1
|
Jaikishan S, Lavainne M, Ravald HK, Scobbie K, Dusa F, Maheswari R, Turpeinen J, Eikemans I, Chen R, Rantala J, Aseyev V, Maier NN, Wiedmer SK. Fragment-based approach to study fungicide-biomimetic membrane interactions. SOFT MATTER 2024. [PMID: 39012330 DOI: 10.1039/d4sm00648h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
In this study, the molecular interactions of the allylamine-type fungicide butenafine and a set of substructures ("fragments") with liposomes mimicking biological membranes were studied to gain a better understanding of the structural factors governing membrane affinity and perturbation. Specifically, drug/fragment-membrane interactions were investigated using an interdisciplinary approach involving micro differential scanning calorimetry, open-tubular capillary electrochromatography, nanoplasmonic sensing, and quartz crystal microbalance. By incubating the drug and the fragment compounds with liposomes with varying lipid composition or by externally adding the compounds to preformed liposomes, a detailed mechanistic picture on the underlying drug/fragment-membrane interactions was obtained. The nature and the degree of ionisation of polar head groups of the lipids had a major influence on the nature of drug-membrane interactions, and so had the presence and relative concentration of cholesterol within the membranes. The in-depth understanding of drug/fragment-membranes interactions established by the presented interdisciplinary fragment-based approach may be useful in guiding the design and early-stage evaluation of prospective antifungal drug candidates, and the discovery of agents with improved membrane penetrating characteristics in general.
Collapse
Affiliation(s)
- Shishir Jaikishan
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Marine Lavainne
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Henri K Ravald
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Kieran Scobbie
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Filip Dusa
- Institute of Analytical Chemistry, Czech Academy of Sciences, Veveří 97, Brno 60200, Czech Republic
| | - Rekha Maheswari
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Jenni Turpeinen
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Ian Eikemans
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Rui Chen
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Julia Rantala
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Vladimir Aseyev
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Norbert N Maier
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| | - Susanne K Wiedmer
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| |
Collapse
|
2
|
Ravald H, Jaikishan S, Samuelsson J, Sukhova A, Šolínová V, Fornstedt T, Kašička V, Wiedmer SK. Capillary electrokinetic chromatography for studying interactions between β-blockers and Intralipid emulsion. J Pharm Biomed Anal 2023; 234:115554. [PMID: 37399701 DOI: 10.1016/j.jpba.2023.115554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
Toxicity of β-blockers is one of the most common causes of poison-induced cardiogenic shock throughout the world. Therefore, methodologies for in vivo removal of the drugs from the body have been under investigation. Intralipid emulsion (ILE) is a common commercial lipid emulsion used for parenteral nutrition, but it has also been administered to patients suffering from drug toxicities. In this work, a set of β-blockers of different hydrophobicity's (log KD values ranging from 0.16 to 3.8) were investigated. The relative strength of the interactions between these compounds and the ILE was quantitatively assessed by means of binding constants and adsorption constants of the formed β-blocker-ILE complexes. The binding constants were determined by capillary electrokinetic chromatography and the adsorption constants were calculated based on different adsorption isotherms. Expectedly, the binding constants were strongly related to the log KD values of the β-blockers. The binding and adsorption constants also show that less hydrophobic β-blockers interact with ILE, suggesting that this emulsion could be useful for capturing such compounds in cases of their overdoses. Thus, the use of ILE for treatment of toxicities caused by a larger range of β-blockers is worth further investigation.
Collapse
Affiliation(s)
- Henri Ravald
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | | | - Jörgen Samuelsson
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| | - Arina Sukhova
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Veronika Šolínová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - Torgny Fornstedt
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
3
|
Ravald H, Wiedmer SK. Potential of liposomes and lipid membranes for the separation of β-blockers by capillary electromigration and liquid chromatographic techniques. J Chromatogr A 2023; 1706:464265. [PMID: 37573755 DOI: 10.1016/j.chroma.2023.464265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023]
Abstract
β-Blockers belong to a frequently used class of drugs primarily used to treat heart and circulatory conditions. Here we describe the use of lipid vesicles and liposomes as cell membrane biomimicking models in capillary electromigration (CE) and liquid chromatography (LC) techniques for the investigation of interactions between lipid membranes and β-blockers. In addition to liposomes, the use of commercial intravenous lipid emulsions, and their interactions with β-blockers are also discussed. Different CE and LC instrumental techniques designed for these purposes are introduced. Other methodologies for studying interactions between β-blockers and lipid membranes are also briefly discussed, and the different methodologies are compared. The aim is to give the reader a good overview on the status of the use of liposomes and lipids in CE and LC for studying β-blocker interactions.
Collapse
Affiliation(s)
- Henri Ravald
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland
| | - Susanne K Wiedmer
- Department of Chemistry, A.I. Virtasen aukio 1, POB 55, 00014 University of Helsinki, Finland.
| |
Collapse
|
4
|
Godyń J, Gucwa D, Kobrlova T, Novak M, Soukup O, Malawska B, Bajda M. Novel application of capillary electrophoresis with a liposome coated capillary for prediction of blood-brain barrier permeability. Talanta 2020; 217:121023. [DOI: 10.1016/j.talanta.2020.121023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022]
|
5
|
Immobilization of natural lipid biomembranes and their interactions with choline carboxylates. A nanoplasmonic sensing study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183115. [PMID: 31704086 DOI: 10.1016/j.bbamem.2019.183115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/13/2019] [Accepted: 10/26/2019] [Indexed: 11/23/2022]
Abstract
The cell membrane is mainly composed of lipid bilayers with inserted proteins and carbohydrates. Lipid bilayers made of purified or synthetic lipids are widely used for estimating the effect of target compounds on cell membranes. However, the composition of such biomimetic membranes is much simpler than the composition of biological membranes. Interactions between compounds and simple composition biomimetic membranes might not demonstrate the effect of target compounds as precisely as membranes with compositions close to real organisms. Therefore, the aim of our study is to construct biomimetic membrane closely mimicking the state of natural membranes. Liposomes were prepared from lipids extracted from L-α-phosphatidylcholine, Escherichia coli, yeast (Saccharomyces cerevisiae) and bovine liver cells through agitation and sonication. They were immobilized onto silicon dioxide (SiO2) sensor surfaces using N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer with calcium chloride. The biomimetic membranes were successfully immobilized onto the SiO2 sensor surface and detected by nanoplasmonic sensing. The immobilized membranes were exposed to choline carboxylates. The membrane disruption effect was, as expected, more pronounced with increasing carbohydrate chain length of the carboxylates. The results correlated with the toxicity values determined using Vibrio fischeri bacteria. The yeast extracted lipid membranes had the strongest response to introduction of choline laurate while the bovine liver lipid extracted liposomes were the most sensitive towards the shorter choline carboxylates. This implies that the composition of the cell membrane plays a crucial role upon interaction with choline carboxylates, and underlines the necessity of testing membrane systems of different origin to obtain an overall image of such interactions.
