1
|
Pan S, Hou Z, Liu J, Xu L. Numerical calculation of streaming potential around osteocytes under human gait loading. Comput Biol Med 2024; 172:108247. [PMID: 38493605 DOI: 10.1016/j.compbiomed.2024.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Streaming potential is a type of stress-generated potential in bone that affects the electrical environment of osteocytes and may play a role in bone remodeling. Because the electrical environment around osteocytes has been difficult to measure experimentally until now, a numerical solid-liquid-streaming potential coupling method was proposed to analyze the streaming potential generated by bone deformation in the lacunae and canaliculus network (LCN) of the bone. Using this method, the cellular shear stress caused by liquid flow on the osteocyte surface was first calculated, and the results were consistent with those reported in the literature. Subsequently, the streaming potentials in the LCN caused by bone matrix deformation under an external gait load were calculated numerically. The results showed that the streaming potential increased slowly in the lacuna and relatively rapidly in the canaliculus and that the streaming potential increased with a decrease in the radius or an increase in the length of the canaliculus. The results also showed that relatively large gaps between the lacunae and osteocytes could induce higher streaming potentials under the same loading.
Collapse
Affiliation(s)
- Shaozhe Pan
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
| | - Zhende Hou
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China.
| | | | - Lianyun Xu
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Kumar R. Computer model of non-Newtonian canalicular fluid flow in lacunar-canalicular system of bone tissue. Comput Methods Biomech Biomed Engin 2024:1-15. [PMID: 38372236 DOI: 10.1080/10255842.2024.2317442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
Brittle bone diseases are a global healthcare problem for orthopaedic clinicians, that reduces bone strength and promotes bone fracture risk. In vivo studies reported that loading-induced fluid flow through the lacunar-canalicular channel (LCS) of bone tissue inhibit such bone loss and encourages osteogenesis i.e. new bone formation. Canalicular fluid flow converts mechanical signals into biological signals and regulates bone reconstruction by releasing signalling molecules responsible for mechanotransduction. In-silico model mostly considers canalicular fluid is Newtonian, however, physiological canalicular fluid may be non-Newtonian in nature as it contains nutrients and supplements. Accordingly, this study attempts to develop a two-dimensional in-silico model to compute loading-induced non-Newtonian canalicular fluid flow in a complex LCS of bone tissue. Moreover, canalicular fluid is considered as a Jeffery fluid, that can easily be reduced to Newtonian fluid as a special case. The results show that physiological loading modulates the canalicular fluid flow, wall shear stress (WSS) and streamline in bone LCS. Fluid velocity and WSS increases with increase in non-dimensional frequency and non-Newtonian parameter (Jeffery fluid parameters) and reduce with change in permeability. The outcomes of this study may provide new insights in the role of mechanical loading-induced non-Newtonian canalicular fluid flow dynamics in bone LCS. The key findings of this study can be used to improve the understanding of osteocyte mechanobiology involved inside the bone tissue.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Mechanical Engineering, Manipal University Jaipur, Jaipur-303007, Rajasthan, India
| |
Collapse
|
3
|
Niroobakhsh M, Laughrey LE, Dallas SL, Johnson ML, Ganesh T. Computational modeling based on confocal imaging predicts changes in osteocyte and dendrite shear stress due to canalicular loss with aging. Biomech Model Mechanobiol 2024; 23:129-143. [PMID: 37642807 DOI: 10.1007/s10237-023-01763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
Exercise and physical activity exert mechanical loading on the bones which induces bone formation. However, the relationship between the osteocyte lacunar-canalicular morphology and mechanical stress experienced locally by osteocytes transducing signals for bone formation is not fully understood. In this study, we used computational modeling to predict the effect of canalicular density, the number of fluid inlets, and load direction on fluid flow shear stress (FFSS) and bone strains and how these might change following the microstructural deterioration of the lacunar-canalicular network that occurs with aging. Four distinct computational models were initially generated of osteocytes with either ten or eighteen dendrites using a fluid-structure interaction method with idealized geometries. Next, a young and a simulated aged osteocyte were developed from confocal images after FITC staining of the femur of a 4-month-old C57BL/6 mouse to estimate FFSS using a computational fluid dynamics approach. The models predicted higher fluid velocities in the canaliculi versus the lacunae. Comparison of idealized models with five versus one fluid inlet indicated that with four more inlets, one-half of the dendrites experienced FFSS greater than 0.8 Pa, which has been associated with osteogenic responses. Confocal image-based models of real osteocytes indicated a six times higher ratio of canalicular to lacunar surface area in the young osteocyte model than the simulated aged model and the average FFSS in the young model (FFSS = 0.46 Pa) was three times greater than the aged model (FFSS = 0.15 Pa). Interestingly, the surface area with FFSS values above 0.8 Pa was 23 times greater in the young versus the simulated aged model. These findings may explain the impaired mechano-responsiveness of osteocytes with aging.
Collapse
Affiliation(s)
- Mohammad Niroobakhsh
- Division of Natural and Built Environment, School of Science and Engineering, University of Missouri-Kansas City, 350 L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO, 64110, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA
| | - Loretta E Laughrey
- Division of Natural and Built Environment, School of Science and Engineering, University of Missouri-Kansas City, 350 L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO, 64110, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA
| | - Mark L Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA
| | - Thiagarajan Ganesh
- Division of Natural and Built Environment, School of Science and Engineering, University of Missouri-Kansas City, 350 L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO, 64110, USA.
| |
Collapse
|
4
|
Sefa S, Espiritu J, Ćwieka H, Greving I, Flenner S, Will O, Beuer S, Wieland DF, Willumeit-Römer R, Zeller-Plumhoff B. Multiscale morphological analysis of bone microarchitecture around Mg-10Gd implants. Bioact Mater 2023; 30:154-168. [PMID: 37575877 PMCID: PMC10412723 DOI: 10.1016/j.bioactmat.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
The utilization of biodegradable magnesium (Mg)-based implants for restoration of bone function following trauma represents a transformative approach in orthopaedic application. One such alloy, magnesium-10 weight percent gadolinium (Mg-10Gd), has been specifically developed to address the rapid degradation of Mg while enhancing its mechanical properties to promote bone healing. Previous studies have demonstrated that Mg-10Gd exhibits favorable osseointegration; however, it exhibits distinct ultrastructural adaptation in comparison to conventional implants like titanium (Ti). A crucial aspect that remains unexplored is the impact of Mg-10Gd degradation on the bone microarchitecture. To address this, we employed hierarchical three-dimensional imaging using synchrotron radiation in conjunction with image-based finite element modelling. By using the methods outlined, the vascular porosity, lacunar porosity and the lacunar-canaliculi network (LCN) morphology of bone around Mg-10Gd in comparison to Ti in a rat model from 4 weeks to 20 weeks post-implantation was investigated. Our investigation revealed that within our observation period, the degradation of Mg-10Gd implants was associated with significantly lower (p < 0.05) lacunar density in the surrounding bone, compared to Ti. Remarkably, the LCN morphology and the fluid flow analysis did not significantly differ for both implant types. In summary, a more pronounced lower lacunae distribution rather than their morphological changes was detected in the surrounding bone upon the degradation of Mg-10Gd implants. This implies potential disparities in bone remodelling rates when compared to Ti implants. Our findings shed light on the intricate relationship between Mg-10Gd degradation and bone microarchitecture, contributing to a deeper understanding of the implications for successful osseointegration.
Collapse
Affiliation(s)
- Sandra Sefa
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | - Hanna Ćwieka
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Imke Greving
- Institute of Materials Physics, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Silja Flenner
- Institute of Materials Physics, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Olga Will
- Molecular Imaging North Competence Center, Kiel University, Kiel, Germany
| | - Susanne Beuer
- Fraunhofer Institut für Integrierte Systeme und Bauelementetechnologie (IISB), Erlangen, Germany
| | - D.C Florian Wieland
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | | |
Collapse
|
5
|
Luo ZH, Ma JX, Zhang W, Tian AX, Gong SW, Li Y, Lai YX, Ma XL. Alterations in the microenvironment and the effects produced of TRPV5 in osteoporosis. J Transl Med 2023; 21:327. [PMID: 37198647 DOI: 10.1186/s12967-023-04182-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
The pathogenesis of osteoporosis involves multiple factors, among which alterations in the bone microenvironment play a crucial role in disrupting normal bone metabolic balance. Transient receptor potential vanilloid 5 (TRPV5), a member of the TRPV family, is an essential determinant of the bone microenvironment, acting at multiple levels to influence its properties. TRPV5 exerts a pivotal influence on bone through the regulation of calcium reabsorption and transportation while also responding to steroid hormones and agonists. Although the metabolic consequences of osteoporosis, such as loss of bone calcium, reduced mineralization capacity, and active osteoclasts, have received significant attention, this review focuses on the changes in the osteoporotic microenvironment and the specific effects of TRPV5 at various levels.
Collapse
Affiliation(s)
- Zhi-Heng Luo
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Jian-Xiong Ma
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Wei Zhang
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xue Yuan Avenue, Shenzhen University Town, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Ai-Xian Tian
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Shu-Wei Gong
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Yan Li
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Yu-Xiao Lai
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xue Yuan Avenue, Shenzhen University Town, Shenzhen, 518055, Guangdong, People's Republic of China.
| | - Xin-Long Ma
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China.
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China.
| |
Collapse
|
6
|
Ma Q, Miri Z, Haugen HJ, Moghanian A, Loca D. Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. J Tissue Eng 2023; 14:20417314231172573. [PMID: 37251734 PMCID: PMC10214107 DOI: 10.1177/20417314231172573] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
In 1892, J.L. Wolff proposed that bone could respond to mechanical and biophysical stimuli as a dynamic organ. This theory presents a unique opportunity for investigations on bone and its potential to aid in tissue repair. Routine activities such as exercise or machinery application can exert mechanical loads on bone. Previous research has demonstrated that mechanical loading can affect the differentiation and development of mesenchymal tissue. However, the extent to which mechanical stimulation can help repair or generate bone tissue and the related mechanisms remain unclear. Four key cell types in bone tissue, including osteoblasts, osteoclasts, bone lining cells, and osteocytes, play critical roles in responding to mechanical stimuli, while other cell lineages such as myocytes, platelets, fibroblasts, endothelial cells, and chondrocytes also exhibit mechanosensitivity. Mechanical loading can regulate the biological functions of bone tissue through the mechanosensor of bone cells intraosseously, making it a potential target for fracture healing and bone regeneration. This review aims to clarify these issues and explain bone remodeling, structure dynamics, and mechano-transduction processes in response to mechanical loading. Loading of different magnitudes, frequencies, and types, such as dynamic versus static loads, are analyzed to determine the effects of mechanical stimulation on bone tissue structure and cellular function. Finally, the importance of vascularization in nutrient supply for bone healing and regeneration was further discussed.
