1
|
Taylor TL, Tukhmetova D, Duong TPT, Böwe AM, Meermann B, Gundlach-Graham A. Comparative study of the vibrating capillary nebulizer (VCN) and commercially available interfaces for on-line coupling of capillary electrophoresis with ICP-MS. Anal Bioanal Chem 2024; 416:1613-1621. [PMID: 38285228 DOI: 10.1007/s00216-024-05162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/31/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Capillary electrophoresis (CE) is a powerful and sensitive tool for speciation analysis when combined with inductively coupled plasma mass spectrometry (ICP-MS); however, the performance of this technique can be limited by the nature of pneumatic nebulizers. This study compares two commercially available pneumatic nebulizers to a newly introduced vibrating capillary nebulizer (VCN) for on-line coupling of CE with ICP-MS. The VCN is a low-cost, non-pneumatic nebulizer that is based on the design of capillary vibrating sharp-edge spray ionization. As a piezoelectrically driven nebulization source, the VCN creates an aerosol independent of gas flows and does not produce a low-pressure region at the nebulizer orifice. To compare the systems, we performed replicate analyses of sulfate in river water with each nebulizer and the same CE and ICP-MS instruments and determined the figures of merit of each setup. With the CE-VCN-ICP-MS setup, we achieved around 2-4 times lower sensitivity compared to the commercial setups. However, the VCN-based setup provided lower noise levels and better linear correlation from the analysis of calibration standards, which resulted in indistinguishable LOD and LOQ values from the in-house-built VCN-based and commercial setups for CE-ICP-MS analysis. The VCN is found to have the highest baseline stability with a standard deviation of 3500 cts s-1, corresponding to an RSD of 2.7%. High reproducibility is found with the VCN with a peak area RSD of 4.1% between 3 replicate measurements.
Collapse
Affiliation(s)
| | - Dariya Tukhmetova
- Division 1.1 - Inorganic Trace Analysis, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Thi Phuong Thanh Duong
- Division 1.1 - Inorganic Trace Analysis, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
- Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Anna-Maria Böwe
- Division 4.3 - Contaminant Transport and Environmental Technologies, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Björn Meermann
- Division 1.1 - Inorganic Trace Analysis, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany.
| | | |
Collapse
|
2
|
Sadat Shushtarian M, Givianrad MH, Saber Tehrani M, Aberoomand-Azar P. Speciation of inorganic arsenic by μ-thin-layer chromatography coupled with laser ablation inductively coupled plasma mass spectrometry based on an ion imprinted polymer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:205-213. [PMID: 38099454 DOI: 10.1039/d3ay01678a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An efficient strategy utilizing μ-thin layer chromatography coupled with laser ablation inductively coupled plasma mass spectrometry (μ-TLC-LA-ICP-MS) based on an IIP (ion imprinted polymer) was developed for the speciation of inorganic arsenic [As(III) and As(V)]. The characterization of the fabricated IIP was performed applying Fourier-transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). To prepare the thin layer chromatography plate, CaSO4 (as a binder) was incorporated with the IIP. Then, the surface of the TLC plate was swept by LA, which volatilized the species of arsenic from the thin layer chromatography plate which thereafter were introduced into the ICP-MS system. Various effective parameters on isolation efficiency, such as the IIP/CaSO4 mass ratio, mobile phase composition, and pH, were examined. Under optimized conditions, the developed method demonstrated a detection limit of 0.3 μg L-1 with a wide linear dynamic range of 0.2-100 μg L-1, and a relative standard deviation of 3.8. The performance of the developed method was investigated for the isolation of As(III) and As(V) in wastewater (Mouteh, Aghdareh, and Zarmehr mines) and human blood plasma real samples.
Collapse
Affiliation(s)
| | - Mohammad Hadi Givianrad
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mohammad Saber Tehrani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Parviz Aberoomand-Azar
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Liu Y, He B, Liu L, Hu L, Jiang G. Fasten the analysis of metal-binding proteins with GE-ICP-MS via increasing the electrolyte concentration of the running buffer. Talanta 2024; 266:125047. [PMID: 37574606 DOI: 10.1016/j.talanta.2023.125047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/19/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
The coupled system of column gel electrophoresis and inductively coupled plasma mass spectrometry (GE-ICP-MS) is a highly effective technique for detecting metal-binding proteins. However, it takes a long time for this method to test a single sample, which greatly limits its application. In this study, GE-ICP-MS system was optimized by adjusting the analytical conditions, including the concentration and pH of running buffer and the proportion of polyacrylamide gel. The results of the experiment showed that the migration speed of proteins in GE was enhanced by increasing the electrolyte concentration in the running buffer solution. Additionally, the ICP-MS response, which was dramatically decreased because of the change in running buffer solution, can be stabilized by adjusting pH of running buffer. Meanwhile, the optimization of polyacrylamide gel ratio allows GE-ICP-MS to maintain high resolution for proteins of similar molecular weight with increased detection speed. After increasing the concentration of running buffer by 10 times, four iodine labeled proteins were successfully separated at baseline by the GE-ICP-MS system at pH 8.0 in 40 min using a resolving gel (8%, 7 cm) and a stacking gel (4%, 1 cm), which was three times faster than the original one. Finally, the optimized method was proved by detecting a silver-binding protein in rat plasma samples. The above method provided an effective and rapid detection for metal-binding proteins in organism.
Collapse
Affiliation(s)
- Yingqiu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; School of Environment and Health, Jianghan University, Wuhan, 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
4
|
Liu J, Chen B, Zhang R, Li Y, Chen R, Zhu S, Wen S, Luan T. Recent progress in analytical strategies of arsenic-binding proteomes in living systems. Anal Bioanal Chem 2023; 415:6915-6929. [PMID: 37410126 DOI: 10.1007/s00216-023-04812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Arsenic (As) is one of the most concerning elements due to its high exposure risks to organisms and ecosystems. The interaction between arsenicals and proteins plays a pivotal role in inducing their biological effects on living systems, e.g., arsenicosis. In this review article, the recent advances in analytical techniques and methods of As-binding proteomes were well summarized and discussed, including chromatographic separation and purification, biotin-streptavidin pull-down probes, in situ imaging using novel fluorescent probes, and protein identification. These analytical technologies could provide a growing body of knowledge regarding the composition, level, and distribution of As-binding proteomes in both cells and biological samples, even at the organellar level. The perspectives on analysis of As-binding proteomes are also proposed, e.g., isolation and identification of minor proteins, in vivo targeted protein degradation (TPD) technologies, and spatial As-binding proteomics. The application and development of sensitive, accurate, and high-throughput methodologies of As-binding proteomics would enable us to address the key molecular mechanisms underlying the adverse health effects of arsenicals.