Collapse
|
6
|
A novel enantioseparation approach based on liposome electrokinetic capillary chromatography. J Pharm Biomed Anal 2017; 145:186-194. [DOI: 10.1016/j.jpba.2017.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 11/19/2022]
|
7
|
Russo G, Witos J, Rantamäki AH, Wiedmer SK. Cholesterol affects the interaction between an ionic liquid and phospholipid vesicles. A study by differential scanning calorimetry and nanoplasmonic sensing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2361-2372. [PMID: 28912102 DOI: 10.1016/j.bbamem.2017.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/01/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
Abstract
The present work aims at studying the interactions between cholesterol-rich phosphatidylcholine-based lipid vesicles and trioctylmethylphosphonium acetate ([P8881][OAc]), a biomass dissolving ionic liquid (IL). The effect of cholesterol was assayed by using differential scanning calorimetry (DSC) and nanoplasmonic sensing (NPS) measurement techniques. Cholesterol-enriched dipalmitoyl-phosphatidylcholine vesicles were exposed to different concentrations of the IL, and the derived membrane perturbation was monitored by DSC. The calorimetric data could suggest that the binding and infiltration of the IL are delayed in the vesicles containing cholesterol. To clarify our findings, NPS was applied to quantitatively follow the resistance of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine incorporating 0, 10, and 50mol% of cholesterol toward the IL exposure over time. The membrane perturbation induced by different concentrations of IL was found to be a concentration dependent process on cholesterol-free lipid vesicles. Moreover, our results showed that lipid depletion in cholesterol-enriched lipid vesicles is inversely proportional to the increasing amount of cholesterol in the vesicles. These findings support that cholesterol-rich lipid bilayers are less susceptible toward membrane disrupting agents as compared to membranes that do not incorporate any sterols. This probably occurs because cholesterol tightens the phospholipid acyl chain packing of the plasma membranes, increasing their resistance and reducing their permeability.
Collapse
Affiliation(s)
- Giacomo Russo
- Department of Chemistry, P. O. Box 55, FIN-00014, University of Helsinki, Helsinki, Finland.
| | - Joanna Witos
- Department of Chemistry, P. O. Box 55, FIN-00014, University of Helsinki, Helsinki, Finland.
| | - Antti H Rantamäki
- Department of Chemistry, P. O. Box 55, FIN-00014, University of Helsinki, Helsinki, Finland.
| | - Susanne K Wiedmer
- Department of Chemistry, P. O. Box 55, FIN-00014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Adam V, Vaculovicova M. CE and nanomaterials - Part II: Nanomaterials in CE. Electrophoresis 2017; 38:2405-2430. [DOI: 10.1002/elps.201700098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Vojtech Adam
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| |
Collapse
|
9
|
Witos J, Russo G, Ruokonen SK, Wiedmer SK. Unraveling Interactions between Ionic Liquids and Phospholipid Vesicles Using Nanoplasmonic Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1066-1076. [PMID: 28068104 DOI: 10.1021/acs.langmuir.6b04359] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Owing to their unique properties and unlimited structural combinations, the ubiquitous use of ionic liquids (ILs) is steadily increasing. The objective of the present work is to shed light onto the effects of amidinium- and phosphonium-based ILs on phospholipid vesicles using a nanoplasmonic sensing measurement technique. A new and relatively simple method was developed for the immobilization of large unilamellar vesicles on two different hydrophilic surfaces composed of titanium dioxide and silicon nitride nanolayers. Among the pretreatment conditions studied, vesicle attachment on both substrate materials was achieved with HEPES buffer in the presence of sodium hydroxide and calcium chloride. To get an understanding of how ILs interact with intact vesicles or with supported lipid bilayers, the ILs 1,5-diazabicyclo(4.3.0)non-5-enium acetate ([DBNH][OAc]), tributyl(tetradecyl)phosphonium acetate ([P14444][OAc]), and tributylmethylphosphonium acetate ([P4441][OAc]) were introduced into the biomimetic system, and the characteristics of their interactions with the immobilized vesicles were determined. Depending on the IL, in situ real-time IL binding and/or phospholipid removal processes were observed. Although [DBNH][OAc] did not have any significant effect on the phospholipid vesicles, the strongest and the most significant effect was observed with [P14444][OAc]. The latter caused clear changes in the phospholipid bilayer: the ILs interacted with the bilayers, resulting in deformation of the vesicles most probably due to the formation of vesicle-IL aggregates. Only a mild effect was observed when [P4441][OAc], at a very high concentration, was exposed to the intact vesicles. In general, these results led to new insights into the effects of ILs on phospholipid vesicles, which are of great importance to the overall understanding of the harmfulness of ILs on biomembranes and biomimicking systems. In addition, the present work highlights the pivotal role of this highly surface-sensitive indirect biosensing technique in scrutinizing and dissecting the integrity and architecture of phospholipid vesicles in the nanoscale range.
