1
|
Yang H, Su M, Liu M, Sheng Y, Zhu L, Yang L, Mu R, Zou J, Liu X, Liu L. Hepatic retinaldehyde deficiency is involved in diabetes deterioration by enhancing PCK1- and G6PC-mediated gluconeogenesis. Acta Pharm Sin B 2023; 13:3728-3743. [PMID: 37719384 PMCID: PMC10501888 DOI: 10.1016/j.apsb.2023.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/14/2023] [Accepted: 05/06/2023] [Indexed: 09/19/2023] Open
Abstract
Type 2 diabetes (T2D) is often accompanied with an induction of retinaldehyde dehydrogenase 1 (RALDH1 or ALDH1A1) expression and a consequent decrease in hepatic retinaldehyde (Rald) levels. However, the role of hepatic Rald deficiency in T2D progression remains unclear. In this study, we demonstrated that reversing T2D-mediated hepatic Rald deficiency by Rald or citral treatments, or liver-specific Raldh1 silencing substantially lowered fasting glycemia levels, inhibited hepatic glucogenesis, and downregulated phosphoenolpyruvate carboxykinase 1 (PCK1) and glucose-6-phosphatase (G6PC) expression in diabetic db/db mice. Fasting glycemia and Pck1/G6pc mRNA expression levels were strongly negatively correlated with hepatic Rald levels, indicating the involvement of hepatic Rald depletion in T2D deterioration. A similar result that liver-specific Raldh1 silencing improved glucose metabolism was also observed in high-fat diet-fed mice. In primary human hepatocytes and oleic acid-treated HepG2 cells, Rald or Rald + RALDH1 silencing resulted in decreased glucose production and downregulated PCK1/G6PC mRNA and protein expression. Mechanistically, Rald downregulated direct repeat 1-mediated PCK1 and G6PC expression by antagonizing retinoid X receptor α, as confirmed by luciferase reporter assays and molecular docking. These results highlight the link between hepatic Rald deficiency, glucose dyshomeostasis, and the progression of T2D, whilst also suggesting RALDH1 as a potential therapeutic target for T2D.
Collapse
Affiliation(s)
- Hanyu Yang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mengxiang Su
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ming Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yun Sheng
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Zhu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Yang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ruijing Mu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaodong Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Li Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Yang HY, Liu M, Sheng Y, Zhu L, Jin MM, Jiang TX, Yang L, Liu PH, Liu XD, Liu L. All-trans retinoic acid impairs glucose-stimulated insulin secretion by activating the RXR/SREBP-1c/UCP2 pathway. Acta Pharmacol Sin 2022; 43:1441-1452. [PMID: 34417575 PMCID: PMC9160277 DOI: 10.1038/s41401-021-00740-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes is often associated with vitamin A disorders. All-trans retinoic acid (ATRA) is the main active constituent of vitamin A. We aimed to investigate whether ATRA influences diabetic progression and its mechanisms using both Goto-Kazizazi (GK) rats and INS-1 cells. Rat experiments demonstrated that ATRA treatment worsened diabetes symptoms, as evidenced by an increase in fasting blood glucose (FBG) levels and impairment of glucose homeostasis. Importantly, ATRA impaired glucose-stimulated insulin secretion (GSIS) and increased the expression of sterol regulatory element-binding protein 1c (SREBP-1c) and uncoupling protein 2 (UCP2) in the rat pancreas. Data from INS-1 cells also showed that ATRA upregulated SREBP-1c and UCP2 expression and impaired GSIS at 23 mM glucose. Srebp-1c or Ucp2 silencing attenuated GSIS impairment by reversing the ATRA-induced increase in UCP2 expression and decrease in ATP content. ATRA and the retinoid X receptor (RXR) agonists 9-cis RA and LG100268 induced the gene expression of Srebp-1c, which was almost completely abolished by the RXR antagonist HX531. RXRα-LBD luciferase reporter plasmid experiments also demonstrated that ATRA concentration-dependently activated RXRα, the EC50 of which was 1.37 μM, which was lower than the ATRA concentration in the pancreas of GK rats treated with a high dose of ATRA (approximately 3 μM), inferring that ATRA can upregulate Srebp-1c expression in the pancreas by activating RXR. In conclusion, ATRA impaired GSIS partly by activating the RXR/SREBP-1c/UCP2 pathway, thus worsening diabetic symptoms. The results highlight the roles of ATRA in diabetic progression and establish new strategies for diabetes treatment.