Collapse
Affiliation(s)
- Jiahui Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Ruijia Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yizheng Li
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Ruohong Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Siqi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Hanf L, Brüning K, Winter M, Nowak S. Method development for the investigation of Mn 2+/3+ , Cu 2+ , Co 2+ , and Ni 2+ with capillary electrophoresis hyphenated to inductively coupled plasma-mass spectrometry. Electrophoresis 2023; 44:89-95. [PMID: 36148595 DOI: 10.1002/elps.202200139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 02/01/2023]
Abstract
The lifetime of lithium ion batteries (LIBs) decreases under continuous cycling due to various degradation processes, such as dissolution of transition metals (TMs) from the electrodes. Therefore, suitable methods to analyze the oxidation states of TMs are mandatory to better understand the dissolution mechanisms of TMs from positive and negative electrodes (LIBs). To investigate the dissolution of Mn2+ and Mn3+ in electrolytes of LIBs, a previously implemented capillary electrophoresis (CE) method with UV/Vis spectroscopy detection was further developed with the aim of higher sensitivities and additional detection of other dissolved divalent TMs such as Co2+ , Ni2+ , and Cu2+ . Therefore, inductively coupled plasma-mass spectrometry was applied instead of UV/Vis for detection. This also allows the use of Ga3+ instead of the previously used Cu2+ as an internal standard, which solves the limitation of this method for cycled LIBs due to copper dissolution from the copper-based current collector. The CE buffer based on sodium diphosphate as complexing agent for the stabilization of Mn3+ and cetyltrimethylammonium bromide as dynamic capillary wall modifier was optimized in terms of concentrations and pH. Finally, both manganese species and Co2+ , Ni2+ , and Cu2+ could be analyzed within 15 min. With this improved method, the dissolution of TMs in LIBs for positive electrode materials such as LiNi0.5 Mn1.5 O4 (LNMO) or LiNix Coy Mnz O2 (NCM, x + y + z = 1) can be studied in future in more detail.
Collapse
Affiliation(s)
- Lenard Hanf
- University of Münster, MEET Battery Research Center, Institute of Physical Chemistry, Münster, Germany
| | - Kai Brüning
- University of Münster, MEET Battery Research Center, Institute of Physical Chemistry, Münster, Germany
| | - Martin Winter
- University of Münster, MEET Battery Research Center, Institute of Physical Chemistry, Münster, Germany.,Helmholtz-Institute Münster, IEK-12, Forschungszentrum Jülich, Münster, Germany
| | - Sascha Nowak
- University of Münster, MEET Battery Research Center, Institute of Physical Chemistry, Münster, Germany
| |
Collapse
|
6
|
Khan SR, Sharma B, Chawla PA, Bhatia R. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES): a Powerful Analytical Technique for Elemental Analysis. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02148-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Patel VD, Shamsi SA, Sutherland K. Capillary electromigration techniques coupled to mass spectrometry: Applications to food analysis. Trends Analyt Chem 2021; 139. [DOI: 10.1016/j.trac.2021.116240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Identification of intracellular cadmium transformation in HepG2 and MCF-7 cells. Talanta 2020; 218:121065. [PMID: 32797863 DOI: 10.1016/j.talanta.2020.121065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 01/14/2023]
Abstract
It is of significance to elucidate or understand the intracellular transformation & migration behaviors of heavy metals in specific cells. Herein, we report the fast and efficient separation of cadmium-metallothioneins (Cd-MTs) and Cd2+in cell lysate by a short column capillary electrophoresis (SC-CE), followed by coupling with inductively coupled plasma mass spectrometry (ICP-MS) to facilitate the speciation of intracellular cadmium species. The incorporation of sodium dodecyl sulfate (SDS) in running buffer significantly reduces the peak width of Cd2+from 170 s to 26 s in the electrophoretogram, causing a 5.3-fold improvement on the sensitivity. Linear ranges of 0.5-50 mg L-1,0.056-5.6 mg L-1 and 0.1-10 mg L-1 are achieved for MTs, Cd-MTs (Cd) and Cd2+, respectively, along with detection limits of 0.013 mg L-1 for Cd-MTs (Cd) and 0.020 mg L-1 for Cd2+. The transformation of cadmium in HepG2 and MCF-7 cells is evaluated after their incubation with Cd2+ reinforced culture medium. Intracellular free Cd2+ cation and Cd-MTs are identified, along with Cd2+ transformation to Cd-glutathione (GSH) adduct/complex, as further demonstrated by ESI-MS.
Collapse
|
9
|
Willberger C, Amayri S, Häußler V, Scholze R, Reich T. Investigation of the Electrophoretic Mobility of the Actinides Th, U, Np, Pu, and Am in Different Oxidation States. Anal Chem 2019; 91:11537-11543. [PMID: 31393112 DOI: 10.1021/acs.analchem.9b00997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electrophoretic mobilities (μe) of the actinides Th and U-Am in different oxidation states (prepared in 1 M HCl and 1 M HClO4) have been determined by capillary electrophoresis (CE)-inductively coupled plasma mass spectrometry (ICPMS) using 1 M acetic acid as the background electrolyte, which has proven to provide an excellent setup for trace analysis at environmentally relevant concentrations (1 × 10-9 M). The values are independent of the respective acid solution. The μe of the Pu oxidation states +III to +VI have been measured. They agree with both the available literature data and the redox-stable analogues (Eu(III), Th(IV), Np(V), U(VI)) that have also been investigated. The trend in the μe for the actinides U-Pu was found to be An(III) > An(VI) > An(V) > An(IV). The μe values of Am(III) (μe(Am(III)) = 3.86 × 10-4 cm2/(Vs)), U(IV) (μe(U(IV)) = 0.34 × 10-4 cm2/(Vs)), and U(VI) (μe(U(VI)) = 1.51 × 10-4 cm2/(Vs)) have been measured for the first time under these experimental conditions. Furthermore, the measured μe values show systematic trends that can be rationalized on the basis of the calculated species distribution of the actinides in 1 M acetic acid and the corresponding average effective charges (qeff).