Collapse
Affiliation(s)
- Joanna Witos
- Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki , Helsinki, Finland
| | - Giacomo Russo
- Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki , Helsinki, Finland
| | - Suvi-Katriina Ruokonen
- Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki , Helsinki, Finland
| | - Susanne K Wiedmer
- Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki , Helsinki, Finland
| |
Collapse
|
10
|
Liu C, Zhang X, Jing H, Miao Y, Zhao L, Han Y, Cui C. Research on drug-receptor interactions and prediction of drug activity via oriented immobilized receptor capillary electrophoresis. Electrophoresis 2016; 36:2433-41. [PMID: 26105113 DOI: 10.1002/elps.201400583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 05/22/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023]
Abstract
Oriented covalent immobilized β2 -adrenergic receptor (β2 -AR) CE (OIRCE) was developed to determine the interactions between a set of natural extracts of Radix Paeoniae Rubra (NERPR) and β2 -AR, and to predict the activity of NERPR. The inner capillary surface is chemically bonded with stable β2 -AR coating via microwave-assisted technical synthesis. The modified capillaries were characterized via infrared spectroscopy and fluorescence microscopy. Furthermore, the bonding amounts of β2 -AR were first obtained via fluorescence spectroscopy method. In determining the amount of bonded β2 -AR, the regression equation A = 576 707C + 35.449 and the correlation coefficient 0.9995 were obtained. This result revealed an excellent linear relationship in the range of 2 × 10(-4) mg/mL to 1 × 10(-3) mg/mL. The normalized capacity factor (KRCE ) was obtained using OIRCE in evaluating drug-receptor interactions. Related theories and equations were used to calculate KRCE values from apparent migration times of a solute and EOF. The order of KRCE and the binding constant (Kb ) values between drugs and β2 -AR was well consistent. The results confirmed that the OIRCE and KRCE values can be effectually used to investigate drug-receptor interactions, and OIRCE has the potential to predict drug activity and to select leading compounds from natural chemicals.
Collapse
Affiliation(s)
- Chunye Liu
- School of Pharmacy, Xi'an Medical University, Xi'an, P. R. China
| | - Xuejiao Zhang
- School of Pharmacy, Xi'an Medical University, Xi'an, P. R. China
| | - Hui Jing
- School of Pharmacy, Xi'an Medical University, Xi'an, P. R. China
| | - Yanqing Miao
- School of Pharmacy, Xi'an Medical University, Xi'an, P. R. China
| | - Lingzhi Zhao
- School of Pharmacy, Xi'an Medical University, Xi'an, P. R. China
| | - Yan Han
- School of Pharmacy, Xi'an Medical University, Xi'an, P. R. China
| | - Cuixia Cui
- School of Pharmacy, Xi'an Medical University, Xi'an, P. R. China
| |
Collapse
|
11
|
Ruokonen SK, Duša F, Lokajová J, Kilpeläinen I, King AW, Wiedmer SK. Effect of ionic liquids on the interaction between liposomes and common wastewater pollutants investigated by capillary electrophoresis. J Chromatogr A 2015; 1405:178-87. [DOI: 10.1016/j.chroma.2015.05.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/17/2022]
|
12
|
Al-Ghobashy MA. Electrophoretic behavior of charge regulated zwitter ionic buffers in covalently and dynamically coated fused silica capillaries. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bfopcu.2014.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Gallagher ES, Adem SM, Bright LK, Calderon IAC, Mansfield E, Aspinwall CA. Hybrid phospholipid bilayer coatings for separations of cationic proteins in capillary zone electrophoresis. Electrophoresis 2014; 35:1099-105. [PMID: 24459085 DOI: 10.1002/elps.201300537] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 11/06/2022]
Abstract
Protein separations in CZE suffer from nonspecific adsorption of analytes to the capillary surface. Semipermanent phospholipid bilayers have been used to minimize adsorption, but must be regenerated regularly to ensure reproducibility. We investigated the formation, characterization, and use of hybrid phospholipid bilayers (HPBs) as more stable biosurfactant capillary coatings for CZE protein separations. HPBs are formed by covalently modifying a support with a hydrophobic monolayer onto which a self-assembled lipid monolayer is deposited. Monolayers prepared in capillaries using 3-cyanopropyldimethylchlorosilane (CPDCS) or n-octyldimethylchlorosilane (ODCS) yielded hydrophobic surfaces with lowered surface free energies of 6.0 ± 0.3 or 0.2 ± 0.1 mJ m(-2) , respectively, compared to 17 ± 1 mJ m(-2) for bare silica capillaries. HPBs were formed by subsequently fusing vesicles comprised of 1,2-dilauroyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine to CPDCS- or ODCS-modified capillaries. The resultant HPB coatings shielded the capillary surface and yielded reduced electroosmotic mobility (1.3-1.9 × 10(-4) cm(2) V(-1) s(-1) ) compared to CPDCS- and ODCS-modified or bare capillaries (3.6 ± 0.2 × 10(-4) cm(2) V(-1) s(-1) , 4.8 ± 0.4 × 10(-4) cm(2) V(-1) s(-1) , and 6.0 ± 0.2 × 10(-4) cm(2) V(-1) s(-1) , respectively), with increased stability compared to phospholipid bilayer coatings. HPB-coated capillaries yielded reproducible protein migration times (RSD ≤ 3.6%, n ≥ 6) with separation efficiencies as high as 200 000 plates/m.
Collapse
Affiliation(s)
- Elyssia S Gallagher
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | |
Collapse
|
14
|
Hosta-Rigau L, Zhang Y, Teo BM, Postma A, Städler B. Cholesterol--a biological compound as a building block in bionanotechnology. NANOSCALE 2013; 5:89-109. [PMID: 23172231 DOI: 10.1039/c2nr32923a] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cholesterol is a molecule with many tasks in nature but also a long history in science. This feature article highlights the contribution of this small compound to bionanotechnology. We discuss relevant chemical aspects in this context followed by an overview of its self-assembly capabilities both as a free molecule and when conjugated to a polymer. Further, cholesterol in the context of liposomes is reviewed and its impact ranging from biosensing to drug delivery is outlined. Cholesterol is and will be an indispensable player in bionanotechnology, contributing to the progress of this potent field of research.