Collapse
Affiliation(s)
- Han-yu Yang
- grid.254147.10000 0000 9776 7793Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Ming Liu
- grid.254147.10000 0000 9776 7793Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yun Sheng
- grid.254147.10000 0000 9776 7793Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Liang Zhu
- grid.254147.10000 0000 9776 7793Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Meng-meng Jin
- grid.254147.10000 0000 9776 7793Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Tian-xin Jiang
- grid.254147.10000 0000 9776 7793Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Lu Yang
- grid.254147.10000 0000 9776 7793Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Pei-hua Liu
- grid.254147.10000 0000 9776 7793Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Xiao-dong Liu
- grid.254147.10000 0000 9776 7793Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Li Liu
- grid.254147.10000 0000 9776 7793Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
3
|
Mei X, Lu D, Yan X. Separation and determination of D-malic acid enantiomer by reversed-phase liquid chromatography after derivatization with (R)-1-(1-naphthyl) ethylamine. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Xuejiao Mei
- Nanjing University of Technology, People’s Republic of China
| | - Dingqiang Lu
- Nanjing University of Technology, People’s Republic of China
| | - Xiangping Yan
- Nanjing University of Technology, People’s Republic of China
| |
Collapse
|
4
|
Deibel E, Klink D, Schmitz OJ. New derivatization strategies for the ultrasensitive analysis of non-aromatic analytes with APLI-TOF-MS. Anal Bioanal Chem 2015. [DOI: 10.1007/s00216-015-8908-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Zhang M, Liu C, Hu MY, Zhang J, Xu P, Li F, Zhong ZY, Liu L, Liu XD. High-fat diet enhanced retinal dehydrogenase activity, but suppressed retinol dehydrogenase activity in liver of rats. J Pharmacol Sci 2015; 127:430-8. [PMID: 25953270 DOI: 10.1016/j.jphs.2015.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 01/26/2023] Open
Abstract
Evidence has shown that hyperlipidemia is associated with retinoid dyshomeostasis. In liver, retinol is mainly oxidized to retinal by retinol dehydrogenases (RDHs) and alcohol dehydrogenases (ADHs), further converted to retinoic acid by retinal dehydrogenases (RALDHs). The aim of this study was to investigate whether high-fat diet (HFD) induced hyperlipidemia affected activity and expression of hepatic ADHs/RDHs and RALDHs in rats. Results showed that retinol levels in liver, kidney and adipose tissue of HFD rats were significantly increased, while plasma retinol and hepatic retinal levels were markedly decreased. HFD rats exhibited significantly downregulated hepatic ADHs/RDHs activity and Adh1, Rdh10 and Dhrs9 expression. Oppositely, hepatic RALDHs activity and Raldh1 expression were upregulated in HFD rats. In HepG2 cells, treatment of HFD rat serum inhibited ADHs/RDHs activity and induced RALDHs activity. Among the tested abnormally altered components in HFD rat serum, cholesterol reduced ADHs/RDHs activity and RDH10 expression, while induced RALDHs activity and RALDH1 expression in HepG2 cells. Contrary to the effect of cholesterol, cholesterol-lowering agent pravastatin upregulated ADHs/RDHs activity and RDH10 expression, while suppressed RALDHs activity and RALDH1 expression. In conclusion, hyperlipidemia oppositely altered activity and expression of hepatic ADHs/RDHs and RALDHs, which is partially due to the elevated cholesterol levels.
Collapse
Affiliation(s)
- Mian Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Can Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Meng-yue Hu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Ji Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Ping Xu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Feng Li
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Ze-yu Zhong
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xiao-dong Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China.
| |
Collapse
|
6
|
Drzymala SS, Weiz S, Heinze J, Marten S, Prinz C, Zimathies A, Garbe LA, Koch M. Automated solid-phase extraction coupled online with HPLC-FLD for the quantification of zearalenone in edible oil. Anal Bioanal Chem 2015; 407:3489-97. [PMID: 25709066 DOI: 10.1007/s00216-015-8541-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/30/2015] [Accepted: 02/06/2015] [Indexed: 11/25/2022]
Abstract
Established maximum levels for the mycotoxin zearalenone (ZEN) in edible oil require monitoring by reliable analytical methods. Therefore, an automated SPE-HPLC online system based on dynamic covalent hydrazine chemistry has been developed. The SPE step comprises a reversible hydrazone formation by ZEN and a hydrazine moiety covalently attached to a solid phase. Seven hydrazine materials with different properties regarding the resin backbone, pore size, particle size, specific surface area, and loading have been evaluated. As a result, a hydrazine-functionalized silica gel was chosen. The final automated online method was validated and applied to the analysis of three maize germ oil samples including a provisionally certified reference material. Important performance criteria for the recovery (70-120 %) and precision (RSDr <25 %) as set by the Commission Regulation EC 401/2006 were fulfilled: The mean recovery was 78 % and RSDr did not exceed 8 %. The results of the SPE-HPLC online method were further compared to results obtained by liquid-liquid extraction with stable isotope dilution analysis LC-MS/MS and found to be in good agreement. The developed SPE-HPLC online system with fluorescence detection allows a reliable, accurate, and sensitive quantification (limit of quantification, 30 μg/kg) of ZEN in edible oils while significantly reducing the workload. To our knowledge, this is the first report on an automated SPE-HPLC method based on a covalent SPE approach.