Collapse
Affiliation(s)
- Christian Willberger
- Institute of Nuclear Chemistry , Johannes Gutenberg University Mainz , 55099 Mainz , Germany
| | - Samer Amayri
- Institute of Nuclear Chemistry , Johannes Gutenberg University Mainz , 55099 Mainz , Germany
| | - Verena Häußler
- Institute of Nuclear Chemistry , Johannes Gutenberg University Mainz , 55099 Mainz , Germany
| | - Raphael Scholze
- Institute of Nuclear Chemistry , Johannes Gutenberg University Mainz , 55099 Mainz , Germany
| | - Tobias Reich
- Institute of Nuclear Chemistry , Johannes Gutenberg University Mainz , 55099 Mainz , Germany
| |
Collapse
|
10
|
Holtkamp HU, Morrow SJ, Kubanik M, Hartinger CG. Hyphenation of capillary electrophoresis to inductively coupled plasma mass spectrometry with a modified coaxial sheath-flow interface. J Chromatogr A 2018; 1561:76-82. [PMID: 29798804 DOI: 10.1016/j.chroma.2018.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/23/2022]
Abstract
Capillary electrophoretic analyses benefit significantly from hyphenation to mass spectrometric techniques. While the coupling to ESI-MS is routinely performed, for example by using a coaxial sheath-flow interface, hyphenating it to inductively coupled plasma mass spectrometry is more technically challenging. We use a commercially available coaxial sheath-flow interface (CSFI) and a simple PTFE-based end-cap for easy, inexpensive CE-ICP-MS hyphenation with improved sensitivity and analytical performance compared to commercially available interfaces. We have optimized key nebulizer parameters such as capillary position, sheath liquid flow rate, and carrier gas flow rate, and compared the CSFI with a commercially available interface. In a set of proof-of-principle experiments employing the anticancer agent cisplatin it was demonstrated that the signal to noise response and sensitivity were considerably improved leading to detection limits for 195Pt of 0.08 μM.
Collapse
Affiliation(s)
- Hannah U Holtkamp
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand(1)
| | - Stuart J Morrow
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand(1)
| | - Mario Kubanik
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand(1)
| | - Christian G Hartinger
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand(1).
| |
Collapse
|
11
|
Abstract
Chemical speciation approaches is an inherent part of metallomics, once metals/metalloids and organic structures need to be currently evaluated for attaining metallomics studies. Then, this chapter focuses on the applications of the chemical speciation applied to the human health risk, food and human diet, drugs, forensic, nanoscience, and geological metallomics, also pointing out the advances in such area. Some aspects regarding sample preparation is commented along this chapter, and some strategies for maintaining the integrity of the metallomics information are also emphasized.
Collapse
|
12
|
Importance of ICPMS for speciation analysis is changing: future trends for targeted and non-targeted element speciation analysis. Anal Bioanal Chem 2017; 410:661-667. [PMID: 28735451 PMCID: PMC5775347 DOI: 10.1007/s00216-017-0502-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/10/2017] [Accepted: 06/27/2017] [Indexed: 01/03/2023]
Abstract
This article is aimed at researchers interested in organic molecules which contain a heteroatom but who have never considered using inductively coupled plasma mass spectrometry (ICPMS) or who have used ICPMS for years and developed numerous methods for analysis of target elemental species. We try to illustrate (1) that ICPMS has been very useful for speciation analysis of metal(loid) target species and that there is now a trend to replace the costly detector with cheaper detection systems for routine target analysis, and (2) that ICPMS has been used and will be used even more in the future for non-targeted analysis of elements which are not normally associated with ICPMS analysis, such as non-metals such as sulfur, phosphorus, chlorine and fluorine. Starting with HPLC-ICPMS for non-targeted analysis of heteroatom containing molecules, once target molecule is identified alternative detectors can be used for routine measurements ![]()
Collapse
|
13
|
Analysis and characterization of aluminum chlorohydrate oligocations by capillary electrophoresis. J Chromatogr A 2017; 1492:144-150. [PMID: 28284762 DOI: 10.1016/j.chroma.2017.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 11/23/2022]
Abstract
Aluminum chlorohydrates (ACH) are the active ingredients used in most antiperspirant products. ACH is a water soluble aluminum complex which contains several oligomeric polycations of aluminum with degrees of polymerization up to Al13 or Al30. The characterization and quantification of ACH oligo-cations remain a challenging issue of primary interest for developing structure/antiperspirant activity correlations, and for controlling the ACH ingredients. In this work, highly repeatable capillary electrophoresis (CE) separation of Al3+, Al13 and Al30 oligomers contained in ACH samples was obtained at pH 4.8, owing to a careful choice of the background electrolyte counter-ion and chromophore, capillary I.D. and capillary coating. This is the first reported separation of Al13 and Al30 oligomers in conditions that are compatible with the aluminum speciation in ACH solution or in conditions of antiperspirant application/formulation. Al13 and Al30 effective charge numbers were also determined from the sensitivity of detection in indirect UV detection mode. The relative mass proportion of Al13 compared to Al13+Al30 could be determined in different aluminum chlorohydrate samples. Due to its simplicity, repeatability/reproducibility, minimal sample preparation and mild analytical conditions, CE appears to be a promising analytical separation technique for the characterization of ACH materials and for the study of structure/antiperspirant activity correlations.
Collapse
|
14
|
Michalke B. Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry. Methods Mol Biol 2016; 1483:167-80. [PMID: 27645737 DOI: 10.1007/978-1-4939-6403-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
During the recent years, capillary electrophoresis (CE) has been fully established as a powerful tool in separation sciences as well as in element speciation. This road of success is based on the rapid analysis time, low sample requirements, high separation efficiency, and low operating costs of CE. Inductively coupled plasma mass spectrometry (ICP-MS) is known for superior detection and multielement capability. Consequently, the combination of both instruments is approved for analysis of complex sample types at low element concentrations which require high detection power. Also the diversity of potential applications brings CE-ICP-MS coupling into central focus of element speciation. The key to successful combination of ICP-MS as an (multi-)element selective detector for CE is the availability of a suitable and effective interface.Therefore, this chapter summarizes the most important and basic principles about coupling of capillary electrophoresis to ICP-MS. Specifically, the major requirements for interfacing are described and technical solutions are given. Such solutions include the closing of the electrical circuit from CE at the nebulization, the adoption of flow rates for efficient nebulization, the reduction of a suction flow through the capillary, caused by the nebulizer, and maintaining the high separation resolution from CE across the interface for ICP-MS detection. Additionally, detailed information is presented to determine and quantify the siphoning suction through the CE capillary by the nebulizer. Finally, two applications, namely, the manganese and selenium speciation in cerebrospinal fluid are shown as examples, providing the relevant operational parameter.