Collapse
|
15
|
Phospholipids covalently attached to silica particles as stationary phase in nano-liquid chromatography. J Pharm Biomed Anal 2012; 71:1-10. [DOI: 10.1016/j.jpba.2012.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 12/24/2022]
|
16
|
Dual polarization interferometric and capillary electrophoretic analysis of supported lipid bilayer constructed on silica-based surface: Evaluation of its anti-protein adsorption effect. Anal Chim Acta 2012; 714:127-33. [DOI: 10.1016/j.aca.2011.11.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/27/2011] [Accepted: 11/29/2011] [Indexed: 11/20/2022]
|
17
|
Zhang K, Chen M, Scriba GK, Abraham MH, Fahr A, Liu X. Linear Free Energy Relationship Analysis of Retention Factors in Cerasome Electrokinetic Chromatography Intended for Predicting Drug Skin Permeation. J Pharm Sci 2011; 100:3105-3113. [DOI: 10.1002/jps.22549] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/27/2011] [Accepted: 03/01/2011] [Indexed: 11/08/2022]
|
18
|
Martma K, Habicht KL, Ramirez XM, Tepp K, Käämbre T, Volobujeva O, Shimmo R. Polydopamine as an adhesive coating for open tubular capillary electrochromatography. Electrophoresis 2011; 32:1054-60. [DOI: 10.1002/elps.201000569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 11/25/2010] [Accepted: 12/17/2010] [Indexed: 11/11/2022]
|
19
|
Mei J, Tian YP, He W, Xiao YX, Wei J, Feng YQ. Preparation approaches of the coated capillaries with liposomes in capillary electrophoresis. J Chromatogr A 2010; 1217:6979-86. [DOI: 10.1016/j.chroma.2010.08.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 08/21/2010] [Accepted: 08/24/2010] [Indexed: 11/28/2022]
|
20
|
Lokajová J, Laine J, Puukilainen E, Ritala M, Holopainen JM, Wiedmer SK. Liposomes for entrapping local anesthetics: a liposome electrokinetic chromatographic study. Electrophoresis 2010; 31:1540-9. [PMID: 20358540 DOI: 10.1002/elps.200900562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bupivacaine is a lipophilic, long-acting, amide class local anesthetic commonly used in clinical practice to provide local anesthesia during surgical procedures. Several cases of accidental overdose with cardiac arrest and death have been reported since bupivacaine was introduced to human use. Recent case reports have suggested that Intralipid (Fresenius Kabi) is an effective therapy for cardiac toxicity from high systemic concentrations of, e.g. bupivacaine, even though the mechanism behind the interaction is not fully clear yet. Our long-term aim is to develop a sensitive, efficient, and non-harmful lipid-based formulation to specifically trap harmful substances in vivo. In this study, the in vitro interaction of local anesthetics (bupivacaine, prilocaine, and lidocaine) with Intralipid or lipid vesicles containing phosphatidylglycerol, phosphatidylcholine, cardiolipin, cholesterol, and N-palmitoyl-D-erythro-sphingosine (ceramide) was determined by liposome electrokinetic chromatography. The interactions were evaluated by calculating the retention factors and distribution constants. Atomic force microscopy measurements were carried out to confirm that the interaction mechanism was solely due to interactions between the analytes and the moving pseudostationary phase and not by interactions with a stationary lipid phase adsorbed to the fused-silica wall. The heterogeneity of the liposomes was also studied by atomic force microscopy. The liposome electrokinetic chromatography results demonstrate that there is higher interaction between the drugs and negatively charged liposome dispersion than with the commercial Intralipid dispersion.
Collapse
Affiliation(s)
- Jana Lokajová
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
21
|
Sikanen T, Wiedmer SK, Heikkilä L, Franssila S, Kostiainen R, Kotiaho T. Dynamic coating of SU-8 microfluidic chips with phospholipid disks. Electrophoresis 2010; 31:2566-74. [DOI: 10.1002/elps.201000130] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
22
|
Zappacosta R, Semeraro M, Baroncini M, Silvi S, Aschi M, Credi A, Fontana A. Liposome destabilization by a 2,7-diazapyrenium derivative through formation of transient pores in the lipid bilayer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:952-959. [PMID: 20333693 DOI: 10.1002/smll.200902306] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The effect of the luminescent heteroaromatic electron acceptor N,N'-dimethyl-2,7-diazapyrenium dichloride (DM-DAP(2+)) on the stability of 1-palmitoyl-2-oleoylphosphatydilcholine (POPC) liposomes is determined on the basis of the rate of release of different fluorescent probes entrapped within the liposome. The experiments show that DM-DAP(2+) exerts a substantial destabilizing action on the liposomal bilayer, particularly at low concentrations. Molecular dynamics simulations suggest that the activity of DM-DAP(2+) is related to its tendency to surround itself with water molecules, conceivably favoring the formation of transient pores across the bilayer.
Collapse
Affiliation(s)
- Romina Zappacosta
- Dipartimento di Scienze del Farmaco Università G. d'Annunzio Via dei Vestini, 66013 Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Carmona-Ribeiro AM. Biomimetic nanoparticles: preparation, characterization and biomedical applications. Int J Nanomedicine 2010; 5:249-59. [PMID: 20463941 PMCID: PMC2865020 DOI: 10.2147/ijn.s9035] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Indexed: 11/23/2022] Open
Abstract
Mimicking nature is a powerful approach for developing novel lipid-based devices for drug and vaccine delivery. In this review, biomimetic assemblies based on natural or synthetic lipids by themselves or associated to silica, latex or drug particles will be discussed. In water, self-assembly of lipid molecules into supramolecular structures is fairly well understood. However, their self-assembly on a solid surface or at an interface remains poorly understood. In certain cases, hydrophobic drug granules can be dispersed in aqueous solution via lipid adsorption surrounding the drug particles as nanocapsules. In other instances, hydrophobic drug molecules attach as monomers to borders of lipid bilayer fragments providing drug formulations that are effective in vivo at low drug-to-lipid-molar ratio. Cationic biomimetic particles offer suitable interfacial environment for adsorption, presentation and targeting of biomolecules in vivo. Thereby antigens can effectively be presented by tailored biomimetic particles for development of vaccines over a range of defined and controllable particle sizes. Biomolecular recognition between receptor and ligand can be reconstituted by means of receptor immobilization into supported lipidic bilayers allowing isolation and characterization of signal transduction steps.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Lab, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
24
|
Martma K, Fernaeus SZ, Land T, Shimmo R. New capillary coatings in open tubular CEC as models for biological membranes. Electrophoresis 2010; 31:1586-9. [PMID: 20358541 DOI: 10.1002/elps.200900587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Novel stationary phases in open tubular CEC were investigated. The coating procedure was fast and simple. The coating material contained membrane suspension of different neuronal cell lines. The performance and stability of three cell lines: human neuroblastoma SH-SY5Y, murine microglia Bv-2 and human glioma U87-MG cells were studied. The coating solution was expected to contain both membrane proteins and membrane lipids. The presence of membrane proteins was tested by Western blotting and the presence of phospholipids by the analysis of phosphorus content. The stability of the coating was estimated by monitoring the mobility of EOF over successive runs. The effects of pH, storage time and temperature on the coating stability were also studied. The results showed that the cell membrane-based coating was stable over pH range of 6.5-8.5. Coatings derived from different cells yielded similar stability and EOF mobility. Capillary coated with a membrane solution was stable over 3-day period. The same coating solution could be used for 3 weeks.