Collapse
Affiliation(s)
- Sarah S Drzymala
- Department 1 Analytical Chemistry, Reference Materials, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Deletion of acetyl-CoA synthetases I and II increases production of 3-hydroxypropionate by the metabolically-engineered hyperthermophile Pyrococcus furiosus. Metab Eng 2014; 22:83-8. [DOI: 10.1016/j.ymben.2013.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/04/2013] [Accepted: 12/24/2013] [Indexed: 11/18/2022]
|
8
|
Hu N, Hu M, Duan R, Liu C, Guo H, Zhang M, Yu Y, Wang X, Liu L, Liu X. Increased Levels of Fatty Acids Contributed to Induction of Hepatic CYP3A4 Activity Induced by Diabetes — In Vitro Evidence From HepG2 Cell and Fa2N-4 Cell Lines. J Pharmacol Sci 2014; 124:433-44. [DOI: 10.1254/jphs.13212fp] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
9
|
Han J, Gagnon S, Eckle T, Borchers CH. Metabolomic analysis of key central carbon metabolism carboxylic acids as their 3-nitrophenylhydrazones by UPLC/ESI-MS. Electrophoresis 2013; 34:2891-900. [PMID: 23580203 DOI: 10.1002/elps.201200601] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 11/11/2022]
Abstract
Multiple hydroxy-, keto-, di-, and tri-carboxylic acids are among the cellular metabolites of central carbon metabolism (CCM). Sensitive and reliable analysis of these carboxylates is important for many biological and cell engineering studies. In this work, we examined 3-nitrophenylhydrazine as a derivatizing reagent and optimized the reaction conditions for the measurement of ten CCM-related carboxylic compounds, including glycolate, lactate, malate, fumarate, succinate, citrate, isocitrate, pyruvate, oxaloacetate, and α-ketoglutarate as their 3-nitrophenylhydrazones using LC/MS with ESI. With the derivatization protocol which we have developed, and using negative-ion multiple-reaction monitoring on a triple-quadrupole instrument, all of the carboxylates showed good linearity within a dynamic range of ca. 200 to more than 2000. The on-column LODs and LOQs were from high femtomoles to low picomoles. The analytical accuracies for eight of the ten analytes were determined to be between 89.5 to 114.8% (CV≤7.4%, n = 6). Using a QTOF instrument, the isotopic distribution patterns of these carboxylates, extracted from a (13) C-labeled mouse heart, were successfully determined by UPLC/MS with full-mass detection, indicating the possible utility of this analytical method for metabolic flux analysis. In summary, this work demonstrates an efficient chemical derivatization LC/MS method for metabolomic analysis of these key CCM intermediates in a biological matrix.
Collapse
Affiliation(s)
- Jun Han
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC, Canada
| | | | | | | |
Collapse
|
10
|
Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc Natl Acad Sci U S A 2013; 110:5840-5. [PMID: 23530213 DOI: 10.1073/pnas.1222607110] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microorganisms can be engineered to produce useful products, including chemicals and fuels from sugars derived from renewable feedstocks, such as plant biomass. An alternative method is to use low potential reducing power from nonbiomass sources, such as hydrogen gas or electricity, to reduce carbon dioxide directly into products. This approach circumvents the overall low efficiency of photosynthesis and the production of sugar intermediates. Although significant advances have been made in manipulating microorganisms to produce useful products from organic substrates, engineering them to use carbon dioxide and hydrogen gas has not been reported. Herein, we describe a unique temperature-dependent approach that confers on a microorganism (the archaeon Pyrococcus furiosus, which grows optimally on carbohydrates at 100°C) the capacity to use carbon dioxide, a reaction that it does not accomplish naturally. This was achieved by the heterologous expression of five genes of the carbon fixation cycle of the archaeon Metallosphaera sedula, which grows autotrophically at 73°C. The engineered P. furiosus strain is able to use hydrogen gas and incorporate carbon dioxide into 3-hydroxypropionic acid, one of the top 12 industrial chemical building blocks. The reaction can be accomplished by cell-free extracts and by whole cells of the recombinant P. furiosus strain. Moreover, it is carried out some 30°C below the optimal growth temperature of the organism in conditions that support only minimal growth but maintain sufficient metabolic activity to sustain the production of 3-hydroxypropionate. The approach described here can be expanded to produce important organic chemicals, all through biological activation of carbon dioxide.
