-224. [PMID: 3015896 DOI: 10.1007/bf00743464] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The experimental data currently available suggest that QH2:cytochrome c oxidoreductase functions according to a Q-cycle type of mechanism. The molecular weight of the enzyme in a natural or artificial phospholipid bilayer or in solution corresponds to that of a dimer. The pre-steady state kinetics of reduction of the prosthetic groups indicate that the enzyme is functionally dimeric. A double Q cycle is proposed, describing the pathway of electron transfer in the dimeric QH2:cytochrome c oxidoreductase. According to this scheme, the two monomeric halves of the enzyme act in a cooperative fashion to complete the catalytic cycle. It is proposed that high-potential cytochrome b-562 and low-potential cytochrome b-562 act cooperatively, viz. as a functional pair, in the antimycin-sensitive reduction of ubiquinone to ubiquinol.
Collapse
|
31
|
‘Backlash’ and the coupling between electron transport and proton translocation in bacterial chromatophores. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1986. [DOI: 10.1016/0005-2728(86)90043-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Robertson DE, Davidson E, Prince RC, van den Berg WH, Marrs BL, Dutton PL. Discrete catalytic sites for quinone in the ubiquinol-cytochrome c2 oxidoreductase of Rhodopseudomonas capsulata. Evidence from a mutant defective in ubiquinol oxidation. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)36132-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Wynn RM, Gaul DF, Shaw RW, Knaff DB. Identification of the components of a putative cytochrome bc1 complex in Rhodopseudomonas viridis. Arch Biochem Biophys 1985; 238:373-7. [PMID: 2986549 DOI: 10.1016/0003-9861(85)90177-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chromatophore membranes isolated from the bacteriochlorophyll b-containing, photosynthetic purple nonsulfur bacterium, Rhodopseudomonas viridis, have been shown to contain a Rieske iron-sulfur protein, a cytochrome similar to cytochrome c1, and also at least one b-type cytochrome. These observations suggest the presence of a previously undetected cytochrome bc1 complex in this bacterium.
Collapse
|
34
|
Inhibition of electron transfer through the cytochrome b-c 1 complex by nitric oxide in a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans. Arch Microbiol 1984. [DOI: 10.1007/bf00401996] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Rich PR. Electron and proton transfers through quinones and cytochrome bc complexes. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 768:53-79. [PMID: 6322844 DOI: 10.1016/0304-4173(84)90007-7] [Citation(s) in RCA: 266] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Thermodynamic properties of the semiquinone and its binding site in the ubiquinol-cytochrome c (c2) oxidoreductase of respiratory and photosynthetic systems. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43472-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
|
38
|
Zhu QS, Van der Wal HN, Van Grondelle R, Berden JA. Kinetics of flash-induced electron transfer between bacterial reaction centres, mitochondrial ubiquinol:cytochrome c oxidoreductase and cytochrome c. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 725:121-30. [PMID: 6313049 DOI: 10.1016/0005-2728(83)90231-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ascorbate-reduced horse heart cytochrome c reduces photo-oxidized bacterial reaction centres with a second-order rate constant of (5-8) X 10(8) M-1 X s-1 at an ionic strength of 50 mM. In the absence of cytochrome c, the cytochrome c1 in the ubiquinol:cytochrome c oxidoreductase is oxidized relatively slowly (k = 3.3 X 10(5) M-1 X s-1). Ferrocytochrome c binds specifically to ascorbate-reduced reductase, with a Kd of 0.6 microM, and only the free cytochrome c molecules are involved in the rapid reduction of photo-oxidized reaction centres. The electron transfer between ferricytochrome c and ferrocytochrome c1 of the reductase is rapid, with a second-order rate constant of 2.1 X 10(8) M-1 X s-1 at an ionic strength of 50 mM. The rate of electron transfer from the Rieske iron-sulphur cluster to cytochrome c1 is even more rapid. The cytochrome b of the ubiquinol:cytochrome c oxidoreductase can be reduced by electrons from the reaction centres through two pathways: one is sensitive to antimycin and the other to myxothiazol. The amount of cytochrome b reduced in the absence of antimycin is dependent on the redox potential of the system, but in no case tested did it exceed 25% of the amount of photo-oxidized reaction centres.