Collapse
Affiliation(s)
- Kert Martma
- Department of Natural Sciences, Institute of Mathematics and Natural Sciences, Tallinn University, Tallinn, Estonia
| | | | | | | |
Collapse
|
25
|
Bachmann S, Vallant R, Bakry R, Huck CW, Corradini D, Bonn GK. CE coupled to MALDI with novel covalently coated capillaries. Electrophoresis 2010; 31:618-29. [DOI: 10.1002/elps.200900507] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Martma K, Fernaeus SZ, Land T, Shimmo R. Study of cell membrane based coatings in capillary electrochromatography. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.proche.2009.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Wiedmer SK, Lokajová J, Riekkola ML. Marker compounds for the determination of retention factors in EKC. J Sep Sci 2009; 33:394-409. [DOI: 10.1002/jssc.200900625] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
|
29
|
Mei J, Xu J, Xiao Y, Liao X, Qiu G, Feng Y. A novel covalent coupling method for coating of capillaries with liposomes in capillary electrophoresis. Electrophoresis 2008; 29:3825-33. [DOI: 10.1002/elps.200700956] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jie Mei
- College of Pharmacy, Wuhan University, Wuhan, P.R. China
| | - Jian‐Rong Xu
- College of Pharmacy, Wuhan University, Wuhan, P.R. China
| | - Yu‐Xiu Xiao
- College of Pharmacy, Wuhan University, Wuhan, P.R. China
| | - Xiao‐Yan Liao
- College of Pharmacy, Wuhan University, Wuhan, P.R. China
| | - Guo‐Fu Qiu
- College of Pharmacy, Wuhan University, Wuhan, P.R. China
| | - Yu‐Qi Feng
- Department of Chemistry, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
30
|
Boija E, Lundquist A, Nilsson M, Edwards K, Isaksson R, Johansson G. Bilayer disk capillary electrophoresis: A novel method to study drug partitioning into membranes. Electrophoresis 2008; 29:3377-83. [DOI: 10.1002/elps.200700682] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Amundsen LK, Kokkonen JT, Sirén H. Comparison of partial filling MEKC analyses of steroids with use of ESI-MS and UV spectrophotometry. J Sep Sci 2008; 31:803-13. [DOI: 10.1002/jssc.200700657] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Characterization of phosphatidylcholine/polyethylene glycol-lipid aggregates and their use as coatings and carriers in capillary electrophoresis. Electrophoresis 2008; 29:852-62. [DOI: 10.1002/elps.200700651] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Gulcev MD, Lucy CA. Factors Affecting the Behavior and Effectiveness of Phospholipid Bilayer Coatings for Capillary Electrophoretic Separations of Basic Proteins. Anal Chem 2008; 80:1806-12. [DOI: 10.1021/ac702408u] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Makedonka D. Gulcev
- Department of Chemistry, University of Alberta, Gunning/Lemieux Chemistry Centre, Edmonton, Alberta T6G 2G2, Canada
| | - Charles A. Lucy
- Department of Chemistry, University of Alberta, Gunning/Lemieux Chemistry Centre, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
34
|
White CM, Luo R, Archer-Hartmann SA, Holland LA. Electrophoretic screening of ligands under suppressed EOF with an inert phospholipid coating. Electrophoresis 2007; 28:3049-55. [PMID: 17665372 DOI: 10.1002/elps.200600816] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The applicability of dual injection CE for affinity selection of biopolymers that contain multiple binding sites is demonstrated. The efficient analysis of biomolecules such as carbohydrates and proteins, as well as pharmaceuticals by CE requires the reduction or elimination of nonspecific interactions with the capillary surface. Phospholipids are integral components of cell membranes and aqueous phospholipid liquid crystals adopt a bilayer structure on fused-silica. This phospholipid surface does not interact significantly with the following biomolecules: serum albumin, the 96-110 heparin binding domain of amyloid precursor protein (APP), polydisperse glycosaminoglycans, and variable chain-length oligosaccharides. Pharmaceuticals including five anionic nonsteroidal anti-inflammatory drugs, three cationic analgesics, and two cationic beta-blockers, also show minimal interaction with the surface. In addition, the use of a phospholipid coating suppresses EOF, which enables reversed-polarity separations, dual opposite injection CE, affinity screening via CE by dual opposite injection, and serial target-ligand injections.
Collapse
Affiliation(s)
- Christian M White
- C. Eugene Bennett, Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
35
|
Hautala JT, Riekkola ML, Wiedmer SK. Anionic phospholipid coatings in capillary electrochromatography. J Chromatogr A 2007; 1150:339-47. [PMID: 16945379 DOI: 10.1016/j.chroma.2006.08.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 08/02/2006] [Accepted: 08/11/2006] [Indexed: 11/19/2022]
Abstract
Anionic phospholipids phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylinositol (PI), and phosphatidylserine (PS) were examined for their effect on 1-palmitoyl-2-oleyl-sn-glycero-3-phosphatidylcholine (POPC)-containing liposomes used as coating material in capillary electrochromatography. Liposome solvent was N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) (HEPES) buffer at pH 7.4 with and without 3 mM of CaCl2. The background electrolyte solution was HEPES buffer at pH 7.4. The net charge, size, and short-term stability of the liposomes were measured with a Zetasizer. Results showed that calcium interacts with all liposomes but most strongly with POPC/PA. The relative migration times, retention factors, and resolution of the model analytes (one cationic, three uncharged ions, and one anionic) were studied. All liposomes successfully coated the silica capillary. Without calcium the strongest interaction and best separation of the analytes were with the POPC/PI and POPC/PS coatings, while interactions with the POPC/PA coating were weak. Calcium enhanced the interactions of the model analytes with all coatings, and the interactions were then strongest with the POPC/PA coating. In the presence of calcium there appears to be a slight reorganization of the coating with increasing number of runs. Our results indicate strong interactions between calcium and the phosphate groups in phospholipids and demonstrate the significant role of the phospholipid polar head group in phospholipid coatings on silica surfaces.