Collapse
|
11
|
Lu W, Ewanchuk A, Perez-Estrada L, Sego D, Ulrich A. Limitation of fluorescence spectrophotometry in the measurement of naphthenic acids in oil sands process water. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:429-436. [PMID: 23379948 DOI: 10.1080/10934529.2013.729802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fluorescence spectrophotometry has been proposed as a quick screening technique for the measurement of naphthenic acids (NAs). To evaluate the feasibility of this application, the fluorescence emission spectra of NAs extracted from three oil sands process water sources were compared with that of commercial NAs. The NAs resulting from the bitumen extraction process cannot be differentiated because of the similarity of the fluorescence spectra. Separation of the fluorescent species in NAs using high performance liquid chromatography with fluorescence detector proved unsuccessful. The acidic fraction of NAs is fluorescent but the basic fraction of NAs is not fluorescent, implying that aromatic acids in NAs give rise to the fluorescent signals. The concentrations of NAs in oil sands process water were measured by Fourier transform infrared spectroscopy (FTIR), fluorescence spectrophotometry and ultra high performance liquid chromatography-time of flight/mass spectrometry (UPLC-TOF/MS). Commercial Merichem and Kodak NAs are the best standards to use when measuring NAs concentration with FTIR and fluorescence spectrophotometry. In addition, the NAs concentrations measured by fluorescence spectrophotometry are about 30 times higher than those measured by FTIR and UPLC-TOF/MS. The findings in this study underscore the limitation of fluorescence spectrophotometry in the measurement of NAs.
Collapse
Affiliation(s)
- Weibing Lu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
12
|
Determination of Underivatized Long Chain Fatty Acids Using HPLC with an Evaporative Light-Scattering Detector. J AM OIL CHEM SOC 2011. [DOI: 10.1007/s11746-011-1898-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Ferreira AMC, Laespada MEF, Pavón JLP, Cordero BM. Headspace sampling with in situ carbodiimide-mediated derivatization for the determination of ibuprofen in water samples. J Chromatogr A 2011; 1218:4856-62. [DOI: 10.1016/j.chroma.2011.02.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/24/2011] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
|
14
|
Nozal MJ, Bernal JL, Diego JC, Gómez LA, Higes M. HPLC Determination of Low Molecular Weight Organic Acids in Honey with Series‐Coupled Ion‐Exclusion Columns. J LIQ CHROMATOGR R T 2011. [DOI: 10.1081/jlc-120020107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ma. J. Nozal
- a Departamento de Química Analítica, Facultad de Ciencias , Universidad de Valladolid , Valladolid , 47005 , Spain
| | - J. L. Bernal
- a Departamento de Química Analítica, Facultad de Ciencias , Universidad de Valladolid , Valladolid , 47005 , Spain
| | - J. C. Diego
- a Departamento de Química Analítica, Facultad de Ciencias , Universidad de Valladolid , Valladolid , 47005 , Spain
| | - L. A. Gómez
- a Departamento de Química Analítica, Facultad de Ciencias , Universidad de Valladolid , Valladolid , 47005 , Spain
| | - M. Higes
- b Centro Apícola Regional Junta de Comunidades de Castilla La Mancha , Guadalajara , Spain
| |
Collapse
|
15
|
Determination of methotrexate and indomethacin in urine using SPE-LC-DAD after derivatization. J Pharm Biomed Anal 2011; 55:317-24. [DOI: 10.1016/j.jpba.2011.01.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/18/2011] [Accepted: 01/21/2011] [Indexed: 11/23/2022]
|
16
|
Huh YY, Kang YP, Choi YS, Park JH, Kwon SW. Development of Analytical Method of Biotin in Complex Drugs and Dietary Supplements Using HPLC-UV. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2011. [DOI: 10.4333/kps.2011.41.1.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Dynamic covalent hydrazine chemistry as a selective extraction and cleanup technique for the quantification of the Fusarium mycotoxin zearalenone in edible oils. J Chromatogr A 2010; 1217:2206-15. [DOI: 10.1016/j.chroma.2010.02.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 02/04/2010] [Accepted: 02/11/2010] [Indexed: 11/19/2022]
|
18
|
|
19
|
Ruiz-Rodriguez A, Reglero G, Ibañez E. Recent trends in the advanced analysis of bioactive fatty acids. J Pharm Biomed Anal 2009; 51:305-26. [PMID: 19525080 DOI: 10.1016/j.jpba.2009.05.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 12/15/2022]
Abstract
The consumption of dietary fats have been long associated to chronic diseases such as obesity, diabetes, cancer, arthritis, asthma, and cardiovascular disease; although some controversy still exists in the role of dietary fats in human health, certain fats have demonstrated their positive effect in the modulation of abnormal fatty acid and eicosanoid metabolism, both of them associated to chronic diseases. Among the different fats, some fatty acids can be used as functional ingredients such as alpha-linolenic acid (ALA), arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), gamma-linolenic acid (GLA), stearidonic acid (STA) and conjugated linoleic acid (CLA), among others. The present review is focused on recent developments in FAs analysis, covering sample preparation methods such as extraction, fractionation and derivatization as well as new advances in chromatographic methods such as GC and HPLC. Special attention is paid to trans fatty acids due its increasing interest for the food industry.
