1
|
Hernández-López P, Cilla M, Martínez MA, Peña E, Malvè M. Impact of geometric and hemodynamic changes on a mechanobiological model of atherosclerosis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108296. [PMID: 38941860 DOI: 10.1016/j.cmpb.2024.108296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND AND OBJECTIVE In this work, the analysis of the importance of hemodynamic updates on a mechanobiological model of atheroma plaque formation is proposed. METHODS For that, we use an idealized and axisymmetric model of carotid artery. In addition, the behavior of endothelial cells depending on hemodynamical changes is analyzed too. A total of three computational simulations are carried out and their results are compared: an uncoupled model and two models that consider the opposite behavior of endothelial cells caused by hemodynamic changes. The model considers transient blood flow using the Navier-Stokes equation. Plasma flow across the endothelium is determined with Darcy's law and the Kedem-Katchalsky equations, considering the three-pore model, which is also employed for the flow of substances across the endothelium. The behavior of the considered substances in the arterial wall is modeled with convection-diffusion-reaction equations, and the arterial wall is modeled as a hyperelastic Yeoh's material. RESULTS Significant variations are noted in both the morphology and stenosis ratio of the plaques when comparing the uncoupled model to the two models incorporating updates for geometry and hemodynamic stimuli. Besides, the phenomenon of double-stenosis is naturally reproduced in the models that consider both geometric and hemodynamical changes due to plaque growth, whereas it cannot be predicted in the uncoupled model. CONCLUSIONS The findings indicate that integrating the plaque growth model with geometric and hemodynamic settings is essential in determining the ultimate shape and dimensions of the carotid plaque.
Collapse
Affiliation(s)
| | - Myriam Cilla
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50015, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain.
| | - Miguel A Martínez
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50015, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain.
| | - Estefanía Peña
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50015, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain.
| | - Mauro Malvè
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain; Public University of Navarra (UPNA), Pamplona, Spain.
| |
Collapse
|
2
|
Hernández-López P, Laita N, Cilla M, Martínez MÁ, Peña E. Impact of hypertension and arterial wall expansion on transport properties and atherosclerosis progression. J Biomech 2024; 174:112212. [PMID: 39089939 DOI: 10.1016/j.jbiomech.2024.112212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
This study explored the impact of hypertension on atheroma plaque formation through a mechanobiological model. The model incorporates blood flow via the Navier-Stokes equation. Plasma flow through the endothelium is determined by Darcy's law and the Kedem-Katchalsky equations, which consider the three-pore model utilized for substance flow across the endothelium. The behaviour of these substances within the arterial wall is described by convection-diffusion-reaction equations, while the arterial wall itself is modelled as a hyperelastic material using Yeoh's model. To accurately evaluate hypertension's influence, adjustments were made to incorporate wall compression-induced wall compaction by radial compression. This compaction impacts three key variables of the transport phenomena: diffusion, porosity, and permeability. Based on the obtained findings, we can conclude that hypertension significantly augments plaque growth, leading to an over 400% increase in plaque thickness. This effect persists regardless of whether wall mechanics are considered. Tortuosity, arterial wall permeability, and porosity have minimal impact on atheroma plaque growth under normal arterial pressure. However, the atheroma plaque growth changes dramatically in hypertensive cases. In such scenarios, the collective influence of all factors-tortuosity, permeability, and porosity-results in nearly a 20% increase in plaque growth. This emphasizes the importance of considering wall compression due to hypertension in patient studies, where elevated blood pressure and high cholesterol levels commonly coexist.
Collapse
Affiliation(s)
| | - Nicolás Laita
- Aragón Institute of Engineering Research (I3A). University of Zaragoza, Spain
| | - Myriam Cilla
- Aragón Institute of Engineering Research (I3A). University of Zaragoza, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Miguel Ángel Martínez
- Aragón Institute of Engineering Research (I3A). University of Zaragoza, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Estefanía Peña
- Aragón Institute of Engineering Research (I3A). University of Zaragoza, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| |
Collapse
|
3
|
Li Z, Jiang W, Fan H, Yan F, Dong R, Bai T, Xu K. Reallocation of cutaneous and global blood circulation during sauna bathing through a closed-loop model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106917. [PMID: 35640388 DOI: 10.1016/j.cmpb.2022.106917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Sauna bathing (SB) is an important strategy in cardiovascular protection, but there is no mathematical explanation for the reallocation of blood circulation during heat-induced superficial vasodilation. We sought to reveal such reallocation via a simulated hemodynamic model. METHODS A closed-loop cardiovascular model with a series of electrical parameters was constructed. The body surface was divided into seven blocks and each block was modeled by a lumped resistance. These resistances were adjusted to increase skin blood flow (SBF), with the aim of reflecting heat-induced vasodilation during SB. Finally, the blood pressure was compared before and after SB, and the blood flow inside the aorta and visceral arteries were also analyzed. RESULTS With increasing SBF in this model, the systolic, diastolic, and mean blood pressure in the arterial trunk decreased by 13-29, 18-36, and 19-37 mmHg, respectively. Despite the increase in the peak and mean blood flow in the arterial trunk, the diastolic blood flow reversal in the thoracic and abdominal aortas increased significantly. Nevertheless, the blood supply to the heart, liver, stomach, spleen, kidney, and intestine decreased by at least 25%. Moreover, the pulmonary blood flow increased significantly. CONCLUSION Simulated heat-induced cutaneous vasodilation in this model lowers blood pressure, induces visceral ischemia, and promotes pulmonary circulation, suggesting that the present closed-loop model may be able to describe the effect of sauna bathing on blood circulation. However, the increase of retrograde flow in the aortas found in this model deserves further examination.
Collapse
Affiliation(s)
- Zhongyou Li
- Sichuan Province Biomechanical Engineering Laboratory, Chengdu, China; Department of Mechanical Science and Engineering, Sichuan University, Nan Yihuan Road No 24, Wuhou District, 610065, China
| | - Wentao Jiang
- Sichuan Province Biomechanical Engineering Laboratory, Chengdu, China; Department of Mechanical Science and Engineering, Sichuan University, Nan Yihuan Road No 24, Wuhou District, 610065, China.
| | - Haidong Fan
- Department of Mechanical Science and Engineering, Sichuan University, Nan Yihuan Road No 24, Wuhou District, 610065, China
| | - Fei Yan
- Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
| | - Ruiqi Dong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Taoping Bai
- Sichuan Province Biomechanical Engineering Laboratory, Chengdu, China; Department of Mechanical Science and Engineering, Sichuan University, Nan Yihuan Road No 24, Wuhou District, 610065, China
| | - Kairen Xu
- Sichuan Province Biomechanical Engineering Laboratory, Chengdu, China; Department of Mechanical Science and Engineering, Sichuan University, Nan Yihuan Road No 24, Wuhou District, 610065, China
| |
Collapse
|
4
|
Li Z, Jiang W, Diao J, Chen C, Xu K, Fan H, Yan F. Segmentary strategy in modeling of cardiovascular system with blood supply to regional skin. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Yu H, Kang D, Whang M, Kim T, Kim J. A Microfluidic Model Artery for Studying the Mechanobiology of Endothelial Cells. Adv Healthc Mater 2021; 10:e2100508. [PMID: 34297476 DOI: 10.1002/adhm.202100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/25/2021] [Indexed: 11/07/2022]
Abstract
Recent vascular mechanobiology studies find that endothelial cells (ECs) convert multiple mechanical forces into functional responses in a nonadditive way, suggesting that signaling pathways such as those regulating cytoskeleton may be shared among the processes of converting individual forces. However, previous in vitro EC-culture platforms are inherent with extraneous mechanical components, which may saturate or insufficiently activate the shared signaling pathways and accordingly, may misguide EC mechanobiological responses being investigated. Here, a more physiologically relevant model artery is reported that accurately reproduces most of the mechanical forces found in vivo, which can be individually varied in any combination to pathological levels to achieve diseased states. Arterial geometries of normal and diseased states are also realized. By mimicking mechanical microenvironments of early-stage atherosclerosis, it is demonstrated that the elevated levels of the different types of stress experienced by ECs strongly correlate with the disruption of barrier integrity, suggesting that boundaries of an initial lesion could be sites for efficient disease progression.