Collapse
Affiliation(s)
- Qianli Ma
- Department of Biomaterials, Institute
of Clinical Dentistry, University of Oslo, Norway
- Department of Immunology, School of
Basic Medicine, Fourth Military Medical University, Xi’an, PR China
| | - Zahra Miri
- Department of Materials Engineering,
Isfahan University of Technology, Isfahan, Iran
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute
of Clinical Dentistry, University of Oslo, Norway
| | - Amirhossein Moghanian
- Department of Materials Engineering,
Imam Khomeini International University, Qazvin, Iran
| | - Dagnjia Loca
- Rudolfs Cimdins Riga Biomaterials
Innovations and Development Centre, Institute of General Chemical Engineering,
Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga,
Latvia
- Baltic Biomaterials Centre of
Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
7
|
Abstract
Immune responses are governed by signals from the tissue microenvironment, and in addition to biochemical signals, mechanical cues and forces arising from the tissue, its extracellular matrix and its constituent cells shape immune cell function. Indeed, changes in biophysical properties of tissue alter the mechanical signals experienced by cells in many disease conditions, in inflammatory states and in the context of ageing. These mechanical cues are converted into biochemical signals through the process of mechanotransduction, and multiple pathways of mechanotransduction have been identified in immune cells. Such pathways impact important cellular functions including cell activation, cytokine production, metabolism, proliferation and trafficking. Changes in tissue mechanics may also represent a new form of 'danger signal' that alerts the innate and adaptive immune systems to the possibility of injury or infection. Tissue mechanics can change temporally during an infection or inflammatory response, offering a novel layer of dynamic immune regulation. Here, we review the emerging field of mechanoimmunology, focusing on how mechanical cues at the scale of the tissue environment regulate immune cell behaviours to initiate, propagate and resolve the immune response.
Collapse
|
8
|
The petrous bone contains high concentrations of osteocytes: One possible reason why ancient DNA is better preserved in this bone. PLoS One 2022; 17:e0269348. [PMID: 36282813 PMCID: PMC9595551 DOI: 10.1371/journal.pone.0269348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
The characterization of ancient DNA in fossil bones is providing invaluable information on the genetics of past human and other animal populations. These studies have been aided enormously by the discovery that ancient DNA is relatively well preserved in the petrous bone compared to most other bones. The reasons for this better preservation are however not well understood. Here we examine the hypothesis that one reason for better DNA preservation in the petrous bone is that fresh petrous bone contains more DNA than other bones. We therefore determined the concentrations of osteocyte cells occluded inside lacunae within the petrous bone and compared these concentrations to other bones from the domestic pig using high resolution microCT. We show that the concentrations of osteocyte lacunae in the inner layer of the pig petrous bone adjacent to the otic chamber are about three times higher (around 95,000 lacunae per mm3) than in the mastoid of the temporal bone (around 28,000 lacunae per mm3), as well as the cortical bone of the femur (around 27,000 lacunae per mm3). The sizes and shapes of the lacuna in the inner layer of the petrous bone are similar to those in the femur. We also show that the pig petrous bone lacunae do contain osteocytes using a histological stain for DNA. We therefore confirm and significantly expand upon previous observations of osteocytic lacuna concentrations in the petrous bone, supporting the notion that one possible reason for better preservation of ancient DNA in the petrous bone is that this bone initially contains at least three times more DNA than other bones. Thus during diagenesis more DNA is likely to be preserved in the petrous bone compared to other bones.
Collapse
|
9
|
The Spatial Distribution of Cellular Voids in the Human Otic Capsule: An Unbiased Quantification of Osteocyte-Depleted Areas. Otol Neurotol 2022; 43:e804-e809. [PMID: 35941668 DOI: 10.1097/mao.0000000000003626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study aimed to describe the spatial distribution of osteocyte-depleted areas, so-called cellular voids, in the human otic capsule and compare it with that of otosclerosis. BACKGROUND Systematic histological studies of the bony otic capsule have revealed an osteoprotegerin (OPG)-mediated inhibition of normal bone remodeling around the inner ear. The resulting accumulation of bony degeneration and dead osteocytes has been thoroughly documented, and the spatial distribution of dead osteocytes and matrix microcracks resembles that of the human ear disease otosclerosis. Clusters of dead osteocytes that may interfere with osteocyte connectivity and thereby the OPG signaling pathway have been described in human temporal bones. It is possible that these cellular voids create disruptions in the antiresorptive OPG signal that may give rise to local pathological remodeling. METHODS Recently, a method of detecting cellular voids was developed. This study uses unbiased stereology to document the spatial distribution of cellular voids in bulk-stained undecalcified human temporal bone. RESULTS Cellular voids accumulate around the inner ear and increase in number and size with age. Furthermore, cellular voids are more frequently found in the anterior and lateral regions of the otic capsule, which are known predilection sites of otosclerosis. CONCLUSION This colocalization of cellular voids and otosclerosis suggests a causal relationship between focal degeneration and otosclerotic remodeling.
Collapse
|
10
|
Gabetti S, Masante B, Cochis A, Putame G, Sanginario A, Armando I, Fiume E, Scalia AC, Daou F, Baino F, Salati S, Morbiducci U, Rimondini L, Bignardi C, Massai D. An automated 3D-printed perfusion bioreactor combinable with pulsed electromagnetic field stimulators for bone tissue investigations. Sci Rep 2022; 12:13859. [PMID: 35974079 PMCID: PMC9381575 DOI: 10.1038/s41598-022-18075-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
In bone tissue engineering research, bioreactors designed for replicating the main features of the complex native environment represent powerful investigation tools. Moreover, when equipped with automation, their use allows reducing user intervention and dependence, increasing reproducibility and the overall quality of the culture process. In this study, an automated uni-/bi-directional perfusion bioreactor combinable with pulsed electromagnetic field (PEMF) stimulation for culturing 3D bone tissue models is proposed. A user-friendly control unit automates the perfusion, minimizing the user dependency. Computational fluid dynamics simulations supported the culture chamber design and allowed the estimation of the shear stress values within the construct. Electromagnetic field simulations demonstrated that, in case of combination with a PEMF stimulator, the construct can be exposed to uniform magnetic fields. Preliminary biological tests on 3D bone tissue models showed that perfusion promotes the release of the early differentiation marker alkaline phosphatase. The histological analysis confirmed that perfusion favors cells to deposit more extracellular matrix (ECM) with respect to the static culture and revealed that bi-directional perfusion better promotes ECM deposition across the construct with respect to uni-directional perfusion. Lastly, the Real-time PCR results of 3D bone tissue models cultured under bi-directional perfusion without and with PEMF stimulation revealed that the only perfusion induced a ~ 40-fold up-regulation of the expression of the osteogenic gene collagen type I with respect to the static control, while a ~ 80-fold up-regulation was measured when perfusion was combined with PEMF stimulation, indicating a positive synergic pro-osteogenic effect of combined physical stimulations.
Collapse
Affiliation(s)
- Stefano Gabetti
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Beatrice Masante
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Andrea Cochis
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Giovanni Putame
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Alessandro Sanginario
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Ileana Armando
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Elisa Fiume
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Alessandro Calogero Scalia
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Farah Daou
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Francesco Baino
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | | | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Lia Rimondini
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Cristina Bignardi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Diana Massai
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy.
| |
Collapse
|
11
|
Tabata K, Hashimoto M, Takahashi H, Wang Z, Nagaoka N, Hara T, Kamioka H. A morphometric analysis of the osteocyte canaliculus using applied automatic semantic segmentation by machine learning. J Bone Miner Metab 2022; 40:571-580. [PMID: 35338405 DOI: 10.1007/s00774-022-01321-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Osteocytes play a role as mechanosensory cells by sensing flow-induced mechanical stimuli applied on their cell processes. High-resolution imaging of osteocyte processes and the canalicular wall are necessary for the analysis of this mechanosensing mechanism. Focused ion beam-scanning electron microscopy (FIB-SEM) enabled the visualization of the structure at the nanometer scale with thousands of serial-section SEM images. We applied machine learning for the automatic semantic segmentation of osteocyte processes and canalicular wall and performed a morphometric analysis using three-dimensionally reconstructed images. MATERIALS AND METHODS Six-week-old-mice femur were used. Osteocyte processes and canaliculi were observed at a resolution of 2 nm/voxel in a 4 × 4 μm region with 2000 serial-section SEM images. Machine learning was used for automatic semantic segmentation of the osteocyte processes and canaliculi from serial-section SEM images. The results of semantic segmentation were evaluated using the dice similarity coefficient (DSC). The segmented data were reconstructed to create three-dimensional images and a morphological analysis was performed. RESULTS The DSC was > 83%. Using the segmented data, a three-dimensional image of approximately 3.5 μm in length was reconstructed. The morphometric analysis revealed that the median osteocyte process diameter was 73.8 ± 18.0 nm, and the median pericellular fluid space around the osteocyte process was 40.0 ± 17.5 nm. CONCLUSION We used machine learning for the semantic segmentation of osteocyte processes and canalicular wall for the first time, and performed a morphological analysis using three-dimensionally reconstructed images.
Collapse
Affiliation(s)
- Kaori Tabata
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Mana Hashimoto
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, Okayama, 700-8558, Japan
| | - Haruka Takahashi
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, Okayama, 700-8558, Japan
| | - Ziyi Wang
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, Okayama, 700-8558, Japan
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Toru Hara
- Research Center for Structural Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, Okayama, 700-8558, Japan.
| |
Collapse
|
12
|
Effects of Osteocyte Shape on Fluid Flow and Fluid Shear Stress of the Loaded Bone. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3935803. [PMID: 35677099 PMCID: PMC9170394 DOI: 10.1155/2022/3935803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
This study was conducted to better understand the specific behavior of the intraosseous fluid flow. We calculated the number and distribution of bone canaliculi around the osteocytes based on the varying shapes of osteocytes. We then used these calculated parameters and other bone microstructure data to estimate the anisotropy permeability of the lacunar-canalicular network. Poroelastic finite element models of the osteon were established, and the influence of the osteocyte shape on the fluid flow properties of osteons under an axial displacement load was analyzed. Two types of boundary conditions (BC) that might occur in physiological environments were considered on the cement line of the osteon. BC1 allows free fluid passage from the outer elastic restraint boundary, and BC2 is impermeable and allows no free fluid passage from outer displacement constrained boundary. They both have the same inner boundary conditions that allow fluid to pass through. Changes in the osteocyte shape altered the maximum value of pressure gradient (PG), pore pressure (PP), fluid velocity (FV), and fluid shear stress (FSS) relative to the reference model (spherical osteocytes). The maximum PG, PP, FV, and FSS in BC2 were nearly 100% larger than those in BC1, respectively. It is found that the BC1 was closer to the real physiological environment. The fluid flow along different directions in the elongated osteocyte model was more evident than that in other models, which may have been due to the large difference in permeability along different directions. Changes in osteocyte shape significantly affect the degrees of anisotropy of fluid flow and porous media of the osteon. The model presented in this study can accurately quantify fluid flow in the lacunar-canalicular network.