Collapse
Affiliation(s)
- Alejandro Ruiz-Rodriguez
- Departamento de Caracterización de Alimentos, Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain
| | | | | |
Collapse
|
20
|
Quehenberger O, Armando A, Dumlao D, Stephens DL, Dennis EA. Lipidomics analysis of essential fatty acids in macrophages. Prostaglandins Leukot Essent Fatty Acids 2008; 79:123-9. [PMID: 18996688 PMCID: PMC2643973 DOI: 10.1016/j.plefa.2008.09.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Lipid Metabolites and Pathway Strategy (LIPID MAPS) Consortium is a nationwide initiative that has taken on the task of employing lipidomics to advance our understanding of lipid metabolism at the molecular and mechanistic level in living organisms. An important step toward this goal is to craft enabling analytical procedures to comprehensively measure all lipid species, to establish the precise structural identity of the lipid molecules analyzed, and to generate accurate quantitative information. The LIPID MAPS Consortium has succeeded in the implementation of a complete infrastructure that now provides tools for analysis of the global lipidome in cultured and primary cells. Here we illustrate the advancement of a gas chromatography mass spectrometry (GC/MS) procedure for the analysis of essential fatty acids in RAW 264.7 cells. Our method allows for the specific identification and quantification of over 30 fatty acids present in cells in their free form in a single analytical GC/MS run. Free fatty acids are selectively extracted in the presence of deuterated internal standards, which permit subsequent estimation of extraction efficiencies and quantification with high accuracy. Mass spectrometer conditions were optimized for single-ion monitoring, which provides an extremely sensitive technology to measure fatty acids from biological samples in trace amounts. These methods will be presented in the context of our broader effort to analyze all fatty acids as well as their metabolites in inflammatory cells.
Collapse
Affiliation(s)
- Oswald Quehenberger
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Aaron Armando
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0601
| | - Darren Dumlao
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0601
| | - Daren L. Stephens
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0601
| | - Edward A. Dennis
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0601
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0601
| |
Collapse
|
21
|
Sádecká J, Májek P, Tóthová J. CE Profiling of Organic Acids in Distilled Alcohol Beverages Using Pattern Recognition Analysis. Chromatographia 2008. [DOI: 10.1365/s10337-007-0513-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Santalad A, Teerapornchaisit P, Burakham R, Srijaranai S. Capillary zone electrophoresis of organic acids in beverages. Lebensm Wiss Technol 2007. [DOI: 10.1016/j.lwt.2007.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Shimelis O, Yang Y, Stenerson K, Kaneko T, Ye M. Evaluation of a solid-phase extraction dual-layer carbon/primary secondary amine for clean-up of fatty acid matrix components from food extracts in multiresidue pesticide analysis. J Chromatogr A 2007; 1165:18-25. [PMID: 17689545 DOI: 10.1016/j.chroma.2007.07.037] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 07/18/2007] [Accepted: 07/19/2007] [Indexed: 11/22/2022]
Abstract
The use of dual-layer solid-phase extraction (SPE), a primary-secondary amine (PSA) in combination with graphitized carbon black (GCB), was evaluated for sample clean-up during multiresidue pesticide screening of agricultural and food products. The retention of fatty acids by the PSA sorbent was quantified and the effect of the elution solvent on the retention of fatty acid on the SPE cartridge was evaluated. The use of stronger elution solvents to elute certain pesticides from graphitized carbon was shown to interfere with the capacity of PSA to bind fatty acids. A suitable protocol was tested using GCB/PSA dual-layer SPE to clean-up several food matrices and to simultaneously screen multiple fortified pesticides with a wide range of physico-chemical properties. With a few exceptions, pesticide recoveries were between 85% and 110%, and sample-to-sample differences of less than 5% were achieved, demonstrating the versatile suitability of the dual-layer SPE to sample clean-up.
Collapse
|
24
|
He Y, Liu YH. Assessment of Primary and Secondary Amine Adsorbents and Elution Solvents with or without Graphitized Carbon for the SPE Clean-Up of Food Extracts in Pesticide Residue Analysis. Chromatographia 2007. [DOI: 10.1365/s10337-007-0198-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Yomota C, Ohnishi Y. Determination of biotin following derivatization with 2-nitrophenylhydrazine by high-performance liquid chromatography with on-line UV detection and electrospray-ionization mass spectrometry. J Chromatogr A 2007; 1142:231-5. [PMID: 17234197 DOI: 10.1016/j.chroma.2006.12.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 12/13/2006] [Accepted: 12/15/2006] [Indexed: 11/17/2022]
Abstract
Currently, biotin is typically determined in Japan using a microbiological method. Such microbiological assays are sensitive, but they are not always highly specific and are also rather tedious and time-consuming. In the present study, RP-HPLC and LC-MS methods for the determination of biotin have been developed by derivatizing the carboxyl group with 2-nitrophenylhydrazine hydrochloride. 2-Nitrophenylhydrazine is used for the derivatization of carboxylic acids, and these derivatives are known to be applicable to LC-MS detection. Biotin in tablets were extracted by the addition of water and ultrasonic agitation. In order to clean up the sample solution, the filtrate was applied to an ODS cartridge and eluted with methanol. The conditions for preparing the 2-nitrophenylhydrazide derivatives were modified from a previous report for fatty acids. Good recovery rates of over 70% were obtained for the addition of 5-125 microg of biotin per formulation. The detection limit in HPLC at 400 nm was 0.6 ng per injection, with good linearity being obtained over the concentration range 0.001-0.2 microg per injection. Further, derivatives were determined by LC-MS with electrospray ionization, where the spectra indicated the molecular ions [M+H](+). The detection limit was 0.025 ng per injection in the selected ion monitoring analysis, and linearity was observed in the range of 0.6-6 ng per injection. The proposed method could be used to specifically determine the presence of biotin in relatively clean samples.