Collapse
Affiliation(s)
- Hyeonji Yu
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Dongwon Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Minji Whang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Taeyoung Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Jungwook Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
6
|
Gong X, Liang Z, Wang Y, Zhang C, Xie S, Fan Y. Comparative study on hemodynamic environments around patient-specific carotid atherosclerotic plaques with different symmetrical features. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
7
|
Hernández-López P, Cilla M, Martínez M, Peña E. Effects of the Haemodynamic Stimulus on the Location of Carotid Plaques Based on a Patient-Specific Mechanobiological Plaque Atheroma Formation Model. Front Bioeng Biotechnol 2021; 9:690685. [PMID: 34195181 PMCID: PMC8236601 DOI: 10.3389/fbioe.2021.690685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
In this work, we propose a mechanobiological atheroma growth model modulated by a new haemodynamic stimulus. To test this model, we analyse the development of atheroma plaques in patient-specific bifurcations of carotid arteries for a total time of 30 years. In particular, eight geometries (left or right carotid arteries) were segmented from clinical images and compared with the solutions obtained computationally to validate the model. The influence of some haemodynamical stimuli on the location and size of plaques is also studied. Plaques predicted by the mechanobiological models using the time average wall shear stress (TAWSS), the oscillatory shear index (OSI) and a new index proposed in this work are compared. The new index predicts the shape index of the endothelial cells as a combination of TAWSS and OSI values and was fitted using data from the literature. The mechanobiological model represents an evolution of the one previously proposed by the authors. This model uses Navier-Stokes equations to simulate blood flow along the lumen in the transient mode. It also employs Darcy's law and Kedem-Katchalsky equations for plasma and substance flow across the endothelium using the three-pore model. The mass balances of all the substances that have been considered in the model are implemented by convection-diffusion-reaction equations, and finally the growth of the plaques has been computed. The results show that by using the new mechanical stimulus proposed in this study, prediction of plaques is, in most cases, better than only using TAWSS or OSI with a minimal and maximal errors on stenosis ratio of 2.77 and 32.89 %, respectively. However, there are a few geometries in which haemodynamics cannot predict the location of plaques, and other biological or genetic factors would be more relevant than haemodynamics. In particular, the model predicts correctly eleven of the fourteen plaques presented in all the geometries considered. Additionally, a healthy geometry has been computed to check that plaque is not developed with the model in this case.
Collapse
Affiliation(s)
| | - Myriam Cilla
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Centro Universitario de la Defensa, Academia General Militar, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Miguel Martínez
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Estefanía Peña
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicina (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
8
|
Soleimani E, Mokhtari-Dizaji M, Fatouraee N, Saberi H. Stress distribution analysis in healthy and stenosed carotid artery models reconstructed from in vivo ultrasonography. Ultrasonography 2021; 40:428-441. [PMID: 33775008 PMCID: PMC8217799 DOI: 10.14366/usg.20131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/05/2021] [Indexed: 11/05/2022] Open
Abstract
Purpose This study investigated the accuracy of models reconstructed from ultrasound image processing by comparing the radial displacement waveforms of a subject-specific artery model and evaluated stress changes in the proximal shoulder, throat, and distal shoulder of the plaques depending on the degree of carotid artery stenosis. Methods Three groups of subjects (healthy and with less than 50% or more carotid stenosis) were evaluated with ultrasonography. Two-dimensional transverse imaging of the common carotid artery was performed to reconstruct the geometry. A longitudinal view of the same region was recorded to extract the Kelvin viscoelastic model parameters. The pulse pressure waveform and the effective pressure of perivascular tissue were loaded onto the internal and external walls of the model. Effective, circumferential, and principal stresses applied to the plaque throat, proximal shoulder, and distal shoulder in the transverse planes were extracted. Results The radial displacement waveforms of the model were closely correlated with those of image processing in all three groups. The mean of the effective, circumferential, and principal stresses of the healthy arteries were 15.01±4.93, 12.97±5.07, and 12.39±2.86 kPa, respectively. As stenosis increased from mild to significant, the mean values of the effective, circumferential, and first principal stresses increased significantly (97%, 74%, and 103% at the plaque throat, respectively) (P<0.05). The minimum effective stress was at the lipid pool. The effective stress in calcified areas was higher than in other parts of the artery wall. Conclusion This model can discriminate differences in stresses applied to mildly and severely stenotic plaques.
Collapse
Affiliation(s)
- Effat Soleimani
- Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| | | | - Nasser Fatouraee
- Department of Medical Engineering, AmirKabir University of Technology, Tehran, Iran
| | - Hazhir Saberi
- Department of Radiology, Tehran Medical Sciences University, Imaging Center of Imam Khomeini Hospital, Tehran, Iran
| |
Collapse
|
9
|
Azar D, Torres WM, Davis LA, Shaw T, Eberth JF, Kolachalama VB, Lessner SM, Shazly T. Geometric determinants of local hemodynamics in severe carotid artery stenosis. Comput Biol Med 2019; 114:103436. [PMID: 31521900 DOI: 10.1016/j.compbiomed.2019.103436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 01/30/2023]
Abstract
In cases of severe carotid artery stenosis (CAS), carotid endarterectomy (CEA) is performed to recover lumen patency and alleviate stroke risk. Under current guidelines, the decision to surgically intervene relies primarily on the percent loss of native arterial lumen diameter within the stenotic region (i.e. the degree of stenosis). An underlying premise is that the degree of stenosis modulates flow-induced wall shear stress elevations at the lesion site, and thus indicates plaque rupture potential and stroke risk. Here, we conduct a retrospective study on pre-CEA computed tomography angiography (CTA) images from 50 patients with severe internal CAS (>60% stenosis) to better understand the influence of plaque and local vessel geometry on local hemodynamics, with geometrical descriptors that extend beyond the degree of stenosis. We first processed CTA images to define a set of multipoint geometric metrics characterizing the stenosed region, and next performed computational fluid dynamics simulations to quantify local wall shear stress and associated hemodynamic metrics. Correlation and regression analyses were used to relate obtained geometric and hemodynamic metrics, with inclusion of patient sub-classification based on the degree of stenosis. Our results suggest that in the context of severe CAS, prediction of shear stress-based metrics can be enhanced by consideration of readily available, multipoint geometric metrics in addition to the degree of stenosis.
Collapse
Affiliation(s)
- Dara Azar
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, USA
| | - William M Torres
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, USA; Exponent, Inc, Philadelphia, PA, USA
| | - Lindsey A Davis
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, USA; Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Taylor Shaw
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - John F Eberth
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, USA; Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Vijaya B Kolachalama
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Susan M Lessner
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, USA; Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Tarek Shazly
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, USA; Department of Mechanical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
10
|
Yao X, Dai Z, Zhang X, Gao J, Xu G, Cai Y, Li Z. Carotid Geometry as a Predictor of In-Stent Neointimal Hyperplasia - A Computational Fluid Dynamics Study. Circ J 2019; 83:1472-1479. [PMID: 31061352 DOI: 10.1253/circj.cj-18-1152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Carotid angioplasty and stenting (CAS) is emerging as an alternative treatment for carotid stenosis, but neointimal hyperplasia (NIH) remains a drawback of this treatment strategy. This study aimed to evaluate the effect of variations of carotid bifurcation geometry on local hemodynamics and NIH. METHODS AND RESULTS Hemodynamic and geometric effects on NIH were compared between 2 groups, by performing computational fluid dynamics (CFD) simulations both on synthetic models and patient-specific models. In the idealized models, multiple regression analysis revealed a significant negative relationship between internal carotid artery (ICA) angle and the local hemodynamics. In the patient-derived models, which were reconstructed from digital subtraction angiography (DSA) of 25 patients with bilateral CAS, a low time-average wall shear stress (TAWSS) and a high oscillatory shear index (OSI) were often found at the location of NIH. Larger difference values of the OSI percentage area (10.56±20.798% vs. -5.87±18.259%, P=0.048) and ECA/CCA diameter ratio (5.64±12.751% vs. -3.59±8.697%, P=0.047) were detected in the NIH-asymmetric group than in the NIH-symmetric group. CONCLUSIONS Changes in carotid bifurcation geometry can make apparent differences in hemodynamic distribution and lead to bilateral NIH asymmetry. It may therefore be reasonable to consider certain geometric variations as potential local risk factors for NIH.