Collapse
Affiliation(s)
- Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich-German Research Center for Environmental Health GmbH, Ingolstädter Landstr. 1, Neuherberg, D-85764, Germany.
| |
Collapse
|
15
|
Pröfrock D. Coupling Techniques and Orthogonal Combination of Mass Spectrometric Techniques. Metallomics 2016. [DOI: 10.1002/9783527694907.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel Pröfrock
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research; Department Marine Bioanalytical Chemistry, Institute of Coastal Research/Biogeochemistry in Coastal Seas; Max-Planck Str.1 21502 Geesthacht Germany
| |
Collapse
|
16
|
Shuai PY, Yang XJ, Qiu ZQ, Wu XH, Zhu X, Pokhrel GR, Fu YY, Ye HM, Lin WX, Yang GD. Determination of arsenic species inSolanum Lyratum Thunbusing capillary electrophoresis with inductively coupled plasma mass spectrometry. J Sep Sci 2016; 39:3239-45. [DOI: 10.1002/jssc.201600415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Pei-Yu Shuai
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring; College of Life Sciences, Fujian Agriculture and Forestry University; Fuzhou Fujian P. R. China
| | - Xiao-Jun Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring; College of Life Sciences, Fujian Agriculture and Forestry University; Fuzhou Fujian P. R. China
| | - Zong-Qing Qiu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring; College of Life Sciences, Fujian Agriculture and Forestry University; Fuzhou Fujian P. R. China
| | - Xiao-Hui Wu
- Computer Engineering College; Jimei University; Xiamen Fujian P. R. China
| | - Xi Zhu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring; College of Life Sciences, Fujian Agriculture and Forestry University; Fuzhou Fujian P. R. China
| | - Ganga Raj Pokhrel
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring; College of Life Sciences, Fujian Agriculture and Forestry University; Fuzhou Fujian P. R. China
| | - Yu-Ying Fu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring; College of Life Sciences, Fujian Agriculture and Forestry University; Fuzhou Fujian P. R. China
| | - Hui-Min Ye
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring; College of Life Sciences, Fujian Agriculture and Forestry University; Fuzhou Fujian P. R. China
| | - Wen-Xiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring; College of Life Sciences, Fujian Agriculture and Forestry University; Fuzhou Fujian P. R. China
| | - Gui-Di Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring; College of Life Sciences, Fujian Agriculture and Forestry University; Fuzhou Fujian P. R. China
| |
Collapse
|
17
|
Maes E, Tirez K, Baggerman G, Valkenborg D, Schoofs L, Encinar JR, Mertens I. The use of elemental mass spectrometry in phosphoproteomic applications. MASS SPECTROMETRY REVIEWS 2016; 35:350-360. [PMID: 25139451 DOI: 10.1002/mas.21440] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/14/2014] [Accepted: 05/14/2014] [Indexed: 06/03/2023]
Abstract
Reversible phosphorylation is one of the most important post-translational modifications in mammalian cells. Because this molecular switch is an important mechanism that diversifies and regulates proteins in cellular processes, knowledge about the extent and quantity of phosphorylation is very important to understand the complex cellular interplay. Although phosphoproteomics strategies are applied worldwide, they mainly include only molecular mass spectrometry (like MALDI or ESI)-based experiments. Although identification and relative quantification of phosphopeptides is straightforward with these techniques, absolute quantification is more complex and usually requires for specific isotopically phosphopeptide standards. However, the use of elemental mass spectrometry, and in particular inductively coupled plasma mass spectrometry (ICP-MS), in phosphoproteomics-based experiments, allow one to absolutely quantify phosphopeptides. Here, these phosphoproteomic applications with ICP-MS as elemental detector are reviewed. Pioneering work and recent developments in the field are both described. Additionally, the advantage of the parallel use of molecular and elemental mass spectrometry is stressed.
Collapse
Affiliation(s)
- Evelyne Maes
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- KU Leuven, Research Group of Functional Genomics and Proteomics, Leuven, Belgium
| | - Kristof Tirez
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Geert Baggerman
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- CFP-CeProMa, University of Antwerp, Antwerp, Belgium
| | - Dirk Valkenborg
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- CFP-CeProMa, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
| | - Liliane Schoofs
- KU Leuven, Research Group of Functional Genomics and Proteomics, Leuven, Belgium
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Inge Mertens
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- CFP-CeProMa, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
18
|
Pontillo C, Filip S, Borràs DM, Mullen W, Vlahou A, Mischak H. CE-MS-based proteomics in biomarker discovery and clinical application. Proteomics Clin Appl 2015; 9:322-34. [DOI: 10.1002/prca.201400115] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/10/2014] [Accepted: 01/14/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Claudia Pontillo
- Department of R&D; Mosaiques Diagnostics GmbH; Hanover Germany
- Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Szymon Filip
- Charité-Universitätsmedizin Berlin; Berlin Germany
- Biotechnology Division; Biomedical Research Foundation; Academy of Athens; Athens Greece
| | - Daniel M. Borràs
- Department of R&D; ServiceXS; Leiden The Netherlands
- Institut National de la Santé et de la Recherche Médicale (INSERM); Institute of Cardiovascular and Metabolic Disease; Toulouse France
- Université Toulouse III Paul-Sabatier; Toulouse France
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences; University of Glasgow; Glasgow UK
| | - Antonia Vlahou
- Biotechnology Division; Biomedical Research Foundation; Academy of Athens; Athens Greece
- School of Biomedical and Healthcare Sciences; Plymouth University; Plymouth UK
| | - Harald Mischak
- Department of R&D; Mosaiques Diagnostics GmbH; Hanover Germany
- Institute of Cardiovascular and Medical Sciences; University of Glasgow; Glasgow UK
| |
Collapse
|
19
|
Thin-layer chromatography combined with diode laser thermal vaporization inductively coupled plasma mass spectrometry. J Chromatogr A 2014; 1364:271-5. [DOI: 10.1016/j.chroma.2014.08.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 11/23/2022]
|
20
|