Collapse
|
13
|
Wang H, Du T, Li R, Main RP, Yang H. Interactive effects of various loading parameters on the fluid dynamics within the lacunar-canalicular system for a single osteocyte. Bone 2022; 158:116367. [PMID: 35181573 DOI: 10.1016/j.bone.2022.116367] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/26/2022]
Abstract
The osteocyte lacunar-canalicular system (LCS) serves as a mechanotransductive core where external loading applied to the skeleton is transduced into mechanical signals (e.g., fluid shear) that can be sensed by mechanosensors (osteocytes). The fluid velocity and shear stress within the LCS are affected by various loading parameters. However, the interactive effect of distinct loading parameters on the velocity and shear stress in the LCS remains unclear. To address this issue, we developed a multiscale modeling approach, combining a poroelastic finite element (FE) model with a single osteocytic LCS unit model to calculate the flow velocity and shear stress within the LCS. Next, a sensitivity analysis was performed to investigate individual and interactive effects of strain magnitude, strain rate, number of cycles, and intervening short rests between loading cycles on the velocity and shear stress around the osteocyte. Lastly, we developed a relatively simple regression model to predict those outcomes. Our results demonstrated that the strain magnitude or rate alone were the main factors affecting the velocity and shear stress; however, the combination of these two was not directly additive, and addition of a short rest between cycles could enhance the combination of these two related factors. These results show highly interactive effects of distinct loading parameters on fluid velocity and shear stress in the LCS. Specifically, our results suggest that an enhanced fluid dynamics environment in the LCS can be achieved with a brief number of load cycles combined with short rest insertion and high strain magnitude and rate.
Collapse
Affiliation(s)
- Huiru Wang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rui Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Russell P Main
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical Sciences, Purdue University, IN, USA; Weldon School of Biomedical Engineering, Purdue University, IN, USA
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
14
|
Moriishi T, Komori T. Osteocytes: Their Lacunocanalicular Structure and Mechanoresponses. Int J Mol Sci 2022; 23:ijms23084373. [PMID: 35457191 PMCID: PMC9032292 DOI: 10.3390/ijms23084373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Osteocytes connect with neighboring osteocytes and osteoblasts through their processes and form an osteocyte network. Shear stress on osteocytes, which is induced by fluid flow in the lacunae and canaliculi, has been proposed as an important mechanism for mechanoresponses. The lacunocanalicular structure is differentially developed in the compression and tension sides of femoral cortical bone and the compression side is more organized and has denser and thinner canaliculi. Mice with an impaired lacunocanalicular structure may be useful for evaluation of the relationship between lacunocanalicular structure and mechanoresponses, although their bone component cells are not normal. We show three examples of mice with an impaired lacunocanalicular structure. Ablation of osteocytes by diphtheria toxin caused massive osteocyte apoptosis, necrosis or secondary necrosis that occurred after apoptosis. Osteoblast-specific Bcl2 transgenic mice were found to have a reduced number of osteocyte processes and canaliculi, which caused massive osteocyte apoptosis and a completely interrupted lacunocanalicular network. Osteoblast-specific Sp7 transgenic mice were also revealed to have a reduced number of osteocyte processes and canaliculi, as well as an impaired, but functionally connected, lacunocanalicular network. Here, we show the phenotypes of these mice in physiological and unloaded conditions and deduce the relationship between lacunocanalicular structure and mechanoresponses.
Collapse
Affiliation(s)
- Takeshi Moriishi
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan;
| | - Toshihisa Komori
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
- Correspondence: ; Tel.: +81-95-819-7637; Fax: +81-95-819-7638
| |
Collapse
|
15
|
Esposito L, Minutolo V, Gargiulo P, Fraldi M. Symmetry breaking and effects of nutrient walkway in time-dependent bone remodeling incorporating poroelasticity. Biomech Model Mechanobiol 2022; 21:999-1020. [PMID: 35394267 PMCID: PMC9132879 DOI: 10.1007/s10237-022-01573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/07/2022] [Indexed: 12/03/2022]
Abstract
Bone is an extraordinary biological material that continuously adapts its hierarchical microstructure to respond to static and dynamic loads for offering optimal mechanical features, in terms of stiffness and toughness, across different scales, from the sub-microscopic constituents within osteons—where the cyclic activity of osteoblasts, osteoclasts, and osteocytes redesigns shape and percentage of mineral crystals and collagen fibers—up to the macroscopic level, with growth and remodeling processes that modify the architecture of both compact and porous bone districts. Despite the intrinsic complexity of the bone mechanobiology, involving coupling phenomena of micro-damage, nutrients supply driven by fluid flowing throughout hierarchical networks, and cells turnover, successful models and numerical algorithms have been presented in the literature to predict, at the macroscale, how bone remodels under mechanical stimuli, a fundamental issue in many medical applications such as optimization of femur prostheses and diagnosis of the risk fracture. Within this framework, one of the most classical strategies employed in the studies is the so-called Stanford’s law, which allows uploading the effect of the time-dependent load-induced stress stimulus into a biomechanical model to guess the bone structure evolution. In the present work, we generalize this approach by introducing the bone poroelasticity, thus incorporating in the model the role of the fluid content that, by driving nutrients and contributing to the removal of wastes of bone tissue cells, synergistically interacts with the classical stress fields to change homeostasis states, local saturation conditions, and reorients the bone density rate, in this way affecting growth and remodeling. Through two paradigmatic example applications, i.e. a cylindrical slice with internal prescribed displacements idealizing a tract of femoral diaphysis pushed out by the pressure exerted by a femur prosthesis and a bone element in a form of a bent beam, it is highlighted that the present model is capable to catch more realistically both the transition between spongy and cortical regions and the expected non-symmetrical evolution of bone tissue density in the medium–long term, unpredictable with the standard approach. A real study case of a femur is also considered at the end in order to show the effectiveness of the proposed remodeling algorithm.
Collapse
Affiliation(s)
- L Esposito
- Department Engineering, University of Campania "Luigi Vanvitelli", Aversa, Italy
| | - V Minutolo
- Department Engineering, University of Campania "Luigi Vanvitelli", Aversa, Italy
| | - P Gargiulo
- Institute for Biomedical and Neural Engineering, Reykjavík University, Reykjavík, Iceland
- Department of Science, Landspítali Hospital, Reykjavík, Iceland
| | - M Fraldi
- Department of Structures for Engineering and Architecture, University of Napoli "Federico II", Napoli, Italy.
| |
Collapse
|
16
|
Sp7 Transgenic Mice with a Markedly Impaired Lacunocanalicular Network Induced Sost and Reduced Bone Mass by Unloading. Int J Mol Sci 2022; 23:ijms23063173. [PMID: 35328592 PMCID: PMC8948721 DOI: 10.3390/ijms23063173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022] Open
Abstract
The relationship of lacunocanalicular network structure and mechanoresponse has not been well studied. The lacunocanalicular structures differed in the compression and tension sides, in the regions, and in genders in wild-type femoral cortical bone. The overexpression of Sp7 in osteoblasts resulted in thin and porous cortical bone with increased osteoclasts and apoptotic osteocytes, and the number of canaliculi was half of that in the wild-type mice, leading to a markedly impaired lacunocanalicular network. To investigate the response to unloading, we performed tail suspension. Unloading reduced trabecular and cortical bone in the Sp7 transgenic mice due to reduced bone formation. Sost-positive osteocytes increased by unloading on the compression side, but not on the tension side of cortical bone in the wild-type femurs. However, these differential responses were lost in the Sp7 transgenic femurs. Serum Sost increased in the Sp7 transgenic mice, but not in the wild-type mice. Unloading reduced the Col1a1 and Bglap/Bglap2 expression in the Sp7 transgenic mice but not the wild-type mice. Thus, Sp7 transgenic mice with the impaired lacunocanalicular network induced Sost expression by unloading but lost the differential regulation in the compression and tension sides, and the mice failed to restore bone formation during unloading, implicating the relationship of lacunocanalicular network structure and the regulation of bone formation in mechanoresponse.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Postmenopausal osteoporosis reduces circulating estrogen levels, which leads to osteoclast resorption, bone loss, and fracture. This review addresses emerging evidence that osteoporosis is not simply a disease of bone loss but that mechanosensitive osteocytes that regulate both osteoclasts and osteoblasts are also impacted by estrogen deficiency. RECENT FINDINGS At the onset of estrogen deficiency, the osteocyte mechanical environment is altered, which coincides with temporal changes in bone tissue composition. The osteocyte microenvironment is also altered, apoptosis is more prevalent, and hypermineralization occurs. The mechanobiological responses of osteocytes are impaired under estrogen deficiency, which exacerbates osteocyte paracrine regulation of osteoclasts. Recent research reveals changes in osteocytes during estrogen deficiency that may play a critical role in the etiology of the disease. A paradigm change for osteoporosis therapy requires an advanced understanding of such changes to establish the efficacy of osteocyte-targeted therapies to inhibit resorption and secondary mineralization.
Collapse
Affiliation(s)
- Laoise M McNamara
- Mechanobiology and Medical Device Research Group, Biomedical Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland.
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland.
| |
Collapse
|
18
|
Lai X, Chung R, Li Y, Liu XS, Wang L. Lactation alters fluid flow and solute transport in maternal skeleton: A multiscale modeling study on the effects of microstructural changes and loading frequency. Bone 2021; 151:116033. [PMID: 34102350 PMCID: PMC8276854 DOI: 10.1016/j.bone.2021.116033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
The female skeleton undergoes significant material and ultrastructural changes to meet high calcium demands during reproduction and lactation. Through the peri-lacunar/canalicular remodeling (PLR), osteocytes actively resorb surrounding matrix and enlarge their lacunae and canaliculi during lactation, which are quickly reversed after weaning. How these changes alter the physicochemical environment of osteocytes, the most abundant and primary mechanosensing cells in bone, are not well understood. In this study, we developed a multiscale poroelastic modeling technique to investigate lactation-induced changes in stress, fluid pressurization, fluid flow, and solute transport across multiple length scales (whole bone, porous midshaft cortex, lacunar-canalicular pore system (LCS), and pericellular matrix (PCM) around osteocytes) in murine tibiae subjected to axial compression at 3 N peak load (~320 με) at 0.5, 2, or 4 Hz. Based on previously reported skeletal anatomical measurements from lactating and nulliparous mice, our models demonstrated that loading frequency, LCS porosity, and PCM density were major determinants of fluid and solute flows responsible for osteocyte mechanosensing, cell-cell signaling, and metabolism. When loaded at 0.5 Hz, lactation-induced LCS expansion and potential PCM reduction promoted solute transport and osteocyte mechanosensing via primary cilia, but suppressed mechanosensing via fluid shear and/or drag force on the cell membrane. Interestingly, loading at 2 or 4 Hz was found to overcome the mechanosensing deficits observed at 0.5 Hz and these counter effects became more pronounced at 4 Hz and with sparser PCM in the lactating bone. Synergistically, higher loading frequency (2, 4 Hz) and sparser PCM enhanced flow-mediated mechanosensing and diffusion/convection of nutrients and signaling molecules for osteocytes. In summary, lactation-induced structural changes alter the local environment of osteocytes in ways that favor metabolism, mechanosensing, and post-weaning recovery of maternal bone. Thus, osteocytes play a role in balancing the metabolic and mechanical functions of female skeleton during reproduction and lactation.