Collapse
Affiliation(s)
- Xinke Yao
- School of Biological Science & Medical Engineering, Southeast University
| | - Zhengze Dai
- Department of Neurology, Jinling Clinical College of Nanjing Medical University
- Department of Neurology, Nanjing Pukou Hospital
| | - Xu Zhang
- School of Biological Science & Medical Engineering, Southeast University
| | - Jie Gao
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University
| | - Gelin Xu
- Department of Neurology, Jinling Clinical College of Nanjing Medical University
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University
| | - Yan Cai
- School of Biological Science & Medical Engineering, Southeast University
| | - Zhiyong Li
- School of Biological Science & Medical Engineering, Southeast University
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology
| |
Collapse
|
11
|
Soleimani E, Mokhtari-Dizaji M, Fatouraee N, Saberi H. Estimation of Biomechanical Properties of Normal and Atherosclerotic Common Carotid Arteries. Cardiovasc Eng Technol 2018; 10:112-123. [DOI: 10.1007/s13239-018-00389-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/12/2018] [Indexed: 10/28/2022]
|
12
|
Sousa LC, Castro CF, António CC, Sousa F, Santos R, Castro P, Azevedo E. Computational simulation of carotid stenosis and flow dynamics based on patient ultrasound data - A new tool for risk assessment and surgical planning. Adv Med Sci 2016; 61:32-9. [PMID: 26355739 DOI: 10.1016/j.advms.2015.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 06/09/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE There is nowadays extensive experimental and computational investigation on the pathophysiology of atherosclerosis, searching correlations between its focal nature and local hemodynamic environment. The goal of this work is to present a methodology for patient-specific hemodynamics study of the carotid artery bifurcation based on the use of ultrasound (US) morphological and blood flow velocity patient data. MATERIALS/METHODS Subject-specific studies were performed for two patients, using a developed finite element code. Geometrical models were obtained from the acquisition of longitudinal and sequential cross-sectional ultrasound images and boundary conditions from Doppler velocity measurements at the common carotid artery. RESULTS There was a good agreement between ultrasound imaging data and computational simulated results. For a normal and a stenosed carotid bifurcation the velocity, wall shear stress (WSS) and WSS descriptors analysis illustrated the extremely complex hemodynamic behavior along the cardiac cycle. Different patterns were found, associated with morphology and hemodynamic patient-specific conditions. High values of time-averaged WSS (TAWSS) were found at stenosis site and for both patients TAWSS fields presented low values within areas of high oscillating shear index and relative residence time values, corresponding to recirculation zones. CONCLUSION Simulated hemodynamic parameters were able to capture the disturbed flow conditions in a normal and a stenosed carotid artery bifurcation, which play an important role in the development of local atherosclerotic plaques. Computational simulations based on clinic US might help improving diagnostic and treatment management of carotid atherosclerosis.
Collapse
|
13
|
Ohhara Y, Oshima M, Iwai T, Kitajima H, Yajima Y, Mitsudo K, Krdy A, Tohnai I. Investigation of blood flow in the external carotid artery and its branches with a new 0D peripheral model. Biomed Eng Online 2016; 15:16. [PMID: 26846094 PMCID: PMC4743235 DOI: 10.1186/s12938-016-0133-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 01/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patient-specific modelling in clinical studies requires a realistic simulation to be performed within a reasonable computational time. The aim of this study was to develop simple but realistic outflow boundary conditions for patient-specific blood flow simulation which can be used to clarify the distribution of the anticancer agent in intra-arterial chemotherapy for oral cancer. METHODS In this study, the boundary conditions are expressed as a zero dimension (0D) resistance model of the peripheral vessel network based on the fractal characteristics of branching arteries combined with knowledge of the circulatory system and the energy minimization principle. This resistance model was applied to four patient-specific blood flow simulations at the region where the common carotid artery bifurcates into the internal and external carotid arteries. RESULTS Results of these simulations with the proposed boundary conditions were compared with the results of ultrasound measurements for the same patients. The pressure was found to be within the physiological range. The difference in velocity in the superficial temporal artery results in an error of 5.21 ± 0.78 % between the numerical results and the measurement data. CONCLUSIONS The proposed outflow boundary conditions, therefore, constitute a simple resistance-based model and can be used for performing accurate simulations with commercial fluid dynamics software.
Collapse
Affiliation(s)
- Yoshihito Ohhara
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Marie Oshima
- Department of Interfaculty Initiative in Information Studies, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Toshinori Iwai
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Hiroaki Kitajima
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Yasuharu Yajima
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Absy Krdy
- Department of Interfaculty Initiative in Information Studies, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Iwai Tohnai
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
14
|
Sousa LC, Castro CF, António CC, Santos AMF, Dos Santos RM, Castro PMAC, Azevedo E, Tavares JMRS. Toward hemodynamic diagnosis of carotid artery stenosis based on ultrasound image data and computational modeling. Med Biol Eng Comput 2014; 52:971-983. [PMID: 25249277 DOI: 10.1007/s11517-014-1197-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 09/17/2014] [Indexed: 11/29/2022]
Abstract
The ability of using non-expensive ultrasound (US) image data together with computer fluid simulation to access various severities of carotid stenosis was inquired in this study. Subject-specific hemodynamic conditions were simulated using a developed finite element solver. Individual structured meshing of the common carotid artery (CCA) bifurcation was built from segmented longitudinal and cross-sectional US images; imposed boundary velocities were based on Doppler US measurements. Simulated hemodynamic parameters such as velocities, wall shear stress (WSS) and derived descriptors were able to predict disturbed flow conditions which play an important role in the development of local atherosclerotic plaques. Hemodynamic features from six individual CCA bifurcations were analyzed. High values of time-averaged WSS (TAWSS) were found at stenosis site. Low values of TAWSS were found at the bulb and at the carotid internal and external branches depending on the particular features of each patient. High oscillating shear index and relative residence time values assigned highly disturbed flows at the same artery surface regions that correlate only moderately with low TAWSS results. Based on clinic US examinations, results provide estimates of flow changes and forces at the carotid artery wall toward the link between hemodynamic behavior and stenosis pathophysiology.
Collapse
Affiliation(s)
- Luísa C Sousa
- Faculdade de Engenharia, Instituto de Engenharia Mecânica (IDMEC-Polo FEUP), Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal.
| | - Catarina F Castro
- Faculdade de Engenharia, Instituto de Engenharia Mecânica (IDMEC-Polo FEUP), Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Carlos C António
- Faculdade de Engenharia, Instituto de Engenharia Mecânica (IDMEC-Polo FEUP), Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - André Miguel F Santos
- Faculdade de Engenharia, Instituto de Engenharia Mecânica e Gestão Industrial, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Rosa Maria Dos Santos
- Departamento de Neurologia, Faculdade de Medicina, Hospital São João, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Pedro Miguel A C Castro
- Departamento de Neurologia, Faculdade de Medicina, Hospital São João, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Elsa Azevedo
- Departamento de Neurologia, Faculdade de Medicina, Hospital São João, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
| | - João Manuel R S Tavares
- Faculdade de Engenharia, Instituto de Engenharia Mecânica e Gestão Industrial, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| |
Collapse
|
15
|
Sousa LC, Castro CF, António CC, Santos A, Santos R, Castro P, Azevedo E, Tavares JMR. Haemodynamic conditions of patient-specific carotid bifurcation based on ultrasound imaging. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION 2014. [DOI: 10.1080/21681163.2013.875486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
A Survey of Quantitative Descriptors of Arterial Flows. VISUALIZATION AND SIMULATION OF COMPLEX FLOWS IN BIOMEDICAL ENGINEERING 2014. [DOI: 10.1007/978-94-007-7769-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Pei X, Wu B, Li ZY. Fatigue Crack Propagation Analysis of Plaque Rupture. J Biomech Eng 2013; 135:101003-9. [PMID: 23897295 DOI: 10.1115/1.4025106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 07/03/2013] [Indexed: 11/08/2022]
Abstract
Rupture of atheromatous plaque is the major cause of stroke or heart attack. Considering that the cardiovascular system is a classic fatigue environment, plaque rupture was treated as a chronic fatigue crack growth process in this study. Fracture mechanics theory was introduced to describe the stress status at the crack tip and Paris' law was used to calculate the crack growth rate. The effect of anatomical variation of an idealized plaque cross-section model was investigated. The crack initiation was considered to be either at the maximum circumferential stress location or at any other possible locations around the lumen. Although the crack automatically initialized at the maximum circumferential stress location usually propagated faster than others, it was not necessarily the most critical location where the fatigue life reached its minimum. We found that the fatigue life was minimum for cracks initialized in the following three regions: the midcap zone, the shoulder zone, and the backside zone. The anatomical variation has a significant influence on the fatigue life. Either a decrease in cap thickness or an increase in lipid pool size resulted in a significant decrease in fatigue life. Comparing to the previously used stress analysis, this fatigue model provides some possible explanations of plaque rupture at a low stress level in a pulsatile cardiovascular environment, and the method proposed here may be useful for further investigation of the mechanism of plaque rupture based on in vivo patient data.