Liu L, He B, Yun Z, Sun J, Jiang G. Speciation analysis of arsenic compounds by capillary electrophoresis on-line coupled with inductively coupled plasma mass spectrometry using a novel interface. J Chromatogr A 2013; 1304:227-33. [DOI: 10.1016/j.chroma.2013.07.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 11/30/2022]
|
21
|
Fujii SI, Inagaki K, Miyashita SI, Nagasawa K, Chiba K, Takatsu A. A coupling system of capillary gel electrophoresis with inductively coupled plasma-mass spectrometry for the determination of double stranded DNA fragments. Metallomics 2013; 5:424-8. [PMID: 23604270 DOI: 10.1039/c3mt00057e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coupling system of capillary gel electrophoresis (CGE) and inductively coupled plasma-mass spectrometry (ICP-MS) was newly developed and successfully applied to the double-stranded (ds) DNA quantification. The developed system combines the separation technique for large biomolecules and element selective detection of ICP-MS. This coupling was achieved by using the modified high performance concentric nebulizer (HPCN) with the PTFE tube (HPCN-PT), which can produce the liquid jet by the flow focusing effect. The HPCN-PT effectively nebulizes the highly viscous solution containing gel buffer even at a low flow rate. At a liquid flow rate of 0.010 mL min(-1) and a nebulizer gas flow rate of 1 L min(-1), the Sauter mean diameter (D3,2) of primary aerosols generated by the HPCN-PT was 3.4 μm, and over 90% (v/v) of the aerosol droplets were less than 10 μm in diameter. The electrophoresis capillary filled with gel buffer was connected to the HPCN-PT via the interface. This interface has two connectors and an electrode that can connect CE and ICP-MS. After the electrophoretic separation at atmospheric pressure, the samples were transferred to the ICP-MS through the interface by applying additional pressure. Fragments of dsDNA, which were commercially available as a ladder marker solution, were successfully separated and analyzed by measuring (31)P(+) with CGE-ICP-MS, and a linear calibration curve of the phosphorus standard solution (R(2) = 0.999) was obtained from 2.7 to 27 mg kg(-1). The detection limit (LOD) and absolute detection limit of P were 3.7 μg kg(-1) and 0.6 pg (equivalent to 6 pg of DNA), respectively. This absolute detection limit value was equal to the conventional fluorescence determination of DNA.
Collapse
Affiliation(s)
- Shin-ichiro Fujii
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Haselberg R, de Jong GJ, Somsen GW. CE-MS for the analysis of intact proteins 2010-2012. Electrophoresis 2012; 34:99-112. [DOI: 10.1002/elps.201200439] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 12/18/2022]
Affiliation(s)
- Rob Haselberg
- Biomolecular Analysis; Utrecht University; CG Utrecht; The Netherlands
| | | | - Govert W. Somsen
- Biomolecular Analysis; Utrecht University; CG Utrecht; The Netherlands
| |
Collapse
|
23
|
|
24
|
Timerbaev AR. Element speciation analysis using capillary electrophoresis: twenty years of development and applications. Chem Rev 2012; 113:778-812. [PMID: 23057472 DOI: 10.1021/cr300199v] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Andrei R Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin Str. 19, 119991 Moscow, Russian Federation.
| |
Collapse
|
25
|
Pröfrock D, Prange A. Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends. APPLIED SPECTROSCOPY 2012; 66:843-68. [PMID: 22800465 DOI: 10.1366/12-06681] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This focal point review provides an overview of recent developments and capabilities of inductively coupled plasma mass spectrometry (ICP-MS) coupled with different separation techniques for applications in the fields of quantitative environmental and bio-analysis. Over the past years numerous technical improvements, which are highlighted in this review, have helped to promote the evolution of ICP-MS to one of the most versatile tools for elemental quantification. In particular, the benefits and possibilities of using state-of-the-art hyphenated ICP-MS approaches for quantitative analysis are demonstrated with a focus on environmental and bio-analytical applications.
Collapse
Affiliation(s)
- Daniel Pröfrock
- Helmholtz Zentrum Geesthacht-Zentrum für Material und Küstenforschung, Department Marine Bioanalytical Chemistry, Max-Planck Str. 1, 21502 Geesthacht, Germany.
| | | |
Collapse
|
26
|
Nguyen TTTN, Østergaard J, Stürup S, Gammelgaard B. Investigation of a liposomal oxaliplatin drug formulation by capillary electrophoresis hyphenated to inductively coupled plasma mass spectrometry (CE-ICP-MS). Anal Bioanal Chem 2012; 402:2131-9. [DOI: 10.1007/s00216-011-5651-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 11/25/2022]
|
27
|
Cheng H, Liu J, Yin X, Shen H, Xu Z. Elimination of suction effect in interfacing microchip electrophoresis with inductively coupled plasma mass spectrometry using porous monolithic plugs. Analyst 2012; 137:3111-8. [DOI: 10.1039/c2an35050e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Pröfrock D. Progress and possible applications of miniaturised separation techniques and elemental mass spectrometry for quantitative, heteroatom-tagged proteomics. Anal Bioanal Chem 2010; 398:2383-401. [PMID: 20582698 DOI: 10.1007/s00216-010-3901-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/03/2010] [Accepted: 06/06/2010] [Indexed: 12/23/2022]
Abstract
The application of miniaturised separation techniques such as capillary LC, nano LC or capillary electrophoresis offers a number of advantages in terms of analytical performance, solvent consumption and the ability to analyse very small sample amounts. These features make them attractive for various bioanalytical tasks, in particular those related to the analysis of proteins and peptides. The skillful combination of such techniques with inductively coupled plasma mass spectrometry (ICP-MS) has recently permitted the design of combined analytical approaches utilising either elemental or molecule-specific detection techniques such as electrospray ionisation (ESI) or matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry in a highly complementary manner for, as an example, proteomics-orientated research (heteroatom-tagged proteomics). Such hybrid approaches are, in particular, providing promising new options for the fast screening of complex samples for specific metal-containing or--more generally speaking--heteroatom-containing biomolecules, as well as the accurate absolute quantification of biomolecules, which is still an unsolved problem in bioanalysis. Here, progress in as well as the potential and the special requirements of hyphenating miniaturised separation techniques with ICP-MS are reviewed and critically discussed. In addition, selected applications are highlighted to indicate current and possible future trends within this emerging area of research.