Collapse
Affiliation(s)
- Xiaohan Lai
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Rebecca Chung
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xiaowei Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, United States.
| |
Collapse
|
19
|
Hansen LJ, Bloch SL, Sørensen MS. Identification of Cellular Voids in the Human Otic Capsule. J Assoc Res Otolaryngol 2021; 22:591-599. [PMID: 34415468 PMCID: PMC8476705 DOI: 10.1007/s10162-021-00810-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022] Open
Abstract
The otic capsule consists of dense highly mineralized compact bone. Inner ear osteoprotegerin (OPG) effectively inhibits perilabyrinthine remodeling and otic capsular bone turnover is very low compared to other bone. Consequently, degenerative changes like dead osteocytes and microcracks accumulate around the inner ear. Osteocytes are connected via canaliculi and need a certain connectivity to sustain life. Consequently, stochastic osteocyte apoptosis may disrupt the osteocytic network in unsustainable patterns leading to widespread cell death. When studying bulk-stained undecalcified human temporal bone, large clusters of dead osteocytes have been observed. Such "cellular voids" may disrupt the perilabyrinthine OPG mediated remodeling inhibition possibly leading to local remodeling. In the common ear disease otosclerosis pathological bone remodeling foci are found exclusively in the otic capsule. We believe the pathogenesis of otosclerosis is linked to the unique bony dynamics of perilabyrinthine bone and cellular voids may represent a starting point for otosclerotic remodeling. This study aims to identify and characterize cellular voids of the human otic capsule. This would allow future cellular void quantification and comparison of void and otosclerotic distribution to further elucidate the yet unknown pathogenesis of otosclerosis.
Collapse
|
20
|
Vernerey FJ, Lalitha Sridhar S, Muralidharan A, Bryant SJ. Mechanics of 3D Cell-Hydrogel Interactions: Experiments, Models, and Mechanisms. Chem Rev 2021; 121:11085-11148. [PMID: 34473466 DOI: 10.1021/acs.chemrev.1c00046] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogels are highly water-swollen molecular networks that are ideal platforms to create tissue mimetics owing to their vast and tunable properties. As such, hydrogels are promising cell-delivery vehicles for applications in tissue engineering and have also emerged as an important base for ex vivo models to study healthy and pathophysiological events in a carefully controlled three-dimensional environment. Cells are readily encapsulated in hydrogels resulting in a plethora of biochemical and mechanical communication mechanisms, which recapitulates the natural cell and extracellular matrix interaction in tissues. These interactions are complex, with multiple events that are invariably coupled and spanning multiple length and time scales. To study and identify the underlying mechanisms involved, an integrated experimental and computational approach is ideally needed. This review discusses the state of our knowledge on cell-hydrogel interactions, with a focus on mechanics and transport, and in this context, highlights recent advancements in experiments, mathematical and computational modeling. The review begins with a background on the thermodynamics and physics fundamentals that govern hydrogel mechanics and transport. The review focuses on two main classes of hydrogels, described as semiflexible polymer networks that represent physically cross-linked fibrous hydrogels and flexible polymer networks representing the chemically cross-linked synthetic and natural hydrogels. In this review, we highlight five main cell-hydrogel interactions that involve key cellular functions related to communication, mechanosensing, migration, growth, and tissue deposition and elaboration. For each of these cellular functions, recent experiments and the most up to date modeling strategies are discussed and then followed by a summary of how to tune hydrogel properties to achieve a desired functional cellular outcome. We conclude with a summary linking these advancements and make the case for the need to integrate experiments and modeling to advance our fundamental understanding of cell-matrix interactions that will ultimately help identify new therapeutic approaches and enable successful tissue engineering.
Collapse
Affiliation(s)
- Franck J Vernerey
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States.,Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Shankar Lalitha Sridhar
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States
| | - Archish Muralidharan
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Stephanie J Bryant
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States.,Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States.,BioFrontiers Institute, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States
| |
Collapse
|
21
|
Microscale compressive behavior of hydrated lamellar bone at high strain rates. Acta Biomater 2021; 131:403-414. [PMID: 34245895 DOI: 10.1016/j.actbio.2021.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022]
Abstract
The increased risk of fracture in the elderly associated with metabolic conditions like osteoporosis poses a significant strain on health care systems worldwide. Due to bone's hierarchical nature, it is necessary to study its mechanical properties and failure mechanisms at several length scales. We conducted micropillar compression experiments on ovine cortical bone to assess the anisotropic mechanical response at the lamellar scale over a wide range of strain rates (10-4 to 8·102 s-1). At the microscale, lamellar bone exhibits a strain rate sensitivity similar to what is reported at the macroscale suggesting that it is an intrinsic property of the extracellular matrix. Significant shear band thickening was observed at high strain rates by HRSEM and STEM imaging. This is likely caused by the material's inability to accommodate the imposed deformation by propagation of thin kink bands and shear cracks at high strain rates, leading to shear band thickening and nucleation. The post-yield behavior is strain rate and direction dependent: hardening was observed for transverse oriented micropillars and hardening modulus increases with strain rate by a factor of almost 2, while axially oriented micropillars showed strain softening and an increase of the softening peak width and work to ultimate stress as a function of strain rate. This suggests that for compression at the micrometer scale, energy absorption in bone increases with strain rate. This study highlights the importance of investigating bone strength and post-yield behavior at lower length scales, under hydrated conditions and at clinically relevant strain rates. STATEMENT OF SIGNIFICANCE: We performed micropillar compression experiments of ovine cortical bone at two different orientations and over seven orders of magnitude of strain rate. Experiments were performed under humid condition to mimic the natural conditions of bone in a human body using a newly developed micro-indenter setup. The strain rate sensitivity was found to be of a similar magnitude to what has been reported for higher length scales, suggesting that the strain rate sensitivity is an intrinsic property of the bone extracellular matrix. In addition, localized shear deformation in thick bands was observed for the first time at high strain rates, highlighting the importance of investigating bone under conditions representative of an accident or fall at several length scales.
Collapse
|
22
|
Riquelme MA, Gu S, Hua R, Jiang JX. Mechanotransduction via the coordinated actions of integrins, PI3K signaling and Connexin hemichannels. Bone Res 2021; 9:8. [PMID: 33531460 PMCID: PMC7854719 DOI: 10.1038/s41413-020-00126-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 09/25/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Mechanical loading opens connexin 43 (Cx43) hemichannels (HCs), leading to the release of bone anabolic molecules, such as prostaglandins, from mechanosensitive osteocytes, which is essential for bone formation and remodeling. However, the mechanotransduction mechanism that activates HCs remains elusive. Here, we report a unique pathway by which mechanical signals are effectively transferred between integrin molecules located in different regions of the cell, resulting in HC activation. Both integrin α5 and αV were activated upon mechanical stimulation via either fluid dropping or flow shear stress (FSS). Inhibition of integrin αV activation or ablation of integrin α5 prevented HC opening on the cell body when dendrites were mechanically stimulated, suggesting mechanical transmission from the dendritic integrin αV to α5 in the cell body during HC activation. In addition, HC function was compromised in vivo, as determined by utilizing an antibody blocking αV activation and α5-deficient osteocyte-specific knockout mice. Furthermore, inhibition of integrin αV activation, but not that of α5, attenuated activation of the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway upon mechanical loading, and the inhibition of PI3K/AKT activation blocked integrin α5 activation and HC opening. Moreover, HC opening was blocked only by an anti-integrin αV antibody at low but not high FSS levels, suggesting that dendritic αV is a more sensitive mechanosensor than α5 for activating HCs. Together, these results reveal a new molecular mechanism of mechanotransduction involving the coordinated actions of integrins and PI3K/AKT in osteocytic dendritic processes and cell bodies that leads to HC opening and the release of key bone anabolic factors.
Collapse
Affiliation(s)
- Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229-3900, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229-3900, USA
| | - Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229-3900, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
23
|
Ngo L, Knothe Tate ML. Osteoarthritis: New Strategies for Transport and Drug Delivery Across Length Scales. ACS Biomater Sci Eng 2020; 6:6009-6020. [PMID: 33449636 DOI: 10.1021/acsbiomaterials.0c01081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Osteoarthritis (OA) is the fourth leading cause of disability in adults. Yet, few viable pharmaceutical options exist for pain abatement and joint restoration, aside from joint replacement at late and irreversible stages of the disease. From the first onset of OA, as joint pain increases, individuals with arthritis increasingly reach for drug delivery solutions, from taking oral glycosaminoglycans (GAGs) bought over the counter from retail stores (e.g., Costco) to getting injections of viscous, GAG-containing synovial fluid supplement in the doctor's office. Little is known regarding the efficacy of delivery mode and/or treatment by such disease-modulating agents. This Review addresses the interplay of mechanics and biology on drug delivery to affected joints, which has profound implications for molecular transport in joint health and (patho)physiology. Multiscale systems biology approaches lend themselves to understand the relationship between the cell and joint health in OA and other joint (patho)physiologies. This Review first describes OA-related structural and functional changes in the context of the multilength scale anatomy of articular joints. It then summarizes and categorizes, by size and charge, published molecular transport studies, considering changes in permeability induced through inflammatory pathways. Finally, pharmacological interventions for OA are outlined in the context of molecular weights and modes of drug delivery. Taken together, the current state-of-the-art points to a need for new drug delivery strategies that harness systems-based interactions underpinning molecular transport and maintenance of joint structure and function at multiple length scales from molecular agents to cells, tissues, and tissue compartments which together make up articular joints. Cutting edge and cross-length and -time scale imaging represents a key discovery enabling technology in this process.
Collapse
Affiliation(s)
- Lucy Ngo
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Melissa L Knothe Tate
- Inaugural Paul Trainor Chair of Biomedical Engineering, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
24
|
Li X, Xu J, Dai B, Wang X, Guo Q, Qin L. Targeting autophagy in osteoporosis: From pathophysiology to potential therapy. Ageing Res Rev 2020; 62:101098. [PMID: 32535273 DOI: 10.1016/j.arr.2020.101098] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Osteoporosis is a highly prevalent disorder characterized by the loss of bone mass and microarchitecture deterioration of bone tissue, attributed to various factors, including menopause (primary), aging (primary) and adverse effects of relevant medications (secondary). In recent decades, knowledge regarding the etiological mechanisms underpinning osteoporosis emphasizes that bone cellular homeostasis, including the maintenance of cell functions, differentiation, and the response to stress, is tightly regulated by autophagy, which is a cell survival mechanism for eliminating and recycling damaged proteins and organelles. With the important roles in the maintenance of cellular homeostasis and organ function, autophagy has emerged as a potential target for the prevention and treatment of osteoporosis. In this review, we update and discuss the pathophysiology of autophagy in normal bone cell life cycle and metabolism. Then, the alternations of autophagy in primary and secondary osteoporosis, and the accompanied pathological process are discussed. Finally, we discuss current strategies, limitations, and challenges involved in targeting relevant pathways and propose strategies by which such hurdles may be circumvented in the future for their translation into clinical validations and applications for the prevention and treatment of osteoporosis.