Collapse
Affiliation(s)
- Jari T Hautala
- Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
36
|
Viitala T, Hautala JT, Vuorinen J, Wiedmer SK. Structure of anionic phospholipid coatings on silica by dissipative quartz crystal microbalance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:609-18. [PMID: 17209612 DOI: 10.1021/la060923t] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The adsorption of anionic phospholipids on silica was investigated by the dissipative quartz crystal microbalance (QCM) technique. Liposomes composed of 1 mM 80:20 mol % of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphatidylcholine (POPC)/phosphatidic acid, POPC/phosphatidylglycerol, or POPC/phosphatidylserine in N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) buffer at pH 7.4 (with or without 3 mM of CaCl2) were examined. We have previously demonstrated that similar phospholipid coatings can be used in capillary electrochromatography as a stationary phase for the separation of analytes. In this work, we focus on the formation of the coatings and on the type of lipid structure formed on silica. The QCM investigation comprised qualitative results based on changes in frequency and resistance, and quantitative modeling of the obtained results. The latter was performed using the dissipative QCM, which measures the quartz crystal impedance, combined with equivalent circuit analysis. A previously developed coating and cleaning procedure for phospholipid-coated fused silica capillaries was adopted in this study, and the same silica-coated crystal was used throughout the QCM study. We will demonstrate in this work that the type of lipid structure formed on silica, that is, a rather rigid supported lipid bilayer or a viscoelastic supported vesicle layer (SVL), is highly dependent on the lipid and solvent composition. We also show for the first time that the modeling of the dissipative QCM data can be used to extract a more quantitative picture of an adsorbed SVL, because, so far, published studies have merely used the QCM data in a qualitative sense.
Collapse
|
37
|
Ou J, Dong J, Dong X, Yu Z, Ye M, Zou H. Recent progress in polar stationary phases for CEC. Electrophoresis 2007; 28:148-63. [PMID: 17136736 DOI: 10.1002/elps.200600298] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review summarizes most of the recent developments in the preparation and application of polar stationary phases for CEC covering the literature published since the year 2004. These polar stationary phases have been adopted for separation of analytes by the modes of packing column CEC, open-tubular CEC (o-CEC) and monolithic column CEC. Currently, development of o-CEC using biomolecules, such as protein and DNA, as the immobilized ligands is highlighted partly due to the simplicity of preparation. Furthermore, monolithic columns have been extended quickly, particularly inorganic materials-based monoliths, such as silica, zirconia, hafnium, etc., as an alternative to packed columns have been developed quickly.
Collapse
Affiliation(s)
- Junjie Ou
- National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | | | | | | | | | | |
Collapse
|
38
|
Lindén MV, Holopainen JM, Laukkanen A, Riekkola ML, Wiedmer SK. Cholesterol-rich membrane coatings for interaction studies in capillary electrophoresis: Application to red blood cell lipid extracts. Electrophoresis 2006; 27:3988-98. [PMID: 16983633 DOI: 10.1002/elps.200600002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose was to develop a stable biological membrane coating for CE useful for membrane interaction studies. The effect of cholesterol (chol) on the stability of dipalmitoylphosphatidylcholine (DPPC) and sphingomyelin (SM) coatings was studied. In addition, a fused-silica capillary for CE was coated with human red blood cell (RBC) ghost lipids. Liposomes prepared of DPPC/SM with and without chol or RBC ghost lipids were flushed through the capillary and the stability of the coating was measured electrophoretically. Similar mixtures of DPPC/SM with and without chol were further studied by differential scanning calorimetry. The presence of phosphatidylcholine as a basic component in the coating solution of DPPC/SM/chol was found to be essential to achieve a good and stable coating. The results also confirmed the stability of coatings obtained with solutions of DPPC with 0-30 mol% of chol and SM in different ratios, which more closely resemble natural membranes. Finally, the electrophoretic measurements revealed that a stable coating is formed when capillaries are coated with liposomes of RBC ghost lipids.
Collapse
Affiliation(s)
- Maria V Lindén
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
39
|
Bonoli M, Varjo SJO, Wiedmer SK, Riekkola ML. Cationic lipid vesicles as coating precursors in capillary electrochromatography: Separation of basic proteins and neutral steroids. J Chromatogr A 2006; 1119:163-9. [PMID: 16458905 DOI: 10.1016/j.chroma.2005.12.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Revised: 12/01/2005] [Accepted: 12/08/2005] [Indexed: 11/19/2022]
Abstract
1,2-Dioleyl-3-trymethylammoniumpropane (DOTAP) lipid vesicles were employed as coating precursors to obtain a semipermanent cationic lipid bilayer in silica capillary. The coating procedure was relatively fast and simple. Reliable results for the separation of four basic proteins (alpha-chymotrypsinogen A, ribonuclease A, cytochrome C, lysozyme) were obtained by using an acetate buffer under acidic conditions. The RSDs of the migration times were not higher than 0.5% run-to-run and about 1% day-to-day (3 days), while the RSDs of the peak areas were within 7% day-to-day (3 days). The day-to-day RSD of the EOF mobility of about 1%, confirmed that the DOTAP coating was stable for the separation of basic proteins, under acidic buffers. In addition to basic proteins the DOTAP coating was found suitable under acidic conditions for the repeatable separation of neutral steroids. The potential of DOTAP as a carrier in background electrolyte solution was studied.
Collapse
Affiliation(s)
- Matteo Bonoli
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, Finland
| | | | | | | |
Collapse
|
40
|
Bilek G, Kremser L, Blaas D, Kenndler E. Analysis of liposomes by capillary electrophoresis and their use as carrier in electrokinetic chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 841:38-51. [PMID: 16682264 DOI: 10.1016/j.jchromb.2006.03.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 03/07/2006] [Accepted: 03/15/2006] [Indexed: 11/21/2022]
Abstract
This contribution reviews work about liposomes in the context of electrically driven separation methods in the capillary format. The discussion covers four topics. The one broaches the application of liposomes as pseudo-stationary phases or carriers in vesicle or liposome electrokinetic chromatography (EKC) in the way as microemulsions and micelles are used; it includes the chromatographic use of liposomal bilayers as stationary phases attached to the wall for capillary electrochromatography (CEC). The second topic is the characterization and separation of liposomes as analytes by capillary electrophoresis (CE). Then the determination of distribution coefficients and binding constants between liposomes and ligands is discussed, and finally work dealing with peptides and proteins are reviewed with lipid bilayers as constituents of the electrically driven separation system.