Collapse
Affiliation(s)
- Daniel Pröfrock
- GKSS Forschungszentrum GmbH, Department Marine Bioanalytical Chemistry, Institute for Coastal Research, Max-Planck Str. 1, 21502 Geesthacht, Germany.
| |
Collapse
|
29
|
Wang M, Feng WY, Zhao YL, Chai ZF. ICP-MS-based strategies for protein quantification. MASS SPECTROMETRY REVIEWS 2010; 29:326-348. [PMID: 19492311 DOI: 10.1002/mas.20241] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In the post-genomics era, proteomics has become a central branch in life sciences. An understanding of biological functions will not only rely on protein identification, but also on protein quantification in a living organism. Most of the existing methods for quantitative proteomics are based on isotope labeling combined with molecular mass spectrometry. Recently, a remarkable progress that utilizes inductively coupled plasma-mass spectrometry (ICP-MS) as an attractive complement to electrospray MS and MALDI MS for protein quantification, especially for absolute quantification, has been achieved. This review will selectively discuss the recent advances of ICP-MS-based technique, which will be expected to further mature and to become one of the key methods in quantitative proteomics.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, PR China
| | | | | | | |
Collapse
|
30
|
Petit J, Aupiais J, Topin S, Geertsen V, Beaucaire C, Stambouli M. Stability constants determination of successive metal complexes by hyphenated CE-ICPMS. Electrophoresis 2010; 31:355-63. [DOI: 10.1002/elps.200900295] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Ravelo-Pérez LM, Asensio-Ramos M, Hernández-Borges J, Rodríguez-Delgado MA. Recent food safety and food quality applications of CE-MS. Electrophoresis 2009; 30:1624-46. [PMID: 19360778 DOI: 10.1002/elps.200800670] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The first on-line coupling of CE with MS detection more than 20 years ago provided a very powerful technique with a wide variety of applications, among which food analysis is of special interest, especially that dealing with food safety and food quality applications, the major topics of public interest nowadays. With this review article, we would like to show the most recent applications of CE-MS in both fields by recompiling and commenting articles published between January 2004 and October 2008. Although both applications are difficult to separate from each other, we have included in this work two main sections dealing with each specific field. Future trends will also be discussed.
Collapse
Affiliation(s)
- Lidia M Ravelo-Pérez
- Departamento de Química Analítica, Nutrición y Bromatología, Universidad de La Laguna, La Laguna, Tenerife, Islas Canarias, Spain
| | | | | | | |
Collapse
|
32
|
Shekhar R, Karunasagar D, Ranjit M, Arunachalam J. Determination of Elemental Constituents in Different Matrix Materials and Flow Injection Studies by the Electrolyte Cathode Glow Discharge Technique with a New Design. Anal Chem 2009; 81:8157-66. [DOI: 10.1021/ac901380v] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Shekhar
- National Centre for Compositional Characterization of Materials, Bhabha Atomic Research Centre, ECIL Post, Hyderabad-500062, India
| | - D. Karunasagar
- National Centre for Compositional Characterization of Materials, Bhabha Atomic Research Centre, ECIL Post, Hyderabad-500062, India
| | - Manjusha Ranjit
- National Centre for Compositional Characterization of Materials, Bhabha Atomic Research Centre, ECIL Post, Hyderabad-500062, India
| | - J. Arunachalam
- National Centre for Compositional Characterization of Materials, Bhabha Atomic Research Centre, ECIL Post, Hyderabad-500062, India
| |
Collapse
|
33
|
Metal complexes stability constant determination by hyphenation of capillary electrophoresis with inductively coupled plasma mass spectrometry: The case of 1:1 metal-to-ligand stoichiometry. J Chromatogr A 2009; 1216:4113-20. [DOI: 10.1016/j.chroma.2009.02.094] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/17/2009] [Accepted: 02/27/2009] [Indexed: 11/19/2022]
|
34
|
Yang G, Xu X, Shen M, Wang W, Xu L, Chen G, Fu F. Determination of organophosphorus pesticides by capillary electrophoresis-inductively coupled plasma mass spectrometry with collective sample-introduction technique. Electrophoresis 2009; 30:1718-23. [PMID: 19391145 DOI: 10.1002/elps.200800387] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A new method for the determination of organophosphorus pesticides using CE-ICP-MS with collective sample-introduction technique has been developed in this study. The method has been successfully used to separate and determine dimethoate, trichlorfon and glyphosate with an RSD of < 5% for migration times (n = 6) and < 4% for peak areas (n = 6). The experimental results showed that the collective sample-introduction considerably reduced the makeup volume and the dilution of analyte, and eventually resulted in a much lower detection limit and a much better electrophoretic resolution. The peak widths and the detection limits of dimethoate, trichlorfon and glyphosate obtained with this method are 15-17 s and 0.05-0.07 microg/mL (as compound), respectively. Using this method, we have successfully separated and determined dimethoate, trichlorfon and glyphosate in vegetable sample with a recovery of 90-96%.