Collapse
Affiliation(s)
- Xuan Pei
- School of Biological Science and
Medical Engineering, Southeast University, Nanjing 210096, China
| | - Baijian Wu
- Department of Engineering Mechanics, Southeast University, Nanjing 210096, China
| | - Zhi-Yong Li
- School of Biological Science and
Medical Engineering, Southeast University, Nanjing 210096, China
- University Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK e-mail:
| |
Collapse
|
18
|
Uemiya N, Lee CJ, Ishihara S, Yamane F, Zhang Y, Qian Y. Analysis of restenosis after carotid artery stenting: preliminary results using computational fluid dynamics based on three-dimensional angiography. J Clin Neurosci 2013; 20:1582-7. [PMID: 24035423 DOI: 10.1016/j.jocn.2013.03.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/30/2013] [Indexed: 10/26/2022]
Abstract
Currently carotid artery stenting (CAS) is a widely used technique for the treatment of carotid artery stenosis. However, some patients with restenosis following CAS have been reported, resulting in potential clinical problems. The purpose of this study was to investigate the hemodynamic changes before and after CAS to find the factors that may influence restenosis. Five patients (two with restenosis, three without restenosis) were included in this study. The geometry and rheological conditions of the carotid arteries were obtained from three-dimensional digital subtraction angiography and ultrasound measurements. Computational fluid dynamics (CFD) modelling was performed to calculate wall shear stress (WSS), wall shear stress gradient (WSSG) and internal carotid artery (ICA) flow ratio. In addition, morphologic analysis was carried out. CFD results indicated that the WSSG of the restenosis group was significantly larger than that of the no-restenosis group. In the restenosis group, the WSS distribution after CAS showed a significant variation at the ICA. The average ICA flow ratio of the restenosis group was 43.5%, while in the no-restenosis group it was 68.6%. Furthermore, there were similar significant differences between the two groups during morphology analysis. CFD technology is useful for physicians in estimating haemodynamic changes during ICA stenosis treatment. These parameters, including ICA flow ratio and WSS distribution, may help to predict carotid restenosis. In future, CFD combined with other medical techniques such as digital subtraction angiography, MRI and pathology technologies will be available for the clinical estimation of ICA restenosis.
Collapse
Affiliation(s)
- Nahoko Uemiya
- Australian School of Advanced Medicine, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW 2109, Australia; Department of Endovascular Neurosurgery, Saitama Medical University International Medical Center, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Canton G, Chiu B, Chen H, Chen Y, Hatsukami TS, Kerwin WS, Yuan C. A framework for the co-registration of hemodynamic forces and atherosclerotic plaque components. Physiol Meas 2013; 34:977-90. [PMID: 23945133 DOI: 10.1088/0967-3334/34/9/977] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Local hemodynamic forces, such as wall shear stress (WSS), are thought to trigger cellular and molecular mechanisms that determine atherosclerotic plaque vulnerability to rupture. Magnetic resonance imaging has emerged as a powerful tool to characterize human carotid atherosclerotic plaque composition and morphology, and to identify plaque features shown to be key determinants of plaque vulnerability. Image-based computational fluid dynamics has allowed researchers to obtain time-resolved WSS information of atherosclerotic carotid arteries. A deeper understanding of the mechanisms of initiation and progression of atherosclerosis can be obtained through the comparison of WSS and plaque composition and morphology. To date, however, advance in knowledge has been limited greatly due to the lack of a reliable infrastructure to perform such analysis. The aim of this study is to establish a framework that will allow for the co-registration and analysis of the three-dimensional distribution of WSS and plaque components and morphology. The use of this framework will lead to future studies targeted to determining the role of WSS in atherosclerotic plaque progression and vulnerability.
Collapse
Affiliation(s)
- Gador Canton
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Jeong W, Han MH, Rhee K. Effects of framing coil shape, orientation, and thickness on intra-aneurysmal flow. Med Biol Eng Comput 2013; 51:981-90. [DOI: 10.1007/s11517-013-1073-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/29/2013] [Indexed: 11/30/2022]
|
21
|
Park DW, Kruger GH, Rubin JM, Hamilton J, Gottschalk P, Dodde RE, Shih AJ, Weitzel WF. In vivo vascular wall shear rate and circumferential strain of renal disease patients. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:241-52. [PMID: 23211936 PMCID: PMC3538941 DOI: 10.1016/j.ultrasmedbio.2012.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/23/2012] [Accepted: 08/25/2012] [Indexed: 05/16/2023]
Abstract
This study measures the vascular wall shear rate at the vessel edge using decorrelation based ultrasound speckle tracking. Results for nine healthy and eight renal disease subjects are presented. Additionally, the vascular wall shear rate and circumferential strain during physiologic pressure, pressure equalization and hyperemia are compared for five healthy and three renal disease subjects. The mean and maximum wall shear rates were measured during the cardiac cycle at the top and bottom wall edges. The healthy subjects had significantly higher mean and maximum vascular wall shear rate than the renal disease subjects. The key findings of this research were that the mean vascular wall shear rates and circumferential strain changes between physiologic pressure and hyperemia that was significantly different between healthy and renal disease subjects.
Collapse
Affiliation(s)
- Dae Woo Park
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
WONG KELVINKL, THAVORNPATTANAPONG P, CHEUNG SHERMANCP, TU JY. BIOMECHANICAL INVESTIGATION OF PULSATILE FLOW IN A THREE-DIMENSIONAL ATHEROSCLEROTIC CAROTID BIFURCATION MODEL. J MECH MED BIOL 2013. [DOI: 10.1142/s0219519413500012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is a well-established fact that atherosclerosis in carotid bifurcation depends on flow parameters such as wall shear stress, flow pulsatility, and blood pressure. However, it is still not clearly verified how atherosclerosis can become aggravated when plaque experiences a high level of shear stress during advance stages of this disease. In this paper, fluid and structural properties in idealistic geometries are analyzed by using fluid-structure interaction (FSI). From our results, the relationship among blood pressure, stenotic compression, and deformation was established. We show that a high level of compression occurs at the stenotic apex, and can potentially be responsible for plaque progression. Moreover, wall shear stress and deformation are significantly affected by the degree of stenosis. Finally, through analysis of the FSI-based simulation results, we can better understand the parameters that influence flow through a stenotic artery and plaque aggravation, and apply the knowledge for the enhancement of clinical research and prediction of treatment outcomes.
Collapse
Affiliation(s)
- KELVIN K. L. WONG
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, VIC 3083, Australia
| | - P. THAVORNPATTANAPONG
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, VIC 3083, Australia
| | - SHERMAN C. P. CHEUNG
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, VIC 3083, Australia
| | - J. Y. TU
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, VIC 3083, Australia
| |
Collapse
|
23
|
Abstract
Measurements of biomechanical properties of arteries have become an important surrogate outcome used in epidemiological and interventional cardiovascular research. Structural and functional differences of vessels in the arterial tree result in a dampening of pulsatility and smoothing of blood flow as it progresses to capillary level. A loss of arterial elastic properties results a range of linked pathophysiological changes within the circulation including increased pulse pressure, left ventricular hypertrophy, subendocardial ischaemia, vessel endothelial dysfunction and cardiac fibrosis. With increased arterial stiffness, the microvasculature of brain and kidneys are exposed to wider pressure fluctuations and may lead to increased risk of stroke and renal failure. Stiffening of the aorta, as measured by the gold-standard technique of aortic Pulse Wave Velocity (aPWV), is independently associated with adverse cardiovascular outcomes across many different patient groups and in the general population. Therefore, use of aPWV has been proposed for early detection of vascular damage and individual cardiovascular risk evaluation and it seems certain that measurement of arterial stiffness will become increasingly important in future clinical care. In this review we will consider some of the pathophysiological processes that result from arterial stiffening, how it is measured and factors that may drive it as well as potential avenues for therapy. In the face of an ageing population where mortality from atheromatous cardiovascular disease is falling, pathology associated with arterial stiffening will assume ever greater importance. Therefore, understanding these concepts for all clinicians involved in care of patients with cardiovascular disease will become vital.