Collapse
Affiliation(s)
- Gerhard Bilek
- Institute for Analytical Chemistry, University of Vienna, Währingerstrasse 38, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
41
|
Bo T, Pawliszyn J. Dynamic process of phospholipid–protein interaction studied by capillary isoelectric focusing with whole-column imaging detection. Electrophoresis 2006; 27:852-8. [PMID: 16411278 DOI: 10.1002/elps.200500670] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Liposomes are vesicles formed by the aggregation of amphiphilic phospholipid molecules, which can mimic natural cell membranes. Interaction between liposome and protein is important for the structure and function of natural cell membranes. In this study, a CIEF method with whole-column imaging detection was developed for monitoring the dynamic process of phospholipid-protein interactions. The CIEF profiles at successive interaction times clearly displayed the formation of the different conjugates between phospholipid and protein at different stages. Due to the diversity of the chemical and physical properties of targeted proteins in this study (trypsin inhibitor, beta-lactoglobulin B, phosphorylase b, and trypsinogen), different dynamic processes of phospholipid-protein interactions were exhibited. The type of phospholipids played an important role in the dynamic process of phospholipid-protein interaction, as noted by the use of zwitterionic phospholipid (phosphatidylcholine) and acidic phospholipid (phosphatidylserine). Mechanisms involved in these interactions were discussed by monitoring the dynamic processes in this study.
Collapse
Affiliation(s)
- Tao Bo
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
42
|
Yohannes G, Pystynen KH, Riekkola ML, Wiedmer SK. Stability of phospholipid vesicles studied by asymmetrical flow field-flow fractionation and capillary electrophoresis. Anal Chim Acta 2006. [DOI: 10.1016/j.aca.2005.12.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Varjo SJO, Hautala JT, Wiedmer SK, Riekkola ML. Small diamines as modifiers for phosphatidylcholine/phosphatidylserine coatings in capillary electrochromatography. J Chromatogr A 2005; 1081:92-8. [PMID: 16013604 DOI: 10.1016/j.chroma.2005.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Greater stability of liposome coatings and improved resolution of model steroids in capillary electrochromatography (CEC) were sought by adding small diamines (ethylenediamine, diaminopropane, bis-tris-propane, or N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid, HEPES)) to the liposome solution before coating of fused silica capillaries. The phospholipid coatings consisted of 1 mM of 8:2 mol% phosphatidylcholine (PC)/phosphatidylserine (PS) and 5 mM of modifier in buffer solutions (acetate, phosphate, or Tris) at pH 4.0-7.4. The coating was based on a published procedure, and five steroids were used as neutral model analytes in evaluation of the coating. The results showed that under optimal conditions, the small linear diamines increased the packing density of anionic phospholipids, leading to improved separations. In addition, the choice of buffer for the liposome coating and separation appeared to influence the performance of the coatings. While buffers with amino groups take part in the phospholipid bilayer formation, buffers like phosphate may even have negative effect on coating formation. The factors affecting phospholipid coatings with diamines as modifiers are clarified.
Collapse
Affiliation(s)
- Sami J O Varjo
- Laboratory of Analytical Chemistry, Department of Chemistry, PO Box 55, FIN-00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|
44
|
Bohlin ME, Kogutowska E, Blomberg LG, Heegaard NHH. Capillary electrophoresis-based analysis of phospholipid and glycosaminoglycan binding by human beta2-glycoprotein I. J Chromatogr A 2005; 1059:215-22. [PMID: 15628144 DOI: 10.1016/j.chroma.2004.09.087] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human beta2-glycoprotein I (beta2gpI) is a phospholipid and heparin binding plasma glycoprotein involved in autoimmune diseases characterized by blood clotting disturbances (thrombosis) together with the occurrence of autoantibodies against beta2gpI. With the final goal of assessing autoantibody influence on binding interactions of beta2gpI we have studied the development of capillary electrophoresis (CE)-based assays for interactions of negatively charged ligands with beta2gpI. In the development of suitable conditions for analysis at neutral pH of this basic protein (pI about 8) we found the pH hysteresis behavior of fused silica surfaces useful since the protonated surface after an acid pre-wash counteracted protein adsorption efficiently in contrast to more laborious procedures including acrylamide/dimethylacrylamide coatings that did not permit analysis of this particular protein. This simple approach made estimates of heparin-beta2gpI interactions possible and the principle was shown also to work for detection of betagpI binding to anionic phospholipids. Utilizing the pH hysteresis effect may be a simple solution to the adsorption problems often encountered in analyses of proteins by CE.
Collapse
Affiliation(s)
- Maria E Bohlin
- Department of Chemistry, Karlstad University, SE-651 88 Karlstad, Sweden
| | | | | | | |
Collapse
|
45
|
Wiedmer SK, Jussila M, Hakala RMS, Pystynen KH, Riekkola ML. Piperazine-based buffers for liposome coating of capillaries for electrophoresis. Electrophoresis 2005; 26:1920-7. [PMID: 15825220 DOI: 10.1002/elps.200410277] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Anionic liposomes can be coated on fused-silica capillaries for electrophoresis in the presence of N-(hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) (HEPES) as background electrolyte (BGE) solution. In this work, the interaction of various compounds with zwitterionic and anionic phospholipid coatings was studied with HEPES at pH 7.4 as BGE solution. The chromatographic and electrophoretic behavior of three test sample solutions (anionic, cationic, and neutral) was investigated for evaluation of the phospholipid coatings. Our results show that hydrophobic interactions between analytes and the phospholipid coating are important for the migration of charged analytes. In addition, the performances of other piperazine-based buffers, i.e., N-(2-hydroxyethyl)piperazine-N'-(2-hydroxypropanesulfonic acid), piperazine-N,N'-bis(2-ethanesulfonic acid), and piperazine-N,N'-bis(hydroxypropane sulfonic acid), at pH 7.4, as liposome solvent and BGE solution were evaluated and compared with the performance of HEPES at pH 7.4. The anionic liposome solution comprised 80/20 mol% phosphatidylcholine/phosphatidylserine. A simple test solution was selected and the chromatographic and electrophoretic migration behavior of the analytes was evaluated. The results show that, in addition to HEPES, other piperazine-based buffers at pH 7.4 are suitable for coating of fused-silica capillaries with anionic liposomes.