Collapse
Affiliation(s)
- GuiDi Yang
- Key Laboratory of Analysis and Detection for Food Safety of Ministry of Education and Department of Chemistry, Fuzhou University, Fuzhou, Fujian, P. R. China
| | | | | | | | | | | | | |
Collapse
|
35
|
Li Y, Liu JM, Xia YL, Jiang Y, Yan XP. CE with on-line detection by ICP-MS for studying the competitive binding of zinc against cadmium for glutathione. Electrophoresis 2008; 29:4568-74. [DOI: 10.1002/elps.200800309] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Zhang Y, Li B, Chen C, Gao Z. Hepatic distribution of iron, copper, zinc and cadmium-containing proteins in normal and iron overload mice. Biometals 2008; 22:251-9. [PMID: 18773300 DOI: 10.1007/s10534-008-9161-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 08/19/2008] [Indexed: 11/25/2022]
Abstract
Subcellular distribution of metal-containing proteins of Fe, Cu, Zn and Cd were determined in the liver samples of iron overload mice by size exclusion high performance liquid chromatography with on-line coupling to UV and inductively coupled plasma mass spectrometry. Collision cell techniques was used to remove polyatomic interferences for some elements, such as Fe. Comparative molecular weight (MW) information of the elemental fraction was obtained within a retention time of 40 min. Fe was present only in high-MW (HMW) protein; Cu, Zn and Cd were found in different MW proteins. It was also observed that these four elements studied showed predominant association with HMW fractions. Moreover, compared with the normal group, we found that the contents of these elements except Cu significantly increased and the distribution of some elements like Cd changed in iron overload mouse liver. It means that excessive iron accumulation in vivo may affect the metabolism of other element such as Zn and Cd.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | | | | | | |
Collapse
|
37
|
A new interface used to couple capillary electrophoresis with an inductively coupled plasma mass spectrometry for speciation analysis. Electrophoresis 2008; 29:2862-8. [DOI: 10.1002/elps.200700849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Abstract
Monitoring environmental pollution using biomarkers requires detailed knowledge about the markers, and many only allow a partial assessment of pollution. New proteomic methods (environmental proteomics) can identify proteins that, after validation, might be useful as alternative biomarkers, although this approach also has its limitations, derived mainly from their application to non-model organisms. Initial studies using environmental proteomics were carried out in animals exposed to model pollutants, and led to the concept of protein expression signatures. Experiments have been carried out in model organisms (yeast, Arabidopsis, rat cells, or mice) exposed to model contaminants. Over the last few years, proteomics has been applied to organisms from ecosystems with different pollution levels, forming the basis of an environmental branch in proteomics. Another focus is connected with the presence of metals bound to biomolecules, which adds an additional dimension to metal-biomolecule and metalloprotein characterization - the field of metallomics. The metallomic approach considers the metallome: a whole individual metal or metalloid species within a cell or tissue. A metallomic analytical approach (MAA) is proposed as a new tool to study and identify metalloproteins.
Collapse
Affiliation(s)
- Juan López-Barea
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain.
| | | |
Collapse
|
39
|
Yin XB, Li Y, Yan XP. CE-ICP-MS for studying interactions between metals and biomolecules. Trends Analyt Chem 2008. [DOI: 10.1016/j.trac.2008.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Groessl M, Hartinger CG, Polec-Pawlak K, Jarosz M, Keppler BK. Capillary electrophoresis hyphenated to inductively coupled plasma-mass spectrometry: A novel approach for the analysis of anticancer metallodrugs in human serum and plasma. Electrophoresis 2008; 29:2224-32. [DOI: 10.1002/elps.200780790] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Morales R, López-Sánchez JF, Rubio R. Selenium speciation by capillary electrophoresis. Trends Analyt Chem 2008. [DOI: 10.1016/j.trac.2007.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
18 Coupling CE and microchip-based devices with mass spectrometry. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s0149-6395(07)00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
43
|
Chen JH, Wang KE, Jiang SJ. Determination of iodine and bromine compounds in foodstuffs by CE-inductively coupled plasma MS. Electrophoresis 2007; 28:4227-32. [DOI: 10.1002/elps.200700241] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Standler A, Koellensperger G, Buchberger W, Stingeder G, Hann S. Determination of chloroplatinates by CE coupled to inductively coupled plasma sector field MS. Electrophoresis 2007; 28:3492-9. [PMID: 17828797 DOI: 10.1002/elps.200700097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the present work the degradation of chloroplatinates emitted into the aquatic environment has been investigated in model studies. CE coupled to inductively coupled plasma sector field MS (ICP-SFMS) was employed as an analytical method of measurement. The CE-ICP-MS interface utilized the functional make-up flow design with a microconcentric nebulizer. [Pt(Cl(4))](2-) and [Pt(Cl(6))](2-) were separated within 5 min. During a measurement period of 6 h an excellent reproducibility of migration times (RSD 2.3%) could be achieved. The high sensitivity of ICP-SFMS resulted in an LOD of 80 ng/L platinum for the two compounds. External calibration using rhenium as internal standard was linear over three orders of magnitude. However, with external calibration a long-term drift of signal intensity was observed. In order to reduce the uncertainty of the obtained results, quantification of [PtCl(6)](2-) was performed for the first time by species-specific on-line isotope dilution MS using (194)[PtCl(6)](2-) as spike. The two different quantification strategies were compared in terms of their total combined uncertainty of measurement according to the EURACHEM guideline. The method was employed for monitoring the time-dependent degradation of [Pt(Cl(4))](2-) and [Pt(Cl(6))](2-) in water containing 0 and 2.8 mmol/L Cl(-) and river water. [Pt(Cl(6))](2-) was stable whereas [Pt(Cl(4))](2-) showed rapid degradation following pseudo first-order kinetics.
Collapse
Affiliation(s)
- Alexander Standler
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | |
Collapse
|
45
|
Nguyen HTA, Kubán P, Pham VH, Hauser PC. Study of the determination of inorganic arsenic species by CE with capacitively coupled contactless conductivity detection. Electrophoresis 2007; 28:3500-6. [PMID: 17768725 DOI: 10.1002/elps.200700069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The determination of arsenic(III) and arsenic(V), as inorganic arsenite and arsenate, was investigated by CE with capacitively coupled contactless conductivity detection (CE-C(4)D). It was found necessary to determine the two inorganic arsenic species separately employing two different electrolyte systems. Electrolyte solutions consisting of 50 mM CAPS/2 mM L-arginine (Arg) (pH 9.0) and of 45 mM acetic acid (pH 3.2) were used for arsenic(III) and arsenic(V) determinations, respectively. Detection limits of 0.29 and 0.15 microM were achieved for As(III) and As(V), respectively by using large-volume injection to maximize the sensitivity. The analysis of contaminated well water samples from Vietnam is demonstrated.
Collapse
Affiliation(s)
- Huong Thi Anh Nguyen
- Centre for Environmental Technology and Sustainable Development, Hanoi University of Science, Hanoi, Vietnam
| | | | | | | |
Collapse
|
46
|
Sonke JE, Salters VJM. Capillary electrophoresis–high resolution sector field inductively coupled plasma mass spectrometry. J Chromatogr A 2007; 1159:63-74. [PMID: 17543311 DOI: 10.1016/j.chroma.2007.05.055] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 05/01/2007] [Accepted: 05/15/2007] [Indexed: 11/20/2022]
Abstract
The background and applications of high resolution sector field inductively coupled plasma mass spectrometry (HR-ICP-MS) as a detector for capillary (CE) and gel electrophoretic separations are reviewed. Notable progress has been made in the fields of bioinorganic and environmental (geo-) chemistry. Metallomics, the study of metal species interactions and functions in biological systems, puts substantial technical demands on speciation analysis. The combination of high species resolving power (CE) and high sensitivity-high mass resolving power (HR-ICP-MS) provides a solid base to meet such demands.