Collapse
Affiliation(s)
- Ursula Quinn
- Department of Clinical Pharmacology, Addenbrooke's Hospital , Cambridge , UK
| | | | | |
Collapse
|
24
|
Peter DA, Alemu Y, Xenos M, Weisberg O, Avneri I, Eshkol M, Oren T, Elazar M, Assaf Y, Bluestein D. Fluid Structure Interaction With Contact Surface Methodology for Evaluation of Endovascular Carotid Implants for Drug-Resistant Hypertension Treatment. J Biomech Eng 2012; 134:041001. [DOI: 10.1115/1.4006339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Drug-resistant hypertensive patients may be treated by mechanical stimulation of stretch-sensitive baroreceptors located in the sinus of carotid arteries. To evaluate the efficacy of endovascular devices to stretch the carotid sinus such that the induced strain might trigger baroreceptors to increase action potential firing rate and thereby reduce systemic blood pressure, numerical simulations were conducted of devices deployed in subject-specific carotid models. Two models were chosen—a typical physiologic carotid and a diminutive atypical physiologic model representing a clinically worst case scenario—to evaluate the effects of device deployment in normal and extreme cases, respectively. Based on the anatomical dimensions of the carotids, two different device sizes were chosen out of five total device sizes available. A fluid structure interaction (FSI) simulation methodology with contact surface between the device and the arterial wall was implemented for resolving the stresses and strains induced by device deployment. Results indicate that device deployment in the carotid sinus of the physiologic model induces an increase of 2.5% and 7.5% in circumferential and longitudinal wall stretch, respectively, and a maximum of 54% increase in von Mises arterial stress at the sinus wall baroreceptor region. The second device, deployed in the diminutive carotid model, induces an increase of 6% in both circumferential and longitudinal stretch and a 50% maximum increase in von Mises stress at the sinus wall baroreceptor region. Device deployment has a minimal effect on blood-flow patterns, indicating that it does not adversely affect carotid bifurcation hemodynamics in the physiologic model. In the smaller carotid model, deployment of the device lowers wall shear stress at sinus by 16% while accelerating flow entering the external carotid artery branch. Our FSI simulations of carotid arteries with deployed device show that the device induces localized increase in wall stretch at the sinus, suggesting that this will activate baroreceptors and subsequently may control hypertension in drug-resistant hypertensive patients, with no consequential deleterious effects on the carotid sinus hemodynamics.
Collapse
Affiliation(s)
- Dinesh A. Peter
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
| | - Yared Alemu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
| | - Michalis Xenos
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
| | | | | | | | - Tal Oren
- Vascular Dynamics Ltd., Herzelia, Israel
| | | | | | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
25
|
Thrysoe SA, Stegmann AF, Eldrup N, Klærke A, Paaske W, Kim WY, Nygaard JV. The Effect of Carotid Plaque Morphology on Longitudinal Fibrous Cap Stress Levels. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/wjm.2012.24026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Lawrence-Brown M, Stanley BM, Sun Z, Semmens JB, Liffman K. Stress and strain behaviour modelling of the carotid bifurcation. ANZ J Surg 2011; 81:810-6. [DOI: 10.1111/j.1445-2197.2011.05885.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Tajik P, Meijer R, Duivenvoorden R, Peters SAE, Kastelein JJ, Visseren FJ, Crouse JR, Palmer MK, Raichlen JS, Grobbee DE, Bots ML. Asymmetrical distribution of atherosclerosis in the carotid artery: identical patterns across age, race, and gender. Eur J Prev Cardiol 2011; 19:687-97. [PMID: 21613319 DOI: 10.1177/1741826711410821] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Small autopsy studies and clinical practice indicated that carotid atherosclerosis develops in an asymmetrical helical pattern coinciding with regions of low shear stress. We investigated the distribution of carotid atherosclerosis as determined by maximum carotid intima-media thickness (CIMT), to assess if we could confirm this atherosclerotic configuration across various populations with different cardiovascular risk. METHODS AND RESULTS We used the individual baseline CIMT data from 3364 subjects from four recent international multicentre randomized controlled trials in which the carotid artery was systematically examined using the same ultrasound protocol and method to quantify CIMT. For each subject, circumferential information on the maximum CIMT of the left and right carotid arteries was obtained for the common carotid, bifurcation, and internal carotid artery segments. In each segment (common, bifurcation, internal), mixed modelling was used to study the differences in CIMT between angles, sides, gender, age, race, and studies. Each segment showed a different circumferential CIMT pattern. In all segments there were statistically significant differences between maximum CIMT across circumferential angles (p < 0.001); on average CIMT was highest in the posteromedial wall of the bifurcation and internal carotid segments and in the anterolateral wall of the common carotid segment. This asymmetric circumferential pattern was found to be identical in men and women, in young and old age, in different race groups, and across the studies. CONCLUSIONS We confirmed the asymmetrical helix-like distribution of atherosclerosis in the carotid arteries and expand the evidence by showing that the atherosclerotic configuration is similar across populations with different vascular risks and across gender, age, and race. This has implications for future design of carotid ultrasound studies, as the angle of insonation is an important predictor of maximum CIMT.
Collapse
Affiliation(s)
- Parvin Tajik
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cheung SCP, Wong KKL, Yeoh GH, Yang W, Tu J, Beare R, Phan T. Experimental and numerical study on the hemodynamics of stenosed carotid bifurcation. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2011; 33:319-28. [PMID: 21203880 DOI: 10.1007/s13246-010-0050-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 12/14/2010] [Indexed: 11/25/2022]
Abstract
Numerical simulation is performed to demonstrate that hemodynamic factors are significant determinants for the development of a vascular pathology. Experimental measurements by particle image velocimetry are carried out to validate the credibility of the computational approach. We present a study for determining complex flow structures using the case of an anatomically realistic carotid bifurcation model that is reconstructed from medical imaging. A transparent silicone replica of the artery is developed for in-vitro flow measurement. The dynamic behaviours of blood through the vascular structure based on the numerical and experimental approaches show good agreement.
Collapse
Affiliation(s)
- Sherman C P Cheung
- School of Aerospace, Mechanical & Manufacturing Engineering, RMIT University, Bundoora, Australia
| | | | | | | | | | | | | |
Collapse
|
29
|
Siewiorek GM, Finol EA. Computational modeling of distal protection filters. J Endovasc Ther 2010; 17:777-88. [PMID: 21142490 DOI: 10.1583/10-3178.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE To quantify the relationship between velocity and pressure gradient in a distal protection filter (DPF) and to determine the feasibility of modeling a DPF as a permeable surface using computational fluid dynamics (CFD). METHODS Four DPFs (Spider RX, FilterWire EZ, RX Accunet, and Emboshield) were deployed in a single tube representing the internal carotid artery (ICA) in an in vitro flow apparatus. Steady flow of a blood-like solution was circulated with a peristaltic pump and compliance chamber. The flow rate through each DPF was measured at physiological pressure gradients, and permeability was calculated using Darcy's equation. Two computational models representing the RX Accunet were created: an actual representation of the filter geometry and a circular permeable surface. The permeability of RX Accunet was assigned to the surface, and CFD simulations were conducted with both models using experimentally derived boundary conditions. RESULTS Spider RX had the largest permeability while RX Accunet was the least permeable filter. CFD modeling of RX Accunet and the permeable surface resulted in excellent agreement with the experimental measurements of velocity and pressure gradient. However, the permeable surface model did not accurately reproduce local flow patterns near the DPF deployment site. CONCLUSION CFD can be used to model DPFs, yielding global flow parameters measured with bench-top experiments. CFD models of the detailed DPF geometry could be used for "virtual testing" of device designs under simulated flow conditions, which would have potential benefits in decreasing the number of design iterations leading up to in vivo testing.