Collapse
Affiliation(s)
- Chikako Yomota
- National Institute of Health Sciences, 1-18-1 Kamiyoga, Tokyo 158-8501, Japan.
| | | |
Collapse
|
26
|
Noonan GO, Begley TH, Diachenko GW. Rapid quantitative and qualitative confirmatory method for the determination of monofluoroacetic acid in foods by liquid chromatography–mass spectrometry. J Chromatogr A 2007; 1139:271-8. [PMID: 17141253 DOI: 10.1016/j.chroma.2006.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/08/2006] [Accepted: 11/10/2006] [Indexed: 11/28/2022]
Abstract
A rapid quantitative method and a qualitative confirmatory method for the determination of monofluoroacetic acid (MFA) in complex food matrices are presented. The quantitative method utilizes a water extraction, solid phase extraction clean-up and liquid chromatography-mass spectrometry (LC-MS) for determination of MFA. This method showed a high degree of specificity, detecting MFA in all of the spiked samples, while none of the unfortified samples tested positive for MFA. Spike recoveries were high in all matrices analyzed, varying from 85 to 110%, and comparable at low (2mg/L) and high (20mg/L) spiking levels. Repeatability tests at the low spiking levels yielded RSDs of less than 5% for all matrices analyzed. The qualitative confirmatory method developed is conceptually different from the quantitative method, ensuring that both methods would not be subject to the same interferences. The method uses the formation of the hydrazide of MFA through derivatization with 2-nitrophenylhydrazine. This derivatization is well established for the determination of carboxylic acids, but this is the first application to the determination of MFA. The derivatization yield was matrix dependent, however the limit of detection (LOD) (0.8microg/L) was sufficient to confirm the presence of MFA in all spiked matrices. Repeatability tests at the low spiking levels yielded RSDs of approximately 7% for all matrices analyzed.
Collapse
Affiliation(s)
- G O Noonan
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5100 Paint Branch Parkway, College Park, MD 20740, USA.
| | | | | |
Collapse
|
27
|
Higaki-Sato N, Sato K, Inoue N, Nawa Y, Kido Y, Nakabou Y, Hashimoto K, Nakamura Y, Ohtsuki K. Occurrence of the free and Peptide forms of pyroglutamic acid in plasma from the portal blood of rats that had ingested a wheat gluten hydrolysate containing pyroglutamyl peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:6984-8. [PMID: 16968052 DOI: 10.1021/jf0611421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In order to determine pyroglutamic acid levels in plasma, we developed a method based on precolumn derivatization of the carboxyl group of pyroglutamic acid with 2-nitrophenylhydrazine. Eight-week-old male SD strain rats were administered 200 mg of an acidic peptide fraction obtained from a commercial wheat gluten hydrolysate containing 0.63 mmol/g pyroglutamyl peptide. After administration, significant amounts of free pyroglutamic acid were observed in the ethanol-soluble fraction of the plasma from the portal vein. In addition, pyroglutamate aminopeptidase digestion of the ethanol-soluble fraction liberated significant amounts of pyroglutamic acid, which indicated the presence of the pyroglutamyl peptide. The presence of the pyroglutamyl peptide in the plasma was further confirmed by size exclusion chromatography. The levels of free and peptide forms of pyroglutamic acid increased significantly and reached a maximum (approximately 40 nmol/mL) at 15 and 30 min after administration, respectively.
Collapse
Affiliation(s)
- Noriko Higaki-Sato
- Department of Food Sciences & Nutritional Health, Kyoto Prefectural University, 1-5 Shimogamo, Kyoto 606-8522, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Clemente JS, Fedorak PM. A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids. CHEMOSPHERE 2005; 60:585-600. [PMID: 15963797 DOI: 10.1016/j.chemosphere.2005.02.065] [Citation(s) in RCA: 300] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 09/07/2004] [Accepted: 02/20/2005] [Indexed: 05/03/2023]
Abstract
Naphthenic acids occur naturally in crude oils and in oil sands bitumens. They are toxic components in refinery wastewaters and in oil sands extraction waters. In addition, there are many industrial uses for naphthenic acids, so there is a potential for their release to the environment from a variety of activities. Studies have shown that naphthenic acids are susceptible to biodegradation, which decreases their concentration and reduces toxicity. This is a complex group of carboxylic acids with the general formula CnH(2n+Z)O2, where n indicates the carbon number and Z specifies the hydrogen deficiency resulting from ring formation. Measuring the concentrations of naphthenic acids in environmental samples and determining the chemical composition of a naphthenic acids mixture are huge analytical challenges. However, new analytical methods are being applied to these problems and progress is being made to better understand this mixture of chemically similar compounds. This paper reviews a variety of analytical methods and their application to assessing biodegradation of naphthenic acids.