Collapse
Affiliation(s)
- Jeroen E Sonke
- Laboratoire des Mécanismes et Transferts en Géologie, CNRS/IRD/Université Paul Sabatier Toulouse III, 14 avenue Edouard Bélin, 31400 Toulouse, France.
| | | |
Collapse
|
47
|
Pathem BK, Pradenas GA, Castro ME, Vásquez CC, Chasteen TG. Capillary electrophoretic determination of selenocyanate and selenium and tellurium oxyanions in bacterial cultures. Anal Biochem 2007; 364:138-44. [PMID: 17407759 DOI: 10.1016/j.ab.2007.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 02/20/2007] [Accepted: 03/06/2007] [Indexed: 11/16/2022]
Abstract
A simple capillary zone electrophoretic method for the determination of biospherically important oxyanions of selenium (Se) and tellurium and another Se-containing anion, selenocyanate, has been developed. The method uses direct UV absorption detection. Time course experiments with time slices as short as 6 min are possible. This method's detection limits and linear range compare well with other methods involving samples containing complex biological matrices. The metalloid-containing anions examined were selenocyanate, selenite, selenate, tellurite, and tellurate. We applied this method to live cultures of two different bacteria in two different growth media in time course experiments following the changes in metalloid-containing anion concentrations. The results show that this method is a useful means of following the biological processing of these analytes in bacterial cultures.
Collapse
Affiliation(s)
- Bala Krishna Pathem
- Department of Chemistry, Sam Houston State University, Huntsville, TX 77340, USA
| | | | | | | | | |
Collapse
|
48
|
Li BH, Yan XP. Rapid speciation of iron by on-line coupling of short column capillary electrophoresis and inductively coupled plasma mass spectrometry with the collision cell technique. J Sep Sci 2007; 30:916-22. [PMID: 17536737 DOI: 10.1002/jssc.200600405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A method for rapid speciation analysis of iron was developed by on-line coupling of short column capillary electrophoresis and inductively coupled plasma mass spectrometry. The collision cell technique was used to eliminate argon-based polyatomic interferences and a Micromist nebulizer was employed to increase the nebulization efficiency. Rapid speciation analysis of Fe(II) and Fe(III) was achieved within 1 min by short column capillary electrophoresis in a 14 cm x 50 microm id capillary at 28 kV voltage with a mixture of 15 mmol/L tris(hydroxymethyl)aminomethane + 1 mmol/L 1,10-phenanthroline + 1 mmol/L EDTA (pH 8.6) as running electrolyte. The precisions (RSD, n = 5) of migration time and peak area for Fe(II) and Fe(III) were in the range of 1.0 - 2.6 and 1.9 - 3.9%, respectively. The limits of detection (3sigma) of Fe(II) and Fe(III) were 10.0 and 8.3 microg/L, respectively.
Collapse
Affiliation(s)
- Bao-Hui Li
- Key Laboratory of Functional Polymer Materials, Ministry of Education (Nankai University), Tianjin, China
| | | |
Collapse
|
49
|
Carmen Barciela-Alonso M, Bermejo-Barrera A, Bermejo-Barrera P. Separation and determination of Se-compounds by liquid chromatography coupled with electrospray mass spectrometry. J Trace Elem Med Biol 2007; 21 Suppl 1:23-5. [PMID: 18039490 DOI: 10.1016/j.jtemb.2007.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Accepted: 08/20/2007] [Indexed: 11/28/2022]
Abstract
A method for Selenocystine and Selenomethionine determination by LC-ES-MS was developed in this work. The mass spectrometer was used in a positive mode and the m/z used for the identification of Selenomethionine and Selenocystine were 198.35 and 337.15, respectively. The selenium species were separated using a LC system. A silica chromatographic column (ZORBAX Eclipse XDB-C(8) of 50 mm length and 2.1 mm internal diameter (particle size 3.5 microm)) was used. The separation was realised in isocratic mode, using methanol:water (1:1) with 1% of acetic acid and a flow rate of 200 microL min(-1). The developed method was precise (RSD of 4.5% and 3.9% for Selenomethionine and Selenocystine, respectively) and sensible (limit of detection (LOD) 0.06 and 0.99 mg L(-1) for selenomethionine and selenocystine, respectively).
Collapse
Affiliation(s)
- M Carmen Barciela-Alonso
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | | |
Collapse
|
50
|
Lobinski R, Moulin C, Ortega R. Imaging and speciation of trace elements in biological environment. Biochimie 2006; 88:1591-604. [PMID: 17064836 DOI: 10.1016/j.biochi.2006.10.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 10/03/2006] [Indexed: 11/24/2022]
Abstract
Mineral elements, often at the trace level, play a considerable role in physiology and pathology of biological systems. Metallogenomics, metalloproteomics, and metallomics are among the emerging disciplines which are critically dependent on spatially resolved concentration maps of trace elements in a cell or tissue, on information on chemical speciation, and on that on metal-binding coordination sites. The mini-review discusses recent progress in analytical techniques for element profiling on the genome scale, biological trace element imaging, and probing, identification and quantification of chemical species in the biological environment. Imaging of the element distribution in cells and tissue sections is becoming possible with sub-micrometer spatial resolution and picogram-level sensitivity owing to advances in laser ablation MS, ion beam and synchrotron radiation X-ray fluorescence microprobes. Progress in nanoflow chromatography and capillary electrophoresis coupled with element specific ICP MS and molecule-specific electrospray MS/MS and MALDI enables speciation of elements in microsamples in a complex biological environment. Laser ablation ICP MS, micro-SXRF, and micro-PIXE allow mapping of trace element distribution in 1D and 2D proteomics gels. The increasing sensitivity of EXAFS and XANES owing to the use of more intense synchrotron beams and efficient focusing optics provide information about oxidation state, fingerprint speciation of metal sites and metal-site structures.
Collapse
Affiliation(s)
- R Lobinski
- Equipe de chimie analytique bio-inorganique, CNRS UMR5034, Hélioparc, 2, avenue Professeur-Angot, 64053 Pau, France
| | | | | |
Collapse
|