Collapse
|
25
|
Dash SK, Sharma V, Verma RS, Das SK. Low intermittent flow promotes rat mesenchymal stem cell differentiation in logarithmic fluid shear device. BIOMICROFLUIDICS 2020; 14:054107. [PMID: 33163135 PMCID: PMC7595746 DOI: 10.1063/5.0024437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/13/2020] [Indexed: 06/01/2023]
Abstract
Bone marrow mesenchymal stem cells are an ideal candidate for bone tissue engineering due to their osteogenic potential. Along with chemical, mechanical signals such as fluid shear stress have been found to influence their differentiation characteristics. But the range of fluid shear experienced in vivo is too wide and difficult to generate in a single device. We have designed a microfluidic device that could generate four orders of shear stresses on adherent cells. This was achieved using a unique hydraulic resistance combination and linear optimization to the lesser total length of the circuit, making the device compact and yet generating four logarithmically increasing shear stresses. Numerical simulation depicts that, at an inlet velocity of 160 μl/min, our device generated shear stresses from 1.03 Pa to 1.09 mPa. In this condition, we successfully cultured primary rat bone marrow mesenchymal stem cells (rBMSCs) in the device for a prolonged period of time in the incubator environment (four days). Higher cell proliferation rate was observed in the intermittent flow at 1.09 mPa. At 10 mPa, both upregulation of osteogenic genes and higher alkaline phosphatase activity were observed. These results suggest that the intermittent shear of the order of 10 mPa can competently enhance osteogenic differentiation of rBMSCs compared to static culture.
Collapse
Affiliation(s)
- Sanat Kumar Dash
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Vineeta Sharma
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Rama Shankar Verma
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Sarit K. Das
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
26
|
Li T, Chen Z, Gao Y, Zhu L, Yang R, Leng H, Huo B. Fluid-solid coupling numerical simulation of trabecular bone under cyclic loading in different directions. J Biomech 2020; 109:109912. [PMID: 32807313 DOI: 10.1016/j.jbiomech.2020.109912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022]
Abstract
The structure of a bone tissue is capable of adapting to mechanical loading through the process of bone remodeling, which is regulated by osteoblasts and osteoclasts. Fluid flow within trabecular porosity under cyclic loading is one of the factors stimulating the biological response of osteoblasts and osteoclasts. However, the relation between loading directions and interstitial fluid flow was seldom studied. In the present study, a finite element model based on micro-computed tomographic reconstructions is built by using a mouse femur. Results from the fluid-solid coupling numerical simulation indicate that the loading in different directions generates a distinct distribution of von Mises stress in the bone matrix and a fluid shear stress (FSS) in the bone marrow. The loading along the physiological direction leads to a more uniform distribution of solid stress and produces an FSS level beneficial to the biological response of osteoblasts and osteoclasts compared with those along the non-physiological direction. There was a minimum threshold line of wall FSS with a specific solid stress at the bone surface, suggesting that the wall FSS is mainly induced by the solid strain. These results may offer fundamental data in understanding the mechanical environment around osteoblasts and osteoclasts and the cellular and molecular mechanisms of mechanical loading-induced bone remodeling.
Collapse
Affiliation(s)
- Taiyang Li
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zebin Chen
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yan Gao
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Lingsu Zhu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Ruili Yang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Huijie Leng
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, PR China
| | - Bo Huo
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
27
|
Knothe Tate ML. Advanced Design and Manufacture of Mechanoactive Materials Inspired by Skin, Bones, and Skin-on-Bones. Front Bioeng Biotechnol 2020; 8:845. [PMID: 32984263 PMCID: PMC7477045 DOI: 10.3389/fbioe.2020.00845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/30/2020] [Indexed: 01/01/2023] Open
Abstract
Life is mechanobiological. Natural living materials exhibit remarkable, emergent and smart properties under mechanical loading. Such materials are classified as mechanoactive, in contrast to electroactive polymers and materials that exhibit advanced properties when subjected to electrical stimulation. Cutting edge, multiscale imaging technologies have proven enabling for the elucidation of molecular to meso-scale structure and function of natural mechanoactive materials. Using Microscopy-Aided Design And ManufacturE, (MADAME) this perspective article describes mechanoactive properties of natural materials including skin-on-bones (periosteum) and bone itself. In so doing, it demonstrates the principle to emulate natural smart properties using recursive logic, the basis of many computer algorithms, and to design and manufacture mechanoactive materials and products using advanced manufacturing methods that also incorporate principles of recursive logic. In sum, the MADAME approach translates physically the computer science paradigm of recursion by implementing Jacquard textile methods, which themselves form a historical basis for computing machines, together with additive manufacturing methods including multidimensional printing, stereolithography, laser sintering, etc. These integrated methods provide a foundation and translational pathway for scaled-up manufacture of disruptive mechanoactive materials that will find use in fields as varied as medicine, safety, transport and sports, for internal (implants) and external (wearables) applications.
Collapse
Affiliation(s)
- Melissa Louise Knothe Tate
- Inaugural Paul Trainor Chair of Biomedical Engineering, Director MechBio Team, Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
28
|
Ganesh T, Laughrey LE, Niroobakhsh M, Lara-Castillo N. Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system. Bone 2020; 137:115328. [PMID: 32201360 PMCID: PMC7354216 DOI: 10.1016/j.bone.2020.115328] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/20/2022]
Abstract
Osteocytes form over 90% of the bone cells and are postulated to be mechanosensors responsible for regulating the function of osteoclasts and osteoblasts in bone modeling and remodeling. Physical activity results in mechanical loading on the bones. Osteocytes are thought to be the main mechanosensory cells in bone. Upon load osteocytes secrete key factors initiating downstream signaling pathways that regulate skeletal metabolism including the Wnt/β-catenin signaling pathway. Osteocytes have dendritic structures and are housed in the lacunae and canaliculi within the bone matrix. Mechanical loading is known to have two primary effects, namely a mechanical strain (membrane disruption by stretching) on the lacunae/cells, and fluid flow, in the form of fluid flow shear stress (FFSS), in the space between the cell membranes and the lacuna-canalicular walls. In response, osteocytes get activated via a process called mechanotransduction in which mechanical signals are transduced to biological responses. The study of mechanotransduction is a complex subject involving principles of engineering mechanics as well as biological signaling pathway studies. Several length scales are involved as the mechanical loading on macro sized bones are converted to strain and FFSS responses at the micro-cellular level. Experimental measurements of strain and FFSS at the cellular level are very difficult and correlating them to specific biological activity makes this a very challenging task. One of the methods commonly adopted is a multi-scale approach that combines biological and mechanical experimentation with in silico numerical modeling of the engineering aspects of the problem. Finite element analysis along with fluid-structure interaction methodologies are used to compute the mechanical strain and FFSS. These types of analyses often involve a multi-length scale approach where models of both the macro bone structure and micro structure at the cellular length scale are used. Imaging modalities play a crucial role in the development of the models and present their own challenges. This paper reviews the efforts of various research groups in addressing this problem and presents the work in our research group. A clear understanding of how mechanical stimuli affect the lacunae and perilacunar tissue strains and shear stresses on the cellular membranes may ultimately lead to a better understanding of the process of osteocyte activation.
Collapse
Affiliation(s)
- Thiagarajan Ganesh
- Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110, United States of America.
| | - Loretta E Laughrey
- Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110, United States of America
| | - Mohammadmehdi Niroobakhsh
- Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110, United States of America
| | - Nuria Lara-Castillo
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 650 E 25th Street, Kansas City, MO 64108, United States of America
| |
Collapse
|
29
|
Naqvi SM, Panadero Pérez JA, Kumar V, Verbruggen ASK, McNamara LM. A Novel 3D Osteoblast and Osteocyte Model Revealing Changes in Mineralization and Pro-osteoclastogenic Paracrine Signaling During Estrogen Deficiency. Front Bioeng Biotechnol 2020; 8:601. [PMID: 32656194 PMCID: PMC7326002 DOI: 10.3389/fbioe.2020.00601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Recent in vitro studies have revealed that the mechanobiological responses of osteoblasts and osteocytes are fundamentally impaired during estrogen deficiency. However, these two-dimensional (2D) cell culture studies do not account for in vivo biophysical cues. Thus, the objectives of this study are to (1) develop a three-dimensional (3D) osteoblast and osteocyte model integrated into a bioreactor and (2) apply this model to investigate whether estrogen deficiency leads to changes in osteoblast to osteocyte transition, mechanosensation, mineralization, and paracrine signaling associated with bone resorption by osteoclasts. MC3T3-E1s were expanded in media supplemented with estrogen (17β-estradiol). These cells were encapsulated in gelatin-mtgase before culture in (1) continued estrogen (E) or (2) no further estrogen supplementation. Constructs were placed in gas permeable and water impermeable cell culture bags and maintained at 5% CO2 and 37°C. These bags were either mechanically stimulated in a custom hydrostatic pressure (HP) bioreactor or maintained under static conditions (control). We report that osteocyte differentiation, characterized by the presence of dendrites and staining for osteocyte marker dentin matrix acidic phosphoprotein 1 (DMP1), was significantly greater under estrogen withdrawal (EW) compared to under continuous estrogen treatment (day 21). Mineralization [bone sialoprotein (BSP), osteopontin (OPN), alkaline phosphatase (ALP), calcium] and gene expression associated with paracrine signaling for osteoclastogenesis [receptor activator of nuclear factor kappa-β ligand (RANKL)/osteoprotegerin OPG ratio] were significantly increased in estrogen deficient and mechanically stimulated cells. Interestingly, BSP and DMP-1 were also increased at day 1 and day 21, respectively, which play a role in regulation of biomineralization. Furthermore, the increase in pro-osteoclastogenic signaling may be explained by altered mechanoresponsiveness of osteoblasts or osteocytes during EW. These findings highlight the impact of estrogen deficiency on bone cell function and provide a novel in vitro model to investigate the mechanisms underpinning changes in bone cells after estrogen deficiency.
Collapse
Affiliation(s)
| | | | | | | | - Laoise M. McNamara
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
30
|
Milovanovic P, Busse B. Phenomenon of osteocyte lacunar mineralization: indicator of former osteocyte death and a novel marker of impaired bone quality? Endocr Connect 2020; 9:R70-R80. [PMID: 32168472 PMCID: PMC7159263 DOI: 10.1530/ec-19-0531] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 11/09/2022]
Abstract
An increasing number of patients worldwide suffer from bone fractures that occur after low intensity trauma. Such fragility fractures are usually associated with advanced age and osteoporosis but also with long-term immobilization, corticosteroid therapy, diabetes mellitus, and other endocrine disorders. It is important to understand the skeletal origins of increased bone fragility in these conditions for preventive and therapeutic strategies to combat one of the most common health problems of the aged population. This review summarizes current knowledge pertaining to the phenomenon of micropetrosis (osteocyte lacunar mineralization). As an indicator of former osteocyte death, micropetrosis is more common in aged bone and osteoporotic bone. Considering that the number of mineralized osteocyte lacunae per bone area can distinguish healthy, untreated osteoporotic and bisphosphonate-treated osteoporotic patients, it could be regarded as a novel structural marker of impaired bone quality. Further research is needed to clarify the mechanism of lacunar mineralization and to explore whether it could be an additional target for preventing or treating bone fragility related to aging and various endocrine diseases.