Collapse
Affiliation(s)
- Joyce S Clemente
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | | |
Collapse
|
29
|
van Leeuwen SM, Hendriksen L, Karst U. Determination of aldehydes and ketones using derivatization with 2,4-dinitrophenylhydrazine and liquid chromatography–atmospheric pressure photoionization-mass spectrometry. J Chromatogr A 2004; 1058:107-12. [PMID: 15595657 DOI: 10.1016/j.chroma.2004.08.149] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atmospheric pressure photoionization-mass spectrometry (APPI-MS) is used for the analysis of aldehydes and ketones after derivatization with 2,4-dinitrophenylhydrazine (DNPH) and liquid chromatographic separation. In the negative ion mode, the [M - H]- pseudomolecular ions are most abundant for the carbonyls. Compared with the established atmospheric pressure chemical ionization (APCI)-MS, limits of detection are typically lower using similar conditions. Automobile exhaust and cigarette exhaust samples were analyzed with APPI-MS and APCI-MS in combination with an ion trap mass analyzer. Due to improved limits of detection, more of the less abundant long-chain carbonyls are detected with APPI-MS in real samples. While 2,4-dinitrophenylazide, a known reaction product of DNPH with nitrogen dioxide, is detected in APCI-MS due to dissociative electron capture, it is not observed at all in APPI-MS.
Collapse
Affiliation(s)
- Suze M van Leeuwen
- Department of Chemical Analysis and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | | | | |
Collapse
|
30
|
Ghassempour A, Nojavan S, Talebpour Z, Amiri AA, Najafi NM. Monitoring of the fermentation media of citric acid by the trimethylsilyl derivatives of the organic acids formed. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:6384-6388. [PMID: 15478996 DOI: 10.1021/jf030751v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this approach, a derivatization method is described for monitoring of organic acids in fermentation media without any separation step. The aqueous phase of fermentation media was evaporated and heated in a silylation reagent to form trimethylsilyl (TMS) derivatives. The silylated compounds are analyzed by 29Si nuclear magnetic resonance (29Si NMR) and gas chromatography-mass spectrometry (GC-MS). 29Si NMR can qualitatively monitor the components produced in the Krebs cycle. Quantification of these compounds is investigated by using selected ion monitoring mode of mass spectrometry. In this mode, mass to charge (m/z) values of their [M - 15]+ ions, which are 465, 275, 247, 221, 335, 251, and 313 of TMS derivatives of citric, alpha-ketoglutaric, succinic, fumaric, l-malic, oxaloacetic, and palmitic (as an internal standard), acids, respectively, are used. The limit of detection and the linear working range for derivatized citric acid were found to be 0.1 mg L(-1) and 10-3 x 10(4) mg L(-1). The relative standard deviation of the method for five replicates was 2.1%. The average recovery efficiency for citric acid added to culture media was approximately 97.2%. Quantitative results of GC-MS are compared with those obtained by an ultraviolet-visible method.
Collapse
Affiliation(s)
- Alireza Ghassempour
- Medicinal Plants Research Institute, Shahid Beheshti University, P.O. Box 19835-389, Tehran, Iran.
| | | | | | | | | |
Collapse
|
31
|
Uchiyama S, Matsushima E, Aoyagi S, Ando M. Simultaneous Determination of C1−C4 Carboxylic Acids and Aldehydes Using 2,4-Dinitrophenylhydrazine-Impregnated Silica Gel and High-Performance Liquid Chromatography. Anal Chem 2004; 76:5849-54. [PMID: 15456306 DOI: 10.1021/ac0493471] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new method for the simultaneous determination of aliphatic carboxylic acids and aldehydes in air is described. In this work, carboxylic acids were allowed to react with 2,4-dinitrophenylhydrazine (DNPH) to form the corresponding carboxylic 2,4-dinitrophenylhydrazides. These derivatives have excellent thermal stability, with melting points higher than those of the corresponding hydrazones by 32-50 degrees C. C1-C4 carboxylic acid 2,4-dinitrophenylhydrazides exhibited maximum absorption wavelengths of 331-334 nm and molar absorption coefficients of 1.4 x 10(4) L/mol/cm. They were completely separated by high-performance liquid chromatography (HPLC) with an RP-Amide C16 column. Cartridges packed with DNPH-coated silica particles (DNPH cartridge) were used for sampling formic acid and aldehydes. Formic acid was physically adsorbed on the silica particles as the first step of the sampling mechanism. Gradual reaction with DNPH followed. Formic acid reacted very slowly with DNPH at room temperature (20 degrees C), but reacted completely at 80 degrees C over 4 h. In field measurements, the sample air was drawn through a DNPH cartridge. After sampling, the cartridges were heated at 80 degrees C for 5 h and extracted with acetonitrile for HPLC analysis. Under these optimized conditions, the LOD is 0.4 ug/m(3) for an air sample collected for 24 h at 100 mL/min (144 L).