Collapse
|
39
|
van Der Wal H, van Grondelle R. Flash-induced electron transport in b- and c-type cytochromes in Rhodospirillum rubrum. Evidence for a Q-cycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1983. [DOI: 10.1016/0005-2728(83)90228-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
|
41
|
Oleskin AV, Samuilov VD. Cytochrome b50 as a proton carrier in the photosynthetic redox chain of purple bacteria. J Bioenerg Biomembr 1983; 15:167-77. [PMID: 18251104 DOI: 10.1007/bf00743938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent data on the proton-translocating activity of b cytochromes in chromatophores of purple bacteria and their arrangement in the photosynthetic redox chain are discussed. These data appear to support the concept of the b50 and b-90 cytochrome doublet spanning the membrane. Current schemes of H+ transport by b cytochromes are considered, and the scheme of H+ translocation by cytochrome b50 taking up H+ at the outer side of the membrane and a quinone delivering them from this cytochrome to the inner space of the chromatophore is favored as the most probable in the light of recent findings. This scheme is applicable both to Crofts' linear model of the redox chain and to Mitchell's Q cycle. Kinetic discrepancies between H+ uptake and cytochrome b50 reduction at high ambient redox potentials are interpreted in terms of a special, cytochrome b50-independent, yet Rieske FeS-protein-dependent mode of H+ transport.
Collapse
Affiliation(s)
- A V Oleskin
- Department of Microbiology, Moscow State University, Moscow 117234, USSR
| | | |
Collapse
|
42
|
Hauska G, Hurt E, Gabellini N, Lockau W. Comparative aspects of quinol-cytochrome c/plastocyanin oxidoreductases. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 726:97-133. [PMID: 6307358 DOI: 10.1016/0304-4173(83)90002-2] [Citation(s) in RCA: 360] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Prince RC. The location, orientation and stoichiometry of the Rieske iron-sulfur cluster in membranes from Rhodopseudomonas sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1983. [DOI: 10.1016/0005-2728(83)90112-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
van den Berg WH, Bonner WD, Dutton PL. Redox potential dependence of photophosphorylation and electron transfer in continuous illumination of Rhodopseudomonas sphaeroides chromatophores. Arch Biochem Biophys 1983; 222:299-309. [PMID: 6601471 DOI: 10.1016/0003-9861(83)90527-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The dependence on redox potential (Eh) of the steady-state photophosphorylation rate in chromatophores of Rhodopseudomonas sphaeroides Ga was measured using slowly equilibrating (and hence less interfering) redox mediators. The remaining interference of the mediators was taken into account by extrapolating to zero mediator concentration. The extents of cytochrome redox reactions (in the presence of antimycin) and of the carotenoid shift were similarly measured. The redox titration of cytochrome c oxidation is consistent with a requirement for prior cytochrome c2 reduction and prior Q1 (primary electron acceptor) oxidation, while the titration of cytochrome b reduction is consistent with a requirement for prior (BChl)2 reduction and prior cytochrome b560 oxidation. The steady-state carotenoid shift extent is a much more broadly peaked function of Eh than is the extent following a single-turnover flash, indicating that the transmembrane electrical potential difference can be built up to significant levels by minimal rates of electron flow. The photophosphorylation rate, in contrast, is much more strongly Eh dependent, supporting the concept of a threshold membrane energization below which phosphorylation cannot occur. Earlier work by others showing a requirement for equilibrium cytochrome c2 reduction and Q1 oxidation is clearly confirmed. A much greater enhancement in phosphorylation rate was found at low Eh than has heretofore been reported. This threefold enhancement is discussed in relation to the equilibrium redox states of the ubiquinone-10 complement of the chromatophore membrane.