Collapse
Affiliation(s)
- Gail M Siewiorek
- Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
30
|
Aristokleous N, Seimenis I, Papaharilaou Y, Georgiou GC, Brott BC, Eracleous E, Anayiotos AS. Effect of posture change on the geometric features of the healthy carotid bifurcation. ACTA ACUST UNITED AC 2010; 15:148-54. [PMID: 21075736 DOI: 10.1109/titb.2010.2091417] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Segmented cross-sectional MRI images were used to construct 3-D virtual models of the carotid bifurcation in ten healthy volunteers. Geometric features, such as bifurcation angle, internal carotid artery (ICA) angle, planarity angle, asymmetry angle, tortuosity, curvature, bifurcation area ratio, ICA/common carotid artery (CCA), external carotid artery (ECA)/CCA, and ECA/ICA diameter ratios, were calculated for both carotids in two head postures: 1) the supine neutral position; and 2) the prone sleeping position with head rotation to the right ( ∼ 80°). The results obtained have shown that head rotation causes 1) significant variations in bifurcation angle [32% mean increase for the right carotid (RC) and 21% mean decrease for the left carotid (LC)] and internal carotid artery angle (97% mean increase for the RC, 43% mean decrease for the LC); 2) a slight increase in planarity and asymmetry angles for both RC and LC; 3) minor and variable curvature changes for the CCA and for the branches; 4) slight tortuosity changes for the braches but not for the CCA; and 5) unsubstantial alterations in area and diameter ratios (percentage changes %). The significant geometric changes observed in most subjects with head posture may also cause significant changes in bifurcation hemodynamics and warrant future investigation of the hemodynamic parameters related to the development of atherosclerotic disease such as low oscillating wall shear stress and particle residence times.
Collapse
|
31
|
Makris GC, Nicolaides AN, Xu XY, Geroulakos G. Introduction to the biomechanics of carotid plaque pathogenesis and rupture: review of the clinical evidence. Br J Radiol 2010; 83:729-35. [PMID: 20647514 PMCID: PMC3473420 DOI: 10.1259/bjr/49957752] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 11/26/2009] [Indexed: 11/05/2022] Open
Abstract
The management of patients with asymptomatic carotid disease is currently under debate and new methods are warranted for better risk stratification. The role of the biomechanical properties of the atherosclerotic arterial wall together with the effect of different stress types in plaque destabilisation has only been recently investigated. PubMed and Scopus databases were reviewed. There is preliminary clinical evidence demonstrating that the analysis of the combined effect of the various types of biomechanical stress acting on the carotid plaque may help us to identify the vulnerable plaque. At present, MRI and two-dimensional ultrasound are combined with fluid-structure interaction techniques to produce maps of the stress variation within the carotid wall, with increased cost and complexity. Stress wall analysis can be a useful tool for carotid plaque evaluation; however, further research and a multidisciplinary approach are deemed as necessary for further development in this direction.
Collapse
Affiliation(s)
- G C Makris
- Vascular Surgery Department, Ealing Hospital, NHS Trust, London, UK.
| | | | | | | |
Collapse
|
32
|
Morbiducci U, Gallo D, Massai D, Consolo F, Ponzini R, Antiga L, Bignardi C, Deriu MA, Redaelli A. Outflow Conditions for Image-Based Hemodynamic Models of the Carotid Bifurcation: Implications for Indicators of Abnormal Flow. J Biomech Eng 2010; 132:091005. [DOI: 10.1115/1.4001886] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Computational fluid dynamics (CFD) models have become very effective tools for predicting the flow field within the carotid bifurcation, and for understanding the relationship between local hemodynamics, and the initiation and progression of vascular wall pathologies. As prescribing proper boundary conditions can affect the solutions of the equations governing blood flow, in this study, we investigated the influence to assumptions regarding the outflow boundary conditions in an image-based CFD model of human carotid bifurcation. Four simulations were conducted with identical geometry, inlet flow rate, and fluid parameters. In the first case, a physiological time-varying flow rate partition at branches along the cardiac cycle was obtained by coupling the 3D model of the carotid bifurcation at outlets with a lumped-parameter model of the downstream vascular network. Results from the coupled model were compared with those obtained by imposing three fixed flow rate divisions (50/50, 60/40, and 70/30) between the two branches of the isolated 3D model of the carotid bifurcation. Three hemodynamic wall parameters were considered as indicators of vascular wall dysfunction. Our findings underscore that the overall effect of the assumptions done in order to simulate blood flow within the carotid bifurcation is mainly in the hot-spot modulation of the hemodynamic descriptors of atherosusceptible areas, rather than in their distribution. In particular, the more physiological, time-varying flow rate division deriving from the coupled simulation has the effect of damping wall shear stress (WSS) oscillations (differences among the coupled and the three fixed flow partition models are up to 37.3% for the oscillating shear index). In conclusion, we recommend to adopt more realistic constraints, for example, by coupling models at different scales, as in this study, when the objective is the outcome prediction of alternate therapeutic interventions for individual patients, or to test hypotheses related to the role of local fluid dynamics and other biomechanical factors in vascular diseases.
Collapse
Affiliation(s)
| | - Diego Gallo
- Department of Mechanics, Politecnico di Torino, Turin 10129, Italy
| | - Diana Massai
- Department of Mechanics, Politecnico di Torino, Turin 10129, Italy
| | - Filippo Consolo
- Department of Mechanics, Politecnico di Torino, Turin 10129, Italy
| | | | | | | | - Marco A. Deriu
- Department of Mechanics, Politecnico di Torino, Turin 10129, Italy
| | - Alberto Redaelli
- Department of Bioengineering, Politecnico di Milano, Milan 20133, Italy
| |
Collapse
|
33
|
Martin D, Zaman A, Hacker J, Mendelow D, Birchall D. Analysis of haemodynamic factors involved in carotid atherosclerosis using computational fluid dynamics. Br J Radiol 2010; 82 Spec No 1:S33-8. [PMID: 20348534 DOI: 10.1259/bjr/59367266] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Atherosclerosis presents a massive healthcare burden in both the developing and developed world. There is mounting evidence relating to the involvement of haemodynamic factors in the pathogenesis of this process. This article aims to review the current understandings that have developed in this area, and to present a demonstrative case study obtained using state of the art computational fluid dynamics (CFD) methodology to model and analyse haemodynamic factors within the atheromatous carotid artery bifurcation.
Collapse
Affiliation(s)
- D Martin
- Department of Neuroradiology, Newcastle Regional Neurosciences Centre, Newcastle, UK
| | | | | | | | | |
Collapse
|
34
|
Breen LT, McHugh PE, Murphy BP. HUVEC ICAM-1 and VCAM-1 synthesis in response to potentially athero-prone and athero-protective mechanical and nicotine chemical stimuli. Ann Biomed Eng 2010; 38:1880-92. [PMID: 20162355 DOI: 10.1007/s10439-010-9959-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 02/03/2010] [Indexed: 02/05/2023]
Abstract
Previous mechano-transduction studies have investigated the endothelial cell (EC) morphological response to mechanical stimuli; generally consisting of a wall shear stress (WSS) and a cyclic tensile hoop strain (THS). More recent studies have investigated the EC biochemical response (intercellular adhesion molecule, ICAM-1, and vascular cellular adhesion molecule, VCAM-1, expression) to idealized mechanical stimuli. However, current literature is lacking in the area of EC biochemical response to combinations of physiological WSS and THS mechanical stimuli. The objective of this study is to investigate the EC response to physiological WSS and THS stimuli and to compare this response to that of ECs exposed to idealized steady WSS and cyclic THS of the same magnitudes. This study also investigated the EC response to a nicotine chemical stimulus combined with a suspected athero-prone physiological mechanical stimulus. A bioreactor was designed to apply a range of combinations of physiological WSS and THS waveforms. The bioreactor was calibrated and validated using computational fluid dynamics and video extensometry techniques. The bioreactor was used to investigated the biochemical response exhibited by human umbilical vein endothelial cells (HUVECs) exposed to physiological athero-protective (first bioreactor test case, pulsatile WSS combined with pulsatile THS) and athero-prone (second bioreactor test case, oscillating WSS combined with pulsatile THS) mechanical environments. The final testing environment (third bioreactor test case) combined a nicotine chemical stimulus with the mechanical stimuli of the second bioreactor test case. In first and second bioreactor test cases, the addition of a pulsatile THS to the WSS resulted in opposite trends of ICAM-1 down-regulation and up-regulation, respectively. This outcome suggests that the effect of the additional pulsatile THS depends on the state of the applied WSS waveform. Similarly, in first and second bioreactor test cases, the addition of a pulsatile THS to the WSS resulted in a VCAM-1 up-regulation. However, it has been previously shown that the addition of a cyclic THS to a high- or low-steady WSS resulted in a VCAM-1 down-regulation, indicating that the EC response to idealized mechanical stimuli (steady WSS and cyclic THS) is not comparable to physiological mechanical stimuli (unsteady WSS and pulsatile THS), even though in both situations the average magnitude of WSS and THS applied were similar. In third bioreactor test case, a nicotine chemical stimulus induced a substantial VCAM-1 up-regulation and a moderate ICAM-1 up-regulation. The addition of the mechanical stimuli of the second bioreactors test case resulted in a greater VCAM-1 up-regulation than what was expected, considering the observations of the previous second bioreactor test case alone. This study found that the EC biochemical response to physiological mechanical stimuli is not comparable to the previously observed EC response to idealized mechanical stimuli, even though in both environments the mechanical stimuli were of a similar magnitude. Also, the level of VCAM-1 expressed by the nicotine stimulated ECs showed an elevated level of sensitivity to the athero-prone mechanical stimuli.