Collapse
Affiliation(s)
- Shigehisa Uchiyama
- Division of Environmental Chemistry, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | | | | | | |
Collapse
|
32
|
Yen TW, Marsh WP, MacKinnon MD, Fedorak PM. Measuring naphthenic acids concentrations in aqueous environmental samples by liquid chromatography. J Chromatogr A 2004; 1033:83-90. [PMID: 15072292 DOI: 10.1016/j.chroma.2004.01.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Naphthenic acids are found in wastewaters from petroleum refineries and oil sands extraction plants. Currently, the concentrations of these toxic carboxylic acids are determined by extracting them into methylene chloride and measuring the absorption of the carboxyl group by Fourier-transform infrared (FTIR) spectroscopy. An improved HPLC method, that is simpler and faster than the FTIR method, was used to detect the 2-nitrophenylhydrazides of the naphthenic acids at concentrations as low as 5 mg l(-1). Analyses of 58 oil sands water samples showed that the naphthenic acids concentrations determined by FTIR were on average 11% higher than those determined by HPLC.
Collapse
Affiliation(s)
- Tin-Wing Yen
- Department of Biological Sciences, University of Alberta, Edmonton, Alta., T6G 2E9 Canada
| | | | | | | |
Collapse
|
33
|
De Miranda J, Panizzutti R, Foltyn VN, Wolosker H. Cofactors of serine racemase that physiologically stimulate the synthesis of the N-methyl-D-aspartate (NMDA) receptor coagonist D-serine. Proc Natl Acad Sci U S A 2002; 99:14542-7. [PMID: 12393813 PMCID: PMC137919 DOI: 10.1073/pnas.222421299] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2002] [Indexed: 11/18/2022] Open
Abstract
High levels of d-serine occur in the brain, challenging the notion that d-amino acids would not be present or play a role in mammals. d-serine levels in the brain are even higher than many l-amino acids, such as asparagine, valine, isoleucine, and tryptophan, among others. d-serine is synthesized by a serine racemase (SR) enzyme, which directly converts l- to d-serine. We now report that SR is a bifunctional enzyme, producing both d-serine and pyruvate in cultured cells and in vitro. Transfection of SR into HEK 293 cells elicits synthesis of d-serine and augmented release of pyruvate to culture media. We identified substances present in HEK 293 and astrocyte cell extracts that strongly stimulate d-serine production by SR and elicit production of pyruvate. Experiments with recombinant enzyme reveal that Mg(2+) and ATP present in the cell extracts are physiological cofactors and increase 5- to 10-fold the rates of racemization and production of pyruvate. As much as three molecules of pyruvate are synthesized for each molecule of d-serine produced by SR. This finding constitutes a previously undescribed mechanism underlying d-amino acid synthesis in mammals, different from classical amino acid racemases present in bacteria. Our data link the production of d-serine to the energy metabolism, with implications for the metabolic and transmitter crosstalk between glia and neurons.
Collapse
Affiliation(s)
- Joari De Miranda
- Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-590, Brazil
| | | | | | | |
Collapse
|
34
|
Vorarat S, Aromdee C, Podokmai Y. Determination of alpha hydroxy acids in fruits by capillary electrophoresis. ANAL SCI 2002; 18:893-6. [PMID: 12200835 DOI: 10.2116/analsci.18.893] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alpha hydroxy acids, malic acid, citric acid, tartaric acid, glycolic acid and lactic acid, were analyzed simultaneously using capillary electrophoresis with direct UV detection at 200 nm. The separation was carried out with uncoated fused-silica (50 cm x 50 microns i.d.), pressure injection at 15 psi s and operated at -15 kV potential. The separation buffers were prepared with 180 mM Na2HPO4, 1 mM cetyltrimethylammonium bromide and 15% (v/v) methanol and adjusted to pH 7.2 by phosphoric acid. Validation was performed for citric acid and malic acid. The obtained parameters were adequate and the limits of detection were 2.5 and 5 micrograms ml-1 for citric acid and malic acid, respectively. AHAs from natural fruit juices (orange and grape) were determined and measured with this method.
Collapse
Affiliation(s)
- Suwanna Vorarat
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | | | | |
Collapse
|
35
|
High-performance liquid chromatographic determination of free fatty acids and esterified fatty acids in biological materials as their 2-nitrophenylhydrazides. Anal Chim Acta 2002. [DOI: 10.1016/s0003-2670(01)01582-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Derivatization Reactions for Analytes with Various Functional Groups. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0301-4770(02)80020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|