Collapse
Affiliation(s)
- Petar Milovanovic
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Correspondence should be addressed to B Busse:
| |
Collapse
|
31
|
Brown JL, Laurencin CT. Bone Tissue Engineering. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Smith ER, Holt SG, Hewitson TD. αKlotho-FGF23 interactions and their role in kidney disease: a molecular insight. Cell Mol Life Sci 2019; 76:4705-4724. [PMID: 31350618 PMCID: PMC11105488 DOI: 10.1007/s00018-019-03241-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022]
Abstract
Following the serendipitous discovery of the ageing suppressor, αKlotho (αKl), several decades ago, a growing body of evidence has defined a pivotal role for its various forms in multiple aspects of vertebrate physiology and pathology. The transmembrane form of αKl serves as a co-receptor for the osteocyte-derived mineral regulator, fibroblast growth factor (FGF)23, principally in the renal tubules. However, compelling data also suggest that circulating soluble forms of αKl, derived from the same source, may have independent homeostatic functions either as a hormone, glycan-cleaving enzyme or lectin. Chronic kidney disease (CKD) is of particular interest as disruption of the FGF23-αKl axis is an early and common feature of disease manifesting in markedly deficient αKl expression, but FGF23 excess. Here we critically discuss recent findings in αKl biology that conflict with the view that soluble αKl has substantive functions independent of FGF23 signalling. Although the issue of whether soluble αKl can act without FGF23 has yet to be resolved, we explore the potential significance of these contrary findings in the context of CKD and highlight how this endocrine pathway represents a promising target for novel anti-ageing therapeutics.
Collapse
Affiliation(s)
- Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia.
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia.
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia
| | - Tim D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia
| |
Collapse
|
33
|
Ng JL, Putra VDL, Knothe Tate ML. In vitro biocompatibility and biomechanics study of novel, Microscopy Aided Designed and ManufacturEd (MADAME) materials emulating natural tissue weaves and their intrinsic gradients. J Mech Behav Biomed Mater 2019; 103:103536. [PMID: 32090942 DOI: 10.1016/j.jmbbm.2019.103536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/04/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
Abstract
This study conducted biomechanical and biocompatibility tests of textiles and textile composites, created using recursive logic to emulate the properties of natural tissue weaves and their intrinsic mechanical stiffness gradients. Two sets of samples were created, first to test feasibility on textile samples designed as periosteum substitutes with elastane fibers mimicking periosteum's endogenous elastin and nylon fibers substituting for collagen, and then on composites comprising other combinations of suture materials before and after sterilization. In the first part, the bulk tensile mechanical stiffness of elastane-nylon textiles were tuned through respective fiber composition and orientation, i.e., aligned with and orthogonal to loading direction. Cell culture biocompatibility studies revealed no significant differences in proliferation rates of embryonic murine stem cells seeded on textiles compared to collagen membrane controls. Until the 15th day of culture, cells were rarely observed in direct contact with the elastane fibers, similar to previous observations with elastomeric sheets used in periosteum substitute implants. In the second part of the study textile samples were created from FDA-approved medical sutures comprising silk, expanded polytetrafluoroethylene, and polybutester. Biocompatibility and mechanical stiffness were assessed as a function of sterilization/disinfection mode (steam, ethylene oxide, and serial disinfection with ethanol). Cell proliferation rates did not differ significantly from controls, except for silk-suture containing textiles, which showed bacterial contamination and no viable cells after 15 days' culture for all sterilization methods. Sterilization had mixed (mostly not significant) effects on textile stiffness, except for the case of polybutester suture-based textiles that showed a significant increase in stiffness with ethylene oxide sterilization. In general, all textile combinations exhibited significantly higher stiffness than periosteum. Textiles comprising medical sutures of different stiffnesses arranged in engineered patterns offer a novel means to achieve mechanical gradients in medical device materials, emulating those of nature's own.
Collapse
Affiliation(s)
- Joanna L Ng
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, UNSW Sydney, Australia
| | - Vina D L Putra
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, UNSW Sydney, Australia
| | - Melissa L Knothe Tate
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, UNSW Sydney, Australia.
| |
Collapse
|
34
|
Cheng TL, Cantrill LC, Schindeler A, Little DG. Induction of periosteal bone formation by intraosseous BMP-2 injection in a mouse model of osteogenesis imperfecta. J Child Orthop 2019; 13:543-550. [PMID: 31695823 PMCID: PMC6808071 DOI: 10.1302/1863-2548.13.190119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Surgical interventions are routinely performed on children with osteogenesis imperfecta (OI) to stabilize long bones, often post fracture. We speculated that a combination of intramedullary reaming and intraosseous injection of recombinant bone morphogenetic protein-2 (BMP-2) could enhance periosteal ossification and ultimately cortical thickness and strength. This approach was conceptually tested in a preclinical model of genetic bone fragility. METHODS Six experimental groups were tested including no treatment, intramedullary reaming, and reaming with 5 µg BMP-2 injection performed in the tibiae of both wild type (WT) and Col1a2 G610C/+ (OI, Amish mutation) mice. Bone formation was examined at a two-week time point in ex vivo specimens by micro-computed tomography (microCT) analysis and histomorphometry with a dynamic bone label. RESULTS MicroCT data illustrated increases in tibial cortical thickness with intramedullary reaming alone (Saline) and reaming plus BMP-2 injection (BMP-2) compared to no intervention controls. In the OI mice, the periosteal bone increase was not statistically significant with Saline but there was an increase of +192% (p = 0.053) with BMP-2 injection. Dynamic histomorphometry on calcein label was used to quantify new woven bone formation; while BMP-2 induced greater bone formation than Saline, the anabolic response was blunted overall in the OI groups. CONCLUSIONS These data indicate that targeting the intramedullary compartment via reaming and intraosseous BMP-2 delivery can lead to gains in cortical bone parameters. It is suggested that the next step is to validate safety and functional improvements in a clinical OI setting.
Collapse
Affiliation(s)
- T. L. Cheng
- Orthopaedic Research and Biotechnology Unit, Children’s Hospital at Westmead, Sydney, NSW, Australia,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia,Correspondence should be sent to T. L. Cheng, Orthopaedic Research and Biotechnology, Kids Research, The Children’s Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia. E-mail:
| | - L. C. Cantrill
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia,Microscopy Services at Kids Research, The Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - A. Schindeler
- Orthopaedic Research and Biotechnology Unit, Children’s Hospital at Westmead, Sydney, NSW, Australia,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - D. G. Little
- Orthopaedic Research and Biotechnology Unit, Children’s Hospital at Westmead, Sydney, NSW, Australia,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
35
|
Long EG, Buluk M, Gallagher MB, Schneider JM, Brown JL. Human mesenchymal stem cell morphology, migration, and differentiation on micro and nano-textured titanium. Bioact Mater 2019; 4:249-255. [PMID: 31667441 PMCID: PMC6812408 DOI: 10.1016/j.bioactmat.2019.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/24/2019] [Accepted: 08/26/2019] [Indexed: 01/25/2023] Open
Abstract
Orthopedic implants rely on facilitating a robust interaction between the implant material surface and the surrounding bone tissue. Ideally, the interface will encourage osseointegration with the host bone, resulting in strong fixation and implant stability. However, implant failure can occur due to the lack of integration with bone tissue or bacterial infection. The chosen material and surface topography of orthopedic implants are key factors that influence the early events following implantation and may ultimately define the success of a device. Early attachment, rapid migration and improved differentiation of stem cells to osteoblasts are necessary to populate the surface of biomedical implants, potentially preventing biofilm formation and implant-associated infection. This article explores these early stem cell specific events by seeding human mesenchymal stem cells (MSCs) on four clinically relevant materials: polyether ether ketone (PEEK), Ti6Al4V (smooth Ti), macro-micro rough Ti6Al4V (Endoskeleton®), and macro-micro-nano rough Ti6Al4V (nanoLOCK®). The results demonstrate the incorporation of a hierarchical macro-micro-nano roughness on titanium produces a stellate morphology typical of mature osteoblasts/osteocytes, rapid and random migration, and improved osteogenic differentiation in seeded MSCs. Literature suggests rapid coverage of a surface by stem cells coupled with stimulation of bone differentiation minimizes the opportunity for biofilm formation while increasing the rate of device integration with the surrounding bone tissue.
Collapse
Affiliation(s)
- Emily G Long
- Department of Biomedical Engineering, The Pennsylvania State University, 122 CBEB Building, University Park, PA, 16802, USA
| | - Merve Buluk
- Department of Biomedical Engineering, The Pennsylvania State University, 122 CBEB Building, University Park, PA, 16802, USA
| | - Michelle B Gallagher
- Titan Spine, Inc., Mequon Research Center, 6140 W. Executive Drive, Suite A, Mequon, WI, 53092, USA
| | - Jennifer M Schneider
- Titan Spine, Inc., Mequon Research Center, 6140 W. Executive Drive, Suite A, Mequon, WI, 53092, USA
| | - Justin L Brown
- Department of Biomedical Engineering, The Pennsylvania State University, 122 CBEB Building, University Park, PA, 16802, USA
| |
Collapse
|
36
|
Alfieri R, Vassalli M, Viti F. Flow-induced mechanotransduction in skeletal cells. Biophys Rev 2019; 11:729-743. [PMID: 31529361 DOI: 10.1007/s12551-019-00596-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Human body is subject to many and variegated mechanical stimuli, actuated in different ranges of force, frequency, and duration. The process through which cells "feel" forces and convert them into biochemical cascades is called mechanotransduction. In this review, the effects of fluid shear stress on bone cells will be presented. After an introduction to present the major players in bone system, we describe the mechanoreceptors in bone tissue that can feel and process fluid flow. In the second part of the review, we present an overview of the biological processes and biochemical cascades initiated by fluid shear stress in bone cells.
Collapse
Affiliation(s)
- Roberta Alfieri
- Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" - National Research Council (IGM-CNR), Via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Massimo Vassalli
- Institute of Biophysics - National Research Council (IBF-CNR), Via De Marini, 6, 16149, Genoa, Italy
| | - Federica Viti
- Institute of Biophysics - National Research Council (IBF-CNR), Via De Marini, 6, 16149, Genoa, Italy.
| |
Collapse
|
37
|
Curtis KJ, Oberman AG, Niebur GL. Effects of mechanobiological signaling in bone marrow on skeletal health. Ann N Y Acad Sci 2019; 1460:11-24. [PMID: 31508828 DOI: 10.1111/nyas.14232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 01/27/2023]
Abstract
Bone marrow is a cellular tissue that forms within the pore space and hollow diaphysis of bones. As a tissue, its primary function is to support the hematopoietic progenitor cells that maintain the populations of both erythroid and myeloid lineage cells in the bone marrow, making it an essential element of normal mammalian physiology. However, bone's primary function is load bearing, and deformations induced by external forces are transmitted to the encapsulated marrow. Understanding the effects of these mechanical inputs on marrow function and adaptation requires knowledge of the material behavior of the marrow at multiple scales, the loads that are applied, and the mechanobiology of the cells. This paper reviews the current state of knowledge of each of these factors. Characterization of the marrow mechanical environment and its role in skeletal health and other marrow functions remains incomplete, but research on the topic is increasing, driven by interest in skeletal adaptation and the mechanobiology of cancer metastasis.