Collapse
Affiliation(s)
- Liam T Breen
- National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland.
| | | | | |
Collapse
|
35
|
|
36
|
Tortoli P, Bassi L, Boni E, Dallai A, Guidi F, Ricci S. ULA-OP: an advanced open platform for ultrasound research. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2009; 56:2207-2216. [PMID: 19942508 DOI: 10.1109/tuffc.2009.1303] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The experimental test of novel ultrasound (US) investigation methods can be made difficult by the lack of flexibility of commercial US machines. In the best options, these only provide beamformed radiofrequency or demodulated echo-signals for acquisition by an external PC. More flexibility is achieved in high-level research platforms, but these are typically characterized by high cost and large size. This paper presents a powerful but portable US system, specifically developed for research purposes. The system design has been based on high-level commercial integrated circuits to obtain the maximum flexibility and wide data access with minimum of electronics. Preliminary applications involving nonstandard imaging transmit/receive strategies and simultaneous B-mode and multigate spectral Doppler mode are discussed.
Collapse
Affiliation(s)
- Piero Tortoli
- Microelectron. Syst. Design Lab., Univ. degli Studi di Firenze, Firenze, Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Bang OY. Multimodal MRI for ischemic stroke: from acute therapy to preventive strategies. J Clin Neurol 2009; 5:107-19. [PMID: 19826561 PMCID: PMC2760715 DOI: 10.3988/jcn.2009.5.3.107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 07/17/2009] [Accepted: 07/17/2009] [Indexed: 01/09/2023] Open
Abstract
Background and Purpose Conventional therapies for ischemic stroke include thrombolytic therapy, prevention of inappropriate coagulation and thrombosis, and surgery to repair vascular abnormalities. Over 10 years have passed since the US Food and Drug Administration approved intravenous tissue plasminogen activator for use in acute stroke patients, but most major clinical trials have failed during the last 2 decades, including large clinical trials for secondary prevention and neuroprotection. These results suggest the presence of heterogeneity among stroke patients. Neuroimaging techniques now allow changes to be observed in patients from the acute to the recovery phase. The role of MRI in stroke evaluation and treatment is discussed herein. Main Contents Three MRI strategies are discussed with relevant examples. First, the following MRI strategies for acute ischemic stroke are presented: diffusion-perfusion mismatch, deoxygenation (oxygen extraction and cerebral metabolic rate of oxygen), and blood-brain barrier permeability derangement in selected patients for recanalization therapy. Second, multimodal MRI for identifying stroke mechanisms and the specific causes of stroke (i.e., patent foramen ovale, infective endocarditis, and nonbacterial thrombotic endocarditis) are presented, followed by MRI strategies for prevention of recurrent stroke: plaque images and flow dynamics for carotid intervention. Expectations The studies reviewed herein suggest that using MRI to improve the understanding of individual pathophysiologies will further promote the development of rational stroke therapies tailored to the specifics of each case.
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Abstract
This review examines the state of the art in vessel wall imaging by magnetic resonance imaging (MRI) with an emphasis on the biomechanical assessment of atherosclerotic plaque. Three areas of advanced techniques are discussed. First, alternative contrast mechanisms, including susceptibility, magnetization transfer, diffusion, and perfusion, are presented as to how they facilitate accurate determination of plaque constituents underlying biomechanics. Second, imaging technologies including hardware and sequences, are reviewed as to how they provide the resolution and signal-to-noise ratio necessary for determining plaque structure. Finally, techniques for combining MRI data into an overall assessment of plaque biomechanical properties, including wall shear stress and internal plaque strain, are presented. The paper closes with a discussion of the extent to which these techniques have been applied to different arteries commonly targeted by vessel wall MRI.
Collapse
Affiliation(s)
- William S Kerwin
- Department of Radiology, University of Washington, Seattle, WA 98109, USA.
| | | |
Collapse
|
39
|
Breen LT, McHugh PE, Murphy BP. Multi-Axial Mechanical Stimulation of HUVECs Demonstrates That Combined Loading is not Equivalent to the Superposition of Individual Wall Shear Stress and Tensile Hoop Stress Components. J Biomech Eng 2009; 131:081001. [DOI: 10.1115/1.3127248] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over the past 25 years, many laboratory based bioreactors have been used to study the cellular response to hemodynamic forces. The vast majority of these studies have focused on the effect of a single isolated hemodynamic force, generally consisting of a wall shear stress (WSS) or a tensile hoop strain (THS). However, investigating the cellular response to a single isolated force does not accurately represent the true in vivo situation, where a number of forces are acting simultaneously. This study used a novel bioreactor to investigate the cellular response of human umbilical vein endothelial cells (HUVECs) exposed to a combination of steady WSS and a range of cyclic THS. HUVECs exposed to a range of cyclic THS (0–12%), over a 12 h testing period, expressed an upregulation of both ICAM-1 and VCAM-1. HUVECs exposed to a steady WSS (0 dynes/cm2 and 25 dynes/cm2), over a 12 h testing period, also exhibited an ICAM-1 upregulation but a VCAM-1 downregulation, where the greatest level of WSS stimulus resulted in the largest upregulation and downregulation of ICAM-1 and VCAM-1, respectively. A number of HUVEC samples were exposed to a high steady WSS (25 dynes/cm2) combined with a range of cyclic THS (0–4%, 0–8%, and 0–12%) for a 12 h testing period. The initial ICAM-1 upregulation, due to the WSS alone, was downregulated with the addition of a cyclic THS. It was observed that the largest THS (0–12%) had the greatest reducing effect on the ICAM-1 upregulation. Similarly, the initial VCAM-1 downregulation, due to the high steady WSS alone, was further downregulated with the addition of a cyclic THS. A similar outcome was observed when HUVEC samples were exposed to a low steady WSS combined with a range of cyclic THS. However, the addition of a THS to the low WSS did not result in an expected ICAM-1 downregulation. In fact, it resulted in a trend of unexpected ICAM-1 upregulation. The unexpected cellular response to the combination of a steady WSS and a cyclic THS demonstrates that such a response could not be determined by simply superimposing the cellular responses exhibited by ECs exposed to a steady WSS and a cyclic THS that were applied in isolation.
Collapse
Affiliation(s)
- Liam T. Breen
- Department of Mechanical and Biomedical Engineering and National Centre for Biomedical Engineering Science, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Peter E. McHugh
- Department of Mechanical and Biomedical Engineering and National Centre for Biomedical Engineering Science, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Bruce P. Murphy
- Department of Mechanical and Biomedical Engineering, National University of Ireland, Galway, University Road, Galway, Ireland
| |
Collapse
|
40
|
On the potentialities of 3D–1D coupled models in hemodynamics simulations. J Biomech 2009; 42:919-30. [DOI: 10.1016/j.jbiomech.2009.01.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 01/09/2009] [Accepted: 01/14/2009] [Indexed: 11/23/2022]
|
41
|
Callaghan F, Soellinger M, Baumgartner R, Poulikakos D, Boesiger P, Kurtcuoglu V. The role of the carotid sinus in the reduction of arterial wall stresses due to head movements—potential implications for cervical artery dissection. J Biomech 2009; 42:755-61. [DOI: 10.1016/j.jbiomech.2008.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 12/01/2008] [Accepted: 12/30/2008] [Indexed: 11/24/2022]
|
42
|
Alford PW, Taber LA. Computational study of growth and remodelling in the aortic arch. Comput Methods Biomech Biomed Engin 2009; 11:525-38. [PMID: 18792831 DOI: 10.1080/10255840801930710] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Opening angles (OAs) are associated with growth and remodelling in arteries. One curiosity has been the relatively large OAs found in the aortic arch of some animals. Here, we use computational models to explore the reasons behind this phenomenon. The artery is assumed to contain a smooth muscle/collagen phase and an elastin phase. In the models, growth and remodelling of smooth muscle/collagen depends on wall stress and fluid shear stress. Remodelling of elastin, which normally turns over very slowly, is neglected. The results indicate that OAs generally increase with longitudinal curvature (torus model), earlier elastin production during development, and decreased wall stiffness. Correlating these results with available experimental data suggests that all of these effects may contribute to the large OAs in the aortic arch. The models also suggest that the slow turnover rate of elastin limits longitudinal growth. These results should promote increased understanding of the causes of residual stress in arteries.