Collapse
Affiliation(s)
- Susanne K Wiedmer
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, FIN-00014 Finland.
| | | | | | | | | |
Collapse
|
46
|
Wang C, Lucy CA. Oligomerized Phospholipid Bilayers as Semipermanent Coatings in Capillary Electrophoresis. Anal Chem 2005; 77:2015-21. [PMID: 15801732 DOI: 10.1021/ac0489622] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Double-chained surfactants form semipermanent coatings that prevent protein adsorption in capillary electrophoresis (CE). To make such coatings more permanent, vesicles of the unsaturated phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine were prepared and subjected to free-radical-initiated polymerization, both inside the capillary and in free solution. The latter generated oligomers of 2-5 units based on ESI-TOF MS, and formed the more stable coating in CE. Rinsing the capillary with a solution of the ex situ oligomerized DOPC suppressed EOF (0.8 x 10(-)(8) m(2)/V.s) for more than 20 h, whereas in situ oligomerized electroosmotic flow (EOF) suppressed the EOF for only 10 h. Mixtures of anionic and cationic proteins were separated under neutral pH and low ionic strength buffer with efficiencies of 480,000-930,000 plates/m and recoveries of 75-99%.
Collapse
Affiliation(s)
- Chuanzhong Wang
- Department of Chemistry, University of Alberta, Gunning/Lemieux Chemistry Centre, Edmonton, Alberta, T6G 2G2 Canada
| | | |
Collapse
|
47
|
Owen RL, Strasters JK, Breyer ED. Lipid vesicles in capillary electrophoretic techniques: characterization of structural properties and associated membrane-molecule interactions. Electrophoresis 2005; 26:735-751. [PMID: 15714573 DOI: 10.1002/elps.200410288] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper reviews the use of lipid vesicles as model membranes in capillary electrophoresis (CE). The history and utility of CE in the characterization of microparticles is summarized, focusing on the application of colloidal electromigration theories to lipid vesicles. For instance, CE experiments have been used to characterize the size, surface properties, enclosed volumes, and electrophoretic mobilities of lipid vesicles and of lipoprotein particles. Several techniques involving small molecules or macromolecules separated in the presence of lipid vesicles are discussed. Interactions between the analytes and the lipid vesicles - acting as a pseudostationary phase or coated stationary phase in electrokinetic chromatography (EKC) - can be used to obtain additional information on the characteristics of the vesicles and analytes, and to study the biophysical properties of membrane-molecule interactions in lipid vesicles and lipoproteins. Different methods of determining binding constants by EKC are reviewed, along with the relevant binding constant calculations and a discussion of the application and limitations of these techniques as they apply to lipid vesicle systems.
Collapse
Affiliation(s)
- Rebecca L Owen
- Georgia State University, Department of Chemistry, Atlanta, GA 30302-4098, USA
| | | | | |
Collapse
|
48
|
Gómez-Hens A, Manuel Fernández-Romero J. The role of liposomes in analytical processes. Trends Analyt Chem 2005. [DOI: 10.1016/j.trac.2004.07.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Hautala JT, Wiedmer SK, Riekkola ML. Influence of pH on formation and stability of phosphatidylcholine/phosphatidylserine coatings in fused-silica capillaries. Electrophoresis 2005; 26:176-86. [PMID: 15624182 DOI: 10.1002/elps.200406143] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effect of pH on the formation and stability of phospholipid coatings in fused-silica capillaries in electrophoresis was investigated. A liposome solution consisting of 3 mM of 80:20 mol% phosphatidylcholine/phosphatidylserine (PC/PS) in N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) (HEPES) buffer was used as coating material. The coating was prepared by a method described earlier and five steroids were used as neutral model analytes. First, the effect of pH of the coating solution on the formation and stability of phospholipid coatings was studied at pH 6.5-8.5. The pH of the background electrolyte (BGE) solution (HEPES) was either kept constant at pH 7.4 or made similar to the pH of the liposome coating solution. Results showed that attachment of the coating on the fused-silica wall mostly depends on the protonation of amines of the phospholipids and HEPES. The ability of the phospholipid coating to withstand changes in pH was then investigated by coating at pH 7.5 and separating steroids with acetic acid, 3-(cyclohexylamino)-1-propanesulfonic acid (CAPS), HEPES, or glycine BGE, adjusted to pH between 4.5 and 10.8. The results showed that with use of BGE solution at pH 10.8, the separation of steroids was not successful and the electroosmotic flow was high because of leakage of the phospholipid coating during preconditioning of the capillary with BGE solution. There was no phospholipid leakage with a BGE solution of pH 4.5, indicating that the protonated form of the functional groups of PS and HEPES participating in the attachment of the phospholipid coating to the capillary play an essential role in the success of the coating.
Collapse
Affiliation(s)
- Jari T Hautala
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, Finland
| | | | | |
Collapse
|
50
|
Zhang H, Yeung KKC. Nanoliter-Volume Selective Sampling of Peptides Based on Isoelectric Points for MALDI-MS. Anal Chem 2004; 76:6814-8. [PMID: 15538809 DOI: 10.1021/ac049230c] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple way to selectively isolate peptides based on their isoelectric points (pI) for MALDI mass spectral analysis is described. An applied voltage was used to electromigrate peptides into a capillary. The capillary was modified with a zwitterionic surfactant, 1,2-dilauroyl-sn-phosphatidylcholine (DLPC), to suppress the electroosmotic flow (EOF) during injection. Hence, either the cationic or the anionic peptides were introduced, depending on the voltage polarity. By controlling the pH, selective loading of peptides was performed to isolate trace components from a mixture. The injected sample plugs were subsequently spotted in nanoliter volumes for MALDI-MS analysis. No significant sample losses resulting from selective sampling were detected. Low attomole-level detection of peptides (adrenocorticotropic hormone fragment 18-39, pI 4.25) was achieved from a mixture containing other peptides (angiotensin I, pI 6.92, and bradykinin, pI 12.00) at 100 000-fold higher concentrations.
Collapse
Affiliation(s)
- Haixia Zhang
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | |
Collapse
|