Collapse
Affiliation(s)
- Kimberly J Curtis
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, Indiana
| | - Alyssa G Oberman
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana
| | - Glen L Niebur
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
38
|
Shear Stress in Bone Marrow has a Dose Dependent Effect on cFos Gene Expression in In Situ Culture. Cell Mol Bioeng 2019; 12:559-568. [PMID: 33281987 DOI: 10.1007/s12195-019-00594-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022] Open
Abstract
Introduction Mechanical stimulation of bone is necessary to maintain its mass and architecture. Osteocytes within the mineralized matrix are sensors of mechanical deformation of the hard tissue, and communicate with cells in the marrow to regulate bone remodeling. However, marrow cells are also subjected to mechanical stress during whole bone loading, and may contribute to mechanically regulated bone physiology. Previous results from our laboratory suggest that mechanotransduction in marrow cells is sufficient to cause bone formation in the absence of osteocyte signaling. In this study, we investigated whether bone formation and altered marrow cell gene expression response to stimulation was dependent on the shear stress imparted on the marrow by our loading regime. Methods Porcine trabecular bone explants were cultured in an in situ bioreactor for 5 or 28 days with stimulation twice daily. Gene expression and bone formation were quantified and compared to unstimulated controls. Correlation was used to assess the dependence on shear stress imparted by the loading regime calculated using computational fluid dynamics models. Results Vibratory stimulation resulted in a higher trabecular bone formation rate (p = 0.01) and a greater increase in bone volume fraction (p = 0.02) in comparison to control explants. Marrow cell expression of cFos increased with the calculated marrow shear stress in a dose-dependent manner (p = 0.002). Conclusions The results suggest that the shear stress due to interactions between marrow cells induces a mechanobiological response. Identification of marrow cell mechanotransduction pathways is essential to understand healthy and pathological bone adaptation and remodeling.
Collapse
|
39
|
Werner SL, Sharma R, Woodruff K, Horn D, Harris SE, Gorin Y, Lee DY, Hua R, Gu S, Fajardo RJ, Habib SL, Jiang JX. CSF-1 in Osteocytes Inhibits Nox4-mediated Oxidative Stress and Promotes Normal Bone Homeostasis. JBMR Plus 2019; 4:e10080. [PMID: 32666016 DOI: 10.1002/jbm4.10080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022] Open
Abstract
CSF-1 is a key factor in regulating bone remodeling; osteocytes express CSF-1 and its receptor. Viable osteocytes are essential for bone remodeling through cell-cell contact and secretion of factors that regulate osteoblasts and osteoclasts. Increased oxidative stress contributes to osteocyte death and correlates with bone loss during aging. The NADPH oxidase Nox4 is a major source of ROS in bone. CSF-1 decreases Nox4, suggesting that CSF-1 protects against oxidative stress. Here, we show that osteocyte apoptosis previously reported in our global CSF-1KO mice is associated with increased Nox4, as well as 4-HNE expression in osteocytes. Osteocytes isolated from CSF-1KO mice were less viable and showed increased intracellular ROS, elevated NADPH oxidase activity/Nox4 protein, activation of mTOR/S6K, and downstream apoptosis signals compared with WT osteocytes. Nox4 expression was also increased in CSF-1KO osteocytes and colocalized with MitoTracker Red in mitochondria. Notably, CSF-1 inhibited Nox4 expression and apoptosis cascade signals. In additional studies, shNox4 decreased these signals in CSF-1KO osteocytes, whereas overexpression of Nox4 in WT osteocytes activated the apoptosis pathway. To determine the role of CSF-1 in osteocytes, DMP1Cre-CSF-1cKO (CSF-1cKO) mice that lack CSF-1 in osteocytes/late osteoblasts were developed. Osteocyte defects in CSF-1cKO mice overlapped with those in CSF-1KO mice, including increased apoptosis, Nox4, and 4-HNE-expressing osteocytes. CSF-1cKO mice showed unbalanced cancellous bone remodeling with decreased bone formation and resorption. Continued exposure to high Nox4/ROS levels may further compromise bone formation and predispose to bone loss and skeletal fragility. Taken together, our findings suggest a novel link between CSF-1, Nox4-derived ROS, and osteocyte survival/function that is crucial for osteocyte-mediated bone remodeling. Results reveal new mechanisms by which CSF-1/oxidative stress regulate osteocyte homeostasis, which may lead to therapeutic strategies to improve skeletal health in aging. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sherry L Werner
- Department of Pathology University of Texas Health Science Center at San Antonio TX USA
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy University of Texas Health Science Center at San Antonio TX USA
| | - Kathleen Woodruff
- Department of Pathology University of Texas Health Science Center at San Antonio TX USA
| | - Diane Horn
- Department of Pathology University of Texas Health Science Center at San Antonio TX USA
| | - Stephen E Harris
- Department of Periodontics University of Texas Health Science Center at San Antonio TX USA
| | - Yves Gorin
- Department of Medicine/Nephrology University of Texas Health Science Center at San Antonio TX USA
| | - Doug-Yoon Lee
- Department of Medicine/Nephrology University of Texas Health Science Center at San Antonio TX USA
| | - Rui Hua
- Department of Biochemistry and Structural Biology University of Texas Health Science Center at San Antonio TX USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology University of Texas Health Science Center at San Antonio TX USA
| | - Roberto J Fajardo
- Department of Orthopedics University of Texas Health Science Center at San Antonio TX USA
| | - Samy L Habib
- South Texas Veterans Health Care and Department of Cell Systems and Anatomy University of Texas Health Science Center at San Antonio TX USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology University of Texas Health Science Center at San Antonio TX USA
| |
Collapse
|
40
|
Roschger A, Roschger P, Wagermaier W, Chen J, van Tol AF, Repp F, Blouin S, Berzlanovich A, Gruber GM, Klaushofer K, Fratzl P, Weinkamer R. The contribution of the pericanalicular matrix to mineral content in human osteonal bone. Bone 2019; 123:76-85. [PMID: 30898694 DOI: 10.1016/j.bone.2019.03.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 01/11/2023]
Abstract
The osteocyte lacunar-canalicular network (LCN) penetrates bone and houses the osteocytes and their processes. Despite its rather low volume fraction, the LCN represents an outstanding large surface that is possibly used by the osteocytes to interact with the surrounding mineralized bone matrix thereby contributing to mineral homeostasis. The aim of this study was to quantitatively describe such contributions by spatially correlating the local density of the LCN with the mineral content at the same location in micrometer-sized volume elements in human osteons. For this purpose, 65 osteons from the femur midshaft from healthy adults (n = 4) and children (n = 2) were structurally characterized with two different techniques. The 3D structure of the LCN in the osteons was imaged with confocal laser scanning microscopy after staining the bone samples with rhodamine. Subsequent image analysis provided the canalicular length density, i.e. the total length of the canaliculi per unit volume (μm/μm3). Quantitative information on the mineral content (wt%Ca) from the identical regions was obtained using quantitative backscattered electron imaging. As the LCN-porosity lowers the mineral content, a negative correlation between Ca content and network density was expected. Calculations predict a reduction of around -0.97 fmol Ca per μm of network. However, the experiment revealed for 62 out of 65 osteons a positive correlation resulting in an average additional Ca loading of +1.15 fmol per μm of canalicular network, i.e. an accumulation of mineral has occurred at dense network regions. We hypothesize that this accumulation happens in the close vicinity of canaliculi forming mineral reservoirs that can be utilized by osteocytes. Significant differences found between individuals indicate that the extent of mineral loading of the reservoir zone reflects an important parameter for mineral homeostasis.
Collapse
Affiliation(s)
- A Roschger
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany; Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria.
| | - P Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - W Wagermaier
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| | - J Chen
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany; College of Engineering, Mathematics, and Physical Science, University of Exeter, Exeter EX4 4QF, UK
| | - A F van Tol
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| | - F Repp
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| | - S Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - A Berzlanovich
- Department of Forensic Medicine, Medical University of Vienna, Sensengasse 2, A-1090 Vienna, Austria
| | - G M Gruber
- Department of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - P Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| | - R Weinkamer
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| |
Collapse
|
41
|
Zhang C, Xu S, Zhang S, Liu M, Du H, Sun R, Jing B, Sun Y. Ageing characteristics of bone indicated by transcriptomic and exosomal proteomic analysis of cortical bone cells. J Orthop Surg Res 2019; 14:129. [PMID: 31077243 PMCID: PMC6509863 DOI: 10.1186/s13018-019-1163-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Degenerative changes in the skeleton play an important role in ageing. As the foremost sensors and orchestrators of bone remodelling, osteocytes contribute significantly to the health of the skeleton. Embedded in a mineralized bone matrix, the osteocyte network and the surrounding lacunar canaliculae work together as a functional syncytium-the osteocytic lacunar-canalicular system (OLCS). However, changes in the OLCS during ageing and related mechanisms cannot be fully understood by using traditional histological analysis. METHODS To link the phenotypes of aged osteocytes and their functional changes during ageing, we analysed the changes in the gene expression profiles of bone cells and the proteomic profiles of OLCS exosomes derived from aged and young cortical bone. RESULTS Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes (DEGs) suggested that a decline in cell energy metabolism and an increased level of the proinflammatory state are major characteristics of bone ageing. Moreover, some DEGs were key regulators of bone mechanical sensation and bone remodelling, which are indicative of reduced bone-specific function with age. Further, the identified proteins in OLCS exosomes showed potential changes in the secretory function bone. Compared with young controls, the decreased functional proteins in aged OLCS exosomes were enriched mainly in GO terms that included regulating bone development and remodelling, cell-matrix adhesion, and cell clearance and homeostasis. Notably, several functions of exosomal proteins of the aged group revealed potential new roles, such as regulating innate and adaptive immunity, wound healing, and angiogenesis and eliminating oxidative stress. CONCLUSION The information obtained from bone cells and OLCS exosomes will help us discover new features of bone ageing.
Collapse
Affiliation(s)
- Chenyang Zhang
- Department of Oral Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yanchang Road, Shanghai, 200072 China
| | - Shuyu Xu
- Department of Oral Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yanchang Road, Shanghai, 200072 China
| | - Shufan Zhang
- Department of Oral Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yanchang Road, Shanghai, 200072 China
| | - Mengmeng Liu
- Department of Oral Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yanchang Road, Shanghai, 200072 China
| | - Haiming Du
- Department of Oral Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yanchang Road, Shanghai, 200072 China
| | - Ruinan Sun
- Department of Oral Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yanchang Road, Shanghai, 200072 China
| | - Bo Jing
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yao Sun
- Department of Oral Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yanchang Road, Shanghai, 200072 China
| |
Collapse
|
42
|
The Effect of Exercise on the Prevention of Osteoporosis and Bone Angiogenesis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8171897. [PMID: 31139653 PMCID: PMC6500645 DOI: 10.1155/2019/8171897] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/27/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022]
Abstract
Physical activity or appropriate exercise prevents the development of osteoporosis. However, the exact mechanism remains unclear although it is well accepted that exercise or mechanical loading regulates the hormones, cytokines, signaling pathways, and noncoding RNAs in bone. Accumulating evidence has shown that bone is a highly vascularized tissue, and dysregulation of vasculature is associated with many bone diseases such as osteoporosis or osteoarthritis. In addition, exercise or mechanical loading regulates bone vascularization in bone microenvironment via the modulation of angiogenic mediators, which play a crucial role in maintaining skeletal health. This review discusses the effects of exercise and its underlying mechanisms for osteoporosis prevention, as well as an angiogenic and osteogenic coupling in response to exercise.