Collapse
Affiliation(s)
- Patrick W Alford
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | | |
Collapse
|
43
|
Balossino R, Pennati G, Migliavacca F, Formaggia L, Veneziani A, Tuveri M, Dubini G. Computational models to predict stenosis growth in carotid arteries: Which is the role of boundary conditions? Comput Methods Biomech Biomed Engin 2009. [DOI: 10.1080/10255840802356691] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
John LCH. Biomechanics of coronary artery and bypass graft disease: potential new approaches. Ann Thorac Surg 2009; 87:331-8. [PMID: 19101335 DOI: 10.1016/j.athoracsur.2008.07.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 07/08/2008] [Accepted: 07/09/2008] [Indexed: 12/01/2022]
Abstract
The contribution of biomechanical factors to the incidence and distribution of coronary artery and bypass graft disease is underrecognized. This review examined the literature to determine which factors were relevant and the evidence for their importance. It identified two primary biomechanical factors that predispose to disease: (1) low-wall shear stress and (2) high-wall mechanical stress or strain. A range of secondary biomechanical factors have also been identified and include: vessel geometry; vessel movement; vessel wall characteristics and the presence of reflection waves. Potential surgical approaches for minimizing these effects are discussed.
Collapse
Affiliation(s)
- Lindsay C H John
- Department of Cardiothoracic Surgery, Kings College Hospital, London, United Kingdom.
| |
Collapse
|
45
|
Hoskins PR, Hardman D. Three-dimensional imaging and computational modelling for estimation of wall stresses in arteries. Br J Radiol 2009; 82 Spec No 1:S3-17. [DOI: 10.1259/bjr/96847348] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
46
|
Kock SA, Nygaard JV, Eldrup N, Fründ ET, Klaerke A, Paaske WP, Falk E, Yong Kim W. Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models. J Biomech 2008; 41:1651-8. [PMID: 18485351 DOI: 10.1016/j.jbiomech.2008.03.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 03/14/2008] [Accepted: 03/16/2008] [Indexed: 11/30/2022]
Abstract
Risk assessment in patients with carotid atherosclerosis relies on the degree of luminal stenosis. Incorporating morphological information on plaque composition obtained noninvasively through the use of magnetic resonance imaging (MRI) could include other variables besides the degree of stenosis into carotid plaque risk assessment. Knowledge of the morphologic composition of the plaque allows determination of mechanic stresses exerted on the protective fibrous cap, which may be of importance in the assessment of plaque vulnerability. Based on image processing of transverse MRI scans, longitudinal 2D fluid-structure interaction (FSI) simulations of carotid atherosclerotic plaques were performed facilitating in-vivo estimation of longitudinal internal fibrous cap stresses. The FSI simulation combined finite element analysis (FEA) with computational fluid dynamics (CFD) simulations of blood-flow variables. Preliminary results from two symptomatic patients revealed longitudinal stress levels (max. 254.1 and 143.2 kPa) approaching established criteria for plaque rupture at known predilection sites of plaque rupture. Determination of longitudinal fibrous cap stresses may prove useful in assessing plaque vulnerability and improve risk stratification in patients with carotid atherosclerosis.
Collapse
Affiliation(s)
- Samuel A Kock
- MR-Center, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
de Borst GJ, Zanen P, de Vries JPP, van de Pavoordt ED, Ackerstaff RG, Moll FL. Durability of surgery for restenosis after carotid endarterectomy. J Vasc Surg 2008; 47:363-71. [DOI: 10.1016/j.jvs.2007.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Revised: 10/04/2007] [Accepted: 10/05/2007] [Indexed: 11/29/2022]
|
48
|
Abstract
Atherosclerosis affects all vascular beds, including the coronary, carotid, intracerebral, peripheral and aortic vascular beds, and is responsible for tremendous morbidity and mortality, with the most serious outcomes being myocardial infarction, stroke and death. Historically the effects of vascular narrowing and associated thrombosis have been key indicators of disease in the coronary and carotid territories, with degrees of vascular stenosis being of profound importance in carotid surgery trials. Our improving understanding of the biology of atheromatous lesions and the development of alternative therapeutic agents which can initiate actual plaque regression have created a need to attempt to image plaque itself, with the carotid artery being an achievable target. This article reviews current strategies for assessing carotid atherosclerotic disease, particularly with reference to identifying plaque components and risk of rupture, the so-called vulnerable plaque.
Collapse
Affiliation(s)
- Jonathan H Gillard
- University Department of Radiology, Cambridge University Hospitals, Cambridge, UK.
| |
Collapse
|
49
|
Barron V, Brougham C, Coghlan K, McLucas E, O'Mahoney D, Stenson-Cox C, McHugh PE. The effect of physiological cyclic stretch on the cell morphology, cell orientation and protein expression of endothelial cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2007; 18:1973-81. [PMID: 17554597 DOI: 10.1007/s10856-007-3125-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 07/25/2006] [Indexed: 05/15/2023]
Abstract
In vivo, endothelial cells are constantly exposed to pulsatile shear and tensile stresses. The main aim of this study was to design and build a physiological simulator, which reproduced homogenous strain profiles of the tensile strain experienced in vivo, and to investigate the effect of this cyclic tensile strain on the cell morphology, cell orientation and protein expression of endothelial cells. The biological response of human umbilical vein endothelial cells to a uniaxial cyclic stretch, in this newly developed simulator, was examined experimentally using immunohistostaining and confocal imaging and it was found that the cells elongated and oriented at 58.9 degrees +/- 4.5 degrees . This value was compared to a mathematical model where it was revealed that endothelial cells would orient at an angle of 60 degrees . This model also revealed that endothelial cells have an axial strain threshold value of 1.8% when exposed to a 10% cyclic strain at 1 Hz for 3 h. Cells cultured under conditions of cyclic strain showed increased ICAM-1 immunostaining when compared to static cells whereas, a marked decrease in the levels of VCAM-1 receptor staining was also observed. Haemodynamic stresses can modulate the endothelial cell adhesion response in vivo thus, taken together; this data validates the bioreactor as replicating the physiological environment.
Collapse
Affiliation(s)
- Valerie Barron
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Orbsen Building, Galway, Ireland.
| | | | | | | | | | | | | |
Collapse
|
50
|
Augst AD, Ariff B, McG Thom SAG, Xu XY, Hughes AD. Analysis of complex flow and the relationship between blood pressure, wall shear stress, and intima-media thickness in the human carotid artery. Am J Physiol Heart Circ Physiol 2007; 293:H1031-7. [PMID: 17449549 DOI: 10.1152/ajpheart.00989.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Previous clinical studies have observed relationships between increased intima-media thickness (IMT) in the carotid artery, elevated blood pressure, and low wall shear stress (WSS) calculated from the Poiseuille equation. This study used numerical methods to more accurately determine WSS in the carotid artery and to investigate possible determinants of increased IMT. METHODS IMT [common carotid artery (CCA) and bulb], CCA flow velocity, brachial systolic (SBP) and diastolic blood pressure (DBP), and carotid systolic pressure (cSBP) were measured in 14 healthy subjects (aged 44 +/- 16 yr). Flow patterns in the carotid bifurcation were determined by computational fluid dynamics (CFD) based on three-dimensional ultrasound geometry. Instantaneous and time-averaged wall shear stress (WSS(av)), oscillatory shear index (OSI), and wall shear stress angle gradients (WSSAG) were calculated. RESULTS IMT was positively related to SBP, DBP, cSBP, and WSSAG and inversely related to WSS(av) in the CCA. In the bulb, IMT was positively related to SBP and cSBP but was not significantly related to WSS(av) or WSSAG. IMT was unrelated to OSI in both the CCA and the bulb. CONCLUSION Increased carotid artery IMT in healthy subjects with no evidence of focal plaques is primarily a response to elevated pressure.
Collapse
Affiliation(s)
- A D Augst
- Department of Chemical Engineering, Faculty of Engineering, Imperial College London, UK
| | | | | | | | | |
Collapse
|