Collapse
|
45
|
Inhibition of electron transfer by 3-alkyl-2-hydroxy-1,4-naphthoquinones in the ubiquinol-cytochrome c oxidoreductases of Rhodopseudomonas sphaeroides and mammalian mitochondria. Interaction with a ubiquinone-binding site and the Rieske iron-sulfur cluster. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)33022-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
46
|
A reevaluation of the events leading to the electrogenic reaction and proton translocation in the ubiquinol-cytochrome c oxidoreductase of Rhodopseudomonas sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1983. [DOI: 10.1016/0005-2728(83)90152-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Gabellini N, Bowyer JR, Hurt E, Melandri BA, Hauska G. A cytochrome b/c1 complex with ubiquinol--cytochrome c2 oxidoreductase activity from Rhodopseudomonas sphaeroides GA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 126:105-11. [PMID: 6290210 DOI: 10.1111/j.1432-1033.1982.tb06753.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A cytochrome b/c1 complex which catalyses the reduction of cytochrome c by ubiquinol has been isolated from Rhodopseudomonas sphaeroides GA. It contains two hemes b and substoichiometric amounts of ubiquinone-10 and of the Rieske Fe-S center per cytochrome c1, and is essentially free of reaction center and bacteriochlorophyll. The complex consists of three major polypeptides with apparent molecular masses of 40, 34 and 25 kDa. The 34-kDa polypeptide carries heme. Cytochrome c1 has a midpoint potential of 285 mV. For cytochrome b two midpoint potentials, at 50 and -60 mV, at pH 7.4, can be derived if one assumes two components of equal amount. Ubiquinol--cytochrome c oxidoreductase activity is specific for ubiquinol and bacterial cytochromes c, and is inhibited by antimycin A and 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole. The complex shows oxidant-induced reduction of cytochrome b.
Collapse
|
48
|
De Vries S, Albracht SP, Berden JA, Slater EC. The pathway of electrons through OH2:cytochrome c oxidoreductase studied by pre-steady -state kinetics. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 681:41-53. [PMID: 6288082 DOI: 10.1016/0005-2728(82)90276-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The kinetic behaviour of the prosthetic groups and the semiquinones in in QH2:cytochrome c oxidoreductase has been studied using a combination of the freeze-quench technique, low-temperature diffuse-reflectance spectroscopy, EPR and stopped flow. (2) In the absence of antimycin, cytochrome b-562 is reduced in two phases separated by a lag time. The initial very rapid reduction phase, that coincides with the formation of the antimycin-sensitive Qin, is ascribed to high-potential cytochrome b-562 and the slow phase to low-potential cytochrome b-562. the two cytochromes are present in a 1:1 molar ratio. The lag time between the two reduction phases decreases with increasing pH. Both the [2 Fe-2S] clusters and cytochrome c1 are reduced monophasically under these conditions, but at a rate lower than that of the initial rapid reduction of cytochrome b-562. (3) In the presence of antimycin and absence of oxidant, cytochrome b-562 is still reduced biphasically, but there is no lag between the two phases. No Qin is formed and both the Fe-S clusters and cytochrome c1 are reduced biphasically, one-half being reduced at the same rate as in the absence of antimycin and the other half 10-times slower. (4) In the presence of antimycin and oxidant, the recently described antimycin-insensitive species of semiquinone anion, Qout (De Vries, S., Albracht, S.P.J., Berden, J.A. and Slater, E.C. (1982) J. Biol. Chem. 256, 11996-11998) is formed at the same rate as that of the reduction of all species of cytochrome b. In this case cytochrome b is reduced in a single phase. (5) The reversible change of the line shape of the EPR spectrum of the [2Fe-2S] cluster 1 is caused by ubiquinone bound in the vicinity of this cluster. (6) The experimental results are consistent with the basic principles of the Q cycle. Because of the multiplicity, stoicheiometry and heterogeneous kinetics of the prosthetic groups, a Q cycle model describing the pathway of electrons through a dimeric QH2:cytochrome c oxidoreductase is proposed.
Collapse
|
49
|
The kinetics of carotenoid absorption changes in intact cells of photosynthetic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1982. [DOI: 10.1016/0005-2728(82)90265-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Photooxidation of the Reaction Center Chlorophylls and Structural Properties of Photosynthetic Reaction Centers. ACTA ACUST UNITED AC 1982. [DOI: 10.1007/978-3-642-81795-3_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|