Collapse
|
43
|
Wang X, Lin M, Kang Y. Engineering Porous β-Tricalcium Phosphate (β-TCP) Scaffolds with Multiple Channels to Promote Cell Migration, Proliferation, and Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9223-9232. [PMID: 30758175 DOI: 10.1021/acsami.8b22041] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inadequate oxygen and nutrient diffusion in a porous scaffold often resulted in insufficient formation of branched vasculatures, which hindered bone regeneration. In this study, interconnected porous β-tricalcium phosphate (β-TCP) scaffolds with different geometric designs of channels were fabricated and compared to discover the functionality of structure on facilitating nutrient diffusion for angiogenesis. In vitro fluid transportation and degradation of the scaffolds were performed. Cell infiltration, migration, and proliferation of human umbilical vein endothelial cells (HUVECs) on the scaffolds were carried out under both static and dynamic culture conditions. A computational simulation model and a series of immunofluorescent staining were implemented to understand the mechanism of cell behavior in response to different types of scaffolds. Results showed that geometry with multiple channels significantly accelerated the release of Ca2+ and increased the fluid diffusion efficiency. Moreover, multiple channels promoted HUVECs' infiltration and migration in vitro. The ex vivo implantation results showed that the channels promoted cells from the rats' calvarial bone explants to infiltrate into the implanted scaffold. Multiple channels also stimulated HUVECs' proliferation prominently at both static and dynamic culturing conditions. The expression of both cell migration-related protein α5 and angiogenesis-related protein CD31 on multiple-channeled scaffolds was upregulated compared to that on the other two types of scaffolds, implying that multiple channels reinforced cell migration and angiogenesis. All the findings suggested that the geometric design of multiple channels in the porous β-TCP scaffold has promising potential to promote cell infiltration, migration, and further vascularization when implanted in vivo.
Collapse
Affiliation(s)
| | | | - Yunqing Kang
- Integrative Biology PhD Program, Department of Biological Science, College of Science , Florida Atlantic University , Boca Raton , Florida 33431 , United States
| |
Collapse
|
44
|
Sidler HJ, Duvenage J, Anderson EJ, Ng J, Hageman DJ, Knothe Tate ML. Prospective Design, Rapid Prototyping, and Testing of Smart Dressings, Drug Delivery Patches, and Replacement Body Parts Using Microscopy Aided Design and ManufacturE (MADAME). Front Med (Lausanne) 2018; 5:348. [PMID: 30619859 PMCID: PMC6301284 DOI: 10.3389/fmed.2018.00348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Natural materials exhibit smart properties including gradients in biophysical properties that engender higher order functions, as well as stimuli-responsive properties which integrate sensor and/or actuator capacities. Elucidation of mechanisms underpinning such smart material properties (i), and translation of that understanding (ii), represent two of the biggest challenges in emulating natural design paradigms for design and manufacture of disruptive materials, parts, and products. Microscopy Aided Design And ManufacturE (MADAME) stands for a computer-aided additive manufacturing platform that incorporates multidimensional (multi-D) printing and computer-controlled weaving. MADAME enables the creation of composite design motifs emulating e.g., patterns of woven protein fibers as well as gradients in different caliber porosities, mechanical, and molecular properties, found in natural tissues, from the skin on bones (periosteum) to tree bark. Insodoing, MADAME provides a means to manufacture a new genre of smart materials, products and replacement body parts that exhibit advantageous properties both under the influence of as well as harnessing dynamic mechanical loads to activate material properties (mechanoactive properties). This Technical Report introduces the MADAME technology platform and its associated machine-based workflow (pipeline), provides basic technical background of the novel technology and its applications, and discusses advantages and disadvantages of the approach in context of current 3 and 4D printing platforms.
Collapse
Affiliation(s)
- Hans Jörg Sidler
- Institute of Biomedical Engineering and Medical Informatics, Swiss Federal Institute of Technology, Zurich, Switzerland
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Departments of Mechanical & Aerospace Engineering and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Jacob Duvenage
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Eric J. Anderson
- Departments of Mechanical & Aerospace Engineering and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- National Oceanic and Atmospheric Administration, Great Lakes Environmental Research Laboratory, Ann Arbor, MI, United States
| | - Joanna Ng
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Daniel J. Hageman
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Melissa L. Knothe Tate
- Institute of Biomedical Engineering and Medical Informatics, Swiss Federal Institute of Technology, Zurich, Switzerland
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Departments of Mechanical & Aerospace Engineering and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
45
|
Armstrong RT, McClure JE, Robins V, Liu Z, Arns CH, Schlüter S, Berg S. Porous Media Characterization Using Minkowski Functionals: Theories, Applications and Future Directions. Transp Porous Media 2018. [DOI: 10.1007/s11242-018-1201-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Sera T, Kobayashi H, Hoshino M, Uesugi K, Matsumoto T, Tanaka M. The disuse effect on canal network structure and oxygen supply in the cortical bones of rats. Biomech Model Mechanobiol 2018; 18:375-385. [DOI: 10.1007/s10237-018-1088-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 10/23/2018] [Indexed: 01/06/2023]
|
47
|
Schwartz NL, Patel BA, Garland T, Horner AM. Effects of selective breeding for high voluntary wheel-running behavior on femoral nutrient canal size and abundance in house mice. J Anat 2018; 233:193-203. [PMID: 29851089 DOI: 10.1111/joa.12830] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2018] [Indexed: 12/25/2022] Open
Abstract
Bone modeling and remodeling are aerobic processes that entail relatively high oxygen demands. Long bones receive oxygenated blood from nutrient arteries, epiphyseal-metaphyseal arteries, and periosteal arteries, with the nutrient artery supplying the bulk of total blood volume in mammals (~ 50-70%). Estimates of blood flow into these bones can be made from the dimensions of the nutrient canal, through which nutrient arteries pass. Unfortunately, measuring these canal dimensions non-invasively (i.e. without physical sectioning) is difficult, and thus researchers have relied on more readily visible skeletal proxies. Specifically, the size of the nutrient artery has been estimated from dimensions (e.g. minimum diameters) of the periosteal (external) opening of the nutrient canal. This approach has also been utilized by some comparative morphologists and paleontologists, as the opening of a nutrient canal is present long after the vascular soft tissue has degenerated. The literature on nutrient arteries and canals is sparse, with most studies consisting of anatomical descriptions from surgical proceedings, and only a few investigating the links between nutrient canal morphology and physiology or behavior. The primary objective of this study was to evaluate femur nutrient canal morphology in mice with known physiological and behavioral differences; specifically, mice from an artificial selection experiment for high voluntary wheel-running behavior. Mice from four replicate high runner (HR) lines are known to differ from four non-selected control (C) lines in both locomotor and metabolic activity, with HR mice having increased voluntary wheel-running behavior and maximal aerobic capacity (VO2 max) during forced treadmill exercise. Femora from adult mice (average age 7.5 months) of the 11th generation of this selection experiment were μCT-scanned and three-dimensional virtual reconstructions of nutrient canals were measured for minimum cross-sectional area as a skeletal proxy of blood flow. Gross observations revealed that nutrient canals varied far more in number and shape than prior descriptions would indicate, regardless of sex or genetic background (i.e. HR vs. C lines). Canals adopted non-linear shapes and paths as they traversed from the periosteal to endosteal borders through the cortex, occasionally even branching within the cortical bone. Additionally, mice from both HR and C lines averaged more than four nutrient canals per femur, in contrast to the one to two nutrient canals described for femora from rats, pigs, and humans in prior literature. Mice from HR lines had significantly larger total nutrient canal area than C lines, which was the result not of an increase in the number of nutrient canals, but rather an increase in their average cross-section size. This study demonstrates that mice with an evolutionary history of increased locomotor activity and maximal aerobic metabolic rate have a concomitant increase in the size of their femoral nutrient canals. Although the primary determinant of nutrient canal size is currently not well understood, the present results bolster use of nutrient canal size as a skeletal indicator of aerobically supported levels of physical activity in comparative studies.
Collapse
Affiliation(s)
- Nicolas L Schwartz
- Department of Biology, California State University San Bernardino, San Bernardino, CA, USA.,Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA
| | - Biren A Patel
- Department of Integrative Anatomical Sciences and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA
| | - Angela M Horner
- Department of Biology, California State University San Bernardino, San Bernardino, CA, USA
| |
Collapse
|
48
|
Performance comparison of two herbal and industrial medicines using nanoparticles with a starch/cellulose shell and alginate core for drug delivery: In vitro studies. Colloids Surf B Biointerfaces 2017; 158:556-561. [DOI: 10.1016/j.colsurfb.2017.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/06/2017] [Accepted: 07/05/2017] [Indexed: 11/17/2022]
|
49
|
Contribution of Circulatory Disturbances in Subchondral Bone to the Pathophysiology of Osteoarthritis. Curr Rheumatol Rep 2017; 19:49. [DOI: 10.1007/s11926-017-0660-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
50
|
The implication of the osteolysis threshold and interfacial gaps on periprosthetic osteolysis in cementless total hip replacement. J Biomech 2017; 58:1-10. [PMID: 28511839 DOI: 10.1016/j.jbiomech.2017.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 02/10/2017] [Accepted: 03/31/2017] [Indexed: 11/20/2022]
Abstract
Osteolysis around joint replacements may develop due to migration of wear particles from the joint space into gaps between the interface bone and the implant where they can accumulate in high concentrations to cause tissue damage. Osteolysis may appear in various postoperative times and morphological shapes which can be generalized into linear and focal. However, there are no clear explanations on the causes of such variations. Patients' degree of sensitivity to polyethylene particles (osteolysis thresholds), the local particle concentration and the access route provided by the interface gaps have been described as determining factors. To study their effects, a 2D computational fluid dynamics model of the hip joint capsule in communication with an interfacial gap and the surrounding bone was employed. Particles were presented using a discrete phase model (DPM). High capsular fluid pressure was considered as the driving force for particle migration. Simulations were run for different osteolysis thresholds ranging from 5×108 to 1×1012 particle number per gram of tissue and fibrous tissue generation in osteolytic lesion due to particles was simulated for the equivalent of ten postoperative years. In patients less sensitive to polyethylene particles (higher threshold), osteolysis may be linear and occur along an interfacial gap in less than 5% of the interfacial tissue. Focal osteolysis is more likely to develop in patients with higher sensitivity to polyethylene particles at distal regions to an interfacial gaps where up to 80% of the interfacial tissue may be replaced by fibrous tissue. In these patients, signs of osteolysis may also develop earlier (third postoperative year) than those with less sensitivity who may show very minor signs even after ten years. This study shows the importance of patient sensitivity to wear particles, the role of interfacial gaps in relation to morphology and the onset of osteolysis. Consequently, it may explain the clinically observed variation in osteolysis development.
Collapse
|